1
|
Ding R, Yu J, Ke W, Du L, Cheng G, Hu S, Xu Y, Liu Y. TLR2 regulates Moraxella catarrhalis adhesion to and invasion into alveolar epithelial cells and mediates inflammatory responses. Virulence 2024; 15:2298548. [PMID: 38169345 PMCID: PMC10772937 DOI: 10.1080/21505594.2023.2298548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Moraxella catarrhalis is a major cause of chronic obstructive pulmonary disease. Toll-like receptor 2 (TLR2) plays an important role in the inflammatory response in host respiratory epithelial cells. M. catarrhalis induces an inflammatory immune response in respiratory epithelial cells that is mostly dependent on TLR2. However, the mechanisms by which this pathogen adheres to and invades the respiratory epithelium are not well understood. The present study aimed to reveal the role of TLR2 in M. catarrhalis adhesion to and invasion into alveolar epithelial cells, using molecular techniques. Pretreatment with the TLR2 inhibitor TLR2-IN-C29 enhanced M. catarrhalis adhesion to A549 cells but reduced its invasion, whereas the agonist Pam3CSK4 reduced both M. catarrhalis adhesion and invasion into A549 cells. Similarly, M. catarrhalis 73-OR strain adhesion and invasion were significantly reduced in TLR2-/- A549 cells. Moreover, the lung clearance rate of the 73-OR strain was significantly higher in TLR2-/- C57/BL6J mice than in wild-type (WT) mice. Histological analysis showed that inflammatory responses were milder in TLR2-/- C57/BL6J mice than in WT mice, which was confirmed by a decrease in cytokine levels in TLR2-/- C57/BL6J mice. Overall, these results indicate that TLR2 promoted M. catarrhalis adhesion and invasion of A549 cells and lung tissues and mediated inflammatory responses in infected lungs. This study provides important insights into the development of potential therapeutic strategies against M. catarrhalis and TLR2-induced inflammatory responses.
Collapse
Affiliation(s)
- Rui Ding
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Jinhan Yu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lijun Du
- Department of Clinical Laboratory, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Guixue Cheng
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Siqi Hu
- Faculty of Pediatrics, the Chinese PLA General Hospital, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yali Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|
2
|
Huang Y, Zhu F, Koh J, Stanton D, Chen S, Wang N. Proteomic and bioinformatic analyses of proteins in the outer membrane and extracellular compartments and outer membrane vesicles of Candidatus Liberibacter species. Front Microbiol 2022; 13:977710. [PMID: 36225379 PMCID: PMC9548881 DOI: 10.3389/fmicb.2022.977710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most devastating citrus disease in the world. Candidatus Liberibacter asiaticus (Las) is the prevalent HLB pathogen, which is yet to be cultivated. A recent study demonstrates that Las does not contain pathogenicity factors that are directly responsible for HLB symptoms. Instead, Las triggers systemic and chronic immune responses, representing a pathogen-triggered immune disease. Importantly, overproduction of reactive oxygen species (ROS) causes systemic cell death of phloem tissues, thus causing HLB symptoms. Because Las resides in the phloem tissues, it is expected that phloem cell might recognize outer membrane proteins, outer membrane vesicle (OMV) proteins and extracellular proteins of Las to contribute to the immune responses. Because Las has not been cultivated, we used Liberibacter crescens (Lcr) as a surrogate to identify proteins in the OM fraction, OMV proteins and extracellular proteins by liquid chromatography with tandem mass spectrometry (LC–MS/MS). We observed OMVs of Lcr under scanning electron microscope, representing the first experimental evidence that Liberibacter can deliver proteins to the extracellular compartment. In addition, we also further analyzed LC–MS/MS data using bioinformatic tools. Our study provides valuable information regarding the biology of Ca. Liberibacter species and identifies many putative proteins that may interact with host proteins in the phloem tissues.
Collapse
Affiliation(s)
- Yixiao Huang
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Fanchao Zhu
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Daniel Stanton
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
3
|
Immunological characterisation of truncated lipooligosaccharide-outer membrane protein based conjugate vaccine against Moraxella catarrhalis and nontypeable Haemophilus influenzae. Vaccine 2020; 38:309-317. [PMID: 31668366 DOI: 10.1016/j.vaccine.2019.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 11/21/2022]
Abstract
Moraxella catarrhalis and nontypeable Haemophilus influenzae are important bacterial causes of otitis media in children and respiratory diseases in adults. Lipooligosaccharide (LOS) from M. catarrhalis and outer membrane protein 26 (OMP26) from NTHi are major surface antigens identified as potential vaccine components against these organisms. We previously constructed M. catarrhalis in which LOS is truncated, but contains a structure common to the three known serotypes of M. catarrhalis. OMP26 is known to enhance clearance of NTHi following vaccination in animal models, so was chosen as the carrier protein. In this study, we conjugated wild-type and truncated M. catarrhalis detoxified-LOS to a recombinant modified OMP26, rOMP26VTAL. Vaccination of mice with these conjugates resulted in a significant increase in anti-LOS and anti-rOMP26VTAL IgG levels. Importantly, mouse antisera showed complement-mediated bactericidal activity against all M. catarrhalis serotype A and B strains and a NTHi strain tested. Serotypes A & B make up more than 90% of isolates. These data suggest that the LOS and OMP based conjugate can be used as vaccine components and require further investigation in animal models.
Collapse
|
4
|
Perez AC, Murphy TF. A Moraxella catarrhalis vaccine to protect against otitis media and exacerbations of COPD: An update on current progress and challenges. Hum Vaccin Immunother 2017; 13:2322-2331. [PMID: 28853985 PMCID: PMC5647992 DOI: 10.1080/21645515.2017.1356951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 01/03/2023] Open
Abstract
Moraxella catarrhalis is a major cause of morbidity and mortality worldwide, especially causing otitis media in young children and exacerbations of chronic obstructive pulmonary disease in adults. This pathogen uses several virulence mechanisms to colonize and survive in its host, including adherence and invasion of host cells, formation of polymicrobial biofilms with other bacterial pathogens, and production of β-lactamase. Given the global impact of otitis media and COPD, an effective vaccine to prevent M. catarrhalis infection would have a huge impact on the quality of life in both patient populations by preventing disease, thus reducing morbidity and health care costs. A number of promising vaccine antigens have been identified for M. catarrhalis. The development of improved animal models of M. catarrhalis disease and identification of a correlate of protection are needed to accelerate vaccine development. This review will discuss the current state of M. catarrhalis vaccine development, and the challenges that must be addressed to succeed.
Collapse
Affiliation(s)
- Antonia C. Perez
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Timothy F. Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Microbiology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
5
|
Giebink GS, Bakaletz LO, Barenkamp SJ, Green B, Gu XX, Heikkinen T, Hotomi M, Karma P, Kurono Y, Kyd JM, Murphy TF, Ogra PL, Patel JA, Pelton SI. 6. Vaccine. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/00034894051140s110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Abstract
INTRODUCTION Moraxella catarrhalis is a prominent pathogen that causes acute otitis media in children and lower respiratory tract infections in adults, resulting in a significant socioeconomic burden on healthcare systems globally. No vaccine is currently available for M. catarrhalis. Promising M. catarrhalis target antigens have been characterized in animal models and should soon enter human clinical trials. AREAS COVERED This review discusses the detailed features and research status of current candidate target antigens for an M. catarrhalis vaccine. The approaches for assessing M. catarrhalis vaccine efficacy are also discussed. EXPERT OPINION Targeting the key molecules contributing to serum resistance may be a viable strategy to identify effective vaccine targets among M. catarrhalis antigens. Elucidating the role and mechanisms of the serum and mucosal immune responses to M. catarrhalis is significant for vaccine target selection, testing and evaluation. Developing animal models closely simulating M. catarrhalis-caused human respiratory diseases is of great benefit in better understanding pathogenesis and evaluating vaccine efficacy. Carrying out clinical trials will be a landmark in the progress of M. catarrhalis vaccine research. Combined multicomponent vaccines will be a focus of future M. catarrhalis vaccine studies.
Collapse
Affiliation(s)
- Dabin Ren
- a 1 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA +1 585 922 3706 ;
| | - Michael E Pichichero
- b 2 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA
| |
Collapse
|
7
|
Augustyniak D, Piekut M, Majkowska-Skrobek G, Skała J. Bactericidal, opsonophagocytic and anti-adhesive effectiveness of cross-reactive antibodies against Moraxella catarrhalis. Pathog Dis 2015; 73:ftu026. [PMID: 25743473 DOI: 10.1093/femspd/ftu026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Moraxella catarrhalis is a human-restricted significant respiratory tract pathogen. The bacteria accounts for 15-20% of cases of otitis media in children and is an important causative agent of infectious exacerbations of chronic obstructive pulmonary disease in adults. The acquisition of new M. catarrhalis strains plays a central role in the pathogenesis of both mentioned disorders. The antibody-dependent immune response to this pathogen is critical for its effective elimination. Thus, the knowledge about the protective threshold of cross-reactive antibodies with defined functionality seems to be important. The complex analysis of broad-spectrum effectiveness of cross-reactive antibodies against M. catarrhalis has never been performed. The goal of the present study was to demonstrate and compare the bactericidal, opsonophagocytic and blocking function of cross-reacting antibodies produced in response to this bacterium or purified outer membrane proteins incorporated in Zwittergent-based micelles. The multivalent immunogens were used in order to better mimic the natural response of the host. The demonstrated broad-spectrum effectiveness of cross-reactive antibodies in pathogen eradication or inhibition strongly indicates that this pool of antibodies by recognition of pivotal shared M. catarrhalis surface epitopes seems to be an essential additional source to control host-microbe interaction.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland;
| | - Monika Piekut
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Grażyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Jacek Skała
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
8
|
Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol 2013; 7:1073-100. [PMID: 22953708 DOI: 10.2217/fmb.12.80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Moraxella catarrhalis is a human-restricted commensal that over the last two decades has developed into an emerging respiratory tract pathogen. The bacterial species is equipped with various adhesins to facilitate its colonization. Successful evasion of the human immune system is a prerequisite for Moraxella infection. This strategy involves induction of an excessive proinflammatory response, intervention of granulocyte recruitment to the infection site, activation of selected pattern recognition receptors and cellular adhesion molecules to counteract the host bacteriolytic attack, as well as, finally, reprogramming of antigen presenting cells. Host immunomodulator molecules are also exploited by Moraxella to aid in resistance against complement killing and host bactericidal molecules. Thus, breaking the basis of Moraxella immune evasion mechanisms is fundamental for future invention of effective therapy in controlling Moraxella infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
9
|
Hassan F, Ren D, Zhang W, Merkel TJ, Gu XX. Moraxella catarrhalis activates murine macrophages through multiple toll like receptors and has reduced clearance in lungs from TLR4 mutant mice. PLoS One 2012; 7:e37610. [PMID: 22662179 PMCID: PMC3360749 DOI: 10.1371/journal.pone.0037610] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/21/2012] [Indexed: 12/13/2022] Open
Abstract
Moraxella catarrhalis is a Gram negative bacterium and a leading causative agent of otitis media (OM) in children. Several recent reports have provided strong evidence for an association between toll like receptors and OM. It has been found that both Streptococcus pneumoniae and nontypeable Haemophilus influenzae activate host protective immune responses through toll like receptors (TLRs), however, the precise mechanism by which Moraxella catarrhalis initiates the host immune response is currently unknown. In this report, using murine macrophages generated from a series of knock-out mice, we have demonstrated that M. catarrhalis lipooligosaccharide (LOS) and either heat killed or live bacteria are recognized by one or more TLRs. LOS activates the host immune response through a membrane bound CD14-TLR4 complex, while both heat killed and live M.cat require recognition by multiple toll like receptors such as TLR2, TLR4 and TLR9 without the requirement of CD14. We have also shown that M.cat stimuli are capable of triggering the host innate immune response by both MyD88- and TRIF- dependent signaling pathways. We further showed that M.cat induced activation of mitogen activated protein kinase (MAPK) is essential in order to achieve optimal secretion of pro-inflammatory cytokine TNF-α. We finally showed that TLR4 mutant C3H/HeJ mice produce significantly lower levels of pro-inflammatory cytokines TNF-α and IL-6 in vivo, An increased bacterial loads at 12 and 24 hours (P<0.001) in their lungs upon challenge with live M.cat in an aerosol chamber compared to wild-type (WT) control mice. These data suggest that TLRs are crucial for an effective innate immune response induced by M.cat. The results of these studies contribute to an increased understanding of molecular mechanism and possible novel treatment strategies for diseases caused by M.cat by specifically targeting TLRs and their signaling pathways.
Collapse
Affiliation(s)
- Ferdaus Hassan
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland, United States of America
- * E-mail: (FH); (XG)
| | - Dabin Ren
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland, United States of America
| | - Wenhong Zhang
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland, United States of America
| | - Tod J. Merkel
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Xin-Xing Gu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland, United States of America
- * E-mail: (FH); (XG)
| |
Collapse
|
10
|
Cox AD, St. Michael F, Cairns CM, Lacelle S, Filion AL, Neelamegan D, Wenzel CQ, Horan H, Richards JC. Investigating the potential of conserved inner core oligosaccharide regions of Moraxella catarrhalis lipopolysaccharide as vaccine antigens: accessibility and functional activity of monoclonal antibodies and glycoconjugate derived sera. Glycoconj J 2011; 28:165-82. [DOI: 10.1007/s10719-011-9332-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
|
11
|
Ren D, Yu S, Gao S, Peng D, Petralia RS, Muszynski A, Carlson RW, Robbins JB, Tsai CM, Lim DJ, Gu XX. Mutant lipooligosaccharide-based conjugate vaccine demonstrates a broad-spectrum effectiveness against Moraxella catarrhalis. Vaccine 2011; 29:4210-7. [PMID: 21501641 DOI: 10.1016/j.vaccine.2011.03.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 03/20/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
There is no licensed vaccine available against Moraxella catarrhalis, an exclusive human pathogen responsible for otitis media in children and respiratory infections in adults. We previously developed conjugate vaccine candidates based on lipooligosaccharides (LOSs) of M. catarrhalis serotypes A, B, and C, each of which was shown to cover a portion of the clinical strains. To generate conserved LOS antigens and eliminate a potential autoimmune response to a similar epitope between M. catarrhalis LOS moiety Galα1-4Galβ1-4Glc and human P(k) antigen, two LOS mutants from strain O35E were constructed. Mutant O35Elgt5 or O35EgalE revealed a deletion of one or two terminal galactose residues of wild type O35E LOS. Each LOS molecule was purified, characterized, detoxified, and coupled to tetanus toxoid (TT) to form conjugates, namely dLOS-TT. Three subcutaneous immunizations using dLOS-TT from O35Elgt5 or O35EgalE elicited significant increases (a 729- or 1263-fold above the preimmune serum levels) of serum immunoglobulin (Ig)G against O35E LOS in rabbits with an adjuvant or without an adjuvant (an 140- or 140-fold above the preimmune serum levels). Rabbit antisera demonstrated elevated complement-mediated bactericidal activities against the wild type strain O35E. The rabbit sera elicited by O35Elgt5 dLOS-TT were further examined and showed cross bactericidal activity against all additional 19 M. catarrhalis strains and clinical isolates studied. Moreover, the rabbit sera displayed cross-reactivity not only among three serotype strains but also clinical isolates in a whole-cell enzyme-linked immunosorbent assay (ELISA), which was further confirmed under transmission electron microscopy. In conclusion, O35Elgt5 dLOS-TT may act as a vaccine against most M. catarrhalis strains and therefore can be used for further in vivo efficacy studies.
Collapse
Affiliation(s)
- Dabin Ren
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Use of Moraxella catarrhalis lipooligosaccharide mutants to identify specific oligosaccharide epitopes recognized by human serum antibodies. Infect Immun 2009; 77:4548-58. [PMID: 19651870 DOI: 10.1128/iai.00294-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Moraxella catarrhalis is a causative agent of otitis media in children and lower respiratory tract infections in adults suffering from chronic obstructive pulmonary disease (COPD). This strict human pathogen continues to be a significant cause of disease in this broad spectrum of patients because there is no available vaccine. Although numerous putative vaccine antigens have been described, little is known about the human immune response to M. catarrhalis infection in vivo. Human serum antibodies are directed at a number of surface proteins, and lipooligosaccharides (LOS) and detoxified LOS may be an effective immunogen in mice. In this study, we used a specific LOS-based enzyme-linked immunosorbent assay (ELISA), containing the three major M. catarrhalis serotypes together with a complete series of truncated LOS mutants, to detect the development of new antibodies to specific regions of the oligosaccharide molecule. We compared serum samples from COPD patients who had recently cleared an M. catarrhalis infection to serum samples collected prior to their infection. Variability in the antibody response to LOS was observed, as some patients developed serotype-specific antibodies, others developed antibodies to the LOS of each serotype, others developed broadly cross-reactive antibodies, and some did not develop new antibodies. These newly developed human antibodies are directed at both side chains and core structures in the LOS molecule. This LOS-based ELISA can be used to dissect the human antibody response to both internal and external carbohydrate epitopes, thus providing a better understanding of the humoral immune response to M. catarrhalis LOS epitopes developed during natural infection.
Collapse
|
13
|
Gao S, Peng D, Zhang W, Muszyński A, Carlson RW, Gu XX. Identification of two late acyltransferase genes responsible for lipid A biosynthesis in Moraxella catarrhalis. FEBS J 2008; 275:5201-14. [PMID: 18795947 DOI: 10.1111/j.1742-4658.2008.06651.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipid A is a biological component of the lipo-oligosaccharide of a human pathogen, Moraxella catarrhalis. No other acyltransferases except for UDP-GlcNAc acyltransferase, responsible for lipid A biosynthesis in M. catarrhalis, have been identified. By bioinformatics, two late acyltransferase genes, lpxX and lpxL, responsible for lipid A biosynthesis were identified, and knockout mutants of each gene in M. catarrhalis strain O35E were constructed and named O35ElpxX and O35ElpxL. Structural analysis of lipid A from the parental strain and derived mutants showed that O35ElpxX lacked two decanoic acids (C10:0), whereas O35ElpxL lacked one dodecanoic (lauric) acid (C12:0), suggesting that lpxX encoded decanoyl transferase and lpxL encoded dodecanoyl transferase. Phenotypic analysis revealed that both mutants were similar to the parental strain in their toxicity in vitro. However, O35ElpxX was sensitive to the bactericidal activity of normal human serum and hydrophobic reagents. It had a reduced growth rate in broth and an accelerated bacterial clearance at 3 h (P < 0.01) or 6 h (P < 0.05) after an aerosol challenge in a murine model of bacterial pulmonary clearance. O35ElpxL presented similar patterns to those of the parental strain, except that it was slightly sensitive to the hydrophobic reagents. These results indicate that these two genes, particularly lpxX, encoding late acyltransferases responsible for incorporation of the acyloxyacyl-linked secondary acyl chains into lipid A, are important for the biological activities of M. catarrhalis.
Collapse
Affiliation(s)
- Song Gao
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
14
|
Galactose residues on the lipooligosaccharide of Moraxella catarrhalis 26404 form the epitope recognized by the bactericidal antiserum from conjugate vaccination. Infect Immun 2008; 76:4251-8. [PMID: 18559429 DOI: 10.1128/iai.01570-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipooligosaccharide (LOS) from Moraxella catarrhalis has the potential to elicit bactericidal antibodies against the pathogen. We generated LOS-based conjugate vaccines that elicited bactericidal antibodies in animal models. However, epitopes on the LOS recognized by the functional anti-LOS antibodies remain unidentified. In this study, a mutant strain, D4, which lost the recognition by a bactericidal anti-LOS rabbit serum in Western blotting was generated from a serotype C strain 26404 by random transposon mutagenesis. Sequence analysis revealed there was an insertion of a kanamycin resistance gene in the lgt2 gene of D4, which encodes beta(1-4)-galactosyltransferase. An isogenic lgt2 mutant, 26404lgt2, was constructed. Structural analysis indicated that the mutant strain produced a truncated LOS lacking terminal galactoses from 4- and 6-linked oligosaccharide chains of strain 26404. Further studies showed that the antiserum lost the recognition of both mutant cells and LOSs in Western blotting, an enzyme-linked immunosorbent assay (ELISA), or a flow cytometry assay. The antiserum also lost the ability to kill the mutant strain in a bactericidal assay, whereas it showed a bactericidal titer of 1:80 to strain 26404. In an inhibition ELISA, d-(+)-galactose or 26404lgt2 LOS showed no inhibition. However, the 26404 LOS and a serotype A O35E LOS with terminal galactoses on its 6-linked oligosaccharide chain showed >90% inhibition, while a serotype B 26397 LOS showed >60% inhibition. These studies suggest that the terminal alpha-Gal-(1-->4)-beta-Gal on the 6-linked oligosaccharide chain of 26404 LOS plays a critical role in forming the epitope recognized by the bactericidal antiserum induced by immunization with our conjugate vaccine.
Collapse
|
15
|
Tan TT, Riesbeck K. Current progress of adhesins as vaccine candidates for Moraxella catarrhalis. Expert Rev Vaccines 2008; 6:949-56. [PMID: 18377357 DOI: 10.1586/14760584.6.6.949] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Moraxella catarrhalis is an emerging pathogen and all isolates are now considered beta-lactamase producing. Potential further use of vaccines against Streptococcus pneumoniae and nontypeable Haemophilus influenzae means that M. catarrhalis might be thrust further into the limelight. However, a vaccine has not yet been designed. In this review, the progress of M. catarrhalis adhesins as vaccine candidates is discussed with a focus on various candidate antigens that spanned those discovered more than 10 years ago, for example, the ubiquitous surface proteins to newer antigens, such as the Moraxella IgD-binding hemagglutinin.
Collapse
Affiliation(s)
- Thuan Tong Tan
- Malmö University Hospital, Medical Microbiology, Department of Laboratory Medicine, Lund University, SE-205 02 Malmö, Sweden.
| | | |
Collapse
|
16
|
Moraxella catarrhalis synthesizes an autotransporter that is an acid phosphatase. J Bacteriol 2007; 190:1459-72. [PMID: 18065547 DOI: 10.1128/jb.01688-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10(-10)) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation domain of conventional autotransporters. Cloning and expression of the M. catarrhalis mapA gene in Escherichia coli confirmed the presence of acid phosphatase activity in the MapA protein. The MapA protein was shown to be localized to the outer membrane of M. catarrhalis and was not detected either in the soluble cytoplasmic fraction from disrupted M. catarrhalis cells or in the spent culture supernatant fluid from M. catarrhalis. Use of the predicted MapA translocation domain in a fusion construct with the passenger domain from another predicted M. catarrhalis autotransporter confirmed the translocation ability of this MapA domain. Inactivation of the mapA gene in M. catarrhalis strain O35E reduced the acid phosphatase activity expressed by this organism, and this mutation could be complemented in trans with the wild-type mapA gene. Nucleotide sequence analysis of the mapA gene from six M. catarrhalis strains showed that this protein was highly conserved among strains of this pathogen. Site-directed mutagenesis of a critical histidine residue (H233A) in the predicted active site of the acid phosphatase domain in MapA eliminated acid phosphatase activity in the recombinant MapA protein. This is the first description of an autotransporter protein that expresses acid phosphatase activity.
Collapse
|
17
|
Peng D, Hu WG, Choudhury BP, Muszyński A, Carlson RW, Gu XX. Role of different moieties from the lipooligosaccharide molecule in biological activities of the Moraxella catarrhalis outer membrane. FEBS J 2007; 274:5350-9. [PMID: 17892485 DOI: 10.1111/j.1742-4658.2007.06060.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipooligosaccharide (LOS), a major component of the outer membrane of Moraxella catarrhalis, consists of two major moieties: a lipid A and a core oligosaccharide (OS). The core OS can be dissected into a linker and three OS chains. To gain an insight into the biological activities of the LOS molecules of M. catarrhalis, we used a random transposon mutagenesis approach with an LOS specific monoclonal antibody to construct a serotype A O35Elgt3 LOS mutant. MALDI-TOF-MS of de-O-acylated LOS from the mutant and glycosyl composition, linkage, and NMR analysis of its OS indicated that the LOS contained a truncated core OS and consisted of a Glc-Kdo(2) (linker)-lipid A structure. Phenotypic analysis revealed that the mutant was similar to the wild-type strain in its growth rate, toxicity and susceptibility to hydrophobic reagents. However, the mutant was sensitive to bactericidal activity of normal human serum and had a reduced adherence to human epithelial cells. These data, combined with our previous data obtained from mutants which contained only lipid A or lacked LOS, suggest that the complete OS chain moiety of the LOS is important for serum resistance and adherence to epithelial cells, whereas the linker moiety is critical for maintenance of the outer membrane integrity and stability to preserve normal cell growth. Both the lipid A and linker moieties contribute to the LOS toxicity.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/pharmacology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, Bacterial/blood
- Antigens, Bacterial/immunology
- Antigens, Bacterial/pharmacology
- Bacterial Adhesion/immunology
- Cell Adhesion/physiology
- Cell Membrane Structures/metabolism
- Female
- HeLa Cells
- Humans
- Lipid A/chemistry
- Lipid A/immunology
- Lipid A/metabolism
- Lipopolysaccharides/chemistry
- Lipopolysaccharides/immunology
- Lipopolysaccharides/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Moraxella catarrhalis/growth & development
- Moraxella catarrhalis/pathogenicity
- Moraxellaceae Infections/immunology
- Moraxellaceae Infections/metabolism
- Moraxellaceae Infections/pathology
- Mutagenesis
- Nasal Lavage Fluid/microbiology
- Nasopharynx/microbiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | |
Collapse
|
18
|
Balder R, Hassel J, Lipski S, Lafontaine ER. Moraxella catarrhalis strain O35E expresses two filamentous hemagglutinin-like proteins that mediate adherence to human epithelial cells. Infect Immun 2007; 75:2765-75. [PMID: 17371858 PMCID: PMC1932885 DOI: 10.1128/iai.00079-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-partner secretion (TPS) systems are a family of proteins being rapidly identified and characterized in a growing number of gram-negative bacteria. TPS systems mediate the secretion of proteins, many involved in virulence traits such as hemolysis, adherence to epithelial cells, inhibition of bacterial growth, and immunomodulation of the host. A TPS system typically consists of a transporter located in the bacterial outer membrane (OM) which is responsible for the recognition and secretion of at least one large exoprotein. Two of the better-characterized TPS systems specify the Bordetella pertussis FHA and Haemophilus influenzae HMW1/HMW2 proteins. We identified three gene products of Moraxella catarrhalis strain O35E that resemble TPS proteins and designated them MhaC (transporter), MhaB1 (exoprotein), and MhaB2 (exoprotein). Western blot analysis using anti-MhaC, or antibodies reacting to both MhaB1 and MhaB2 (MhaB-reactive), revealed that these antigens are expressed in the OM of 63% of isolates tested. Mutations in the mhaC gene specifying the putative transporter of the M. catarrhalis wild-type strains O35E, O12E, and McGHS1 resulted in the absence of MhaB1/MhaB2 in the OM of mutants. These results are therefore consistent with the Mha proteins functioning as a TPS system. Furthermore, we discovered that these mhaC mutants exhibit markedly decreased binding to human epithelial cells relevant to pathogenesis by M. catarrhalis (Chang, HEp2, A549, and/or 16HBE14o(-)). Expression of O12E MhaC and MhaB1 in a nonadherent strain of Escherichia coli was found to increase the adherence of recombinant bacteria to HEp2 monolayers by sevenfold, thereby demonstrating that this M. catarrhalis TPS system directly mediates binding to human epithelial cells. The construction of isogenic mutants in the mhaB1 and mhaB2 genes of strain O35E also suggests that the MhaB proteins play distinct roles in M. catarrhalis adherence.
Collapse
Affiliation(s)
- Rachel Balder
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, 220 Riverbend Road, South Building Room 146, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
19
|
Yu S, Gu XX. Biological and immunological characteristics of lipooligosaccharide-based conjugate vaccines for serotype C Moraxella catarrhalis. Infect Immun 2007; 75:2974-80. [PMID: 17371852 PMCID: PMC1932890 DOI: 10.1128/iai.01915-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is an important bacterial cause of otitis media in children and respiratory tract infections in the elderly. Lipooligosaccharide (LOS), a major surface antigen of this bacterium, is a potential vaccine component against the organism. There are three major LOS serotypes (serotypes A, B, and C) in clinical isolates of M. catarrhalis. Our previous studies demonstrated that serotype A and B LOS-based conjugates were immunogenic in animals and elicited bactericidal antibodies. In this study, LOS from serotype C strain 26404 was isolated, detoxified, and conjugated to tetanus toxoid (TT) or the cross-reactive mutant (CRM) of diphtheria toxin to form detoxified LOS (dLOS)-TT, dLOS-CRM-1, and dLOS-CRM-2 vaccine candidates. The molar ratios (dLOS/protein) of the resulting conjugates were 47:1, 19:1, and 32:1, respectively, while the weight ratios were 0.94, 0.84 and 1.44, respectively. All conjugates were highly immunogenic in both mouse and rabbit models. Three subcutaneous injections of each conjugate formulated with the Ribi adjuvant elicited >700-fold increases in serum anti-LOS immunoglobulin G levels in mice (5 microg of dLOS) and >2,000-fold increases in rabbits (50 microg of dLOS). The resulting mouse and rabbit antisera showed complement-mediated bactericidal activity against the homologous strain. In addition, a representative rabbit antiserum showed bactericidal activity against 14 of 18 testable strains, and this bactericidal activity could be 100% inhibited by the serotype C or A LOS but only 30% inhibited by the serotype B LOS. These results indicate that the serotype C LOS-based conjugates can be used as vaccine components for further investigation in humans.
Collapse
Affiliation(s)
- Shengqing Yu
- Vaccine Research Section. National Institute on Deafness and Other Communication Disorders, 5 Research Court, Rockville, MD 20850, USA
| | | |
Collapse
|
20
|
Gergova RT, Iankov ID, Haralambieva IH, Mitov IG. Bactericidal monoclonal antibody against Moraxella catarrhalis lipooligosaccharide cross-reacts with Haemophilus Spp. Curr Microbiol 2007; 54:85-90. [PMID: 17211546 DOI: 10.1007/s00284-005-0463-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 04/18/2006] [Indexed: 10/23/2022]
Abstract
Monoclonal antibodies (MAbs) against lipooligosaccharide (LOS) determinants after immunization of BALB/c mice with heat inactivated Moraxella catarrhalis serotype A were generated. MAb 219A9 was specific for a common epitope of A, B, and C M. catarrhalis serotypes in ELISA and immunofluorescent test (IFT). In both tests it also cross-reacted with whole bacteria and LPS antigens isolated from non-typeable H. influenzae and H. parainfluenzae strains. IgM antibody clone 219A9 possessed a strong bactericidal effect against the three serotypes in the presence of complement. Our results demonstrate that antibodies directed to a single LOS epitope common for A, B, and C serotype could be highly protective. This suggests that the common determinants are very promising in the development of LOS-based vaccine against M. catarrhalis. The cross-reactions of MAb 219A9 with Haemophilus spp. also show that immunization could result in immune response to epitopes conserved in other important respiratory pathogens.
Collapse
Affiliation(s)
- Raina T Gergova
- Department of Microbiology, Medical University, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
21
|
Slevogt H, Seybold J, Tiwari KN, Hocke AC, Jonatat C, Dietel S, Hippenstiel S, Singer BB, Bachmann S, Suttorp N, Opitz B. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response. Cell Microbiol 2006; 9:694-707. [PMID: 17054439 DOI: 10.1111/j.1462-5822.2006.00821.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Moraxella catarrhalis is an important pathogen in patients with chronic obstructive lung disease (COPD). While M. catarrhalis has been categorized as an extracellular bacterium so far, the potential to invade human respiratory epithelium has not yet been explored. Our results obtained by electron and confocal microscopy demonstrated a considerable potential of M. catarrhalis to invade bronchial epithelial (BEAS-2B) cells, type II pneumocytes (A549) and primary small airway epithelial cells (SAEC). Moraxella invasion was dependent on cellular microfilament as well as on bacterial viability, and characterized by macropinocytosis leading to the formation of lamellipodia and engulfment of the invading organism into macropinosomes, thus indicating a trigger-like uptake mechanism. In addition, the cells examined expressed TLR2 as well as NOD1, a recently found cytosolic protein implicated in the intracellular recognition of bacterial cell wall components. Importantly, inhibition of TLR2 or NOD1 expression by RNAi significantly reduced the M. catarrhalis-induced IL-8 secretion. The role of TLR2 and NOD1 was further confirmed by overexpression assays in HEK293 cells. Overall, M. catarrhalis may employ lung epithelial cell invasion to colonize and to infect the respiratory tract, nonetheless, the bacteria are recognized by cell surface TLR2 and the intracellular surveillance molecule NOD1.
Collapse
Affiliation(s)
- Hortense Slevogt
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité- Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pearson MM, Laurence CA, Guinn SE, Hansen EJ. Biofilm formation by Moraxella catarrhalis in vitro: roles of the UspA1 adhesin and the Hag hemagglutinin. Infect Immun 2006; 74:1588-96. [PMID: 16495530 PMCID: PMC1418653 DOI: 10.1128/iai.74.3.1588-1596.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutant analysis was used to identify Moraxella catarrhalis gene products necessary for biofilm development in a crystal violet-based assay involving 24-well tissue culture plates. The wild-type M. catarrhalis strains that formed the most extensive biofilms in this system proved to be refractory to transposon mutagenesis, so an M. catarrhalis strain was constructed that was both able to form biofilms in vitro and amenable to transposon mutagenesis. Chromosomal DNA from the biofilm-positive strain O46E was used to transform the biofilm-negative strain O35E; transformants able to form biofilms were identified and subjected to transposon-mediated mutagenesis. Biofilm-negative mutants of these transformants were shown to have a transposon insertion in the uspA1 gene. Nucleotide sequence analysis revealed that the biofilm-positive transformant T14 contained a hybrid O46E-O35E uspA1 gene, with the N-terminal 155 amino acids being derived from the O46E UspA1 protein. Transformant T14 was also shown to be unable to express the Hag protein, which normally extends from the surface of the M. catarrhalis cell. Introduction of a wild-type O35E hag gene into T14 eliminated its ability to form a biofilm. When the hybrid O46E-O35E uspA1 gene from T14 was used to replace the uspA1 gene of O35E, this transformant strain did not form a biofilm. However, inactivation of the hag gene did allow biofilm formation by strain O35E expressing the hybrid O46E-O35E uspA1 gene product. The Hag protein was shown to have an inhibitory or negative effect on biofilm formation by these M. catarrhalis strains in the crystal violet-based assay.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | | | | | |
Collapse
|
23
|
Schaller A, Troller R, Molina D, Gallati S, Aebi C, Stutzmann Meier P. Rapid typing of Moraxella catarrhalis subpopulations based on outer membrane proteins using mass spectrometry. Proteomics 2006; 6:172-80. [PMID: 16317771 DOI: 10.1002/pmic.200500086] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract both in children and in adults. Two subpopulations of this organism have been described that differ in 16S rRNA gene sequence and virulence traits. Three 16S rRNA types have been defined. 2-DE followed by protein identification by MS revealed significant differences in the outer membrane protein (OMP) patterns of each M. catarrhalis 16S rRNA type. Approximately 130 features were detected on the 2-DE map of each M. catarrhalis 16S rRNA type. However, only 50 features were expressed by all strains. Furthermore, direct profiling of isolated OMP using MALDI-TOF MS resulted in a characteristic spectral fingerprint for each 16S rRNA type. Fingerprints remained identical when intact cells instead of isolated OMP were analyzed. This finding suggests that the source of desorbed ions is the outer membrane. Based on the fingerprint we were able to assign 18 well-characterized clinical M. catarrhalis isolates to the correct subpopulation. Therefore, MALDI-TOF of intact M. catarrhalis provides a rapid and robust tool for M. catarrhalis strain typing that could be applied in epidemiological studies.
Collapse
Affiliation(s)
- André Schaller
- Division of Human Genetics, University of Bern, Friedbuehlstrasse 51, CH-3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Edwards KJ, Schwingel JM, Datta AK, Campagnari AA. Multiplex PCR assay that identifies the major lipooligosaccharide serotype expressed by Moraxella catarrhalis clinical isolates. J Clin Microbiol 2006; 43:6139-43. [PMID: 16333114 PMCID: PMC1317230 DOI: 10.1128/jcm.43.12.6139-6143.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A heterologous cluster of glycosyltransferase genes was identified in the three Moraxella catarrhalis LOS serotype strains. Multiple PCR primers designed to this region amplified products that differentiate between the serotypes more rapidly and efficiently than previously described serological analyses. This assay will be valuable for clinical and research-based studies.
Collapse
Affiliation(s)
- Katie J Edwards
- Department of Microbiology, University at Buffalo, Biomedical Research Bldg. Rm. 143, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
25
|
Peng D, Hong W, Choudhury BP, Carlson RW, Gu XX. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun 2005; 73:7569-77. [PMID: 16239560 PMCID: PMC1273912 DOI: 10.1128/iai.73.11.7569-7577.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lipooligosaccharide (LOS) is a major surface component of Moraxella catarrhalis and a possible virulence factor in the pathogenesis of human infections caused by this organism. The presence of LOS on the bacterium is an obstacle to the development of vaccines derived from whole cells or outer membrane components of the bacterium. An lpxA gene encoding UDP-N-acetylglucosamine acyltransferase responsible for the first step of lipid A biosynthesis was identified by the construction and characterization of an isogenic M. catarrhalis lpxA mutant in strain O35E. The resulting mutant was viable despite the complete loss of LOS. The mutant strain showed significantly decreased toxicity by the Limulus amebocyte lysate assay, reduced resistance to normal human serum, reduced adherence to human epithelial cells, and enhanced clearance in lungs and nasopharynx in a mouse aerosol challenge model. Importantly, the mutant elicited high levels of antibodies with bactericidal activity and provided protection against a challenge with the wild-type strain. These data suggest that the null LOS mutant is attenuated and may be a potential vaccine candidate against M. catarrhalis.
Collapse
Affiliation(s)
- Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
26
|
Slevogt H, Tiwari KN, Schmeck B, Hocke A, Opitz B, Suttorp N, Seybold J. Adhesion of Moraxella catarrhalis to human bronchial epithelium characterized by a novel fluorescence-based assay. Med Microbiol Immunol 2005; 195:73-83. [PMID: 16059698 DOI: 10.1007/s00430-005-0003-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Indexed: 01/08/2023]
Abstract
Moraxella catarrhalis is a major cause of infectious exacerbations of chronic obstructive lung disease. Adhesion of this pathogen to epithelial cells is critical for its pathogenicity. Although much work has been done on identifying surface molecules of M. catarrhalis as adhesins, several adhesion assays were used in these studies which has never been validated or compared to each other. In the present study, we have examined the capacity of M. catarrhalis to adhere to different human epithelial cells. By using the two most commonly used adhesion assays based on the enumeration of colony-forming units or on the counting of adherent bacteria per epithelial cell by light microscopy, we identified significant limitations of both methods. These arose either from differences in strain-specific adhesion pattern on the epithelial cell surface or the dependence on the state of confluence of the epithelial cell layer. We developed a new fluorescence-based adhesion assay and compared our results to the two conventional methods. We demonstrated that the fluorescence-based adhesion assay offers a reliable and convenient method for the quantification of M. catarrhalis adhesion to confluent epithelial cell monolayers.
Collapse
Affiliation(s)
- Hortense Slevogt
- Department of Internal Medicine/Infectious Diseases, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Peng D, Choudhury BP, Petralia RS, Carlson RW, Gu XX. Roles of 3-deoxy-D-manno-2-octulosonic acid transferase from Moraxella catarrhalis in lipooligosaccharide biosynthesis and virulence. Infect Immun 2005; 73:4222-30. [PMID: 15972513 PMCID: PMC1168618 DOI: 10.1128/iai.73.7.4222-4230.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipooligosaccharide (LOS), a major outer membrane component of Moraxella catarrhalis, is a possible virulence factor in the pathogenesis of human infections caused by the organism. However, information about the roles of the oligosaccharide chain from LOS in bacterial infection remains limited. Here, a kdtA gene encoding 3-deoxy-D-manno-2-octulosonic acid (Kdo) transferase, which is responsible for adding Kdo residues to the lipid A portion of the LOS, was identified by transposon mutagenesis and construction of an isogenic kdtA mutant in strain O35E. The resulting O35EkdtA mutant produced only lipid A without any core oligosaccharide, and it was viable. Physicochemical and biological analysis revealed that the mutant was susceptible to hydrophobic reagents and a hydrophilic glycopeptide and was sensitive to bactericidal activity of normal human serum. Importantly, the mutant showed decreased toxicity by the Limulus amebocyte lysate assay, reduced adherence to human epithelial cells, and enhanced clearance in lungs and nasopharynx in a mouse aerosol challenge model. These data suggest that the oligosaccharide moiety of the LOS is important for the biological activity of the LOS and the virulence capability of the bacteria in vitro and in vivo. This study may bring new insights into novel vaccines or therapeutic interventions against M. catarrhalis infections.
Collapse
Affiliation(s)
- Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| | | | | | | | | |
Collapse
|
28
|
Edwards KJ, Allen S, Gibson BW, Campagnari AA. Characterization of a cluster of three glycosyltransferase enzymes essential for Moraxella catarrhalis lipooligosaccharide assembly. J Bacteriol 2005; 187:2939-47. [PMID: 15838019 PMCID: PMC1082826 DOI: 10.1128/jb.187.9.2939-2947.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Moraxella catarrhalis isolates express lipooligosaccharide (LOS) molecules on their surface, which share epitopes similar to that of the Neisseria and Haemophilus species. These common LOS epitopes have been implicated in various steps of pathogenesis for the different organisms. In this study, a cluster of three LOS glycosyltransferase genes (lgt) were identified in M. catarrhalis 7169, a strain that produces a serotype B LOS. Mutants in these glycosyltransferase genes were constructed, and the resulting LOS phenotypes were consistent with varying degrees of truncation compared to wild-type LOS. The LOS structures of each lgt mutant were no longer detected by a monoclonal antibody (MAb 4G5) specific to a highly conserved terminal epitope nor by a monoclonal antibody (MAb 3F7) specific to the serotype B LOS side chain. Mass spectrometry of the LOS glycoforms assembled by two of these lgt mutants indicated that lgt1 encodes an alpha(1-2) glucosyltransferase and the lgt2 encodes a beta(1-4) galactosyltransferase. However, these structural studies could not delineate the function for lgt3. Therefore, M. catarrhalis lgt3 was introduced into a defined beta(1-4) glucosyltransferase Haemophilus ducreyi 35000glu- mutant in trans, and monoclonal antibody analysis confirmed that Lgt3 complemented the LOS defect. These data suggest that lgt3 encodes a glucosyltransferase involved in the addition of a beta(1-4)-linked glucose to the inner core. Furthermore, we conclude that this enzymatic step is essential for the assembly of the complete LOS glycoform expressed by M. catarrhalis 7169.
Collapse
Affiliation(s)
- Katie J Edwards
- Department of Microbiology, State University of New York at Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
29
|
Yu S, Gu XX. Synthesis and characterization of lipooligosaccharide-based conjugate vaccines for serotype B Moraxella catarrhalis. Infect Immun 2005; 73:2790-6. [PMID: 15845482 PMCID: PMC1087343 DOI: 10.1128/iai.73.5.2790-2796.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is an important cause of otitis media in children and respiratory tract infections in the elderly. Lipooligosaccharide (LOS) is a major surface antigen of the bacterium that elicits bactericidal antibodies. Serological studies show that three major LOS types (A, B, and C) have been identified among clinical isolates. Our previous studies demonstrated that the type A LOS-based conjugates were immunogenic in animals. In this study, LOS from type B strain 26397 was detoxified and conjugated to tetanus toxoid (TT) or a cross-reactive mutant (CRM) of diphtheria toxin to form detoxified LOS (dLOS)-TT and dLOS-CRM, respectively, as vaccine candidates. The molar ratios of dLOS to TT and CRM in the conjugates were 43:1 and 19:1, respectively, while both weight ratios were around 0.9. The antigenicity of the conjugates was similar to that of the LOS, as determined by enzyme-linked immunosorbent assay using a rabbit antiserum to strain 26397. Subcutaneous immunization with each conjugate elicited a 180- to 230-fold rise of serum anti-LOS immunoglobulin G in mice and >2,000-fold rise in rabbits. In addition, both mouse and rabbit antisera showed elevated complement-mediated bactericidal activity against the homologous strain, and a representative rabbit antiserum showed bactericidal activity against nine of twelve clinical isolates studied. The bactericidal activity of the rabbit antiserum can be fully inhibited by the type B LOS but not the A or C LOS. These results indicate that the type B LOS-based conjugates can be used as vaccine components for further investigation.
Collapse
Affiliation(s)
- Shengqing Yu
- Vaccine Research Facility, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| | | |
Collapse
|
30
|
Meier PS, Troller R, Heiniger N, Grivea IN, Syrogiannopoulos GA, Aebi C. Moraxella catarrhalis strains with reduced expression of the UspA outer membrane proteins belong to a distinct subpopulation. Vaccine 2005; 23:2000-8. [PMID: 15734074 DOI: 10.1016/j.vaccine.2004.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 09/20/2004] [Indexed: 11/19/2022]
Abstract
The outer membrane proteins UspA1 and UspA2 are candidate antigens for a Moraxella catarrhalis vaccine. We previously reported that 103 of 108 isolates (95%) from young children expressed UspA1 detected by reactivity with the monoclonal antibody mAb24B5. The aim of the present study was to investigate mechanisms controlling UspA1 expression by analysis of five mAb24B5 non-reactive isolates. Four of these strains were characterized by (i) decreased or absent transcription of uspA1 and uspA2 and (ii) clustered mutations and deletions in the promoter region of both uspA1 and uspA2. Antigenic or phase variation were not responsible for reduced levels of UspA1 expression. While mAb24B5-positive isolates expressing normal levels of uspA1 and uspA2 mRNA belonged to the previously described 16S rRNA type 1 phylogenetic group, these four mAb24B5-negative isolates were found to belong to the 16S rRNA gene types 2 or 3. The remaining mAb24B5-negative isolate (#610) belonged to 16S rRNA type 1 and exhibited a posttranscriptional defect of UspA1 expression defined by normal levels of uspA1 mRNA and both recombinant and in vitro expression of mAb24B5-reactive UspA1. In conclusion, M. catarrhalis clinical isolates exhibiting reduced expression of UspA1 and UspA2 belonged to a distinct phylogenetic subpopulation. A UspA-based vaccine is unlikely to be effective against such isolates.
Collapse
|
31
|
Attia AS, Lafontaine ER, Latimer JL, Aebi C, Syrogiannopoulos GA, Hansen EJ. The UspA2 protein of Moraxella catarrhalis is directly involved in the expression of serum resistance. Infect Immun 2005; 73:2400-10. [PMID: 15784586 PMCID: PMC1087425 DOI: 10.1128/iai.73.4.2400-2410.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many strains of Moraxella catarrhalis are resistant to the bactericidal activity of normal human serum. Previous studies have shown that mutations involving the insertion of an antibiotic resistance cartridge into the M. catarrhalis uspA2 gene resulted in the conversion of a serum-resistant strain to a serum-sensitive phenotype. In the present study, the deletion of the entire uspA2 gene from the serum-resistant M. catarrhalis strain O35E resulted in a serum-sensitive phenotype and did not affect either the rate of growth or the lipooligosaccharide expression profile of this mutant. Inactivation of the classical complement pathway in normal human serum with Mg2+ and EGTA resulted in the survival of this uspA2 mutant. In contrast, blocking of the alternative complement pathway did not protect this uspA2 mutant from complement-mediated killing. To determine whether the UspA2 protein is directly involved in serum resistance, transformation and allelic exchange were used to replace the uspA2 gene in the serum-resistant strain O35E with the uspA2 gene from the serum-sensitive M. catarrhalis strain MC317. The resultant O35E transformant exhibited a serum-sensitive phenotype. Similarly, when the uspA2 gene from the serum-resistant strain O35E was used to replace the uspA2 gene in the serum-sensitive strain MC317, the MC317 transformant acquired serum resistance. The use of hybrid O35E-MC317 uspA2 genes showed that the N-terminal half of the O35E protein contained a 102-amino-acid region that was involved in the expression of serum resistance. In addition, when the uspA2 genes from strains O35E and MC317 were cloned and expressed in Haemophilus influenzae DB117, only the O35E UspA2 protein caused a significant increase in the serum resistance of the H. influenzae recombinant strain. These results prove that the UspA2 protein is directly involved in the expression of serum resistance by certain M. catarrhalis strains.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | | | | | | | | | |
Collapse
|
32
|
Hu WG, Berry J, Chen J, Gu XX. Exploration ofMoraxella catarrhalisouter membrane proteins, CD and UspA, as new carriers for lipooligosaccharide-based conjugates. ACTA ACUST UNITED AC 2004; 41:109-15. [PMID: 15145454 DOI: 10.1016/j.femsim.2004.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 12/10/2003] [Accepted: 02/04/2004] [Indexed: 11/26/2022]
Abstract
Moraxella catarrhalis outer membrane proteins, CD and ubiquitous surface protein A (UspA), were used as carriers for M. catarrhalis detoxified lipooligosaccharide (dLOS)-based conjugates. Our study was designed to investigate the feasibility of CD and UspA as protein carriers for dLOS-based conjugates and their possible synergic effects on protection from both anti-LOS and anti-CD or anti-UspA antibody responses. Female Balb/c mice were immunized subcutaneously three times with dLOS-CD or dLOS-UspA conjugate in Ribi adjuvant. Antisera elicited by the conjugates showed high titers of specific anti-LOS antibodies with complement-dependent bactericidal activity towards M. catarrhalis strain 25238. In a mouse aerosol challenge model, mice immunized with both conjugates showed a significant enhancement of the clearance of strain 25238 from lungs as compared with the control mice. Although both conjugates elicited reduced (relative to unconjugated CD or UspA) but significant levels of anti-CD or UspA antibodies, they did not show synergetic effects with anti-LOS antibodies on the bactericidal activity or the pulmonary bacterial clearance. Nevertheless, CD and UspA are safe and effective new carriers for dLOS-based or other potential carbohydrate-based conjugate vaccines to help thymus-independent carbohydrate antigens for production of anti-carbohydrate antibodies against target pathogens.
Collapse
Affiliation(s)
- Wei-Gang Hu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
33
|
Holm MM, Vanlerberg SL, Sledjeski DD, Lafontaine ER. The Hag protein of Moraxella catarrhalis strain O35E is associated with adherence to human lung and middle ear cells. Infect Immun 2003; 71:4977-84. [PMID: 12933840 PMCID: PMC187358 DOI: 10.1128/iai.71.9.4977-4984.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that the Moraxella catarrhalis surface antigen UspA1 is an adhesin for Chang human conjunctival cells. The present report demonstrates that lack of UspA1 expression does not affect the adherence of strain O35E to A549 human lung cells or primary cultures of human middle ear epithelial (HMEE) cells. These results imply that another molecule mediates the adherence of M. catarrhalis to these two cell lines. To identify this adhesin, strain O35E was mutagenized with a transposon and 1,000 mutants were screened in a microcolony formation assay using A549 cells. Nine independent isolates exhibited an 8- to 19-fold reduction in adherence and contained a transposon in the same locus. Nucleotide sequence data and PCR analysis indicated that the transposons were inserted in different locations in the gene encoding the surface protein Hag. Quantitative assays using one representative transposon mutant, O35E.TN2, showed considerably decreased binding to A549 as well as HMEE cells. However, this mutant adhered at wild-type levels to Chang conjunctival cells. These findings suggest that the M. catarrhalis Hag protein is an adhesin for cell lines derived from human lung and middle ear tissues.
Collapse
Affiliation(s)
- Melissa M Holm
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | |
Collapse
|
34
|
Timpe JM, Holm MM, Vanlerberg SL, Basrur V, Lafontaine ER. Identification of a Moraxella catarrhalis outer membrane protein exhibiting both adhesin and lipolytic activities. Infect Immun 2003; 71:4341-50. [PMID: 12874311 PMCID: PMC166007 DOI: 10.1128/iai.71.8.4341-4350.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UspA1 and Hag proteins have previously been shown to be involved in the ability of the Moraxella catarrhalis wild-type strain O35E to bind to human Chang and A549 cells, respectively. In an effort to identify novel adhesins, we generated a plasmid library of M. catarrhalis DNA fragments, which was introduced into a nonadherent Escherichia coli strain. Recombinant E. coli bacteria were subsequently enriched for clones that gained the ability to bind to Chang and A549 cells, yielding the plasmid pELFOS190. Transposon mutagenesis of this plasmid identified the potential adhesin gene mcaP (M. catarrhalis adherence protein). Sequence analysis revealed that McaP is related to autotransporter proteins and has substantial similarity with the GDSL family of lipolytic enzymes, particularly the Moraxella bovis phospholipase B. Expression of the mcaP gene product by E. coli increased adherence to Chang, A549, and 16HBE14o(-) polarized human bronchial cells 50- to 100-fold. Spectrophotometric assays with p-nitrophenol derivatives also demonstrated that McaP is an esterase. Furthermore, thin-layer chromatography revealed that McaP cleaves both phosphatidylcholine and lysophosphatidylcholine. McaP releases fatty acids and glycerophosphorylcholine upon cleavage of phosphatidylcholine, thus exhibiting phospholipase B activity. The construction and characterization of isogenic M. catarrhalis O35E mutants demonstrated that the lack of McaP expression abolishes esterase activity and considerably decreases adherence to several human cell lines.
Collapse
Affiliation(s)
- Jennifer M Timpe
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | | | |
Collapse
|
35
|
Jiao X, Hirano T, Hou Y, Gu XX. Specific immune responses and enhancement of murine pulmonary clearance of Moraxella catarrhalis by intranasal immunization with a detoxified lipooligosaccharide conjugate vaccine. Infect Immun 2002; 70:5982-9. [PMID: 12379673 PMCID: PMC130355 DOI: 10.1128/iai.70.11.5982-5989.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Revised: 06/05/2002] [Accepted: 08/05/2002] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is an important human mucosal pathogen. This study investigated the effect of intranasal immunization with a detoxified-lipooligosaccharide-cross-reactive mutant of diphtheria toxin (dLOS-CRM) vaccine candidate on pulmonary clearance following an aerosol challenge of mice with M. catarrhalis. Intranasal immunization with dLOS-CRM plus cholera toxin induced a significantly dose-dependent increase of immunoglobulin A (IgA) and IgG in the nasal wash, lung lavage fluid, saliva, and fecal extract. In addition, serum IgG, IgM, and IgA against LOS of M. catarrhalis were detected. LOS-specific antibody-forming cells were found in the nasal passages, spleens, nasally associated lymphoid tissues, cervical lymph nodes, lungs, and Peyer's patches using an enzyme-linked immunospot assay. The dLOS-CRM vaccine induced a significant bacterial clearance (70 to 90%) of both homologous and heterologous strains in the lungs compared to that observed in the controls (P < 0.01). Intriguingly, intranasal immunization with dLOS-CRM showed a higher level of bacterial clearance compared with subcutaneous injections with dLOS-CRM. These data indicate that dLOS-CRM induces specific mucosal and systemic immunity through intranasal immunization and also provides effective bacterial clearance. On the basis of these results, we believe that dLOS-CRM should undergo continued testing to determine whether it would induce protective immune response in humans.
Collapse
Affiliation(s)
- Xinan Jiao
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
36
|
Meier PS, Troller R, Grivea IN, Syrogiannopoulos GA, Aebi C. The outer membrane proteins UspA1 and UspA2 of Moraxella catarrhalis are highly conserved in nasopharyngeal isolates from young children. Vaccine 2002; 20:1754-60. [PMID: 11906762 DOI: 10.1016/s0264-410x(02)00030-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UspA1 and UspA2 of Moraxella catarrhalis are vaccine candidates. The aims of this study were to determine: (1) the frequencies of occurrence and (2) the degrees of conservation of two surface-exposed epitopes of the uspA1 and uspA2 genes and their respective gene products in 108 nasopharyngeal isolates from young children. The uspA1 and uspA2 genes were detected in 107 (99%) and 108 (100%) isolates, respectively. Twenty-three of 108 uspA2 genes (21%) were identified as the variant gene uspA2H. One-hundred and five isolates (97%) expressed the mAb17C7-reactive epitope shared by UspA1 and UspA2, and 103 isolates (95%) reacted with the UspA1-specific mAb24B5. The only isolate which lacked a uspA1 gene demonstrated reduced adherence to HEp-2 cells and complement sensitivity. The data indicate that both uspA genes and the expression of at least two surface-exposed epitopes are virtually ubiquitous in isolates from a population at risk for otitis media. A vaccine capable of inducing a bactericidal immune response against the mAb17C7- and/or mAb24B5-reactive epitopes appears promising.
Collapse
Affiliation(s)
- Patricia Stutzmann Meier
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|