1
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Sarabi PA, Rismani E, Shabanpouremam M, Talehahmad S, Vosough M. Developing a multi-epitope vaccine against Helicobacter Pylori. Hum Immunol 2025; 86:111212. [PMID: 39642777 DOI: 10.1016/j.humimm.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Helicobacter pylori, a significant factor in the development of gastric cancer and peptic ulcers, poses challenges for drug development due to its resilience. Computational approaches offer potential solutions for effective vaccine development targeting its antigens while ensuring stability and safety. The four critical antigenic proteins included in this study's innovative vaccine design are neuraminyllactose-binding hemagglutinin (HpaA), catalase (KatA), urease (UreB), and vacuolating toxin (VacA). Advanced immunoinformatics methods identified the possibility of triggering an immunological reaction. An adjuvant (50S ribosomal protein L7/L12) was fused to the vaccine sequence's N-terminus to improve immunogenicity. GROMACS molecular dynamics simulations with the OPLS-AA force field further improved the structure. The vaccine design and human Toll-like receptor 5 (TLR5) demonstrated a strong binding in docking tests. A model of simulating immune response confirmed the vaccine's efficacy and predicted how it would affect the immune system. Using the optimal restriction sites of the pET28b (+) expression vector, the vaccine candidate was cloned in silico. To validate the findings, this vaccine design will be synthesized in a bacterial system, and in experimental studies will be conducted in the following phase.
Collapse
Affiliation(s)
- Pedram Asadi Sarabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mahshid Shabanpouremam
- Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Sara Talehahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran..
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Francis JE, Skakic I, Majumdar D, Taki AC, Shukla R, Walduck A, Smooker PM. Solid Lipid Nanoparticles Delivering a DNA Vaccine Encoding Helicobacter pylori Urease A Subunit: Immune Analyses before and after a Mouse Model of Infection. Int J Mol Sci 2024; 25:1076. [PMID: 38256149 PMCID: PMC10816323 DOI: 10.3390/ijms25021076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, novel solid lipid particles containing the adjuvant lipid monophosphoryl lipid A (termed 'SLN-A') were synthesised. The SLN-A particles were able to efficiently bind and form complexes with a DNA vaccine encoding the urease alpha subunit of Helicobacter pylori. The resultant nanoparticles were termed lipoplex-A. In a mouse model of H. pylori infection, the lipoplex-A nanoparticles were used to immunise mice, and the resultant immune responses were analysed. It was found that the lipoplex-A vaccine was able to induce high levels of antigen-specific antibodies and an influx of gastric CD4+ T cells in vaccinated mice. In particular, a prime with lipoplex-A and a boost with soluble UreA protein induced significantly high levels of the IgG1 antibody, whereas two doses of lipoplex-A induced high levels of the IgG2c antibody. In this study, lipoplex-A vaccination did not lead to a significant reduction in H. pylori colonisation in a challenge model; however, these results point to the utility of the system for delivering DNA vaccine-encoded antigens to induce immune responses and suggest the ability to tailor those responses.
Collapse
Affiliation(s)
- Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Debolina Majumdar
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Aya C. Taki
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ravi Shukla
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Anna Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| |
Collapse
|
4
|
Motamedi H, Abiri R, Salari F, Jalili C, Alvandi A. Reduction of UreB and CagA expression level by siRNA construct in Helicobacter pylori strain SS1. BMC Microbiol 2023; 23:401. [PMID: 38114907 PMCID: PMC10729366 DOI: 10.1186/s12866-023-03143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Two important virulence factors, urease and cagA, play an important role in Helicobacter pylori (H. pylori) gastric cancer. Aim of this study was to investigate the expression level and function of ureB and cagA using small interfering RNAs (siRNA). METHODS SS1 strain of H. pylori was considered as host for natural transformation. siRNA designed for ureB and cagA genes were inserted in pGPU6/GFP/Neo siRNA plasmid vector to evaluate using phenotypic and genotypic approaches. Then, qPCR was performed for determining inhibition rate of ureB and cagA gene expression. RESULTS The expression levels of siRNA-ureB and siRNA-cagA in the recombinant strain SS1 were reduced by about 5000 and 1000 fold, respectively, compared to the native H. pylori strain SS1. Also, preliminary evaluation of siRNA-ureB in vitro showed inhibition of urea enzyme activity. These data suggest that siRNA may be a powerful new tool for gene silencing in vitro, and for the development of RNAi-based anti-H. pylori therapies. CONCLUSION Our results show that targeting ureB and cagA genes with siRNA seems to be a new strategy to inhibit urease enzyme activity, reduce inflammation and colonization rate.
Collapse
Affiliation(s)
- Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Skakic I, Francis JE, Dekiwadia C, Aibinu I, Huq M, Taki AC, Walduck A, Smooker PM. An Evaluation of Urease A Subunit Nanocapsules as a Vaccine in a Mouse Model of Helicobacter pylori Infection. Vaccines (Basel) 2023; 11:1652. [PMID: 38005984 PMCID: PMC10674275 DOI: 10.3390/vaccines11111652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Using removable silica templates, protein nanocapsules comprising the A subunit of Helicobacter pylori urease (UreA) were synthesised. The templates were of two sizes, with solid core mesoporous shell (SC/MS) silica templates giving rise to nanocapsules of average diameter 510 nm and mesoporous (MS) silica templates giving rise to nanocapsules of average diameter 47 nm. Both were shown to be highly monodispersed and relatively homogenous in structure. Various combinations of the nanocapsules in formulation were assessed as vaccines in a mouse model of H. pylori infection. Immune responses were evaluated and protective efficacy assessed. It was demonstrated that vaccination of mice with the larger nanocapsules combined with an adjuvant was able to significantly reduce colonisation.
Collapse
Affiliation(s)
- Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Ibukun Aibinu
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Health, Science and Community, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Mohsina Huq
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Aya C. Taki
- Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Anna Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| |
Collapse
|
6
|
Zhang Z, Chen S, Fan M, Ruan G, Xi T, Zheng L, Guo L, Ye F, Xing Y. Helicobacter pylori induces gastric cancer via down-regulating miR-375 to inhibit dendritic cell maturation. Helicobacter 2021; 26:e12813. [PMID: 33938607 DOI: 10.1111/hel.12813] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent studies and clinical samples have demonstrated that Helicobacter pylori could induce the downregulation of miR-375 in the stomach and promote gastric carcinogenesis. However, whether the immune cells are affected by Helicobacter pylori due to the downregulation of miR-375 is unclear. MATERIALS AND METHODS In this study, we constructed an overexpression and knockdown of miR-375 and Helicobacter pylori infection cell models in vitro. In addition, the maturity of dendritic cells (DCs) and the expression of IL-6, IL-10, and VEGF at the transcriptional and translational levels were analyzed. Changes in the JAK2-STAT3 signaling pathway were detected. In vivo, the number changes in CD4+ T and CD8+ T cells and the size changes of tumors via models of transplantable subcutaneous tumors were also analyzed. RESULTS A cell model of Helicobacter pylori and gastric cancer was used to identify the expression of miR-375 and the maturity of dendritic cells. This study found that Helicobacter pylori could downregulate miR-375, which regulates the expression of cytokines IL-6, IL-10, and VEGF in the stomach. MiR-375 regulated the expression of cytokines IL-6, IL-10, and VEGF through the JAK2-STAT3 signaling pathway in vitro. In addition, we found that Helicobacter pylori regulates the maturation of dendritic cells through miR-375. These results were further verified in vivo, and miR-375 diminishes tumor size was also demonstrated. This study showed that immature DCs caused a decrease in the number of CD4+ and CD8+ T cells. CONCLUSIONS This study demonstrated that Helicobacter pylori can inhibit miRNA-375 expression in the stomach. Downregulated miR-375 activates the JAK2-STAT3 pathway. Activating the JAK2-STAT3 signaling pathway promotes the secretion of IL-6, IL-10, and VEGF, leading to immature differentiation of DCs and induction of gastric cancer.
Collapse
Affiliation(s)
- Zhenxing Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Menghui Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Le Guo
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2019; 17:50-63. [PMID: 31804619 PMCID: PMC6952403 DOI: 10.1038/s41423-019-0339-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.
Collapse
|
8
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
9
|
Guo L, Yang H, Tang F, Yin R, Liu H, Gong X, Wei J, Zhang Y, Xu G, Liu K. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils. Front Cell Infect Microbiol 2017; 7:349. [PMID: 28824883 PMCID: PMC5543039 DOI: 10.3389/fcimb.2017.00349] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| | - Hua Yang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai UniversityXining, China
| | - Runting Yin
- Medical School of Nantong University, Nantong UniversityNantong, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Xiaojuan Gong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Jun Wei
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Kunmei Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| |
Collapse
|
10
|
Chonwerawong M, Avé P, Huerre M, Ferrero RL. Interferon-γ promotes gastric lymphoid follicle formation but not gastritis in Helicobacter-infected BALB/c mice. Gut Pathog 2016; 8:61. [PMID: 27895717 PMCID: PMC5117576 DOI: 10.1186/s13099-016-0142-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Background Mouse infection studies have shown that interferon-γ (IFN-γ), a T helper 1 (Th1) cytokine, is required for the development of severe pathology induced by chronic Helicobacter infection. This finding is largely based on studies performed using mice that have polarised Th1 responses i.e. C57BL/6 animals. The current work aims to investigate the role of IFN-γ in Helicobacter-induced inflammation in BALB/c mice which have Th2-polarised immune responses. Results At 7 months post-infection with Helicobacter felis, IFN-γ deficiency in BALB/c mice had no significant effect on H. felis colonisation levels in the gastric mucosa, nor on humoral responses, or gastritis severity. Ifng−/− animals with chronic H. felis infection did, however, develop significantly fewer lymphoid follicle lesions, as well as increased IL-4 splenocyte responses, when compared with infected Ifng+/+ mice (P = 0.015 and P = 0.0004, respectively). Conclusions The work shows that in mice on a BALB/c background, IFN-γ is not required for bacterial clearance, antibody responses, nor gastric inflammation. Conversely, IFN-γ appears to play a role in the development of gastric lymphoid follicles, which are precursor lesions to mucosa-associated lymphoid tissue (MALT) lymphoma. This study highlights the importance of mouse host background on the susceptibility to Helicobacter-induced pathologies.
Collapse
Affiliation(s)
- Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, VIC 3123 Australia
| | - Patrick Avé
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris, France ; Unité de Histopathologie Humaine et Modèles Animaux, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris, France
| | - Michel Huerre
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris, France ; Département de Pathologie, Institut Curie, 26 Rue d'Ulm, 75248 Paris, France
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, VIC 3123 Australia ; Department of Microbiology, Monash University, Clayton, VIC Australia
| |
Collapse
|
11
|
Solnick JV, Eaton KA, Peek RM. Animal Models of Helicobacter pylori Infection. HELICOBACTER PYLORI RESEARCH 2016:273-297. [DOI: 10.1007/978-4-431-55936-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Lina TT, Alzahrani S, House J, Yamaoka Y, Sharpe AH, Rampy BA, Pinchuk IV, Reyes VE. Helicobacter pylori cag pathogenicity island's role in B7-H1 induction and immune evasion. PLoS One 2015; 10:e0121841. [PMID: 25807464 PMCID: PMC4373751 DOI: 10.1371/journal.pone.0121841] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/20/2015] [Indexed: 12/11/2022] Open
Abstract
During Helicobacter pylori (H. pylori) infection CD4+ T cells in the gastric lamina propria are hyporesponsive and polarized by Th1/Th17 cell responses controlled by Treg cells. We have previously shown that H. pylori upregulates B7-H1 expression on GEC, which, in turn, suppress T cell proliferation, effector function, and induce Treg cells in vitro. In this study, we investigated the underlying mechanisms and the functional relevance of B7-H1 induction by H. pylori infection to chronic infection. Using H. pylori wild type (WT), cag pathogenicity island (cag PAI-) and cagA- isogenic mutant strains we demonstrated that H. pylori requires its type 4 secretion system (T4SS) as well as its effector protein CagA and peptidoglycan (PG) fragments for B7-H1 upregulation on GEC. Our study also showed that H. pylori uses the p38 MAPK pathway to upregulate B7-H1 expression in GEC. In vivo confirmation was obtained when infection of C57BL/6 mice with H. pylori PMSS1 strain, which has a functional T4SS delivery system, but not with H. pylori SS1 strain lacking a functional T4SS, led to a strong upregulation of B7-H1 expression in the gastric mucosa, increased bacterial load, induction of Treg cells in the stomach, increased IL-10 in the serum. Interestingly, B7-H1-/- mice showed less Treg cells and reduced bacterial loads after infection. These studies demonstrate how H. pylori T4SS components activate the p38 MAPK pathway, upregulate B7-H1 expression by GEC, and cause Treg cell induction; thus, contribute to establishing a persistent infection characteristic of H. pylori.
Collapse
Affiliation(s)
- Taslima T. Lina
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States Of America
| | - Shatha Alzahrani
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States Of America
| | - Jennifer House
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States Of America
| | - Yoshio Yamaoka
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, United States Of America
| | - Arlene H. Sharpe
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States Of America
| | - Bill A. Rampy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States Of America
| | - Irina V. Pinchuk
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States Of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States Of America
- * E-mail: (VER); (IVP)
| | - Victor E. Reyes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States Of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States Of America
- * E-mail: (VER); (IVP)
| |
Collapse
|
13
|
Immunological features and efficacy of a multi-epitope vaccine CTB-UE against H. pylori in BALB/c mice model. Appl Microbiol Biotechnol 2013; 98:3495-507. [DOI: 10.1007/s00253-013-5408-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
|
14
|
Yamamoto T, Kita M, Ohno T, Iwakura Y, Sekikawa K, Imanishi J. Role of Tumor Necrosis Factor-Alpha and Interferon-Gamma inHelicobacter pyloriInfection. Microbiol Immunol 2013; 48:647-54. [PMID: 15383700 DOI: 10.1111/j.1348-0421.2004.tb03474.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immune responses to Helicobacter pylori infection play important roles in gastroduodenal diseases. The contributions of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) to the induction of gastric inflammation and to the protection from H. pylori infection were investigated using TNF-alpha geneknockout (TNF-alpha(-/-)) mice and IFN-gamma gene-knockout (IFN-gamma(-/-)) mice. We first examined the colonizing ability of H. pylori strain CPY2052 in the stomach of C57BL/6 wild-type and knockout mice. The number of H. pylori colonized in the stomach of IFN-gamma(-/-) and TNF-alpha(-/-) mice was higher than that of wild-type mice. These findings suggest that TNF-alpha and IFN-gamma may play a protective role in H. pylori infection. Furthermore, we examined the contribution of TNF-alpha and IFN-gamma to gastric inflammation. The CPY2052-infected TNF-alpha(-/-) mice showed a moderate infiltration of mononuclear cells in the lamina propria and erosions in the gastric epithelium as did wild-type mice, whereas the CPY2052-infected IFN-gamma(-/-) mice showed no inflammatory findings even 6 months after infection. These results demonstrate that IFN-gamma may play an important role in gastric inflammation induced by H. pylori infection, whereas TNF-alpha may not participate in the development of inflammatory response.
Collapse
Affiliation(s)
- Toshiro Yamamoto
- Department of Microbiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Kyoto 602-8566, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Walduck AK, Becher D. Leptin, CD4(+) T(reg) and the prospects for vaccination against H. pylori infection. Front Immunol 2012; 3:316. [PMID: 23087691 PMCID: PMC3470998 DOI: 10.3389/fimmu.2012.00316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/24/2012] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori infection induces chronic inflammation which is characterized not only by infiltrations of inflammatory cells such as neutrophils and CD4+ T cells, but also significant populations of regulatory T cells (Treg). These cells are important for disease pathogenesis because they are believed to contribute to the persistence of the infection. Despite encouraging results in animal models, the prospects for an effective H. pylori vaccine are currently poor because of generally disappointing results in preclinical and phase 1 trials. As a result, a current major focus of basic research on vaccination is to better understand the mechanisms regulating the inflammatory response with the view it can inform future vaccine design. Our studies in this area have focused on gastric CD4+ Treg in vaccinated mice, and raised the hypothesis that adipokines in particular leptin are involved the establishment of a protective gastric immune response. Here we discuss the hypothesis that vaccination deregulates Treg responses in the gastric mucosa, and that this process is mediated by leptin. We propose that reduced suppression permits a protective sub population of H. pylori-specific CD4+ T cells to exert protective effects, presumably via the gastric epithelium. Evidence from the literature and experimental approaches will be discussed.
Collapse
Affiliation(s)
- Anna K Walduck
- Department of Microbiology and Immunology, University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
16
|
Immunological features and the ability of inhibitory effects on enzymatic activity of an epitope vaccine composed of cholera toxin B subunit and B cell epitope from Helicobacter pylori urease A subunit. Appl Microbiol Biotechnol 2011; 93:1937-45. [DOI: 10.1007/s00253-011-3726-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/29/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023]
|
17
|
Becher D, Deutscher ME, Simpfendorfer KR, Wijburg OL, Pederson JS, Lew AM, Strugnell RA, Walduck AK. Local recall responses in the stomach involving reduced regulation and expanded help mediate vaccine-induced protection against Helicobacter pylori in mice. Eur J Immunol 2010; 40:2778-90. [PMID: 21038469 DOI: 10.1002/eji.200940219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori is recognised as the chief cause of chronic gastritis, ulcers and gastric cancer in humans. With increased incidence of treatment failure and antibiotic resistance, development of prophylactic or therapeutic vaccination is a desirable alternative. Although the results of vaccination studies in animal models have been promising, studies in human volunteers have revealed problems such as 'post-immunisation gastritis' and comparatively poor responses to vaccine antigens. The focus of this study was to compare the gastric and systemic cellular immune responses induced by recombinant attenuated Salmonella Typhimurium-based vaccination in the C57BL/6 model of H. pylori infection. Analysis of lymphocyte populations in the gastric mucosa, blood, spleen, paragastric LN and MLN revealed that the effects of vaccination were largely confined to the parenchymal stomach rather than lymphoid organs. Vaccine-induced protection was correlated with an augmented local recall response in the gastric mucosa, with increased proportions of CD4(+) T cells, neutrophils and reduced proportions of CD4(+) Treg. CD4(+) T cells isolated from the stomachs of vaccinated mice proliferated ex vivo in response to H. pylori antigen, and secreted Th1 cytokines, particularly IFN-γ. This detailed analysis of local gastric immune responses provides insight into the mechanism of vaccine-induced protection.
Collapse
Affiliation(s)
- Dorit Becher
- Department of Microbiology and Immunology, University of Melbourne, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
A vaccination against Helicobacter pylori may represent both prophylactic and therapeutic approaches to the control of H. pylori infection. Different protective H. pylori-derived antigens, such as urease, vacuolating cytotoxin A, cytotoxin-associated antigen, neutrophil-activating protein and others can be produced at low cost in prokaryote expression systems and most of these antigens have already been administered to humans and shown to be safe. The recent development by Graham et al. of the model of H. pylori challenge in humans, the recent published clinical trials and the last insight generated in animal models of H. pylori infection regarding the immune mechanisms leading to vaccine-induced Helicobacter clearance will facilitate the evaluation of immunogenicity and efficacy of H. pylori vaccine candidates in Phase II and III clinical trials.
Collapse
Affiliation(s)
- Dominique Velin
- Service de Gastro-entérologie et d'Hépatologie, Centre Hospitalier Universitaire Vaudois and University of Lausanne, BH18-521, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | | |
Collapse
|
19
|
Del Giudice G, Malfertheiner P, Rappuoli R. Development of vaccines against Helicobacter pylori. Expert Rev Vaccines 2009; 8:1037-49. [PMID: 19627186 DOI: 10.1586/erv.09.62] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a Gram-negative, microaerophilic bacterium adapted to survive in the stomach of humans where it can cause peptide ulcers and gastric cancer. Although effective antibiotic treatment exists, there is a consensus that vaccines are necessary to limit the severity of this infection. Great progress has been made since its discovery 25 years ago in understanding the virulence factors and several aspects of the pathogenesis of the H. pylori gastric diseases. Several key bacterial factors have been identified: urease, vacuolating cytotoxin, cytotoxin-associated antigen, the pathogenicity island, neutrophil-activating protein, and among others. These proteins, in their native or recombinant forms, have been shown to confer protection against infectious challenge with H. pylori in experimental animal models. It is not known, however, through which effector mechanisms this protection is achieved. Nevertheless, a number of clinical trials in healthy volunteers have been conducted using urease given orally as a soluble protein or expressed in bacterial vectors with limited results. Recently, a mixture of H. pylori antigens was reported to be highly immunogenic in H. pylori-negative volunteers following intramuscular administration of the vaccine with aluminium hydroxide as an adjuvant. These data show that vaccination against this pathogen is feasible. More research is required to understand the immunological mechanisms underlying immune-mediate protection.
Collapse
|
20
|
Velin D, Favre L, Bernasconi E, Bachmann D, Pythoud C, Saiji E, Bouzourene H, Michetti P. Interleukin-17 is a critical mediator of vaccine-induced reduction of Helicobacter infection in the mouse model. Gastroenterology 2009; 136:2237-2246.e1. [PMID: 19272385 DOI: 10.1053/j.gastro.2009.02.077] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/21/2009] [Accepted: 02/20/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Despite the proven ability of immunization to reduce Helicobacter infection in mouse models, the precise mechanism of protection has remained elusive. This study explores the possibility that interleukin (IL)-17 plays a role in the reduction of Helicobacter infection following vaccination of wild-type animals or in spontaneous reduction of bacterial infection in IL-10-deficient mice. METHODS In mice, reducing Helicobacter infection, the levels and source of IL-17 were determined and the role of IL-17 in reduction of Helicobacter infection was probed by neutralizing antibodies. RESULTS Gastric IL-17 levels were strongly increased in mice mucosally immunized with urease plus cholera toxin and challenged with Helicobacter felis as compared with controls (654 +/- 455 and 34 +/- 84 relative units for IL-17 messenger RNA expression [P < .01] and 6.9 +/- 8.4 and 0.02 +/- 0.04 pg for IL-17 protein concentration [P < .01], respectively). Flow cytometry analysis showed that a peak of CD4(+)IL-17(+) T cells infiltrating the gastric mucosa occurred in immunized mice in contrast to control mice (4.7% +/- 0.3% and 1.4% +/- 0.3% [P < .01], respectively). Gastric mucosa-infiltrating CD4(+)IL-17(+) T cells were also observed in IL-10-deficient mice that spontaneously reduced H felis infection (4.3% +/- 2.3% and 2% +/- 0.6% [P < .01], for infected and noninfected IL-10-deficient mice, respectively). In wild-type immunized mice, intraperitoneal injection of anti-IL-17 antibodies significantly inhibited inflammation and the reduction of Helicobacter infection in comparison with control antibodies (1 of 12 mice vs 9 of 12 mice reduced Helicobacter infection [P < .01], respectively). CONCLUSIONS IL-17 plays a critical role in the immunization-induced reduction of Helicobacter infection from the gastric mucosa.
Collapse
Affiliation(s)
- Dominique Velin
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Walduck AK, Weber M, Wunder C, Juettner S, Stolte M, Vieth M, Wiedenmann B, Meyer TF, Naumann M, Hoecker M. Identification of novel cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo. Mol Cancer 2009; 8:22. [PMID: 19317916 PMCID: PMC2667483 DOI: 10.1186/1476-4598-8-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 03/24/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Helicobacter pylori is a crucial determining factor in the pathogenesis of benign and neoplastic gastric diseases. Cyclooxygenase-2 (Cox-2) is the inducible key enzyme of arachidonic acid metabolism and is a central mediator in inflammation and cancer. Expression of the Cox-2 gene is up-regulated in the gastric mucosa during H. pylori infection but the pathobiological consequences of this enhanced Cox-2 expression are not yet characterized. The aim of this study was to identify novel genes down-stream of Cox-2 in an in vivo model, thereby identifying potential targets for the study of the role of Cox- 2 in H. pylori pathogenesis and the initiation of pre- cancerous changes. RESULTS Gene expression profiles in the gastric mucosa of mice treated with a specific Cox-2 inhibitor (NS398) or vehicle were analysed at different time points (6, 13 and 19 wk) after H. pylori infection. H. pylori infection affected the expression of 385 genes over the experimental period, including regulators of gastric physiology, proliferation, apoptosis and mucosal defence. Under conditions of Cox-2 inhibition, 160 target genes were regulated as a result of H. pylori infection. The Cox-2 dependent subset included those influencing gastric physiology (Gastrin, Galr1), epithelial barrier function (Tjp1, connexin45, Aqp5), inflammation (Icam1), apoptosis (Clu) and proliferation (Gdf3, Igf2). Treatment with NS398 alone caused differential expression of 140 genes, 97 of which were unique, indicating that these genes are regulated under conditions of basal Cox-2 expression. CONCLUSION This study has identified a panel of novel Cox-2 dependent genes influenced under both normal and the inflammatory conditions induced by H. pylori infection. These data provide important new links between Cox-2 and inflammatory processes, epithelial repair and integrity.
Collapse
Affiliation(s)
- Anna K Walduck
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pagkalos VA, Moschandreas J, Kiriakakis M, Roussomoustakaki M, Kafatos A, Kouroumalis E. Fatty acid composition of subcutaneous adipose tissue and gastric mucosa: is there a relation with gastric ulceration? BMC Gastroenterol 2009; 9:9. [PMID: 19166613 PMCID: PMC2636823 DOI: 10.1186/1471-230x-9-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 01/23/2009] [Indexed: 12/21/2022] Open
Abstract
Background Both in vitro and epidemiological studies indicate that dietary polyunsaturated fatty acids may play a protective role against peptic ulcer in humans. Adipose tissue fatty acid composition is thought to reflect dietary fatty acid intake. The aim of the present study is to investigate adipose and gastric mucosa fatty acid levels in relation to gastric ulceration status. Methods Fifty two adult outpatients undergoing upper gastrointestinal tract endoscopy participated in the study. Adipose tissue samples were taken from the abdomen and buttock during the endoscopy procedure and samples from gastric tissue were taken from a subsample of 30 subjects. The presence of Helicobacter pylori was determined using the CLO test. Capillary gas chromatography was used for the extraction of 36 and 42 adipose tissue and gastric mucosa lipids respectively. Results The monounsaturated fatty acids (MUFAs) C18:1n-12c, C16:1n-5, C16:4n-1 and the polyunsaturated fatty acids (PUFAs) C16:3n-4, C20:3n-3, C20:4n-6, C21:5n-3 and C18:2n-9c,12t of the gastric mucosa were present in higher proportions in ulcer negative patients. These unsaturated fatty acids, however, each contributed less than 1% on average to total fatty acid content. In addition, higher average levels of eicosapentaenoic acid (EPA) C20:5n-3 and docosahexaenoic acid (DHA) C22:6n-3 were detected in abdominal and buttock samples in CLO negative controls, compared to CLO positive controls. Adipose tissue and gastric mucosa n-6 and trans fatty acid levels were positively linearly correlated (r = 0.37 and 0.41 for n-6 and trans fatty acids respectively). Conclusion Certain minor MUFAs and PUFAs of the gastric mucosa appear to be present in higher proportions in ulcer negative patients. Overall, the findings provide only weak evidence of an association between the gastric mucosal fatty acids and the presence of gastric ulceration. The higher average levels of EPA and DHA in abdominal and buttock adipose tissue in CLO negative controls could be an indicator that dietary FAs inhibit Helicobacter pylori growth. Larger studies are necessary to provide evidence of a biologically relevant effect.
Collapse
Affiliation(s)
- Vasileios A Pagkalos
- Department of Gastroenterology, University Hospital of Heraklion, Heraklion, Crete, Greece.
| | | | | | | | | | | |
Collapse
|
23
|
Wehrens A, Aebischer T, Meyer TF, Walduck AK. Leptin receptor signaling is required for vaccine-induced protection against Helicobacter pylori. Helicobacter 2008; 13:94-102. [PMID: 18321299 DOI: 10.1111/j.1523-5378.2008.00591.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND A vaccine against Helicobacter pylori would be a desirable alternative to antibiotic therapy. Vaccination has been shown to be effective in animal models but the mechanism of protection is poorly understood. Previous studies investigating the gene expression in stomachs of vaccinated mice showed changes in adipokine expression correlated to a protective response. In this study, we investigate a well-characterized adipokine-leptin, and reveal an important role for leptin receptor signaling in vaccine-induced protection. MATERIALS AND METHODS Leptin receptor signaling-deficient (C57BL/Ks Lepr(db)), wild-type C57BL/Ks m littermates and C57BL/6 mice were vaccinated, and then challenged with H. pylori. Levels of bacterial colonization, antibody levels, and gastric infiltrates were compared. The local gene expression pattern in the stomach of leptin receptor signaling-deficient and wild-type mice was also compared using microarrays. RESULTS Interestingly, while vaccinated wild-type lean C57BL/6 and C57BL/Ks m mice were able to significantly reduce colonization compared to controls, vaccinated obese C57BL/Ks Lepr(db) were not. All mice responded to vaccination, i.e. developed infiltrates predominantly of T lymphocytes in the gastric mucosa, and made H. pylori-specific antibodies. A comparison of expression profiles in protected C57BL/6 and nonprotected C57BL/Ks Lepr(db) mice revealed a subset of inflammation-related genes that were more strongly expressed in nonprotected mice. CONCLUSIONS Our data suggest that functional leptin receptor signaling is required for mediating an effective protective response against H. pylori.
Collapse
Affiliation(s)
- Andrea Wehrens
- Department of Molecular Biology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
24
|
Nyström-Asklin J, Adamsson J, Harandi AM. The adjuvant effect of CpG oligodeoxynucleotide linked to the non-toxic B subunit of cholera toxin for induction of immunity against H. pylori in mice. Scand J Immunol 2008; 67:431-40. [PMID: 18298617 DOI: 10.1111/j.1365-3083.2008.02085.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study was carried out to test the immunostimulatory and adjuvant effects of the non-toxic B subunit of cholera toxin (CTB), CpG oligodeoxynucleotide (ODN) and CpG ODN linked to CTB (CTB-CpG) for generation of immunity against H. pylori in mice. Herein, we showed that CTB-CpG induces more potent proinflammatory cytokine and chemokine responses in the cervical and the mesenteric lymph nodes (CLN and MLN, respectively) cells in vitro compared with those of CTB and CpG ODN. The adjuvant effects of these agents were examined following intranasal immunization of C57Bl/6 mice with H. pylori lysate in combination with CpG ODN, CTB or CTB-CpG. All three immunization regimes resulted in high H. pylori-specific IgG antibody responses; however, only the CTB-CpG and, to some extent, the CpG ODN immunized mice mounted a sustainable IgG2c antibody response. Importantly, mice immunized with H. pylori antigen and CTB-CpG or CpG ODN, but not CTB, developed strong H. pylori-specific proliferative and IFN-gamma responses in their MLN CD4+ T cells upon recall antigen stimulation in vitro. These mice also had significantly lower bacterial load compared with the control-infected mice. Furthermore, the CTB-CpG and the CpG ODN immunized mice developed increased specific IgA antibody responses in their gastrointestinal tracts following H. pylori challenge. These results imply that CTB-CpG and CpG ODN, but not CTB, could serve as nasal adjuvants for induction of a H. pylori-specific Th1 type immunity in MLN and also a specific mucosal IgA antibody response in the gastrointestinal tract upon H. pylori challenge.
Collapse
Affiliation(s)
- J Nyström-Asklin
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | | | | |
Collapse
|
25
|
IL-4 -588C>T polymorphism and IL-4 receptor alpha [Ex5+14A>G; Ex11+828A>G] haplotype concur in selecting H. pylori cagA subtype infections. Clin Chim Acta 2007; 389:139-45. [PMID: 18179773 DOI: 10.1016/j.cca.2007.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 12/07/2007] [Accepted: 12/07/2007] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Th2 cytokine IL-4 might limit H. pylori associated gastric inflammation and favour H. pylori clearance. The aim of the study was to verify whether IL-4 -588C>T SNP, or two SNPs of the gene coding the alpha chain of IL-4 receptor (IL-4RA Ex5+14A>G, IL-4RA Ex11+828A>G) considered singly or as haplotypes, are correlated with H. pylori virulence genes or H. pylori associated diseases. METHODS We studied 144 patients with non-cardia gastric cancer (NCGC)(41/50 with present or past H. pylori infection), 75 with duodenal ulcer (DU)(66 H. pylori infected) and 171 with gastritis (CG)(107 H. pylori infected). cagA gene was present in 24/28 NCGC, 45/59 DU and 56/107 CG. RESULTS All SNPs were in Hardy-Weinberg equilibrium. IL-4RA haplotypes frequencies were estimated using Arlequin software. Neither the SNPs nor the IL-4RA haplotype correlated with disease diagnosis, H. pylori infection, degree of mucosal inflammation or intestinal metaplasia. IL-4 -588T allele (OR=3.69, 95% CI:1.34-10.16) and IL-4RA GA haplotype (p<0.05) enhanced the risk for cagA positive infections. IL-4RA GA haplotype correlated with IL-4 protein levels in H. pylori infected gastric mucosa. CONCLUSIONS IL-4 and IL-4RA gene polymorphisms concur in selecting the H. pylori infecting strain, probably influencing the IL-4 signalling pathway.
Collapse
|
26
|
Aebischer T, Walduck A, Schroeder J, Wehrens A, Chijioke O, Schreiber S, Meyer TF. A vaccine against Helicobacter pylori: towards understanding the mechanism of protection. Int J Med Microbiol 2007; 298:161-8. [PMID: 17702653 DOI: 10.1016/j.ijmm.2007.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori infection remains a significant global public health problem. Vaccine development against this infection appears to be feasible but has not yet delivered its promise in clinical trials. Efforts to improve current vaccination strategies would greatly benefit from a better molecular understanding of the mechanism of protection. Here, we review recent developments in this field.
Collapse
Affiliation(s)
- Toni Aebischer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charité Platz 1, D-10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Wilson KT, Crabtree JE. Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 2007; 133:288-308. [PMID: 17631150 DOI: 10.1053/j.gastro.2007.05.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 05/02/2007] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori infects the stomach of half of the human population worldwide and causes chronic active gastritis, which can lead to peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. The host immune response to the infection is ineffective, because the bacterium persists and the inflammation continues for decades. Bacterial activation of epithelial cells, dendritic cells, monocytes, macrophages, and neutrophils leads to a T helper cell 1 type of adaptive response, but this remains inadequate. The host inflammatory response has a key functional role in disrupting acid homeostasis, which impacts directly on the colonization patterns of H pylori and thus the extent of gastritis. Many potential mechanisms for the failure of the host response have been postulated, and these include apoptosis of epithelial cells and macrophages, inadequate effector functions of macrophages and dendritic cells, VacA inhibition of T-cell function, and suppressive effects of regulatory T cells. Because of the extent of the disease burden, many strategies for prophylactic or therapeutic vaccines have been investigated. The goal of enhancing the host's ability to generate protective immunity has met with some success in animal models, but the efficacy of potential vaccines in humans remains to be demonstrated. Aspects of H pylori immunopathogenesis are reviewed and perspectives on the failure of the host immune response are discussed. Understanding the mechanisms of immune evasion could lead to new opportunities for enhancing eradication and prevention of infection and associated disease.
Collapse
Affiliation(s)
- Keith T Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0252, USA
| | | |
Collapse
|
28
|
Rosenplänter C, Sommer F, Kleemann P, Belkovets A, Schmidt A, Lohoff M. Helicobacter pylori polyclonally activates murine CD4+ T cells in the absence of antigen-presenting cells. Eur J Immunol 2007; 37:1905-15. [PMID: 17549800 DOI: 10.1002/eji.200636676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that causes a variety of gastrointestinal diseases, such as duodenal ulcer and gastric carcinoma. The T cell response against H. pylori is thought to contribute to the pathogenesis of these diseases. Here, we show that mouse-adapted H. pylori is able to polyclonally activate murine CD4(+) T lymphocytes, irrespective of their antigen specificity. Murine T helper cell clones as well as short-term cultured, polyclonal Th1 and Th2 cell lines and a human T cell clone, but not naive CD4(+) T cells, could be activated in this manner. The effect was independent of antigen-presenting cells and required direct contact between H. pylori and T cells. Only whole cells of H. pylori, but not lysates or sonicates were able to activate T cells. The activity was lost after long-term culture of H. pylori on agar-plates. Degradation of H. pylori proteins with specific peptidases dramatically reduced the stimulating ability, implicating that the responsible molecule is likely to be a protein. This unexpected polyclonal T cell stimulatory mechanism may contribute to the T cell-mediated pathogenicity characteristic for H. pylori-mediated diseases.
Collapse
Affiliation(s)
- Christine Rosenplänter
- Institut für Medizinische Mikrobiologie und Hygiene der Universität Marburg, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Zhang RP, Liu CJ, Tao HX, Zhang ZS. Construction of targeted DNA vaccine of H pylori and immune test in BALB/c mice. Shijie Huaren Xiaohua Zazhi 2007; 15:1682-1687. [DOI: 10.11569/wcjd.v15.i15.1682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct DNA vaccine targeted on antigen-presenting cells for the purpose of increasing the immunogenecity of Helicobacter pylori DNA vaccine.
METHODS: DNA vaccine was constructed by combining the targeted DNA sequence with katA. Whether or not the DNA vaccine could be expressed in the mammalian cells was detected by indirect immunofluorescence assay of 293T cells transfected with DNA vaccine. The IgG, IgG1 and IgG2a antibody titers of BALB/c mice immunized with DNA vaccine were also determined.
RESULTS: It was indicated in the immunofluorescence assay of 293T cells transfected with DNA vaccine that the KatA protein could be expressed in these cells. Enzyme-linked immunosorbent assay (ELISA) also showed that the transfected cells with pcDNAkathIgz had a higher affinity for IgG. The IgG antibody titer of BALB/c mice immunized with targeted DNA vaccine was significantly higher than that of mice immunized with pcDNAkatA, and a shift form (Th2 response to Th1 response) was achieved in the mice immunized with DNA vaccine.
CONCLUSION: DNA vaccine targeted on antigen-presenting cells is constructed successfully, which can evoke a higher IgG antibody titer than non-targeted DNA vaccine.
Collapse
|
30
|
Webb DC, Otczyk DC, Cripps AW. Investigation of the potential of a 48kDa protein as a vaccine candidate for infection against nontypable Haemophilus influenzae. Vaccine 2007; 25:4012-9. [PMID: 17379362 DOI: 10.1016/j.vaccine.2007.02.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 11/16/2022]
Abstract
This study determined the conservation and protective efficacy of a 48 kDa nontypable Haemophilus influenzae (NTHi) protein (P48). This protein was highly conserved across the strains of NTHi examined and mucosal immunization with recombinant P48 (rP48) significantly reduced the numbers of viable NTHi recovered from the lung following challenge. rP48 induced predominantly an IgG2a antibody response that correlated with the reduction in the number of viable NTHi in the lung. These antibodies were not bactericidal against NTHi. The results suggest that P48 warrants further investigation as a vaccine component for NTHi disease.
Collapse
Affiliation(s)
- Dianne C Webb
- Division of Molecular Bioscience, The John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra City, ACT 2601, Australia
| | | | | |
Collapse
|
31
|
Josenhans C, Beier D, Linz B, Meyer TF, Suerbaum S. Pathogenomics of helicobacter. Int J Med Microbiol 2007; 297:589-600. [PMID: 17416549 DOI: 10.1016/j.ijmm.2007.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 02/07/2023] Open
Abstract
The pathogenic bacterium Helicobacter pylori infects half of the human population and is one of the genetically most diverse bacterial species known. H. pylori was one of the first bacterial species whose genome was sequenced in 1997, and the first species for which two complete sequences from independent isolates were available for within-species comparisons. For almost 10 years, genomic and post-genomic analysis has contributed enormously to our understanding of the pathogenesis of H. pylori infection. This review summarizes the available information, emphasizing work performed in the framework of the PathoGenoMik funding initiative (2001-2006) of the German Ministry of Education and Research.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Street 1, D-30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
32
|
Shi Y, Wu C, Zhou WY, Mao XH, Guo G, Zou QM. Identification of H-2d restricted Th epitopes in Urease B subunit of Helicobacter pylori. Vaccine 2007; 25:2583-90. [PMID: 17240487 DOI: 10.1016/j.vaccine.2006.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/03/2006] [Accepted: 12/12/2006] [Indexed: 12/28/2022]
Abstract
CD4+ T cells play important roles in protection against Helicobacter pylori (H. pylori) infection. In order to better understand the immune responses of H. pylori infection and improve immune interventions against this pathogen, we identified the Th epitopes in UreB of H. pylori, an excellent vaccine candidate antigen. By using the RANKPEP prediction algorithm, we have identified and characterized three Th epitopes within the UreB antigen, which can be recognized by CD4+ T cells from BALB/c (H-2d) mice. They were U(546-561), U(229-244), and U(237-251). These epitopes have important value for studying the immune response of H. pylori infection and for designing effective vaccine against H. pylori.
Collapse
Affiliation(s)
- Yun Shi
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, The Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Algood HMS, Cover TL. Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev 2006; 19:597-613. [PMID: 17041136 PMCID: PMC1592695 DOI: 10.1128/cmr.00006-06] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently colonizes more than half of the global human population. In order to successfully colonize the human stomach, H. pylori must initially overcome multiple innate host defenses. Remarkably, H. pylori can persistently colonize the stomach for decades or an entire lifetime despite development of an acquired immune response. This review focuses on the immune response to H. pylori and the mechanisms by which H. pylori resists immune clearance. Three main sections of the review are devoted to (i) analysis of the immune response to H. pylori in humans, (ii) analysis of interactions of H. pylori with host immune defenses in animal models, and (iii) interactions of H. pylori with immune cells in vitro. The topics addressed in this review are important for understanding how H. pylori resists immune clearance and also are relevant for understanding the pathogenesis of diseases caused by H. pylori (peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma).
Collapse
Affiliation(s)
- Holly M Scott Algood
- Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
34
|
Hatzifoti C, Roussel Y, Harris AG, Wren BW, Morrow JW, Bajaj-Elliott M. Mucosal immunization with a urease B DNA vaccine induces innate and cellular immune responses against Helicobacter pylori. Helicobacter 2006; 11:113-22. [PMID: 16579841 DOI: 10.1111/j.1523-5378.2006.00385.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Helicobacter pylori is recognized as a major risk factor for recurrent gastroduodenal inflammatory diseases and gastric adenocarcinoma. The high prevalence of H. pylori infection worldwide, the risks of side-effects from antibiotic therapy, and increasing resistance to antibiotics are the main primers for the development of improved H. pylori vaccines. The antigenic potential of its urease enzyme, a critical virulence factor required for colonization of the gastric mucosa, has been demonstrated in animal and human studies. An important but controversial issue in H. pylori vaccine studies is the type of immune response required to control infection. A new approach in H. pylori vaccinology is the administration of DNA vaccines, which has included heat-shock protein and catalase DNA vaccines. MATERIALS AND METHODS The H. pylori urease subunit B construct or vector alone was administered to mice via the intranasal route. Spleens and stomachs were examined on day 0 and weeks 3, 6, and 12 after immunization. Proliferation of spleen cells was assessed using the carboxyfluorescein diacetate succinimidyl ester-based flow cytometry assay and cytokine secretion from cultured spleen cells was detected by ELISA, after stimulation with the urease subunit B recombinant antigen. Total RNA was isolated from stomach and spleen tissue and the expression of beta-defensin and cytokine genes was monitored by reverse transcription followed by polymerase chain reaction (RT-PCR). Immunized mice were challenged with H. pylori and bacterial DNA quantified by TaqMan PCR. RESULTS The urease B subunit DNA vaccine increased INF-gamma secretion and splenocyte proliferation without inducing adverse effects in the spleen. Increase in gastric beta-defensin 1 and marked induction in local IL-10 : IFN-gamma ratio up to 12 weeks post-immunization suggest a potential role for local innate immune responses in protection at the site of infection. Although significant bacterial reduction in the stomachs of urease B subunit DNA-immunized mice was observed, intermediate reduction was also noted in the vector group. Increased defensin expression and adjuvant effects of the cytosine preceding guanosine motifs may contribute to this phenomenon. Our data confirm that cytosine preceding guanosine motifs, even without coadministration with antigen, can reduce extracellular bacterial load. CONCLUSIONS In this study, a DNA construct encoding the urease B subunit was assessed for its immune profile and its ability to reduce bacterial colonization in the murine stomach. Our studies suggest that local innate immune responses may play a greater role than previously supposed in limiting H. pylori colonization in the gastric mucosa.
Collapse
Affiliation(s)
- Caterina Hatzifoti
- Department of Immunology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, London, UK.
| | | | | | | | | | | |
Collapse
|
35
|
McCracken VJ, Martin SM, Lorenz RG. The Helicobacter felis model of adoptive transfer gastritis. Immunol Res 2006; 33:183-94. [PMID: 16234583 DOI: 10.1385/ir:33:2:183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bacterium Helicobacter pylori is a major human pathogen and the principal cause of acute and chronic gastritis, gastric and duodenal ulcer disease, and gastric adenocarcinoma. Infection with gastric Helicobacter results in an early infiltration of neutrophils, monocytes, and natural killer cells, followed by an influx of T cells and plasma cells. Although the critical components of this gastric infiltrate that lead to disease are unclear, the Helicobacter felis-infected mouse and other mouse models of Helicobacter-associated gastritis have demonstrated the critical nature of adaptive immunity in the development of gastric epithelial pathology. To further investigate the role of adaptive immunity in this disease, adoptive transfer models of disease have also been utilized. These models clearly demonstrate that it is the host CD4+ T lymphocyte response that is crucial for the development of Helicobacter-associated gastric epithelial changes.
Collapse
Affiliation(s)
- Vance J McCracken
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
36
|
Akhiani AA. The role of type-specific antibodies in colonization and infection by Helicobacter pylori. Curr Opin Infect Dis 2005; 18:223-7. [PMID: 15864099 DOI: 10.1097/01.qco.0000168382.86024.14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Helicobacter pylori is a Gram-negative spiral bacterium that colonizes the stomach of humans, causing gastritis, peptic ulcer disease, or gastric cancer. H. pylori infection accounts for a high percentage of mortality and morbidity rates in developing as well as developed countries. H. pylori bacteria reside in the mucus layer covering the gastric epithelium, and therefore the type of protective measures that could confer resistance appear to be limited. Although H. pylori infection stimulates strong local and systemic specific IgA and IgG antibody production, the influence of antibodies on bacterial colonization and gastric inflammation is still controversial. RECENT FINDINGS Recent studies in experimental animal models have indicated a non-essential role of specific antibodies for host resistance against H. pylori infection. Recent data show that protection is mediated by T cells, CD4 T helper type 1 cells, in particular. Antibodies are not only dispensable for protection, but they impair both the elimination of bacteria and the development of gastritis. This effect appears to be IgA-dependent and is not a function of specific IgM or IgG antibodies. SUMMARY This review highlights the recent advances in our understanding of how antibodies may influence the development of gastric inflammation and bacterial colonization. Such information can significantly increase our basic knowledge of immune regulation and protection against H. pylori infection, but can also indicate new strategies for vaccine development.
Collapse
Affiliation(s)
- Ali A Akhiani
- Department of Clinical Immunology, Göteborg University, Göteborg, Sweden.
| |
Collapse
|
37
|
Abstract
To maintain prolonged colonization of the human gastric mucosa, Helicobacter pylori must avoid both innate and adaptive immune responses. During its long coexistence with humans, it has evolved complex strategies to maintain a mild inflammation of the gastric epithelium while limiting the extent of immune effector activity. Severe disease, associated with bacterial colonization, might reflect loss of this control. Several mechanisms and the bacterial factors involved in immune subversion have, in recent years, been elucidated, thus opening the possibility of a better understanding of the pathogenicity of this microorganism.
Collapse
Affiliation(s)
- Cosima T Baldari
- Department of Evolutionary Biology, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
| | | | | |
Collapse
|
38
|
Akhiani AA, Stensson A, Schön K, Lycke NY. IgA Antibodies Impair Resistance againstHelicobacter pyloriInfection: Studies on Immune Evasion in IL-10-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2005; 174:8144-53. [PMID: 15944323 DOI: 10.4049/jimmunol.174.12.8144] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We recently reported that Helicobacter pylori-specific Abs impair the development of gastritis and down-regulate resistance against H. pylori infection. In this study, we asked whether IgA Abs specifically can have an impact on H. pylori colonization and gastric inflammation. To obtain a sensitive model for the study of inflammation we crossed IgA- and IL-10-deficient mice. We found that IL-10(-/-)/IgA(-/-) mice were significantly less colonized than IL-10(-/-)/IgA(+/+) mice, which in turn were less colonized than wild-type (WT) mice. The IL-10(-/-)/IgA(-/-) mice exhibited a 1.2-log reduction in bacterial counts compared with that in IL-10(-/-)/IgA(+/+) mice, suggesting that IgA Abs rather promoted than prevented infection. The reduced colonization in IL-10(-/-)/IgA(-/-) mice was associated with the most severe gastritis observed, albeit all IL-10(-/-) mice demonstrated more severe gastric inflammation than wild-type mice. The gastritis score and the infiltration of CD4(+) T cells into the gastric mucosa were significantly higher in IL-10(-/-)/IgA(-/-) mice than in IL-10(-/-)/IgA(+/+) mice, arguing that IgA Abs counteracted inflammation. Moreover, following oral immunization, IL-10(-/-)/IgA(-/-) mice were significantly better protected against colonization than IL-10(-/-)/IgA(+/+) mice. However, the stronger protection was associated with more severe postimmunization gastritis and gastric infiltration of CD4(+) T cells. There was also a clear increase in complement receptor-expressing cells in IL-10(-/-)/IgA(-/-) mice, though C3b-fragment deposition in the gastric mucosa was comparable between the two. Finally, specific T cell responses to recall Ag demonstrated higher levels of IFN-gamma production in IL-10(-/-)/IgA(-/-) as compared with IL-10(-/-)/IgA(+/+) mice. Thus, it appears that IgA and IL-10 help H. pylori bacteria evade host resistance against infection.
Collapse
Affiliation(s)
- Ali A Akhiani
- Department of Clinical Immunology, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
39
|
Bai Y, Liang YL, Liu XL, Shi L, Wang JD, Zhang ZS, Zhou DY, Zhang YL. Prevention and treatment of Helicobacter pylori infection with adhesin conservatory region vaccine: an animal model study. Shijie Huaren Xiaohua Zazhi 2005; 13:468-471. [DOI: 10.11569/wcjd.v13.i4.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of Helicobacter pylori (H. pylori) adhesin conservatory region vaccine in the prevention and treatment of H. pylori infection in a mouse model.
METHODS: The study was divided into two parts. In the first part, the specific germ free C57BL/6 mice were orally immunized with vaccine (100 mg) plus cholera toxin (CT) (2 mg), vaccine (100 mg), CT(2 mg), or PBS once a week for four weeks. Two weeks after the last immunization, all animals were challenged by live H. pylori, and were sacrificed 4 weeks after the challenge. In the second part, H. pylori infected mice were treated in the same way as in the first part. Four weeks after the last treatment, all animals were sacrificed, and the stomach biopsies were collected to detect H. pylori by the semi-quantitative bacterial culture assay.
RESULTS: The prophylactic rate from H. pylori infection was 61.5% (16/26) in the mice immunized with vaccine plus CT. The eradication rate of the vaccine plus CT group was 38.5% (10/26). No protective or therapeutic effect was observed in all other 3 groups. The H. pylori colony density in the vaccine plus CT group was significantly lower than those inother three groups in the second part of experiment (P<0.05).
CONCLUSION: The vaccine consisting of adhesin conservatory region and adjuvant is not only effective in the prevention, but also in the treatment of H. pylori infection.
Collapse
|
40
|
Czinn SJ, Nedrud JG. Peptic Ulcers and Gastritis. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Walduck A, Schmitt A, Lucas B, Aebischer T, Meyer TF. Transcription profiling analysis of the mechanisms of vaccine‐induced protection against
H. pylori. FASEB J 2004; 18:1955-7. [PMID: 15456742 DOI: 10.1096/fj.04-2321fje] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Development of a vaccine against H. pylori is regarded as desirable alternative to the current antibiotic therapy regimens. Mice immunized with an attenuated recombinant Salmonella typhimurium expressing H. pylori urease subunits A&B have dramatically reduced bacterial loads after a single dose. The mechanism(s) of protection against this largely extra-cellular pathogen are not fully understood. The aim of this study was to identify genes that were regulated specifically in response to immunization, in order to gain a broader picture of the immune response in the immunized gastric epithelium. Gene expression in RNA isolated from the gastric mucosa of immunized and infected Balb/c mice was compared with that in infected only mice at 1, 3, and 14 days after challenge with a mouse-adapted strain of H. pylori. We show that infection with H. pylori causes an immediate reaction in vivo, which was clearly divided into acute and chronic phases, and further that the transcriptional response in the H. pylori infected and immunized gastric mucosa is unique. Analysis of gene expression patterns at day 14 post-infection suggested not only the beginning of a lymphocytic infiltrate, but of an integrated epithelial response characterized by increased expression of genes controlling cell cycle and turnover. This observation was confirmed in independent experiments. The global approach has brought new insights to the effect of immunization on the gastric epithelium and has led us to propose a new multi-factorial model for the mechanisms underlying vaccine-induced protection.
Collapse
Affiliation(s)
- Anna Walduck
- Max-Planck Institute for Infection Biology, Department of Molecular Biology, Berlin, Germany
| | | | | | | | | |
Collapse
|
42
|
Akhiani AA, Schön K, Lycke N. Vaccine-induced immunity against Helicobacter pylori infection is impaired in IL-18-deficient mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:3348-56. [PMID: 15322198 DOI: 10.4049/jimmunol.173.5.3348] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protective immunity against Helicobacter pylori infection in mice has been associated with a strong Th1 response, involving IL-12 as well as IFN-gamma, but recent studies have also demonstrated prominent eosinophilic infiltration, possibly linked to local Th2 activity in the gastric mucosa. In this study we investigated the role of IL-18, because this cytokine has been found to be a coregulator of Th1 development as well as involved in Th2-type responses with local eotaxin production that could influence gastric eosinophilia and resistance to infection. We found that IL-18(-/-) mice failed to develop protection after oral immunization with H. pylori lysate and cholera toxin adjuvant, indicating an important role of IL-18 in protection. Well-protected C57BL/6 wild-type (WT) mice demonstrated substantial influx of CD4(+) T cells and eosinophilic cells in the gastric mucosa, whereas IL-18(-/-) mice had less gastritis, few CD4(+) T cells, and significantly reduced numbers of eosinophilic cells. T cells in well-protected WT mice produced increased levels of IFN-gamma and IL-18 to recall Ag. By contrast, unprotected IL-18(-/-) mice exhibited significantly reduced gastric IFN-gamma and specific IgG2a Ab levels. Despite differences in gastric eosinophilic cell infiltration, protected WT and unprotected IL-18(-/-) mice had comparable levels of local eotaxin, suggesting that IL-18 influences protection via Th1 development and IFN-gamma production rather than through promoting local production of eotaxin and eosinophilic cell infiltration.
Collapse
Affiliation(s)
- Ali A Akhiani
- Department of Clinical Immunology, Goteborg University, Goteborg, Sweden.
| | | | | |
Collapse
|
43
|
Fischer W, Gebert B, Haas R. Novel activities of the Helicobacter pylori vacuolating cytotoxin: from epithelial cells towards the immune system. Int J Med Microbiol 2004; 293:539-47. [PMID: 15149029 DOI: 10.1078/1438-4221-00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
H. pylori has developed a unique set of virulence factors, which allow its survival in a unique ecological niche, the human stomach. The vacuolating cytotoxin (VacA) and the cytotoxin-associated antigen (CagA) are major bacterial factors involved in modulating the host. VacA, so far mainly regarded as a cytotoxin for the gastric epithelial cell layer, apparently has profound effects in modulating the immune response. In this review we discuss some of the classical effects of VacA, such as cell vacuolation, and compare them with more recently identified mechanisms of VacA on immune cells.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, LMU München, München, Germany
| | | | | |
Collapse
|
44
|
Gebert B, Fischer W, Haas R. The Helicobacter pylori vacuolating cytotoxin: from cellular vacuolation to immunosuppressive activities. Rev Physiol Biochem Pharmacol 2004; 152:205-20. [PMID: 15549607 DOI: 10.1007/s10254-004-0027-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori is a highly successful bacterial pathogen of humans, infecting the stomach of more than half of the world's population. The H. pylori infection results in chronic gastritis, eventually followed by peptic ulceration and, more rarely, gastric cancer. H. pylori has developed a unique set of virulence factors, actively supporting its survival in the special ecological niche of the human stomach. Vacuolating cytotoxin (VacA) and cytotoxin-associated antigen A (CagA) are two major bacterial virulence factors involved in host cell modulation. VacA, so far mainly regarded as a cytotoxin of the gastric epithelial cell layer, now turns out to be a potent immunomodulatory toxin, targeting the adapted immune system. Thus, in addition to the well-known vacuolating activity, VacA has been reported to induce apoptosis in epithelial cells, to affect B lymphocyte antigen presentation, to inhibit the activation and proliferation of T lymphocytes, and to modulate the T cell-mediated cytokine response.
Collapse
Affiliation(s)
- B Gebert
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, LMU München Pettenkoferstr., München, Germany
| | | | | |
Collapse
|
45
|
Akhiani AA, Schön K, Franzén LE, Pappo J, Lycke N. Helicobacter pylori-specific antibodies impair the development of gastritis, facilitate bacterial colonization, and counteract resistance against infection. THE JOURNAL OF IMMUNOLOGY 2004; 172:5024-33. [PMID: 15067084 DOI: 10.4049/jimmunol.172.8.5024] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, Abs have been considered a correlate rather than an effector of resistance against Helicobacter pylori infection. However, it is still poorly understood to what extent Ab production correlates with gastric immunopathology. Here we report that Abs not only are dispensable for protection, but they are detrimental to elimination of the bacteria and appear to impair gastric inflammatory responses. We found that the initial colonization with H. pylori bacteria was normal in the B cell-deficient (microMT) mice, whereas at later times (>8 wk) most of the bacteria were cleared, concomitant with the development of severe gastritis. In contrast, wild-type (WT) mice exhibited extensive bacterial colonization and only mild gastric inflammation, even at 16 wk after inoculation. Oral immunizations with H. pylori lysate and cholera toxin adjuvant stimulated comparable levels of protection in microMT and WT mice. The level of protection in both strains correlated well with the severity of the postimmunization gastritis. Thus, T cells were responsible for the gastritis, whereas Abs, including potentially host cell cross-reactive Abs, were not involved in causing the gastritis. The T cells in micro MT and WT mice produced high and comparable levels of IFN-gamma to recall Ag at 2 and after 8 wk, whereas IL-4 was detected after 8 wk only, indicating that Th1 activity dominated the early phase of protection, whereas later a mixed Th1 and Th2 activity was seen.
Collapse
Affiliation(s)
- Ali A Akhiani
- Department of Clinical Immunology, University of Göteborg, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
46
|
Sundrud MS, Torres VJ, Unutmaz D, Cover TL. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc Natl Acad Sci U S A 2004; 101:7727-32. [PMID: 15128946 PMCID: PMC419674 DOI: 10.1073/pnas.0401528101] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 04/06/2004] [Indexed: 12/14/2022] Open
Abstract
Recent evidence indicates that the secreted Helicobacter pylori vacuolating toxin (VacA) inhibits the activation of T cells. VacA blocks IL-2 secretion in transformed T cell lines by suppressing the activation of nuclear factor of activated T cells (NFAT). In this study, we investigated the effects of VacA on primary human CD4(+) T cells. VacA inhibited the proliferation of primary human T cells activated through the T cell receptor (TCR) and CD28. VacA-treated Jurkat T cells secreted markedly diminished levels of IL-2 compared with untreated cells, whereas VacA-treated primary human T cells continued to secrete high levels of IL-2. Further experiments indicated that the VacA-induced inhibition of primary human T cell proliferation was not attributable to VacA effects on NFAT activation or IL-2 secretion. We show here that VacA suppresses IL-2-induced cell-cycle progression and proliferation of primary human T cells without affecting IL-2-dependent survival. Through the analysis of a panel of mutant VacA proteins, we demonstrate that VacA-mediated inhibition of T cell proliferation requires an intact N-terminal hydrophobic region necessary for the formation of anion-selective membrane channels. Remarkably, we demonstrate that one of these mutant VacA proteins [VacA-Delta(6-27)] abrogates the immunosuppressive actions of wild-type VacA in a dominant-negative fashion. We suggest that VacA may inhibit the clonal expansion of T cells that have already been activated by H. pylori antigens, thereby allowing H. pylori to evade the adaptive immune response and establish chronic infection.
Collapse
Affiliation(s)
- Mark S Sundrud
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2605, USA
| | | | | | | |
Collapse
|
47
|
Blanchard TG, Eisenberg JC, Matsumoto Y. Clearance of Helicobacter pylori infection through immunization: the site of T cell activation contributes to vaccine efficacy. Vaccine 2004; 22:888-97. [PMID: 15040942 DOI: 10.1016/j.vaccine.2003.11.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori vaccine development has progressed rapidly in animal models. Both H. pylori-associated pathogenesis and protective immunity are CD4+ T cell dependent, with no discernable phenotypic difference to distinguish pathogenic T cells from protective T cells. Functionally however, protective T cells promote enhanced inflammation upon H. pylori challenge. Additionally, only mouse models such as phagocyte oxidase- or IL-10-deficient mice that respond to H. pylori infection with intense gastritis are capable of demonstrating spontaneous eradication of the bacteria. These data, combined with recent descriptions of down-regulatory T cells in infected humans and mice, support an emerging model of H. pylori pathogenesis in which H. pylori induces inflammation that is limited by regulatory T cells in the stomach. Immunization therefore may succeed by activating T cells in peripheral lymph nodes that are capable of promoting qualitatively or quantitatively different inflammation when recruited to the stomach. Evidence in support of this model will be discussed.
Collapse
Affiliation(s)
- Thomas G Blanchard
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
48
|
Jüttner S, Cramer T, Wessler S, Walduck A, Gao F, Schmitz F, Wunder C, Weber M, Fischer SM, Schmidt WE, Wiedenmann B, Meyer TF, Naumann M, Höcker M. Helicobacter pylori stimulates host cyclooxygenase-2 gene transcription: critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cell Microbiol 2004; 5:821-34. [PMID: 14531897 DOI: 10.1046/j.1462-5822.2003.00324.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclooxygenase-2 (COX-2) represents the inducible key enzyme of arachidonic acid metabolism and contributes to the pathogenesis of gastroduodenal ulcers and gastric cancer. Helicobacter pylori infection is associated with elevated gastric COX-2 levels, but the mechanisms underlying H. pylori-dependent cox-2 gene expression are unclear. H. pylori stimulated cox-2 mRNA and protein abundance in gastric epithelial cells in vitro and in vivo, and functional analysis of the cox-2 gene promoter mapped its H. pylori-responsive region to a proximal CRE/Ebox element at -56 to -48. Moreover, USF1/-2 and CREB transcription factors binding to this site were identified to transmit H. pylori-dependent cox-2 transcription. Activation of MEK/ERK1/-2 signalling by bacterial virulence factors located outside the H. pylori cag pathogenicity island (cagPAI) was found to mediate bacterial effects on the cox-2 promoter. Our study provides a detailed description of the molecular pathways underlying H. pylori-dependent cox-2 gene expression in gastric epithelial cells, and may thus contribute to a better understanding of mechanisms underlying H. pylori pathogenicity.
Collapse
Affiliation(s)
- Stefan Jüttner
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité- Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sommer F, Wilken H, Faller G, Lohoff M. Systemic Th1 immunization of mice against Helicobacter pylori infection with CpG oligodeoxynucleotides as adjuvants does not protect from infection but enhances gastritis. Infect Immun 2004; 72:1029-35. [PMID: 14742550 PMCID: PMC321611 DOI: 10.1128/iai.72.2.1029-1035.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent reports have suggested that oral vaccination of mice against Helicobacter pylori is dependent on a Th1-mediated immune response. However, oral vaccination in mice neither induces sterilizing immunity nor leads to complete protection from disease. Therefore, in this study we investigated whether a systemic subcutaneous immunization against H. pylori by using CpG oligodeoxynucleotides as a Th1 adjuvant could achieve protection in a mouse model of H. pylori infection. CpG oligodeoxynucleotides are known for their ability to induce nearly entirely Th1-biased immune responses and may be approved for human use in future. Immunization of mice with H. pylori lysate and CpG induced a strong local and systemic Th1 immune response. Despite this strong Th1 response, mice were not protected from infection with H. pylori yet had a 10-fold reduction in the number of H. pylori in the gastric mucosa compared to nonimmunized mice. Of note, reduction of the bacterial density in immunized mice was accompanied by a significantly enhanced gastritis. Hence, systemic Th1 immunization of mice, even though being able to reduce the bacterial load in the stomach, is associated with aggravated pathology.
Collapse
Affiliation(s)
- Frank Sommer
- Institut fuer Medizinische Mikrobiologie und Hygiene, University of Marburg, Marburg, Germany.
| | | | | | | |
Collapse
|
50
|
Rizos K, Lattemann CT, Bumann D, Meyer TF, Aebischer T. Autodisplay: efficacious surface exposure of antigenic UreA fragments from Helicobacter pylori in Salmonella vaccine strains. Infect Immun 2003; 71:6320-8. [PMID: 14573651 PMCID: PMC219551 DOI: 10.1128/iai.71.11.6320-6328.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Live attenuated Salmonella strains expressing antigens of pathogens are promising oral vaccine candidates. There is growing evidence that the topology of expression of the foreign antigens can have a dramatic impact on the immunogenicity. We examined the potential of the AIDA-I (Escherichia coli adhesin involved in diffuse adherence) autotransporter domain to display antigenic fragments of the urease A subunit of Helicobacter pylori for the induction of a protective immune response. In the murine H. pylori model, protection is mainly mediated by CD4(+) T cells, and we therefore used the AIDA-I expression system to successfully express both nearly full-length UreA and defined T-helper-cell epitopes on the surface of an attenuated Salmonella enterica serovar Typhimurium vaccine strain. Surface exposure of the large UreA fragment or of one UreA T-cell epitope mediated a significant reduction in the level of H. pylori in immunized mice after challenge infection, whereas conventional cytoplasmic expression of UreA in Salmonella had no effect. These results support the concept that surface display increases the immunogenicity of recombinant antigens expressed on oral live vaccine carriers and further demonstrate the feasibility of immunizing against H. pylori with Salmonella vaccine strains expressing CD4(+) T-cell epitopes.
Collapse
Affiliation(s)
- Konstantin Rizos
- Creatogen AG, D-86156 Augsburg. Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|