1
|
Lin CY, Chang YT, Chung YK, Alalaiwe A, Yu HP, Fang JY. Dual-membrane bioinspired nanocarriers for targeted therapy of MRSA-induced acute lung injury and bacteremia. J Mater Chem B 2025; 13:5686-5704. [PMID: 40261186 DOI: 10.1039/d4tb02742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Bioinspired nanoparticles enhance the targeting of specific organs by facilitating interactions and communication at the nano-bio interface. Combining human neutrophil and lung epithelial cell membranes for nanoparticle cloaking offers distinct advantages in binding to bacteria and pulmonary epithelium, thus targeting infection-induced inflammatory areas. This study aimed to develop rifampicin-loaded biomimetic nanocarriers by wrapping a polymeric core with dual membranes derived from neutrophils and A549 cells, inheriting the membrane characteristics of the native cells. To evaluate the therapeutic efficacy of these nanocarriers, methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) and bacteremia models were established in mice. The hybrid membrane-coated nanoparticles exhibited an average diameter of 191 nm and a nearly neutral surface charge of -2.7 mV. Zeta potential measurements, gel electrophoresis, and scanning electron microscopy (SEM) confirmed the successful decoration of the membranes on the nanoparticles. The dual membrane-coated nanoparticles were readily and rapidly ingested by lung epithelial cells within five minutes, demonstrating superior cellular uptake compared to those coated with a single membrane. SEM analysis showed significant adherence of the hybrid membrane-coated nanoparticles to the MRSA surface. The rifampicin-loaded nanocarriers effectively eradicated MRSA in its planktonic, biofilm, and intracellular forms. In vivo biodistribution studies in ALI mice revealed that the hybrid membrane-coated nanoparticles effectively targeted inflamed lungs, showing a two-fold increase in lung accumulation compared to the unfunctionalized nanoparticles. This targeted delivery significantly reduced the severity of lung damage caused by ALI and bacteremia, including MRSA burden, cytokine/chemokine expression, alveolar edema, and immune cell infiltration. The bioinspired nanocarriers improved the pulmonary targeting of inflamed sites and neutralized the proinflammatory mediators and toxins in the injured lung. No significant toxicity was observed in the healthy mice receiving the nanocarriers. Thus, targeted biomimetic nanocarriers, utilizing antibacterial and anti-inflammatory strategies, show promising benefits for treating pulmonary injury.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Tzu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Kuo Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.
- Research Center for Food and Cosmetic Safety and Center for Drug Research and Development, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
2
|
Patel M, Patel K. Emerging insights of Staphylococcus spp. in human mastitis. Microb Pathog 2025; 205:107685. [PMID: 40349998 DOI: 10.1016/j.micpath.2025.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Human mastitis represents a prevalent and intricate condition that significantly challenges breastfeeding women, often exacerbated by pathogenic bacteria such as Staphylococcus aureus. A deep understanding of the interplay between human mastitis, the breast milk microbiome, and causative agents is imperative. This understanding must focus on the bacterium's virulence and resistance genes, which critically influence the severity and persistence of mastitis. Current methods for detecting these genes, including Polymerase Chain Reaction (PCR), 16S rRNA gene sequencing, shotgun metagenomic sequencing, multiplex PCR, whole genome sequencing (WGS), loop-mediated isothermal amplification (LAMP), CRISPR-based assays, and microarray technology, are vital in elucidating bacterial pathogenicity and resistance profiles. However, advanced attention is required to refine diagnostic techniques, enabling earlier detection and more effective therapeutic approaches for human mastitis. The involvement of Staphylococcus aureus in human infection should be a prime focus, especially in women's health, which deals directly with neonates. Essential virulence genes in Staphylococcus species are instrumental in infection mechanisms and antibiotic resistance, serving as potential targets for personalized treatments. Thus, this review focuses on Staphylococcusaureus-induced mastitis, examining its virulence factors and detection techniques to advance diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mansi Patel
- Department of Medical Laboratory Technology, Bapubhai Desaibhai Patel Institute of Paramedical Sciences (BDIPS), Charotar University of Science and Technology (CHARUSAT), Anand, Gujarat, 388421, India
| | - Khushal Patel
- Department of Medical Laboratory Technology, Bapubhai Desaibhai Patel Institute of Paramedical Sciences (BDIPS), Charotar University of Science and Technology (CHARUSAT), Anand, Gujarat, 388421, India.
| |
Collapse
|
3
|
Tamkin E, Lorenz BP, McCarty A, Fulte S, Eisenmesser E, Horswill AR, Clark SE. Airway Corynebacterium interfere with Streptococcus pneumoniae and Staphylococcus aureus infection and express secreted factors selectively targeting each pathogen. Infect Immun 2025; 93:e0044524. [PMID: 39705185 PMCID: PMC11834435 DOI: 10.1128/iai.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
The composition of the respiratory tract microbiome is a notable predictor of infection-related morbidities and mortalities among both adults and children. Species of Corynebacterium, which are largely present as commensals in the upper airway and other body sites, are associated with lower colonization rates of opportunistic bacterial pathogens such as Streptococcus pneumoniae and Staphylococcus aureus. In this study, Corynebacterium-mediated protective effects against S. pneumoniae and S. aureus were directly compared using in vivo and in vitro models. Pre-exposure to Corynebacterium pseudodiphtheriticum reduced the ability of S. aureus and S. pneumoniae to infect the lungs of mice, indicating a broadly protective effect. Adherence of both pathogens to human respiratory tract epithelial cells was significantly impaired following pre-exposure to C. pseudodiphtheriticum or Corynebacterium accolens, and this effect was dependent on live Corynebacterium colonizing the epithelial cells. However, Corynebacterium-secreted factors had distinct effects on each pathogen. Corynebacterium lipase activity was bactericidal against S. pneumoniae, but not S. aureus. Instead, the hemolytic activity of pore-forming toxins produced by S. aureus was directly blocked by a novel Corynebacterium-secreted factor with protease activity. Taken together, these results suggest diverse mechanisms by which Corynebacterium contribute to the protective effect of the airway microbiome against opportunistic bacterial pathogens.
Collapse
Affiliation(s)
- Emily Tamkin
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brian P. Lorenz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Arianna McCarty
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sam Fulte
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sarah E. Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
4
|
Goldmann O, Lang JC, Rohde M, May T, Molinari G, Medina E. Alpha-hemolysin promotes internalization of Staphylococcus aureus into human lung epithelial cells via caveolin-1- and cholesterol-rich lipid rafts. Cell Mol Life Sci 2024; 81:435. [PMID: 39412594 PMCID: PMC11488825 DOI: 10.1007/s00018-024-05472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Staphylococcus aureus is a pathogen associated with severe respiratory infections. The ability of S. aureus to internalize into lung epithelial cells complicates the treatment of respiratory infections caused by this bacterium. In the intracellular environment, S. aureus can avoid elimination by the immune system and the action of circulating antibiotics. Consequently, interfering with S. aureus internalization may represent a promising adjunctive therapeutic strategy to enhance the efficacy of conventional treatments. Here, we investigated the host-pathogen molecular interactions involved in S. aureus internalization into human lung epithelial cells. Lipid raft-mediated endocytosis was identified as the main entry mechanism. Thus, bacterial internalization was significantly reduced after the disruption of lipid rafts with methyl-β-cyclodextrin. Confocal microscopy confirmed the colocalization of S. aureus with lipid raft markers such as ganglioside GM1 and caveolin-1. Adhesion of S. aureus to α5β1 integrin on lung epithelial cells via fibronectin-binding proteins (FnBPs) was a prerequisite for bacterial internalization. A mutant S. aureus strain deficient in the expression of alpha-hemolysin (Hla) was significantly impaired in its capacity to enter lung epithelial cells despite retaining its capacity to adhere. This suggests a direct involvement of Hla in the bacterial internalization process. Among the receptors for Hla located in lipid rafts, caveolin-1 was essential for S. aureus internalization, whereas ADAM10 was dispensable for this process. In conclusion, this study supports a significant role of lipid rafts in S. aureus internalization into human lung epithelial cells and highlights the interaction between bacterial Hla and host caveolin-1 as crucial for the internalization process.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Julia C Lang
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
| |
Collapse
|
5
|
Mochan E, Sego TJ. Mathematical Modeling of the Lethal Synergism of Coinfecting Pathogens in Respiratory Viral Infections: A Review. Microorganisms 2023; 11:2974. [PMID: 38138118 PMCID: PMC10745501 DOI: 10.3390/microorganisms11122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza A virus (IAV) infections represent a substantial global health challenge and are often accompanied by coinfections involving secondary viruses or bacteria, resulting in increased morbidity and mortality. The clinical impact of coinfections remains poorly understood, with conflicting findings regarding fatality. Isolating the impact of each pathogen and mechanisms of pathogen synergy during coinfections is challenging and further complicated by host and pathogen variability and experimental conditions. Factors such as cytokine dysregulation, immune cell function alterations, mucociliary dysfunction, and changes to the respiratory tract epithelium have been identified as contributors to increased lethality. The relative significance of these factors depends on variables such as pathogen types, infection timing, sequence, and inoculum size. Mathematical biological modeling can play a pivotal role in shedding light on the mechanisms of coinfections. Mathematical modeling enables the quantification of aspects of the intra-host immune response that are difficult to assess experimentally. In this narrative review, we highlight important mechanisms of IAV coinfection with bacterial and viral pathogens and survey mathematical models of coinfection and the insights gained from them. We discuss current challenges and limitations facing coinfection modeling, as well as current trends and future directions toward a complete understanding of coinfection using mathematical modeling and computer simulation.
Collapse
Affiliation(s)
- Ericka Mochan
- Department of Computational and Chemical Sciences, Carlow University, Pittsburgh, PA 15213, USA
| | - T. J. Sego
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
6
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Khateb H, Sørensen RS, Cramer K, Eklund AS, Kjems J, Meyer RL, Jungmann R, Sutherland DS. The Role of Nanoscale Distribution of Fibronectin in the Adhesion of Staphylococcus aureus Studied by Protein Patterning and DNA-PAINT. ACS NANO 2022; 16:10392-10403. [PMID: 35801826 PMCID: PMC9330902 DOI: 10.1021/acsnano.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus is a widespread and highly virulent pathogen that can cause superficial and invasive infections. Interactions between S. aureus surface receptors and the extracellular matrix protein fibronectin mediate the bacterial invasion of host cells and is implicated in the colonization of medical implant surfaces. In this study, we investigate the role of distribution of both fibronectin and cellular receptors on the adhesion of S. aureus to interfaces as a model for primary adhesion at tissue interfaces or biomaterials. We present fibronectin in patches of systematically varied size (100-1000 nm) in a background of protein and bacteria rejecting chemistry based on PLL-g-PEG and studied S. aureus adhesion under flow. We developed a single molecule imaging assay for localizing fibronectin binding receptors on the surface of S. aureus via the super-resolution DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) technique. Our results indicate that S. aureus adhesion to fibronectin biointerfaces is regulated by the size of available ligand patterns, with an adhesion threshold of 300 nm and larger. DNA-PAINT was used to visualize fibronectin binding receptor organization in situ at ∼7 nm localization precision and with a surface density of 38-46 μm-2, revealing that the engagement of two or more receptors is required for strong S. aureus adhesion to fibronectin biointerfaces.
Collapse
Affiliation(s)
- Heba Khateb
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University Aarhus C 8000, Denmark
| | - Rasmus S. Sørensen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University Aarhus C 8000, Denmark
| | - Kimberly Cramer
- Max
Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | - Jorgen Kjems
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University Aarhus C 8000, Denmark
- Department
of Molecular Biology and Genetics Aarhus
University Aarhus
C 8000, Denmark
| | - Rikke L. Meyer
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University Aarhus C 8000, Denmark
| | - Ralf Jungmann
- Max
Planck Institute of Biochemistry, Martinsried 82152, Germany
- Faculty
of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich 80539, Germany
| | - Duncan S. Sutherland
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University Aarhus C 8000, Denmark
| |
Collapse
|
8
|
Cho J, Rigby WFC, Cheung AL. The thematic role of extracellular loop of VraG in activation of the membrane sensor GraS in a cystic fibrosis MRSA strain differs in nuance from the CA-MRSA strain JE2. PLoS One 2022; 17:e0270393. [PMID: 35737676 PMCID: PMC9223312 DOI: 10.1371/journal.pone.0270393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022] Open
Abstract
Patients with cystic fibrosis (CF) often suffer recurrent bronchial bacterial infections that lead to deterioration of lung function over time. The infections in CF patients are often due to S. aureus and P. aeruginosa that colonize the airways. Significantly, methicillin-resistant S. aureus (MRSA) makes it challenging for treatment in CF patients due to its feature of multiple antibiotic resistance. In bronchial airways, cationic antimicrobial peptides are often present in mucosa cells, neutrophils, and macrophages that interfere with bacterial proliferation. The major mechanism for resistance to the bactericidal activity of cationic peptides in S. aureus is mediated by the GraRS two-component system that activates expression of MprF and DltABCD to increase surface positive charge to repel interactions with cationic peptides. We recently found that VraG, a membrane permease component of the VraFG efflux pumps, harbors a long 200-residue extracellular loop (EL) that utilizes K380 to interact with the negatively charged 9-residue extracellular loop of the membrane sensor GraS to control mprF expression in a community-acquired MRSA strain JE2. In this study, we extended this observation to a CF MRSA strain CF32A1 where we affirmed that the EL loop of VraG controls GraS-mediated signal transduction; however, in contrast to community acquired MRSA strain JE2, the CF MRSA strain CF32A1 requires both K380 and K388 in the EL of VraG to properly modulate signal transduction mediated by GraS. This effect was not attributable to the several single nucleotide polymorphisms that exist between VraG and GraS in the two MRSA strains.
Collapse
Affiliation(s)
- Junho Cho
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| | - William F. C. Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Ambrose L. Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
9
|
Berry KA, Verhoef MTA, Leonard AC, Cox G. Staphylococcus aureus adhesion to the host. Ann N Y Acad Sci 2022; 1515:75-96. [PMID: 35705378 DOI: 10.1111/nyas.14807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is a pathobiont capable of colonizing and infecting most tissues within the human body, resulting in a multitude of different clinical outcomes. Adhesion of S. aureus to the host is crucial for both host colonization and the establishment of infections. Underlying the pathogen's success is a complex and diverse arsenal of adhesins. In this review, we discuss the different classes of adhesins, including a consideration of the various adhesion sites throughout the body and the clinical outcomes of each infection type. The development of therapeutics targeting the S. aureus host-pathogen interaction is a relatively understudied area. Due to the increasing global threat of antimicrobial resistance, it is crucial that innovative and alternative approaches are considered. Neutralizing virulence factors, through the development of antivirulence agents, could reduce bacterial pathogenicity and the ever-increasing burden of S. aureus infections. This review provides insight into potentially efficacious adhesion-associated targets for the development of novel decolonizing and antivirulence strategies.
Collapse
Affiliation(s)
- Kirsten A Berry
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie T A Verhoef
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Miranda A, Seyer D, Palomino-Durand C, Morakchi-Goudjil H, Massonie M, Agniel R, Rammal H, Pauthe E, Gand A. Poly-L-Lysine and Human Plasmatic Fibronectin Films as Proactive Coatings to Improve Implant Biointegration. Front Bioeng Biotechnol 2022; 9:807697. [PMID: 35111738 PMCID: PMC8801876 DOI: 10.3389/fbioe.2021.807697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The success of stable and long-term implant integration implies the promotion, control, and respect of the cell microenvironment at the site of implantation. The key is to enhance the implant–host tissue cross talk by developing interfacial strategies that guarantee an optimal and stable seal of soft tissue onto the implant, while preventing potential early and late infection. Indeed, implant rejection is often jeopardized by lack of stable tissue surrounding the biomaterial combined with infections which reduce the lifespan and increase the failure rate of implants and morbidity and account for high medical costs. Thin films formed by the layer-by-layer (LbL) assembly of oppositely charged polyelectrolytes are particularly versatile and attractive for applications involving cell–material contact. With the combination of the extracellular matrix protein fibronectin (Fn, purified from human plasma) and poly-L-lysine (PLL, exhibiting specific chain lengths), we proposed proactive and biomimetic coatings able to guarantee enhanced cell attachment and exhibiting antimicrobial properties. Fn, able to create a biomimetic interface that could enhance cell attachment and promote extracellular cell matrix remodeling, is incorporated as the anionic polymer during film construction by the LbL technic whereas PLL is used as the cationic polymer for its capacity to confer remarkable antibacterial properties.
Collapse
Affiliation(s)
- Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Carla Palomino-Durand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Houda Morakchi-Goudjil
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Mathilde Massonie
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Hassan Rammal
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- EFOR Healthcare Paris, Biocompatibility Platform, Levallois-Perret, France
| | - Emmanuel Pauthe
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| | - Adeline Gand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| |
Collapse
|
11
|
Genomic Investigation of Methicillin-Resistant Staphylococcus aureus ST113 Strains Isolated from Tertiary Care Hospitals in Pakistan. Antibiotics (Basel) 2021; 10:antibiotics10091121. [PMID: 34572703 PMCID: PMC8465543 DOI: 10.3390/antibiotics10091121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multi-drug resistant and opportunistic pathogen. The emergence of new clones of MRSA in both healthcare settings and the community warrants serious attention and epidemiological surveillance. However, epidemiological data of MRSA isolates from Pakistan are limited. We performed a whole-genome-based comparative analysis of two (P10 and R46) MRSA strains isolated from two provinces of Pakistan to understand the genetic diversity, sequence type (ST), and distribution of virulence and antibiotic-resistance genes. The strains belong to ST113 and harbor the SCCmec type IV encoding mecA gene. Both the strains contain two plasmids, and three and two complete prophage sequences are present in P10 and R46, respectively. The specific antibiotic resistance determinants in P10 include two aminoglycoside-resistance genes, aph(3’)-IIIa and aad(6), a streptothrin-resistance gene sat-4, a tetracycline-resistance gene tet(K), a mupirocin-resistance gene mupA, a point mutation in fusA conferring resistance to fusidic acid, and in strain R46 a specific plasmid associated gene ant(4’)-Ib. The strains harbor many virulence factors common to MRSA. However, no Panton-Valentine leucocidin (lukF-PV/lukS-PV) or toxic shock syndrome toxin (tsst) genes were detected in any of the genomes. The phylogenetic relationship of P10 and R46 with other prevailing MRSA strains suggests that ST113 strains are closely related to ST8 strains and ST113 strains are a single-locus variant of ST8. These findings provide important information concerning the emerging MRSA clone ST113 in Pakistan and the sequenced strains can be used as reference strains for the comparative genomic analysis of other MRSA strains in Pakistan and ST113 strains globally.
Collapse
|
12
|
Genotypic Characterization of Clinical Isolates of Staphylococcus aureus from Pakistan. Pathogens 2021; 10:pathogens10080918. [PMID: 34451382 PMCID: PMC8400278 DOI: 10.3390/pathogens10080918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we compared pulsed-field gel electrophoretic (PFGE), multilocus sequence typing (MLST), Staphylococcal cassette chromosome mec (SCCmec), spa typing, and virulence gene profiles of 19 Panton–Valentine leucocidin (PVL)-positive, multidrug-, and methicillin-resistant clinical Staphylococcus aureus (MRSA) isolates obtained from a hospital intensive care unit in Pakistan. The isolates exhibited 10 pulsotypes, contained eight adhesin genes (bbp, clfA, clfB, cna, fnbA, fnbB, map-eap, and spa), 10 toxin genes (hla, hlb, hld, hlg, pvl, sed, see, seg, seh, and tst), and two other virulence genes (cfb, v8) that were commonly present in all isolates. The spa-typing indicated seven known spa types (t030, t064, t138, t314, t987, t1509, and t5414) and three novel spa types. MLST analysis indicated eight ST types (ST8, ST15, ST30, ST239, ST291, ST503, ST772, and ST1413). All isolates belonged to the agr group 1. Most of the isolates possessed SCCmec type III, but some isolates had it in combination with types SCCmec IV and V. The presence of multidrug-resistant MRSA isolates in Pakistan indicates poor hygienic conditions, overuse of antibiotics, and a lack of rational antibiotic therapy that have led to the evolution and development of hypervirulent MRSA clones. The study warrants development of a robust epidemiological screening program and adoption of effective measures to stop their spread in hospitals and the community.
Collapse
|
13
|
Wang J, Sun S, Chen Y, Chen D, Sang L, Xie X. Characterization of Staphylococcus aureus ST3320 clone causing fatal respiratory infection in rabbits. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<em>Staphylococcus aureus</em> is a well-known pathogen that infects humans and animals. However, information on the fatal respiratory infection in rabbits caused by<em> S. aureus</em> is still limited. In the present study, a <em>S. aureus</em> isolate designated ND01 was recovered from lung samples of rabbits that died of fatal respiratory infection, and the ND01 was characterised by intranasal infection of rabbits, multi-locus sequencing typing, screening virulence genes and testing antimicrobial susceptibility. Clinical signs of matted forepaws and pathological lesions of haemorrhagic tracheitis and necrotising haemorrhagic pneumonia were observed in the ND01 infected rabbits, which were identical to those of naturally infected ones. The sequence type of the ND01 was defined as ST3320 and the ND01 was further grouped into the clonal complex 398. Notably, the ND01 was <em>pvl-positive</em> <em>S. aureus</em> and carried the human-associated scn gene. Moreover, the ND01 was methicillin-susceptible <em>S. aureus</em> and was susceptible to 6 of 10 tested antibiotics. This study described the characteristics of the ND01 causing fatal respiratory infection in rabbits. The results are helpful to further the understanding of the pathogenicity of S. aureus ST3320 clone in rabbits. The results also highlighted that operators must be on the alert for the colonisation of <em>pvl-positive</em> <em>S. aureus</em> in rabbits and potential transmission events between rabbits and humans.
Collapse
|
14
|
Tilouche L, Ben Dhia R, Boughattas S, Ketata S, Bouallegue O, Chaouch C, Boujaafar N. Staphylococcus aureus Ventilator-Associated Pneumonia: A Study of Bacterio-Epidemiological Profile and Virulence Factors. Curr Microbiol 2021; 78:2556-2562. [PMID: 33969430 PMCID: PMC8107017 DOI: 10.1007/s00284-021-02512-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/25/2021] [Indexed: 11/30/2022]
Abstract
Ventilator-associated pneumonia (VAP) represents a major cause of nosocomial infections in the intensive care units in which Staphylococcus aureus is frequently involved. Better knowledge of this pathogen is required in order to enhance the patient’s treatment and care. In this article, we studied the bacteriological profile and virulence factors of S. aureus-related VAP on a 3-year period. We included a collection of S. aureus strains (n = 35) isolated from respiratory samples from patients diagnosed with VAP in the intensive care units. We studied the bacteriological aspects and we searched for the presence of virulence factors (SpA, FnbpA, Hla, and PVL genes) in the strains, and we also studied the clinical and biological aspects of the infections. The average age of our patients was of 36 years and they were predominantly males (sex ratio = 3.37). A severe head trauma or a history of coma was noted in 73.43% of the patients. The average duration of ventilation was 29 days. Among the studied strains, five were Methicillin-resistant S. aureus of which three expressed the mecA gene. Overall, the Hla gene was detected in 85.7% of the strains and it was more prevalent in Methicillin-susceptible than Methicillin-resistant strains (93.3% versus 40%; P = 0.014). FnbpA, Spa, and PVL genes were detected, respectively, in 80%, 45.7%, and 20% of the strains. Therefore, our studied strains were essentially associated with the production of Hla and FnbpA genes. It is, however, important to elucidate their expression in order to establish their role in the VAP pathogenesis.
Collapse
Affiliation(s)
- Lamia Tilouche
- Department of microbiology, Sahloul University Teaching Hospital, Route de la ceinture, H.Sousse, 4011, Monastir, Tunisia.,Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Refka Ben Dhia
- Department of microbiology, Sahloul University Teaching Hospital, Route de la ceinture, H.Sousse, 4011, Monastir, Tunisia. .,Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.
| | - Sameh Boughattas
- Department of microbiology, Sahloul University Teaching Hospital, Route de la ceinture, H.Sousse, 4011, Monastir, Tunisia.,Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Soumaya Ketata
- Department of microbiology, Sahloul University Teaching Hospital, Route de la ceinture, H.Sousse, 4011, Monastir, Tunisia.,Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Olfa Bouallegue
- Department of microbiology, Sahloul University Teaching Hospital, Route de la ceinture, H.Sousse, 4011, Monastir, Tunisia.,Faculty of medicine Ibn El-Jazzar of Sousse, University of Sousse, Sousse, Tunisia
| | - Cherifa Chaouch
- Department of microbiology, Sahloul University Teaching Hospital, Route de la ceinture, H.Sousse, 4011, Monastir, Tunisia.,Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Noureddine Boujaafar
- Department of microbiology, Sahloul University Teaching Hospital, Route de la ceinture, H.Sousse, 4011, Monastir, Tunisia.,Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
15
|
De Boeck I, Spacova I, Vanderveken OM, Lebeer S. Lactic acid bacteria as probiotics for the nose? Microb Biotechnol 2021; 14:859-869. [PMID: 33507624 PMCID: PMC8085937 DOI: 10.1111/1751-7915.13759] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Several studies have recently pointed towards an increased occurrence and prevalence of several taxa of the lactic acid bacteria (LAB) in the microbiota of the upper respiratory tract (URT) under healthy conditions versus disease. These include several species of the Lactobacillales such as Lacticaseibacillus casei, Lactococcus lactis and Dolosigranulum pigrum. In addition to physiological studies on their potential beneficial functions and their long history of safe use as probiotics in other human body sites, LAB are thus increasingly to be explored as alternative or complementary treatment for URT diseases. This review highlights the importance of lactic acid bacteria in the respiratory tract and their potential as topical probiotics for this body site. We focus on the potential probiotic properties and adaptation factors that are needed for a bacterial strain to optimally exert its beneficial activity in the respiratory tract. Furthermore, we discuss a range of in silico, in vitro and in vivo models needed to obtain better insights into the efficacy and adaptation factors specifically for URT probiotics. Such knowledge will facilitate optimal strain selection in order to conduct rigorous clinical studies with the most suitable probiotic strains. Despite convincing evidence from microbiome association and in vitro studies, the clinical evidence for oral or topical probiotics for common URT diseases such as chronic rhinosinusitis (CRS) needs further substantiation.
Collapse
Affiliation(s)
- Ilke De Boeck
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171AntwerpB‐2020Belgium
| | - Irina Spacova
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171AntwerpB‐2020Belgium
| | - Olivier M. Vanderveken
- ENT, Head and Neck Surgery and Communication DisordersAntwerp University HospitalEdegemBelgium
- Faculty of Medicine and Health SciencesTranslational NeurosciencesUniversity of AntwerpAntwerpBelgium
| | - Sarah Lebeer
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171AntwerpB‐2020Belgium
| |
Collapse
|
16
|
Gauron MC, Newton AC, Colombo MI. PKCα Is Recruited to Staphylococcus aureus-Containing Phagosomes and Impairs Bacterial Replication by Inhibition of Autophagy. Front Immunol 2021; 12:662987. [PMID: 33815423 PMCID: PMC8013776 DOI: 10.3389/fimmu.2021.662987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022] Open
Abstract
Hijacking the autophagic machinery is a key mechanism through which invasive pathogens such as Staphylococcus aureus replicate in their host cells. We have previously demonstrated that the bacteria replicate in phagosomes labeled with the autophagic protein LC3, before escaping to the cytoplasm. Here, we show that the Ca2+-dependent PKCα binds to S. aureus-containing phagosomes and that α-hemolysin, secreted by S. aureus, promotes this recruitment of PKCα to phagosomal membranes. Interestingly, the presence of PKCα prevents the association of the autophagic protein LC3. Live cell imaging experiments using the PKC activity reporter CKAR reveal that treatment of cells with S. aureus culture supernatants containing staphylococcal secreted factors transiently activates PKC. Functional studies reveal that overexpression of PKCα causes a marked inhibition of bacterial replication. Taken together, our data identify enhancing PKCα activity as a potential approach to inhibit S. aureus replication in mammalian cells.
Collapse
Affiliation(s)
- Maria Celeste Gauron
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM)- Universidad Nacional de Cuyo, CONICET- Facultad de Ciencias Médicas, Mendoza, Argentina.,Department of Pharmacology, University of California San Diego, La Jolla, CA, United States
| | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA, United States
| | - María Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM)- Universidad Nacional de Cuyo, CONICET- Facultad de Ciencias Médicas, Mendoza, Argentina
| |
Collapse
|
17
|
Speziale P, Pietrocola G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front Microbiol 2020; 11:2054. [PMID: 32983039 PMCID: PMC7480013 DOI: 10.3389/fmicb.2020.02054] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus, one of the most important human pathogens, is the causative agent of several infectious diseases including sepsis, pneumonia, osteomyelitis, endocarditis and soft tissue infections. This pathogenicity is due to a multitude of virulence factors including several cell wall-anchored proteins (CWA). CWA proteins have modular structures with distinct domains binding different ligands. The majority of S. aureus strains express two CWA fibronectin (Fn)-binding adhesins FnBPA and FnBPB (Fn-binding proteins A and B), which are encoded by closely related genes. The N-terminus of FnBPA and FnBPB comprises an A domain which binds ligands such as fibrinogen, elastin and plasminogen. The A domain of FnBPB also interacts with histones and this binding results in the neutralization of the antimicrobial activity of these molecules. The C-terminal moiety of these adhesins comprises a long, intrinsically disordered domain composed of 11/10 fibronectin-binding repeats. These repetitive motifs of FnBPs promote invasion of cells that are not usually phagocytic via a mechanism by which they interact with integrin α5β1 through a Fn mediated-bridge. The FnBPA and FnBPB A domains engage in homophilic cell-cell interactions and promote biofilm formation and enhance platelet aggregation. In this review we update the current understanding of the structure and functional properties of FnBPs and emphasize the role they may have in the staphylococcal infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur J Clin Microbiol Infect Dis 2020; 39:2235-2246. [PMID: 32683595 PMCID: PMC7669779 DOI: 10.1007/s10096-020-03984-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Foot ulcer is a common complication in diabetic subjects and infection of these wounds contributes to increased rates of morbidity and mortality. Diabetic foot infections are caused by a multitude of microbes and Staphylococcus aureus, a major nosocomial and community-associated pathogen, significantly contributes to wound infections as well. Staphylococcus aureus is also the primary pathogen commonly associated with diabetic foot osteomyelitis and can cause chronic and recurrent bone infections. The virulence capability of the pathogen and host immune factors can determine the occurrence and progression of S. aureus infection. Pathogen-related factors include complexity of bacterial structure and functional characteristics that provide metabolic and adhesive properties to overcome host immune response. Even though, virulence markers and toxins of S. aureus are broadly similar in different wound models, certain distinguishing features can be observed in diabetic foot infection. Specific clonal lineages and virulence factors such as TSST-1, leukocidins, enterotoxins, and exfoliatins play a significant role in determining wound outcomes. In this review, we describe the role of specific virulence determinants and clonal lineages of S. aureus that influence wound colonization and infection with special reference to diabetic foot infections.
Collapse
|
19
|
Hume EB, Cole N, Khan S, Walsh BJ, Willcox MD. The role of staphopain a in Staphylococcus aureus keratitis. Exp Eye Res 2020; 193:107994. [PMID: 32147399 DOI: 10.1016/j.exer.2020.107994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a common bacterial isolate from cases of microbial keratitis. The virulence factors that contribute to its pathogenicity during this disease have not been fully resolved. The aim of the current study was to examine the effects of the extracellular protease Staphopain A on corneal virulence. Two strains were used, one Staph 38 that gives a high pathology score during keratitis and a less virulent strain ATCC 8325-4. The effect of inhibition of Staphopain by general or specific protease inhibitors on adhesion of strains to fibronectin-coated glass or PMMA was determined. This was followed by an analysis of the effect of Staphopain A on the ability of the bacteria to adhere to and invade corneal epithelial cells. Finally, the effect of inhibiting Staphopain A on pathogenesis in a mouse model of keratitis was studied. Staphopain A increased the adhesion of strains to fibronectin-coated substrata and inhibition of Staphopain A reduced adhesion. The inhibition of Staphopain A by staphostatin A significantly decreased both association with and invasion into human corneal epithelial cells by 15-fold for strain Saur38. Inhibition of Staphopain A significantly reduced the pathology associated with S. aureus keratitis, reducing the infecting numbers of bacteria from 1.8x105 to <1x104 cells/cornea (p ≤ 0.001), significantly reducing the corneal pathology score (p ≤ 0.038) and reducing the numbers of infiltrating PMNs. This study shows that Staphopain increases adhesion and invasion of corneal cells due to increasing fibronectin binding and its inhibition has a significant impact on pathogenicity of S. aureus during keratitis.
Collapse
Affiliation(s)
- Emma Bh Hume
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
| | - Nerida Cole
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
| | - Shamila Khan
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
| | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, NSW, 2113, Australia
| | - Mark Dp Willcox
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
20
|
Tribelli PM, Luqman A, Nguyen MT, Madlung J, Fan SH, Macek B, Sass P, Bitschar K, Schittek B, Kretschmer D, Götz F. Staphylococcus aureus Lpl protein triggers human host cell invasion via activation of Hsp90 receptor. Cell Microbiol 2019; 22:e13111. [PMID: 31515903 DOI: 10.1111/cmi.13111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus is a facultative intracellular pathogen. Recently, it has been shown that the protein part of the lipoprotein-like lipoproteins (Lpls), encoded by the lpl cluster comprising of 10 lpls paralogue genes, increases pathogenicity, delays the G2/M phase transition, and also triggers host cell invasion. Here, we show that a recombinant Lpl1 protein without the lipid moiety binds directly to the isoforms of the human heat shock proteins Hsp90α and Hsp90ß. Synthetic peptides covering the Lpl1 sequence caused a twofold to fivefold increase of S. aureus invasion in HaCaT cells. Antibodies against Hsp90 decrease S. aureus invasion in HaCaT cells and in primary human keratinocytes. Additionally, inhibition of ATPase function of Hsp90 or silencing Hsp90α expression by siRNA also decreased the S. aureus invasion in HaCaT cells. Although the Hsp90ß is constitutively expressed, the Hsp90α isoform is heat-inducible and appears to play a major role in Lpl1 interaction. Pre-incubation of HaCaT cells at 39°C increased both the Hsp90α expression and S. aureus invasion. Lpl1-Hsp90 interaction induces F-actin formation, thus, triggering an endocytosis-like internalisation. Here, we uncovered a new host cell invasion principle on the basis of Lpl-Hsp90 interaction.
Collapse
Affiliation(s)
- Paula M Tribelli
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Arif Luqman
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Institut Teknologi Sepuluh Nopember, Biology Department, Surabaya, Indonesia
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Division of Microbiology, Paul-Ehrlich Institute, Langen, Germany
| | - Johannes Madlung
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Sook-Ha Fan
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | | | - Birgit Schittek
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Uribe-García A, Paniagua-Contreras GL, Monroy-Pérez E, Bustos-Martínez J, Hamdan-Partida A, Garzón J, Alanís J, Quezada R, Vaca-Paniagua F, Vaca S. Frequency and expression of genes involved in adhesion and biofilm formation in Staphylococcus aureus strains isolated from periodontal lesions. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:267-275. [PMID: 31300301 DOI: 10.1016/j.jmii.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/09/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND/PURPOSE The aim of this study was to characterize the Staphylococcus aureus strains isolated from periodontal lesions of patients, to determine the expression of genes involved in cell adhesion upon their infection of human epithelial cells using an in vitro model, its biofilm formation, and its resistance to antibiotics. METHODS S. aureus was analysed by PCR, Kirby-Bauer, and pulsed-field gel electrophoresis (PFGE), measuring gene expression by real-time PCR after infection of human cells in vitro. RESULTS S. aureus was identified in 18.6% (50/268) of the samples. All strains (n = 50) possessed the virulence genes spa (Staphylococcal protein A), coa (coagulase), and icaAB (intercellular adhesin); 96% (n = 48) possessed clfB (clumping factor B), and 88% (n = 44) possessed ebps (elastin-binding protein) and sdrD (serine aspartate repeat protein D). All strains were resistant to methicillin, ampicillin, dicloxacillin, cefotaxime, and penicillin, and were multidrug resistant to 6-12 antibiotics. PFGE analysis showed 37 different pulsed-field types and most strains (60.4%) had a unique pulsed-field type. Twenty-four distinct combinations of virulence genes and antibiotic-resistant phenotypes were identified. CONCLUSION Although S. aureus has been considered a transient member of the oral microbiota, our results indicate a high-level expression of virulence genes and multidrug resistance in the strains isolated from periodontal lesions. These strains might complicate the successful treatment of the disease.
Collapse
Affiliation(s)
| | | | | | - Jaime Bustos-Martínez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, 04960, Ciudad de México, Mexico
| | - Aída Hamdan-Partida
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, 04960, Ciudad de México, Mexico
| | - Javier Garzón
- Clínica de Endoperiodontología, FES Iztacala, Universidad Nacional Autónoma de México, Mexico
| | - Jesica Alanís
- FES Iztacala, Universidad Nacional Autónoma de México, Mexico
| | - Rosalía Quezada
- FES Iztacala, Universidad Nacional Autónoma de México, Mexico
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, FES Iztacala, Universidad Nacional Autónoma de México México, Mexico; Instituto Nacional de Cancerología, CDMX 14080, Mexico; Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México, Mexico
| | - Sergio Vaca
- FES Iztacala, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
22
|
Wang FD, Wu PF, Chen SJ. Distribution of virulence genes in bacteremic methicillin-resistant Staphylococcus aureus isolates from various sources. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:426-432. [PMID: 30686615 DOI: 10.1016/j.jmii.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND/PURPOSE Methicillin-resistant Staphylococcus aureus (MRSA) can encode proteins which directly bind bacteria to many tissues and medical devices or catheters to trigger pathogenesis. However, the relationship between genetic backgrounds and virulent factors in MRSA isolates remained incompletely understood yet. METHODS MRSA isolates were collected from blood cultures of patients with infective endocarditis, bone/joint infection, skin/soft tissue infection, or catheter-related bacteremia in hemodialysis at a tertiary medical center between 2005 and 2011. MRSA isolates were characterized by the methods of spa, multilocus sequence, and staphylococcal cassette chromosome mec (SCCmec) typing. Identification of virulence gene expression was measured by Power SYBR Green PCR Master Mix. RESULTS Overall collected were 136 MRSA bacteremic isolates, including those from the cases of infective endocarditis (n = 23), bone/joint infection (n = 49), skin/soft tissue infection (n = 20), or catheter-related bacteremia in patients with acute kidney injury or end-stage renal stage receiving hemodialysis (n = 54). CC8-ST239-MRSA-SCCmec type III-spa type t037 was the most prevalent type observed in all of 136 MRSA bacteremic isolates. The prevalent genes in the group of infective endocarditis were clfA, clfB, fnbA, ebpS, eap, emp, sae, and eno; bone/joint infections clfA, emp, sae, and eno; skin/soft tissue infection eno; hemodialysis catheter-related bacteremia clfA and sae. The distribution of each gene was not statically different among four groups. CONCLUSIONS A major MRSA lineage, CC8-ST239-MRSA-SCCmec type III-spa type t037, is noted among bacteremic MRSA isolates. No disease-specific virulent genes can be identified.
Collapse
Affiliation(s)
- Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ping-Feng Wu
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Su-Jung Chen
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
23
|
Wang Y, Ren B, Zhou X, Liu S, Zhou Y, Li B, Jiang Y, Li M, Feng M, Cheng L. Growth and adherence of Staphylococcus aureus were enhanced through the PGE2 produced by the activated COX-2/PGE2 pathway of infected oral epithelial cells. PLoS One 2017; 12:e0177166. [PMID: 28472126 PMCID: PMC5417706 DOI: 10.1371/journal.pone.0177166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated.
Collapse
Affiliation(s)
- Yuxia Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LC); (MF)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LC); (MF)
| |
Collapse
|
24
|
Doudoulakakis AG, Bouras D, Drougka E, Kazantzi M, Michos A, Charisiadou A, Spiliopoulou I, Lebessi E, Tsolia M. Community-associated Staphylococcus aureus pneumonia among Greek children: epidemiology, molecular characteristics, treatment, and outcome. Eur J Clin Microbiol Infect Dis 2016; 35:1177-85. [PMID: 27140201 DOI: 10.1007/s10096-016-2651-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Staphylococcus aureus is an infrequent cause of community-associated (CA-SA) pneumonia in children. The aim of this study was to evaluate the clinical, epidemiological, microbiological, and molecular characteristics of CA-SA pneumonia among children hospitalized in two large tertiary care referral centers during an 8-year period. Cases of CA-SA pneumonia admitted between 2007 and 2014 were retrospectively examined through medical record review. Molecular investigation was performed for available strains; mecA, Panton-Valentine leukocidin (PVL) (lukS-lukF-PV), and fibronectin binding protein A (fnbA) genes were detected by polymerase chain reaction (PCR). Clones were assigned by agr groups, pulsed-field gel electrophoresis (PFGE), SCCmec, and multilocus sequencing typing (MLST). In total, 41 cases were recorded (boys, 61 %), with a median age of 4.3 months (range, 1-175). Methicillin-resistant S. aureus (MRSA) accounted for 31 cases (75.6 %). Complications included empyema (25/41, 61 %), pneumatoceles (7/41, 17 %), and lung abscess (1/41, 2.5 %). Intensive care unit (ICU) admission was required in 58.5 %. Two deaths occurred (4.9 %). Definitive therapy was based on vancomycin with or without other antibiotics (55.9 %), followed by clindamycin and linezolid (26.5 % each). All isolates were susceptible to vancomycin (MIC90 2 mg/L, range 1-2), teicoplanin, and linezolid, whereas 26.8 % were resistant to clindamycin. Among the 25 studied strains, 20 were mecA-positive (MRSA), carrying also the fnbA gene. Of these, 90 % belonged to the ST80-IV/agr3/PVL-positive clone. Methicillin-susceptible S. aureus (MSSA) strains showed polyclonality, 3/5 were PVL-positive, and 3/5 were fnbA-positive. MRSA and particularly the ST80-IV clone predominated among staphylococcal pneumonia cases in children. Treatment provided was effective in all but two patients, despite the relatively high minimum inhibitory concentration (MIC) of vancomycin and a high resistance to clindamycin.
Collapse
Affiliation(s)
- A G Doudoulakakis
- Department of Microbiology, "P. & A. Aglaia Kyriakou" Children's Hospital, Athens, Greece.
| | - D Bouras
- Department of Microbiology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - E Drougka
- National Staphylococcal Reference Laboratory, Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - M Kazantzi
- 1st Department of Paediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A Michos
- 1st Department of Paediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A Charisiadou
- Department of Microbiology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - I Spiliopoulou
- National Staphylococcal Reference Laboratory, Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - E Lebessi
- Department of Microbiology, "P. & A. Aglaia Kyriakou" Children's Hospital, Athens, Greece
| | - M Tsolia
- 2nd Department of Paediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
26
|
Kiedrowski MR, Paharik AE, Ackermann LW, Shelton AU, Singh SB, Starner TD, Horswill AR. Development of an in vitro colonization model to investigate Staphylococcus aureus interactions with airway epithelia. Cell Microbiol 2016; 18:720-32. [PMID: 26566259 DOI: 10.1111/cmi.12543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus is a bacterial pathogen responsible for a wide range of diseases and is also a human commensal colonizing the upper respiratory tract. Strains belonging to the clonal complex group CC30 are associated with colonization, although the colonization state itself is not clearly defined. In this work, we developed a co-culture model with S. aureus colonizing the apical surface of polarized human airway epithelial cells. The S. aureus are grown at the air-liquid interface to allow an in-depth evaluation of a simulated colonization state. Exposure to wild-type, S. aureus bacteria or conditioned media killed airway epithelial cells within 1 day, while mutant S. aureus strains lacking alpha-toxin (hla) persisted on viable cells for at least 2 days. Recent S. aureus CC30 isolates are natural hla mutants, and we observed that these strains displayed reduced toxicity toward airway epithelial cells. Quantitative real-time polymerase chain reaction of known virulence factors showed the expression profile of S. aureus grown in co-culture correlates with results from previous human colonization studies. Microarray analysis indicated significant shifts in S. aureus physiology in the co-culture model toward lipid and amino acid metabolism. The development of the in vitro colonization model will enable further study of specific S. aureus interactions with the host epithelia.
Collapse
Affiliation(s)
- Megan R Kiedrowski
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexandra E Paharik
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Laynez W Ackermann
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Annie U Shelton
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sachinkumar B Singh
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Timothy D Starner
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander R Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
27
|
Effects of Fibronectin Coating on Bacterial and Osteoblast Progenitor Cells Adherence in a Co-culture Assay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 973:17-30. [DOI: 10.1007/5584_2016_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Saturni S, Contoli M, Spanevello A, Papi A. Models of Respiratory Infections: Virus-Induced Asthma Exacerbations and Beyond. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:525-33. [PMID: 26333698 PMCID: PMC4605924 DOI: 10.4168/aair.2015.7.6.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/06/2015] [Indexed: 12/20/2022]
Abstract
Respiratory infections are one of the main health problems worldwide. They are a challenging field of study due to an intricate relationship between the pathogenicity of microbes and the host's defenses. To better understand mechanisms of respiratory infections, different models have been developed. A model is the reproduction of a disease in a system that mimics human pathophysiology. For this reason, the best models should closely resemble real-life conditions. Thus, the human model is the best. However, human models of respiratory infections have some disadvantages that limit their role. Therefore, other models, including animal, in vitro, and mathematical ones, have been developed. We will discuss advantages and limitations of available models and focus on models of viral infections as triggers of asthma exacerbations, viral infections being one of the most frequent causes of exacerbating disease. Future studies should focus on the interrelation of various models.
Collapse
Affiliation(s)
- Sara Saturni
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Contoli
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Antonio Spanevello
- Department of Respiratory Diseases, Fondazione Maugeri, Tradate, University of Varese, Italy
| | - Alberto Papi
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
29
|
Paniagua-Contreras G, Monroy-Pérez E, Gutiérrez-Lucas R, Sainz-Espuñes T, Bustos-Martínez J, Vaca S. Genotypic characterization of methicillin-resistant Staphylococcus aureus strains isolated from the anterior nares and catheter of ambulatory hemodialysis patients in Mexico. Folia Microbiol (Praha) 2014; 59:295-302. [DOI: 10.1007/s12223-013-0300-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
|
30
|
Paniagua-Contreras GL, Monroy-Pérez E, Vaca-Paniagua F, Rodríguez-Moctezuma JR, Negrete-Abascal E, Vaca S. Implementation of a novel in vitro model of infection of reconstituted human epithelium for expression of virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from catheter-related infections in Mexico. Ann Clin Microbiol Antimicrob 2014; 13:6. [PMID: 24405688 PMCID: PMC3905915 DOI: 10.1186/1476-0711-13-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/22/2013] [Indexed: 11/10/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) are clinically relevant pathogens that cause severe catheter-related nosocomial infections driven by several virulence factors. Methods We implemented a novel model of infection in vitro of reconstituted human epithelium (RHE) to analyze the expression patterns of virulence genes in 21 MRSA strains isolated from catheter-related infections in Mexican patients undergoing haemodialysis. We also determined the phenotypic and genotypic co-occurrence of antibiotic- and disinfectant-resistance traits in the S. aureus strains, which were also analysed by pulsed-field-gel electrophoresis (PFGE). Results In this study, MRSA strains isolated from haemodialysis catheter-related infections expressed virulence markers that mediate adhesion to, and invasion of, RHE. The most frequent pattern of expression (present in 47.6% of the strains) was as follows: fnbA, fnbB, spa, clfA, clfB, cna, bbp, ebps, eap, sdrC, sdrD, sdrE, efb, icaA, and agr. Seventy-one percent of the strains harboured the antibiotic- and disinfectant-resistance genes ermA, ermB, tet(M), tet(K), blaZ, qacA, qacB, and qacC. PFGE of the isolated MRSA revealed three identical strains and two pairs of identical strains. The strains with identical PFGE patterns showed the same phenotypes and genotypes, including the same spa type (t895), suggesting hospital personnel manipulating the haemodialysis equipment could be the source of catheter contamination. Conclusion These findings help define the prevalence of MRSA virulence factors in catheter-related infections. Some of the products of the expressed genes that we detected in this work may serve as potential antigens for inclusion in a vaccine for the prevention of MRSA-catheter-related infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio Vaca
- FES-Iztacala, Universidad Nacional Autónoma de México, Av, de Los Barrios 1, Los Reyes Iztacala, Tlalnepantla, 54090, Edo, de México, México.
| |
Collapse
|
31
|
Zaraket H, Otsuka T, Saito K, Dohmae S, Takano T, Higuchi W, Ohkubo T, Ozaki K, Takano M, Reva I, Baranovich T, Yamamoto T. Molecular Characterization of Methicillin-ResistantStaphylococcus aureusin Hospitals in Niigata, Japan: Divergence and Transmission. Microbiol Immunol 2013; 51:171-6. [PMID: 17310084 DOI: 10.1111/j.1348-0421.2007.tb03898.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The major methicillin-resistant Staphylococcus aureus(MRSA) distributed among hospitals in Japan is New York/Japan clone [multilocus sequence type 5 (ST5), agr type 2 and methicillin resistance locus type (SCC mec) II] which possesses both the toxic shock syndrome toxin 1 gene (tst) and staphylococcal enterotoxin C gene (sec). In this study, we collected 245 MRSA strains from four hospitals during 2001 to 2005 in Niigata, Japan, and analyzed tst and sec genes and SCC mec type among them. A total of 13 strains were further examined for their genotypes, virulence gene patterns and drug resistance. Among the 245 strains four tst sec genes patterns were observed; tst(+) sec(+) strains represented a majority of 86.5% and 9.4% were tst(-) sec(-). SCCmec typing revealed that 91.4% had type II, 4.1% type IV and 4.1% type I. Multilocus sequence typing (MLST) revealed that 10 of the 13 typed strains belonged to clonal complex 5 (7 had ST5 while 3 were single locus variants of ST5) with similar characteristics to the New York/Japan clone and possessed multi-drug resistance with high virulence gene content. The remaining 3 strains were ST8 (n=2) and ST91 (n=1). The ST91 strain had SCC mec IV and seemed to originate in the community, while ST8 strains exhibited SCC mec type I, which is distinct from community type IV. The data suggest that MRSA in hospitals in Niigata now mainly includes the New York/Japan clone (undergoing genomic divergence and clonal expansion) and other minor types (e.g. ST8) as well as the community type.
Collapse
Affiliation(s)
- Hassan Zaraket
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liesse Iyamba JM, Seil M, Nagant C, Dulanto S, Deplano A, El Khattabi C, Takaisi Kikuni NB, Dehaye JP. Inhibition by EGTA of the formation of a biofilm by clinical strains of Staphylococcus aureus. J Basic Microbiol 2013; 54:700-10. [PMID: 23712617 DOI: 10.1002/jobm.201200511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 01/19/2013] [Indexed: 11/08/2022]
Abstract
The effect of EGTA on the adhesion and on the formation of a biofilm by two reference and eight clinical strains of Staphylococcus aureus was studied. All the clinical strains were isolated from patients from Kinshasa. Spa typing confirmed that these clinical strains were distinct. The Biofilm Ring Test (BFRT®) showed that EGTA (100 µM-10 mM) inhibited the adhesion of the four clinical methicillin-resistant (MRSA) strains and the crystal violet staining method that it inhibited the formation of a biofilm by all the strains. Divalent cations abolished the effect of EGTA on the formation of a biofilm, specially in the clinical MRSA strains. EGTA had no effect on established biofilms. Only concentrations of EGTA higher than 10 mM were toxic to eukaryotic cells. Our results establish the effectiveness and the safety of lock solutions with EGTA to prevent the formation in vitro of biofilms by S. aureus.
Collapse
Affiliation(s)
- J M Liesse Iyamba
- Laboratoire de Chimie Biologique et Médicale et de Microbiologie Pharmaceutique, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium; Laboratoire de Microbiologie Expérimentale et Pharmaceutique, Faculté des Sciences Pharmaceutiques, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Li S, Wu C, Tang X, Gao S, Zhao X, Yan H, Wang X. New strategy for reversing biofilm-associated antibiotic resistance through ferrocene-substituted carborane ruthenium(II)-arene complex. Sci China Chem 2013. [DOI: 10.1007/s11426-012-4812-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: relevancia y rol como agentes inmunógenos. Rev Argent Microbiol 2013; 45:119-30. [DOI: 10.1016/s0325-7541(13)70011-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Ridley RA, Douglas I, Whawell SA. Differential adhesion and invasion by Staphylococcus aureus of epithelial cells derived from different anatomical sites. J Med Microbiol 2012; 61:1654-1661. [PMID: 22956750 DOI: 10.1099/jmm.0.049650-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus can invade epithelial cells, and the host-cell receptor α(5)β(1) integrin is thought to mediate this process. The aim of this study was to investigate S. aureus invasion of epithelial cell lines derived from oral (H357), skin (UP) and nasopharyngeal (Detroit 562) sites and to determine whether any differences were due to the levels of α(5)β(1) integrin expressed. While the adhesion and invasion of two S. aureus strains were similar in both oral and skin-derived keratinocytes, this was markedly reduced in the nasopharyngeal cell line, despite it expressing similar levels of α(5)β(1). While this might be explainable on the basis of availability of cell receptor, adhesion to and invasion of H357 and UP cells by S. aureus were enhanced when the epithelial cells were in suspension rather than on a surface, and levels of α(5) integrin subunit mRNA were also increased. Detroit 562 cells exhibited a similar α(5) gene upregulation, but this did not result in enhanced adhesion and invasion of S. aureus. The Detroit 562 cells also showed reduced adhesion to fibronectin compared with the other cell types. This, and the low S. aureus invasion, may result from reduced α(5)β(1) integrin activity or from variation in an as-yet-unidentified additional receptor or accessory molecule. These studies shed further light on the mechanisms of S. aureus invasion of human cells.
Collapse
Affiliation(s)
- Robert A Ridley
- Academic Unit of Oral & Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Ian Douglas
- Academic Unit of Oral & Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Simon A Whawell
- Academic Unit of Oral & Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| |
Collapse
|
36
|
Linnes J, Mikhova K, Bryers J. Adhesion of Staphylococcus epidermidis to biomaterials is inhibited by fibronectin and albumin. J Biomed Mater Res A 2012; 100:1990-7. [PMID: 22566405 PMCID: PMC3381423 DOI: 10.1002/jbm.a.34036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/14/2011] [Accepted: 11/29/2011] [Indexed: 11/07/2022]
Abstract
Decades of contradictory results have obscured the exact role of adsorbed fibronectin in the adhesion of the bacterium, Staphylococcus epidermidis, to biomaterials. Here, the ability of adsorbed fibronectin (FN) or bovine serum albumin (BSA) to modulate S. epidermidis adhesion to various biomaterials is reported. FN or BSA was adsorbed in increasing surface densities up to saturated monolayer coverage onto various common biomaterials, including poly(ethylene terephthalate), fluorinated ethylene propylene, poly(ether urethane), silicone, and borosilicate glass. Despite the wide range of surface characteristics represented, adsorption isotherms varied only subtly between materials for the two proteins considered. S. epidermidis adhesion to the various protein-coated biomaterials was quantified in a static-fluid batch adhesion assay. Although slight differences in overall adherent cell numbers were observed between the various protein-coated substrata, all materials exhibited significant dose-dependent decreases in S. epidermidis adhesion with increasing adsorption of either protein (FN, BSA) to all surfaces. Results here indicate that S. epidermidis adhesion to FN-coated surfaces is not a specific adhesion (i.e., receptor: ligand) mediated process, as no significant difference in adhesion was found between FN- and BSA-coated materials. Rather, results indicate that increasing surface density of either FN or BSA actually inhibited S. epidermidis adhesion to all biomaterials examined.
Collapse
Affiliation(s)
- J.C. Linnes
- Department of Bioengineering, University of Washington, Seattle, WA, USA 98195-5061
| | - K. Mikhova
- Department of Bioengineering, University of Washington, Seattle, WA, USA 98195-5061
| | - J.D. Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, USA 98195-5061
| |
Collapse
|
37
|
Smani Y, McConnell MJ, Pachón J. Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS One 2012; 7:e33073. [PMID: 22514602 PMCID: PMC3326023 DOI: 10.1371/journal.pone.0033073] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 02/09/2012] [Indexed: 11/29/2022] Open
Abstract
Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells.
Collapse
Affiliation(s)
- Younes Smani
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.
| | | | | |
Collapse
|
38
|
Seymour LM, Jenkins C, Deutscher AT, Raymond BBA, Padula MP, Tacchi JL, Bogema DR, Eamens GJ, Woolley LK, Dixon NE, Walker MJ, Djordjevic SP. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface. Cell Microbiol 2011; 14:81-94. [PMID: 21951786 DOI: 10.1111/j.1462-5822.2011.01702.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycoplasma hyopneumoniae is a major, economically damaging respiratory pathogen. Although M. hyopneumoniae cells bind plasminogen, the identification of plasminogen-binding surface proteins and the biological ramifications of acquiring plasminogen requires further investigation. mhp182 encodes a highly expressed 102 kDa protein (P102) that undergoes proteolytic processing to generate surface-located N-terminal 60 kDa (P60) and C-terminal 42 kDa (P42) proteins of unknown function. We show that recombinant P102 (rP102) binds plasminogen at physiologically relevant concentrations (K(D) ~ 76 nM) increasing the susceptibility of plasmin(ogen) to activation by tissue-specific plasminogen activator (tPA). Recombinant proteins constructed to mimic P60 (rP60) and P42 (rP42) also bound plasminogen at physiologically significant levels. M. hyopneumoniae surface-bound plasminogen was activated by tPA and is able to degrade fibrinogen, demonstrating the biological functionality of M. hyopneumoniae-bound plasmin(ogen) upon activation. Plasmin(ogen) was readily detected in porcine ciliated airways and plasmin levels were consistently higher in bronchoalveolar lavage fluid from M. hyopneumoniae-infected animals. Additionally, rP102 and rP42 bind fibronectin with K(D) s of 26 and 33 nM respectively and recombinant P102 proteins promote adherence to porcine kidney epithelial-like cells. The multifunctional binding ability of P102 and activation of M. hyopneumoniae-sequestered plasmin(ogen) by an exogenous activator suggests P102 plays an important role in virulence.
Collapse
Affiliation(s)
- Lisa M Seymour
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Parker D, Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol 2011; 34:281-97. [PMID: 22037948 DOI: 10.1007/s00281-011-0291-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/14/2011] [Indexed: 01/23/2023]
Abstract
Staphylococcus aureus is a common human pathogen highly evolved as both a component of the commensal flora and as a major cause of invasive infection. Severe respiratory infection due to staphylococci has been increasing due to the prevalence of more virulent USA300 CA-MRSA strains in the general population. The ability of S. aureus to adapt to the milieu of the respiratory tract has facilitated its emergence as a respiratory pathogen. Its metabolic versatility, the ability to scavenge iron, coordinate gene expression, and the horizontal acquisition of useful genetic elements have all contributed to its success as a component of the respiratory flora, in hospitalized patients, as a complication of influenza and in normal hosts. The expression of surface adhesins facilitates its persistence in the airways. In addition, the highly sophisticated interactions of the multiple S. aureus virulence factors, particularly the α-hemolysin and protein A, with diverse immune effectors in the lung such as ADAM10, TNFR1, EGFR, immunoglobulin, and complement all contribute to the pathogenesis of staphylococcal pneumonia.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY, USA
| | | |
Collapse
|
40
|
Seymour LM, Deutscher AT, Jenkins C, Kuit TA, Falconer L, Minion FC, Crossett B, Padula M, Dixon NE, Djordjevic SP, Walker MJ. A processed multidomain mycoplasma hyopneumoniae adhesin binds fibronectin, plasminogen, and swine respiratory cilia. J Biol Chem 2010; 285:33971-8. [PMID: 20813843 DOI: 10.1074/jbc.m110.104463] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porcine enzootic pneumonia is a chronic respiratory disease that affects swine. The etiological agent of the disease, Mycoplasma hyopneumoniae, is a bacterium that adheres to cilia of the swine respiratory tract, resulting in loss of cilia and epithelial cell damage. A M. hyopneumoniae protein P116, encoded by mhp108, was investigated as a potential adhesin. Examination of P116 expression using proteomic analyses observed P116 as a full-length protein and also as fragments, ranging from 17 to 70 kDa in size. A variety of pathogenic bacterial species have been shown to bind the extracellular matrix component fibronectin as an adherence mechanism. M. hyopneumoniae cells were found to bind fibronectin in a dose-dependent and saturable manner. Surface plasmon resonance was used to show that a recombinant C-terminal domain of P116 bound fibronectin at physiologically relevant concentrations (K(D) 24 ± 6 nm). Plasmin(ogen)-binding proteins are also expressed by many bacterial pathogens, facilitating extracellular matrix degradation. M. hyopneumoniae cells were found to also bind plasminogen in a dose-dependent and saturable manner; the C-terminal domain of P116 binds to plasminogen (K(D) 44 ± 5 nm). Plasminogen binding was abolished when the C-terminal lysine of P116 was deleted, implicating this residue as part of the plasminogen binding site. P116 fragments adhere to the PK15 porcine kidney epithelial-like cell line and swine respiratory cilia. Collectively these data suggest that P116 is an important adhesin and virulence factor of M. hyopneumoniae.
Collapse
Affiliation(s)
- Lisa M Seymour
- Schools of Biological Sciences, University of Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Influence of tigecycline on expression of virulence factors in biofilm-associated cells of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009; 54:380-7. [PMID: 19858261 DOI: 10.1128/aac.00155-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are complicated by the ability of the organism to grow in surface-adhered biofilms on a multitude of abiotic and biological surfaces. These multicellular communities are notoriously difficult to eradicate with antimicrobial therapy. Cells within the biofilm may be exposed to a sublethal concentration of the antimicrobial due to the metabolic and phenotypic diversity of the biofilm-associated cells or the protection offered by the biofilm structure. In the present study, the influence of a sublethal concentration of tigecycline on biofilms formed by an epidemic MRSA-16 isolate was investigated by transcriptome analysis. In the presence of the drug, 309 genes were upregulated and 213 genes were downregulated by more than twofold in comparison to the levels of gene regulation detected for the controls not grown in the presence of the drug. Microarray data were validated by real-time reverse transcription-PCR and phenotypic assays. Tigecycline altered the expression of a number of genes encoding proteins considered to be crucial for the virulence of S. aureus. These included the reduced expression of icaC, which is involved in polysaccharide intercellular adhesin production and biofilm development; the upregulation of fnbA, clfB, and cna, which encode adhesins which attach to human proteins; and the downregulation of the cap genes, which mediate the synthesis of the capsule polysaccharide. The expression of tst, which encodes toxic shock syndrome toxin 1 (TSST-1), was also significantly reduced; and an assay performed to quantify TSST-1 showed that the level of toxin production by cells treated with tigecycline decreased by 10-fold (P < 0.001) compared to the level of production by untreated control cells. This study suggests that tigecycline may reduce the expression of important virulence factors in S. aureus and supports further investigation to determine whether it could be a useful adjunct to therapy for the treatment of biofilm-mediated infections.
Collapse
|
42
|
Schmidt V, Nuttall T, Fazakerley J, McEwan N. Staphylococcus intermedius binding to immobilized fibrinogen, fibronectin and cytokeratin in vitro. Vet Dermatol 2009; 20:502-8. [DOI: 10.1111/j.1365-3164.2009.00804.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Wang C, Li M, Feng Y, Zheng F, Dong Y, Pan X, Cheng G, Dong R, Hu D, Feng X, Ge J, Liu D, Wang J, Cao M, Hu F, Tang J. The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch Microbiol 2008; 191:23-33. [DOI: 10.1007/s00203-008-0425-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/16/2008] [Accepted: 07/30/2008] [Indexed: 02/08/2023]
|
44
|
Ulanova M, Gravelle S, Barnes R. The role of epithelial integrin receptors in recognition of pulmonary pathogens. J Innate Immun 2008; 1:4-17. [PMID: 20375562 PMCID: PMC7190199 DOI: 10.1159/000141865] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 04/30/2008] [Indexed: 12/19/2022] Open
Abstract
Integrins are a large family of heterodimeric transmembrane cell adhesion receptors. During the last decade, it has become clear that integrins significantly participate in various host-pathogen interactions involving pathogenic bacteria, fungi, and viruses. Many bacteria possess adhesins that can bind either directly or indirectly to integrins. However, there appears to be an emerging role for integrins beyond simply adhesion molecules. Given the conserved nature of integrin structure and function, and the diversity of the pathogens which use integrins, it appears that they may act as pattern recognition receptors important for the innate immune response. Several clinically significant bacterial pathogens target lung epithelial integrins, and this review will focus on exploring various structures and mechanisms involved in these interactions.
Collapse
Affiliation(s)
- Marina Ulanova
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ont., Canada.
| | | | | |
Collapse
|
45
|
González A, Caro E, Muñoz C, Restrepo A, Hamilton AJ, Cano LE. Paracoccidioides brasiliensis conidia recognize fibronectin and fibrinogen which subsequently participate in adherence to human type II alveolar cells: Involvement of a specific adhesin. Microb Pathog 2008; 44:389-401. [DOI: 10.1016/j.micpath.2007.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 11/24/2022]
|
46
|
Weidenmaier C, Kokai-Kun JF, Kulauzovic E, Kohler T, Thumm G, Stoll H, Götz F, Peschel A. Differential roles of sortase-anchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization. Int J Med Microbiol 2008; 298:505-13. [PMID: 18221914 DOI: 10.1016/j.ijmm.2007.11.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/17/2007] [Accepted: 11/08/2007] [Indexed: 12/23/2022] Open
Abstract
Most of the severe bacterial infections originate from the endogenous microflora of human body surfaces. However, the molecular basis of colonization, e.g. of the human nose by Staphylococcus aureus, has remained incompletely understood. Several surface-exposed proteins and wall teichoic acid (WTA) polymers have previously been implicated in S. aureus attachment to nasal epithelial cells. Here we dissect the role of these molecules in colonization using S. aureus sortase A (srtA) and tagO mutants deficient in surface protein and WTA display, respectively. Although the two mutants were similarly affected in attachment to nasal cells they were abrogated in binding to different types of epithelial ligands. Surface protein sorting, but not WTA, were required for keratin- or fibronectin-mediated interactions while only WTA-mediated binding to nasal cells was effectively inhibited by polyinosinic acid, indicating a possible role of scavenger receptor-like molecules in WTA-dependent epithelial interactions. Both mutants exhibited profound colonization defects in a cotton rat nasal colonization model, albeit at different stages of colonization (>90% reduced bacterial counts at 24h or several days after inoculation with the tagO or srtA mutant, respectively). These data indicate that S. aureus nasal colonization is a multifactorial process with various ligands affecting initial colonization and prolonged persistence in different ways. Our studies should be useful in the development of new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Christopher Weidenmaier
- Cellular and Molecular Microbiology Division, Medical Microbiology and Hygiene Department, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 2007; 52:837-45. [PMID: 18086843 DOI: 10.1128/aac.01001-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) strains, which often produce Panton-Valentine leucocidin (PVL), are increasingly noted worldwide. In this study, we examined 42 MRSA strains (25 PVL-positive [PVL+] strains and 17 PVL-negative [PVL(-)] strains) isolated in Taiwan for their molecular characteristics. The PVL+ MRSA strains included CA-MRSA strains with multilocus sequence type (ST) 59 (major PVL+ MRSA in Taiwan), its variants, and worldwide CA-MRSA ST30 strains. The PVL(-) MRSA strains included the pandemic Hungarian MRSA ST239 strain, the Hungarian MRSA ST239 variant, MRSA ST59 (largely hospital-acquired MRSA strains) and its variants, the pandemic New York/Japan MRSA ST5 strain (Japanese type), and the MRSA ST8 strain. The major PVL+ CA-MRSA ST59 strain possessed a tetracycline resistance-conferring (tetK positive) penicillinase plasmid and a drug resistance gene cluster (a possible composite transposon) for multidrug resistance. Moreover, it carried a novel staphylococcal cassette chromosome mec (SCCmec) with two distinct ccrC genes (ccrC2-C8). This SCCmec (previously named SCCmec type V(T)) was tentatively designated SCCmec type VII. Sequencing of the PVL genes revealed the polymorphisms, and the PVL+ CA-MRSA ST59 strain possessed the ST59-specific PVL gene sequence. The data suggest that a significant amount of clonal spread is occurring in Taiwan and that the major PVL+ CA-MRSA ST59 Taiwan strain exhibits unique genetic characteristics, such as a novel SCCmec type and an ST59-specific PVL gene sequence.
Collapse
|
48
|
Bania J, Dabrowska A, Rózalska B, Sadowska B, Wieckowska-Szakiel M, Korzekwa K, Zarczyńska A, Bystroń J, Chrzanowska J, Molenda J. Superantigen types in Staphylococcus aureus isolated from patients with cystic fibrosis. Folia Microbiol (Praha) 2007; 51:614-8. [PMID: 17455800 DOI: 10.1007/bf02931628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The screening of 17 SAg genes of S. aureus isolated from the sputum of cystic fibrosis (CF) patients revealed that among 47 genetically different strains, 39 (83 %) carried SAg genes. Superantigens forming enterotoxin gene cluster were detected in 20 strains. The 2nd most common superantigen type was selk detected in 13 strains. In 9 strains, selk occurred together with the sea gene. Out of 74 strains recovered from nasal carriers, 56 (75 %) were found to carry SAg genes, 38 carried egc genes, while selk was detected in 5 strains. The predominant SAg types in both investigated S. aureus populations were egc and selk/sea, but selk gene frequency was significantly higher in the CF-derived strains.
Collapse
Affiliation(s)
- J Bania
- Department of Food Hygiene and Consumer Protection, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Presence of cna, emp and pls genes and pathogenicity of methicillin-resistant Staphylococcus aureus strains. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9511-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Quinn GA, Cole AM. Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium. Immunology 2007; 122:80-9. [PMID: 17472720 PMCID: PMC2265977 DOI: 10.1111/j.1365-2567.2007.02615.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nasal carriage of Staphylococcus aureus is an important source of nosocomial infection and community-acquired methicillin-resistant S. aureus (MRSA). Previous studies by our laboratory revealed that nasal carriage of S. aureus is accompanied by subclinical inflammation, which is insufficient to prevent colonization, and that carriage might also be a result of adaptation and selection of certain S. aureus strains to the host's nasal environment. In the present study we observed that a carrier strain of S. aureus preferentially colonizes and attaches to nasal epithelial cells (NEC) compared to a non-carrier S. aureus strain. Conversely, when naive NEC were pretreated with interleukin-1beta for 24 hr, the growth and attachment of the carrier strain of S. aureus were significantly reduced in comparison to the non-carrier strain, emphasizing the pivotal role played by host innate immunity in the initial events of nasal carriage. While both strains up-regulated the expression of the pattern recognition receptor, Toll-like receptor 2 (TLR2), NEC exposed to the nasal carrier strain had a 4-hr delay in TLR2 expression compared with NEC exposed to non-carrier S. aureus. Moreover, even after 20 hr of colonization the expression of two principal epithelial antimicrobial peptides, human beta-defensin-2 and human beta-defensin-3, was negligibly induced in NEC exposed to the nasal carrier strain of S. aureus in comparison to the non-carrier strain. These results suggest that carrier strains of S. aureus retain a competitive advantage over non-carrier strains by delaying the host's innate response to epithelial colonization and infection.
Collapse
Affiliation(s)
- Gerry A Quinn
- Laboratory of Innate Host Defense, Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | | |
Collapse
|