1
|
Borghi S, Antunes A, Haag AF, Spinsanti M, Brignoli T, Ndoni E, Scarlato V, Delany I. Multilayer Regulation of Neisseria meningitidis NHBA at Physiologically Relevant Temperatures. Microorganisms 2022; 10:microorganisms10040834. [PMID: 35456883 PMCID: PMC9031163 DOI: 10.3390/microorganisms10040834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis colonizes the nasopharynx of humans, and pathogenic strains can disseminate into the bloodstream, causing septicemia and meningitis. NHBA is a surface-exposed lipoprotein expressed by all N. meningitidis strains in different isoforms. Diverse roles have been reported for NHBA in heparin-mediated serum resistance, biofilm formation, and adherence to host tissues. We determined that temperature controls the expression of NHBA in all strains tested, with increased levels at 30−32 °C compared to 37 °C. Higher NHBA expression at lower temperatures was measurable both at mRNA and protein levels, resulting in higher surface exposure. Detailed molecular analysis indicated that multiple molecular mechanisms are responsible for the thermoregulated NHBA expression. The comparison of mRNA steady-state levels and half-lives at 30 °C and 37 °C demonstrated an increased mRNA stability/translatability at lower temperatures. Protein stability was also impacted, resulting in higher NHBA stability at lower temperatures. Ultimately, increased NHBA expression resulted in higher susceptibility to complement-mediated killing. We propose that NHBA regulation in response to temperature downshift might be physiologically relevant during transmission and the initial step(s) of interaction within the host nasopharynx. Together these data describe the importance of NHBA both as a virulence factor and as a vaccine antigen during neisserial colonization and invasion.
Collapse
Affiliation(s)
- Sara Borghi
- Immune Monitoring Laboratory, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Ana Antunes
- MabDesign, 69007 Lyon, France;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Andreas F. Haag
- School of Medicine, University of St Andrews, North-Haugh, St Andrews KY16 9TF, UK;
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | | | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TH, UK;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Enea Ndoni
- Lonza Group AG, 4057 Basel, Switzerland;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Isabel Delany
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
- Correspondence:
| |
Collapse
|
2
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
3
|
Majumdar A, Trinh V, Moore KJ, Smallwood CR, Kumar A, Yang T, Scott DC, Long NJ, Newton SM, Klebba PE. Conformational rearrangements in the N-domain of Escherichia coli FepA during ferric enterobactin transport. J Biol Chem 2020; 295:4974-4984. [PMID: 32098871 DOI: 10.1074/jbc.ra119.011850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/14/2020] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli outer membrane receptor FepA transports ferric enterobactin (FeEnt) by an energy- and TonB-dependent, but otherwise a mechanistically undetermined process involving its internal 150-residue N-terminal globular domain (N-domain). We genetically introduced pairs of Cys residues in different regions of the FepA tertiary structure, with the potential to form disulfide bonds. These included Cys pairs on adjacent β-strands of the N-domain (intra-N) and Cys pairs that bridged the external surface of the N-domain to the interior of the C-terminal transmembrane β-barrel (inter-N-C). We characterized FeEnt uptake by these mutants with siderophore nutrition tests, [59Fe]Ent binding and uptake experiments, and fluorescence decoy sensor assays. The three methods consistently showed that the intra-N disulfide bonds, which restrict conformational motion within the N-domain, prevented FeEnt uptake, whereas most inter-N-C disulfide bonds did not prevent FeEnt uptake. These outcomes indicate that conformational rearrangements must occur in the N terminus of FepA during FeEnt transport. They also argue against disengagement of the N-domain out of the channel as a rigid body and suggest instead that it remains within the transmembrane pore as FeEnt enters the periplasm.
Collapse
Affiliation(s)
- Aritri Majumdar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Vy Trinh
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Kyle J Moore
- Department of Chemistry, Physics and Engineering, Cameron University, Lawton, Oklahoma 73505
| | | | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Daniel C Scott
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Noah J Long
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Salete M Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
4
|
Faoro H, Oliveira WK, Weiss VA, Tadra-Sfeir MZ, Cardoso RL, Balsanelli E, Brusamarello-Santos LCC, Camilios-Neto D, Cruz LM, Raittz RT, Marques ACQ, LiPuma J, Fadel-Picheth CMT, Souza EM, Pedrosa FO. Genome comparison between clinical and environmental strains of Herbaspirillum seropedicae reveals a potential new emerging bacterium adapted to human hosts. BMC Genomics 2019; 20:630. [PMID: 31375067 PMCID: PMC6679464 DOI: 10.1186/s12864-019-5982-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herbaspirillum seropedicae is an environmental β-proteobacterium that is capable of promoting the growth of economically relevant plants through biological nitrogen fixation and phytohormone production. However, strains of H. seropedicae have been isolated from immunocompromised patients and associated with human infections and deaths. In this work, we sequenced the genomes of two clinical strains of H. seropedicae, AU14040 and AU13965, and compared them with the genomes of strains described as having an environmental origin. RESULTS Both genomes were closed, indicating a single circular chromosome; however, strain AU13965 also carried a plasmid of 42,977 bp, the first described in the genus Herbaspirillum. Genome comparison revealed that the clinical strains lost the gene sets related to biological nitrogen fixation (nif) and the type 3 secretion system (T3SS), which has been described to be essential for interactions with plants. Comparison of the pan-genomes of clinical and environmental strains revealed different sets of accessorial genes. However, antimicrobial resistance genes were found in the same proportion in all analyzed genomes. The clinical strains also acquired new genes and genomic islands that may be related to host interactions. Among the acquired islands was a cluster of genes related to lipopolysaccharide (LPS) biosynthesis. Although highly conserved in environmental strains, the LPS biosynthesis genes in the two clinical strains presented unique and non-orthologous genes within the genus Herbaspirillum. Furthermore, the AU14040 strain cluster contained the neuABC genes, which are responsible for sialic acid (Neu5Ac) biosynthesis, indicating that this bacterium could add it to its lipopolysaccharide. The Neu5Ac-linked LPS could increase the bacterial resilience in the host aiding in the evasion of the immune system. CONCLUSIONS Our findings suggest that the lifestyle transition from environment to opportunist led to the loss and acquisition of specific genes allowing adaptations to colonize and survive in new hosts. It is possible that these substitutions may be the starting point for interactions with new hosts.
Collapse
Affiliation(s)
- Helisson Faoro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
- Graduate Program on Bioinformatics, Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná 81520-260 Brazil
- Laboratory of Gene Expression Regulation, Instituto Carlos Chagas, FIOCRUZ, Algacyr Munhoz Mader street, 3775, Curitiba, Paraná 81350-010 Brazil
| | - Willian K. Oliveira
- Graduate Program on Bioinformatics, Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná 81520-260 Brazil
- Laboratory of Gene Expression Regulation, Instituto Carlos Chagas, FIOCRUZ, Algacyr Munhoz Mader street, 3775, Curitiba, Paraná 81350-010 Brazil
| | - Vinicius A. Weiss
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
- Graduate Program on Bioinformatics, Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná 81520-260 Brazil
| | - Michelle Z. Tadra-Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Rodrigo L. Cardoso
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Liziane C. C. Brusamarello-Santos
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
- Department of Biochemistry and Biothecnology, Universidade Estadual de Londrina, Celso Garcia Cid street, Londrina, Paraná 86057-970 Brazil
| | - Leonardo M. Cruz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Roberto T. Raittz
- Graduate Program on Bioinformatics, Universidade Federal do Paraná, Alcides Viera Arcoverde street 1225, Curitiba, Paraná 81520-260 Brazil
| | - Ana C. Q. Marques
- Department of Clinical Analyses, Universidade Federal do Paraná, Av. Lothário Meissner 632, Curitiba, Paraná 80210-170 Brazil
| | - John LiPuma
- Department of Pediatrics, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Cyntia M. T. Fadel-Picheth
- Department of Clinical Analyses, Universidade Federal do Paraná, Av. Lothário Meissner 632, Curitiba, Paraná 80210-170 Brazil
| | - Emanuel M. Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| | - Fabio O. Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Coronel Francisco H. dos Santos street, Curitiba, Paraná 81531-980 Brazil
| |
Collapse
|
5
|
Cornelissen CN. Subversion of nutritional immunity by the pathogenic Neisseriae. Pathog Dis 2018; 76:4553517. [PMID: 29045638 PMCID: PMC6251569 DOI: 10.1093/femspd/ftx112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
The pathogenic Neisseria species, including Neisseria meningitidis and Neisseria gonorrhoeae, are obligate human pathogens that cause significant morbidity and mortality. The success of these pathogens, with regard to causing disease in humans, is inextricably linked to their ability to acquire necessary nutrients in the hostile environment of the host. Humans deploy a significant arsenal of weaponry to defend against bacterial pathogens, not least of which are the metal-sequestering proteins that entrap and withhold transition metals, including iron, zinc and manganese, from invaders. This review will discuss the general strategies that bacteria employ to overcome these metal-sequestering attempts by the host, and then will focus on the relatively uncommon 'metal piracy' approaches utilized by the pathogenic Neisseria for this purpose. Because acquiring metals from the environment is critical to microbial survival, interfering with this process could impede growth and therefore disease initiation or progression. This review will also discuss how interfering with metal uptake by the pathogenic Neisseriae could be deployed in the development of novel or improved preventative or therapeutic measures against these important pathogens.
Collapse
Affiliation(s)
- Cynthia Nau Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Box 980678, Richmond, VA 23298-0678, USA
| |
Collapse
|
6
|
Inactivation of NMB0419, Encoding a Sel1-Like Repeat (SLR) Protein, in Neisseria meningitidis Is Associated with Differential Expression of Genes Belonging to the Fur Regulon and Reduced Intraepithelial Replication. Infect Immun 2017; 85:IAI.00574-16. [PMID: 28264906 DOI: 10.1128/iai.00574-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/28/2017] [Indexed: 12/25/2022] Open
Abstract
Neisseria meningitidis is a commensal microbe that colonizes the human nasopharynx but occasionally invades the bloodstream to cause life-threatening infection. N. meningitidis MC58 NMB0419 encodes a Sel1-like repeat (SLR)-containing protein, previously implicated in invasion of epithelial cells. A gene-regulatory function was revealed in Escherichia coli expressing plasmid-borne NMB0419 and showing significantly increased epithelial adherence compared to the wild type, due to increased expression of mannose-sensitive type 1 pili. While a meningococcal NMB0419 mutant did not have altered epithelial adherence, in a transcriptome-wide comparison of the wild type and an NMB0419 mutant, a large proportion of genes differentially regulated in the mutant were involved in iron acquisition and metabolism. Fifty-one percent and 38% of genes, respectively, up- and downregulated in the NMB0419 mutant had previously been identified as being induced and repressed by meningococcal Fur. An in vitro growth defect of the NMB0419 mutant under iron restriction was consistent with the downregulation of tbpAB and hmbR, while an intraepithelial replication defect was consistent with the downregulation of tonB, exbB, and exbD, based on a known phenotype of a meningococcal tonB mutant. Disruption of the N-terminal NMB0419 signal peptide, predicted to export the protein beyond the cytoplasmic membrane, resulted in loss of functional traits in N. meningitidis and E. coli Our study indicates that the expression of NMB0419 is associated with transcriptional changes counterbalancing the regulatory function of Fur, offering a new perspective on regulatory mechanisms involved in meningococcal interaction with epithelial cells, and suggests new insights into the roles of SLR-containing genes in other bacteria.
Collapse
|
7
|
Pulgar R, Hödar C, Travisany D, Zuñiga A, Domínguez C, Maass A, González M, Cambiazo V. Transcriptional response of Atlantic salmon families to Piscirickettsia salmonis infection highlights the relevance of the iron-deprivation defence system. BMC Genomics 2015; 16:495. [PMID: 26141111 PMCID: PMC4490697 DOI: 10.1186/s12864-015-1716-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 06/23/2015] [Indexed: 01/24/2023] Open
Abstract
Background Piscirickettsiosis or Salmonid Rickettsial Septicaemia (SRS) is a bacterial disease that has a major economic impact on the Chilean salmon farming industry. Despite the fact that Piscirickettsia salmonis has been recognized as a major fish pathogen for over 20 years, the molecular strategies underlying the fish response to infection and the bacterial mechanisms of pathogenesis are poorly understood. We analysed and compared the head kidney transcriptional response of Atlantic salmon (Salmo salar) families with different levels of susceptibility to P. salmonis infection in order to reveal mechanisms that might confer infection resistance. Results We ranked forty full-sibling Atlantic salmon families according to accumulated mortality after a challenge with P. salmonis and selected the families with the lowest and highest cumulative mortalities for microarray gene expression analysis. A comparison of the response to P. salmonis infection between low and high susceptibility groups identified biological processes presumably involved in natural resistance to the pathogen. In particular, expression changes of genes linked to cellular iron depletion, as well as low iron content and bacterial load in the head kidney of fish from low susceptibility families, suggest that iron-deprivation is an innate immunity defence mechanism against P. salmonis. To complement these results, we predicted a set of iron acquisition genes from the P. salmonis genome. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed that most of these genes form part of the Fur regulon of P. salmonis. Conclusions This study revealed, for the first time, differences in the transcriptional response to P. salmonis infection among Atlantic salmon families with varied levels of susceptibility to the infection. These differences correlated with changes in the abundance of transcripts encoding proteins directly and indirectly involved in the immune response; changes that highlighted the role of nutritional immunity through iron deprivation in host defence mechanisms against P. salmonis. Additionally, we found that P. salmonis has several mechanisms for iron acquisition, suggesting that this bacterium can obtain iron from different sources, including ferric iron through capturing endogenous and exogenous siderophores and ferrous iron. Our results contribute to determining the underlying resistance mechanisms of Atlantic salmon to P. salmonis infection and to identifying future treatment strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1716-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile.
| | - Christian Hödar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile. .,Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile.
| | - Dante Travisany
- Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile. .,Center for Mathematical Modeling and Department of Mathematical Engineering, Av. Beauchef 851, Santiago, Chile.
| | - Alejandro Zuñiga
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile.
| | - Calixto Domínguez
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile.
| | - Alejandro Maass
- Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile. .,Center for Mathematical Modeling and Department of Mathematical Engineering, Av. Beauchef 851, Santiago, Chile.
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile. .,Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile.
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile. .,Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, Santiago, Chile.
| |
Collapse
|
8
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
9
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
10
|
Barrile R, Kasendra M, Rossi-Paccani S, Merola M, Pizza M, Baldari C, Soriani M, Aricò B. Neisseria meningitidis subverts the polarized organization and intracellular trafficking of host cells to cross the epithelial barrier. Cell Microbiol 2015; 17:1365-75. [PMID: 25801707 DOI: 10.1111/cmi.12439] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/19/2022]
Abstract
Translocation of the nasopharyngeal barrier by Neisseria meningitidis occurs via an intracellular microtubule-dependent pathway and represents a crucial step in its pathogenesis. Despite this fact, the interaction of invasive meningococci with host subcellular compartments and the resulting impact on their organization and function have not been investigated. The influence of serogroup B strain MC58 on host cell polarity and intracellular trafficking system was assessed by confocal microscopy visualization of different plasma membrane-associated components (such as E-cadherin, ZO-1 and transferrin receptor) and evaluation of the transferrin uptake and recycling in infected Calu-3 monolayers. Additionally, the association of N. meningitidis with different endosomal compartments was evaluated through the concomitant staining of bacteria and markers specific for Rab11, Rab22a, Rab25 and Rab3 followed by confocal microscopy imaging. Subversion of the host cell architecture and intracellular trafficking system, denoted by mis-targeting of cell plasma membrane components and perturbations of transferrin transport, was shown to occur in response to N. meningitidis infection. Notably, the appearance of all of these events seems to positively correlate with the efficiency of N. meningitidis to cross the epithelial barrier. Our data reveal for the first time that N. meningitidis is able to modulate the host cell architecture and function, which might serve as a strategy of this pathogen for overcoming the nasopharyngeal barrier without affecting the monolayer integrity.
Collapse
Affiliation(s)
- Riccardo Barrile
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy.,Biomimetic Microsystems platform, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Magdalena Kasendra
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Silvia Rossi-Paccani
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Marcello Merola
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy.,Department of Biology, University of Naples 'Federico II', Napoli, Italy
| | - Mariagrazia Pizza
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Cosima Baldari
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Soriani
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Beatrice Aricò
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| |
Collapse
|
11
|
Guilhen C, Taha MK, Veyrier FJ. Role of transition metal exporters in virulence: the example of Neisseria meningitidis. Front Cell Infect Microbiol 2013; 3:102. [PMID: 24392357 PMCID: PMC3870273 DOI: 10.3389/fcimb.2013.00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/05/2013] [Indexed: 01/01/2023] Open
Abstract
Transition metals such as iron, manganese, and zinc are essential micronutrients for bacteria. However, at high concentration, they can generate non-functional proteins or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or overload, both of which can impair cell survival. In addition, equilibrium among these metals has to be tightly controlled to avoid molecular replacement in the active site of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet physiological needs within the context of the local environment. When intracellular buffering capacity is reached, they rely primarily on membrane-localized exporters to maintain metal homeostasis. Recently, several groups have characterized new export systems and emphasized their importance in the virulence of several pathogens. This article discusses the role of export systems as general virulence determinants. Furthermore, it highlights the contribution of these exporters in pathogens emergence with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.
Collapse
Affiliation(s)
- Cyril Guilhen
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| | - Muhamed-Kheir Taha
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| | - Frédéric J Veyrier
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| |
Collapse
|
12
|
Woodhams KL, Benet ZL, Blonsky SE, Hackett KT, Dillard JP. Prevalence and detailed mapping of the gonococcal genetic island in Neisseria meningitidis. J Bacteriol 2012; 194:2275-85. [PMID: 22366419 PMCID: PMC3347088 DOI: 10.1128/jb.00094-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/16/2012] [Indexed: 11/20/2022] Open
Abstract
The 57-kb gonococcal genetic island (GGI) encodes a type IV secretion system (T4SS) that is found in most strains of N. gonorrhoeae. This T4SS functions to secrete single-stranded DNA that is active in natural transformation. The GGI has also been found in some strains of N. meningitidis. We screened 126 isolates of N. meningitidis and found the GGI in 17.5% of strains, with the prevalence varying widely among serogroups. The GGI is found in a significant number of serogroup C, W-135, and X strains but was not found in strains of serogroup A, B, or Y. Through detailed PCR mapping and DNA sequencing, we identified five distinct GGI types in meningococci. DNA sequencing and a genetic assay revealed that the GGI was likely integrated into the meningococcal chromosome by the site-specific recombinase XerCD and that the GGI can be excised and lost from the genome. Functional studies showed that in contrast with the gonococcal T4SS, the meningococcal T4SS does not secrete DNA, nor does it confer Ton-independent intracellular survival. Deletion of T4SS genes did not affect association with or invasion of host cells. These results demonstrate that the GGI is found in a significant proportion of meningococcal strains and that while some strains carry multiple insertions and deletions in the GGI, other strains carry intact T4SS genes and may produce functional secretion systems.
Collapse
Affiliation(s)
- Katelynn L Woodhams
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
13
|
The Neisseria meningitidis ZnuD zinc receptor contributes to interactions with epithelial cells and supports heme utilization when expressed in Escherichia coli. Infect Immun 2011; 80:657-67. [PMID: 22083713 DOI: 10.1128/iai.05208-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis employs redundant heme acquisition mechanisms, including TonB receptor-dependent and receptor-independent uptakes. The TonB-dependent zinc receptor ZnuD shares significant sequence similarity to HumA, a heme receptor of Moraxella catarrhalis, and contains conserved motifs found in many heme utilization proteins. We present data showing that, when expressed in Escherichia coli, ZnuD allowed heme capture on the cell surface and supported the heme-dependent growth of an E. coli hemA strain. Heme agarose captured ZnuD in enriched outer membrane fractions, and this binding was inhibited by excess free heme, supporting ZnuD's specific interaction with heme. However, no heme utilization defect was detected in the meningococcal znuD mutant, likely due to unknown redundant TonB-independent heme uptake mechanisms. Meningococcal replication within epithelial cells requires a functional TonB, and we found that both the znuD and tonB mutants were defective not only in survival within epithelial cells but also in adherence to and invasion of epithelial cells. Ectopic complementation rescued these phenotypes. Interestingly, while znuD expression was repressed by Zur with zinc as a cofactor, it also was induced by iron in a Zur-independent manner. A specific interaction of meningococcal Fur protein with the znuD promoter was demonstrated by electrophoretic mobility shift assay (EMSA). Thus, the meningococcal ZnuD receptor likely participates in both zinc and heme acquisition, is regulated by both Zur and Fur, and is important for meningococcal interaction with epithelial cells.
Collapse
|
14
|
Two strikingly different signaling pathways are induced by meningococcal type IV pili on endothelial and epithelial cells. Infect Immun 2011; 80:175-86. [PMID: 22064711 DOI: 10.1128/iai.05837-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Following adhesion on brain microvasculature, Neisseria meningitidis is able to cross the blood-brain barrier (BBB) by recruiting the polarity complex and the cell junction proteins, thus allowing the opening of the paracellular route. This feature is the consequence of the activation by the type IV pili of the β2-adrenergic receptor/β-arrestin signaling pathway. Here, we have extended this observation to primary peripheral endothelial cells, and we report that the interaction of N. meningitidis with the epithelium is strikingly different. The recruitment of the junctional components by N. meningitidis is indeed restricted to endothelial cell lines, and no alteration of the cell-cell junctions can be seen in epithelial monolayers following meningococcal type IV pilus-mediated colonization. Consistently, the β2-adrenergic receptor/β-arrestin pathway was not hijacked by bacteria adhering on epithelial cells. In addition, we showed that the consequences of the bacterial signaling on epithelial cells is different from that of endothelial cells, since N. meningitidis-induced signaling which protects the microcolonies from shear stress on endothelial cells is unable to do so on epithelial cells. Finally, we report that the minor pilin PilV, which has been shown to be essential for endothelial cell response, is not a required bacterial determinant to induce an epithelial cell response. These data demonstrate that even though pilus-mediated signaling induces an apparently similar cortical plaque, in epithelial and endothelial cell lineages, the signaling pathways are strikingly different in both models.
Collapse
|
15
|
Veyrier FJ, Boneca IG, Cellier MF, Taha MK. A novel metal transporter mediating manganese export (MntX) regulates the Mn to Fe intracellular ratio and Neisseria meningitidis virulence. PLoS Pathog 2011; 7:e1002261. [PMID: 21980287 PMCID: PMC3182930 DOI: 10.1371/journal.ppat.1002261] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/22/2011] [Indexed: 12/16/2022] Open
Abstract
Neisseria meningitidis (Nm) and N. gonorrhoeae (Ng) are adapted to different environments within their human host. If the basis of this difference has not yet been fully understood, previous studies (including our own data) have reported that, unlike Ng, Nm tolerates high manganese concentrations. As transition metals are essential regulators of cell growth and host pathogen interactions, we aimed to address mechanisms of Nm Mn²⁺ tolerance and its pathogenic consequences. Using bioinformatics, gene deletion and heterologous expression we identified a conserved bacterial manganese resistance factor MntX (formerly YebN). The predicted structure suggests that MntX represents a new family of transporters exporting Mn. In the Neisseria genus, this exporter is present and functional in all Nm isolates but it is mutated in a majority of Ng strains and commonly absent in nonpathogenic species. In Nm, Mn²⁺ export via MntX regulates the intracellular Mn/Fe ratio and protects against manganese toxicity that is exacerbated in low iron conditions. MntX is also important for N. meningitidis to resist killing by human serum and for survival in mice blood during septicemia. The present work thus points to new clues about Mn homeostasis, its interplay with Fe metabolism and the influence on N. meningitidis physiology and pathogenicity.
Collapse
Affiliation(s)
- Frédéric J Veyrier
- Institut Pasteur, Infection Bactériennes Invasives, Dept. Infection et Epidémiologie, Paris, France.
| | | | | | | |
Collapse
|
16
|
Cornelissen CN, Hollander A. TonB-Dependent Transporters Expressed by Neisseria gonorrhoeae. Front Microbiol 2011; 2:117. [PMID: 21747812 PMCID: PMC3128382 DOI: 10.3389/fmicb.2011.00117] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/11/2011] [Indexed: 11/13/2022] Open
Abstract
Neisseria gonorrhoeae causes the common sexually transmitted infection, gonorrhea. This microorganism is an obligate human pathogen, existing nowhere in nature except in association with humans. For growth and proliferation, N. gonorrhoeae requires iron and must acquire this nutrient from within its host. The gonococcus is well-adapted for growth in diverse niches within the human body because it expresses efficient transport systems enabling use of a diverse array of iron sources. Iron transport systems facilitating the use of transferrin, lactoferrin, and hemoglobin have two components: one TonB-dependent transporter and one lipoprotein. A single component TonB-dependent transporter also allows N. gonorrhoeae to avail itself of iron bound to heterologous siderophores produced by bacteria within the same ecological niche. Other TonB-dependent transporters are encoded by the gonococcus but have not been ascribed specific functions. The best characterized iron transport system expressed by N. gonorrhoeae enables the use of human transferrin as a sole iron source. This review summarizes the molecular mechanisms involved in gonococcal iron acquisition from human transferrin and also reviews what is currently known about the other TonB-dependent transport systems. No vaccine is available to prevent gonococcal infections and our options for treating this disease are compromised by the emergence of antibiotic resistance. Because iron transport systems are critical for the survival of the gonococcus in vivo, the surface-exposed components of these systems are attractive candidates for vaccine development or therapeutic intervention.
Collapse
Affiliation(s)
- Cynthia Nau Cornelissen
- Department of Microbiology, Virginia Commonwealth University Medical CenterRichmond, VA, USA
| | - Aimee Hollander
- Department of Microbiology, Virginia Commonwealth University Medical CenterRichmond, VA, USA
| |
Collapse
|
17
|
Fantappiè L, Scarlato V, Delany I. Identification of the in vitro target of an iron-responsive AraC-like protein from Neisseria meningitidis that is in a regulatory cascade with Fur. MICROBIOLOGY-SGM 2011; 157:2235-2247. [PMID: 21602219 DOI: 10.1099/mic.0.048033-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study we characterized a genetic locus that is predicted to encode one of the three AraC-like regulators of Neisseria meningitidis, a homologue of MpeR of Neisseria gonorrhoeae which is specific to the pathogenic Neisseria species. Previous microarray studies have suggested that this gene is a member of the Fur regulon. In strain MC58, it is a pseudogene (annotated as two ORFs, NMB1879 and NMB1878) containing a frameshift mutation which we show is common to all strains tested belonging to the ST-32 hypervirulent clonal complex. Using primer extension and S1 nuclease protection assays, we mapped two promoters in the upstream intergenic region: the mpeR promoter and the NMB1880 promoter. The latter promoter drives transcription of the divergent upstream locus, which is predicted to encode a high-affinity iron uptake system. We demonstrated that both promoters are induced during iron limitation and that this regulation is also mediated by the Fur regulator. DNA-binding studies with the purified MpeR protein revealed that it binds to a region directly upstream of the NMB1880 divergent promoter, suggesting a role in its regulation. Mutants of N. meningitidis strains lacking MpeR or overexpressing MpeR showed no significant differences in expression of the P(NMB1880) promoter, nor did global transcriptional profiling of an MpeR knockout identify any deregulated genes, suggesting that the MpeR protein is inactive under the conditions used in these experiments. The presence of MpeR in a regulatory cascade downstream of the Fur master iron regulator implicates it as being expressed in the iron-limiting environment of the host, where it may in turn regulate a group of genes, including the divergent iron transport locus, in response to signals important for infection.
Collapse
Affiliation(s)
- Laura Fantappiè
- Novartis Vaccines, Microbial Molecular Biology, Via Fiorentina 1, 53100 Siena, Italy
| | - Vincenzo Scarlato
- Department of Biology, University of Bologna, Bologna, Italy.,Novartis Vaccines, Microbial Molecular Biology, Via Fiorentina 1, 53100 Siena, Italy
| | - Isabel Delany
- Novartis Vaccines, Microbial Molecular Biology, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
18
|
Echenique-Rivera H, Muzzi A, Del Tordello E, Seib KL, Francois P, Rappuoli R, Pizza M, Serruto D. Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival. PLoS Pathog 2011; 7:e1002027. [PMID: 21589640 PMCID: PMC3088726 DOI: 10.1371/journal.ppat.1002027] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/26/2011] [Indexed: 12/14/2022] Open
Abstract
During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism.
Collapse
MESH Headings
- Adaptation, Physiological
- Adult
- Antigens, Bacterial/genetics
- Bacteremia/blood
- Bacteremia/microbiology
- Bacterial Proteins/genetics
- Cluster Analysis
- Down-Regulation/genetics
- Female
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial/genetics
- Host-Pathogen Interactions/genetics
- Humans
- Male
- Meningococcal Infections/blood
- Meningococcal Infections/microbiology
- Models, Biological
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/growth & development
- Neisseria meningitidis, Serogroup B/pathogenicity
- Neisseria meningitidis, Serogroup B/physiology
- RNA, Bacterial/genetics
- Sequence Deletion
- Transcriptome
- Up-Regulation/genetics
- Virulence Factors/genetics
Collapse
Affiliation(s)
| | | | | | | | - Patrice Francois
- Genomic Research Laboratory, University of
Geneva Hospitals (HUG), Geneva, Switzerland
| | | | | | - Davide Serruto
- Novartis Vaccines and Diagnostics, Siena,
Italy
- * E-mail:
| |
Collapse
|
19
|
Ramsey ME, Woodhams KL, Dillard JP. The Gonococcal Genetic Island and Type IV Secretion in the Pathogenic Neisseria. Front Microbiol 2011; 2:61. [PMID: 21833316 PMCID: PMC3153036 DOI: 10.3389/fmicb.2011.00061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/21/2011] [Indexed: 01/10/2023] Open
Abstract
Eighty percent of Neisseria gonorrhoeae strains and some Neisseria meningitidis strains encode a 57-kb gonococcal genetic island (GGI). The GGI was horizontally acquired and is inserted in the chromosome at the replication terminus. The GGI is flanked by direct repeats, and site-specific recombination at these sites results in excision of the GGI and may be responsible for its original acquisition. Although the role of the GGI in N. meningitidis is unclear, the GGI in N. gonorrhoeae encodes a type IV secretion system (T4SS). T4SS are versatile multi-protein complexes and include both conjugation systems as well as effector systems that translocate either proteins or DNA-protein complexes. In N. gonorrhoeae, the T4SS secretes single-stranded chromosomal DNA into the extracellular milieu in a contact-independent manner. Importantly, the DNA secreted through the T4SS is effective in natural transformation and therefore contributes to the spread of genetic information through Neisseria populations. Mutagenesis experiments have identified genes for DNA secretion including those encoding putative structural components of the apparatus, peptidoglycanases which may act in assembly, and relaxosome components for processing the DNA and delivering it to the apparatus. The T4SS may also play a role in infection by N. gonorrhoeae. During intracellular infection, N. gonorrhoeae requires the Ton complex for iron acquisition and survival. However, N. gonorrhoeae strains that do not express the Ton complex can survive intracellularly if they express structural components of the T4SS. These data provide evidence that the T4SS is expressed during intracellular infection and suggest that the T4SS may provide an advantage for intracellular survival. Here we review our current understanding of how the GGI and type IV secretion affect natural transformation and pathogenesis in N. gonorrhoeae and N. meningitidis.
Collapse
Affiliation(s)
- Meghan E. Ramsey
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadison, WI, USA
| | - Katelynn L. Woodhams
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadison, WI, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
20
|
Zola TA, Strange HR, Dominguez NM, Dillard JP, Cornelissen CN. Type IV secretion machinery promotes ton-independent intracellular survival of Neisseria gonorrhoeae within cervical epithelial cells. Infect Immun 2010; 78:2429-37. [PMID: 20308306 PMCID: PMC2876539 DOI: 10.1128/iai.00228-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/22/2010] [Accepted: 03/09/2010] [Indexed: 01/18/2023] Open
Abstract
Survival of Neisseria gonorrhoeae within host epithelial cells is expected to be important in the pathogenesis of gonococcal disease. We previously demonstrated that strain FA1090 derives iron from a host cell in a process that requires the Ton complex and a putative TonB-dependent transporter, TdfF. FA1090, however, lacks the gonococcal genetic island (GGI) that is present in the majority of strains. The GGI in strain MS11 has been partially characterized, and it encodes a type IV secretion system (T4SS) involved in DNA release. In this study we investigated the role of iron acquisition and GGI-encoded gene products in gonococcal survival within cervical epithelial cells. We demonstrated that intracellular survival of MS11 was dependent on acquisition of iron from the host cell, but unlike the findings for FA1090, expression of the Ton complex was not required. Survival was not dependent on a putative TonB-like protein encoded in the GGI but instead was directly linked to T4SS structural components in a manner independent of the ability to release or internalize DNA. These data suggest that expression of selected GGI-encoded open reading frames confers an advantage during cervical cell infection. This study provides the first link between expression of the T4SS apparatus and intracellular survival of gonococci.
Collapse
Affiliation(s)
- Tracey A. Zola
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Heather R. Strange
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Nadia M. Dominguez
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Joseph P. Dillard
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Cynthia N. Cornelissen
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| |
Collapse
|
21
|
Regulatory role of the MisR/S two-component system in hemoglobin utilization in Neisseria meningitidis. Infect Immun 2009; 78:1109-22. [PMID: 20008531 DOI: 10.1128/iai.00363-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane iron receptors are some of the major surface entities that are critical for meningococcal pathogenesis. The gene encoding the meningococcal hemoglobin receptor, HmbR, is both independently transcribed and transcriptionally linked to the upstream gene hemO, which encodes a heme oxygenase. The MisR/S two-component system was previously determined to regulate hmbR transcription, and its hemO and hmbR regulatory mechanisms were characterized further here. The expression of hemO and hmbR was downregulated in misR/S mutants under both iron-replete and iron-restricted conditions, and the downregulation could be reversed by complementation. No significant changes in expression of other iron receptors were detected, suggesting that the MisR/S system specifically regulates hmbR. When hemoglobin was the sole iron source, growth defects were detected in the mutants. Primer extension analysis identified a promoter upstream of the hemO-associated Correia element (CE) and another promoter at the proximal end of CE, and processed transcripts previously identified for other cotranscribed CEs were also detected, suggesting that there may be posttranscriptional regulation. MisR directly interacts with sequences upstream of the CE and upstream of the hmbR Fur binding site and thus independently regulates hemO and hmbR. Analysis of transcriptional reporters of hemO and hmbR further demonstrated the positive role of the MisR/S system and showed that the transcription of hmbR initiated from hemO was significantly reduced. A comparison of the effects of the misS mutation under iron-replete and iron-depleted conditions suggested that activation by the MisR/S system and iron-mediated repression by Fur act independently. Thus, the expression of hemO and hmbR is coordinately controlled by multiple independent regulatory mechanisms, including the MisR/S two-component system.
Collapse
|
22
|
Higashi DL, Zhang GH, Biais N, Myers LR, Weyand NJ, Elliott DA, So M. Influence of type IV pilus retraction on the architecture of the Neisseria gonorrhoeae-infected cell cortex. MICROBIOLOGY-SGM 2009; 155:4084-4092. [PMID: 19762436 DOI: 10.1099/mic.0.032656-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Early in infection, Neisseria gonorrhoeae can be observed to attach to the epithelial cell surface as microcolonies and induce dramatic changes to the host cell cortex. We tested the hypothesis that type IV pili (Tfp) retraction plays a role in the ultrastructure of both the host cell cortex and the bacterial microcolony. Using serial ultrathin sectioning, transmission electron microscopy and 3D reconstruction of serial 2D images, we have obtained what we believe to be the first 3D reconstructions of the N. gonorrhoeae-host cell interface, and determined the architecture of infected cell microvilli as well as the attached microcolony. Tfp connect both wild-type (wt) and Tfp retraction-deficient bacteria with each other, and with the host cell membrane. Tfp fibres and microvilli form a lattice in the wt microcolony and at its periphery. Wt microcolonies induce microvilli formation and increases of surface area, leading to an approximately ninefold increase in the surface area of the host cell membrane at the site of attachment. In contrast, Tfp retraction-deficient microcolonies do not affect these parameters. Wt microcolonies had a symmetrical, dome-shaped structure with a circular 'footprint', while Tfp retraction-deficient microcolonies were notably less symmetrical. These findings support a major role for Tfp retraction in microvilli and microcolony architecture. They are consistent with the biophysical attributes of Tfp and the effects of Tfp retraction on epithelial cell signalling.
Collapse
Affiliation(s)
- Dustin L Higashi
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Gina H Zhang
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Nicolas Biais
- Department of Biological Sciences, Columbia University, New York, USA
| | - Lauren R Myers
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathan J Weyand
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - David A Elliott
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Magdalene So
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
23
|
Jordan PW, Saunders NJ. Host iron binding proteins acting as niche indicators for Neisseria meningitidis. PLoS One 2009; 4:e5198. [PMID: 19352437 PMCID: PMC2662411 DOI: 10.1371/journal.pone.0005198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 03/09/2009] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays. Specific transcriptional responses to the different iron sources were observed, including genes that are not part of the response to iron restriction. Comparisons between growth on haemoglobin and either transferrin or lactoferrin identified changes in 124 and 114 genes, respectively, and 33 genes differed between growth on transferrin or lactoferrin. Comparison of gene expression from growth on haemoglobin or ferric iron showed that transcription is also affected by the entry of either haem or ferric iron into the cytoplasm. This is consistent with a model in which N. meningitidis uses the relative availability of host iron donor proteins as niche indicators. Growth in the presence of haemoglobin is associated with a response likely to be adaptive to survival within the bloodstream, which is supported by serum killing assays that indicate growth on haemoglobin significantly increases survival, and the response to lactoferrin is associated with increased expression of epithelial cell adhesins and oxidative stress response molecules. The transferrin receptor is the most highly transcribed receptor and has the fewest genes specifically induced in its presence, suggesting this is the favoured iron source for the bacterium. Most strikingly, the responses to haemoglobin, which is associated with unrestricted growth, indicates a low iron transcriptional profile, associated with an aggressive phenotype that may be adaptive to access host iron sources but which may also underlie the lethal features of meningococcal septicaemia, when haemoglobin may become a major source of iron.
Collapse
Affiliation(s)
- Philip W. Jordan
- The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nigel J. Saunders
- The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Hagen TA, Cornelissen CN. Neisseria gonorrhoeae requires expression of TonB and the putative transporter TdfF to replicate within cervical epithelial cells. Mol Microbiol 2006; 62:1144-57. [PMID: 17038122 DOI: 10.1111/j.1365-2958.2006.05429.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neisseria gonorrhoeae has evolved a repertoire of iron acquisition systems that facilitate essential iron uptake in the human host. Acquisition of iron requires both the energy-harnessing cytoplasmic membrane protein, TonB, as well as specific outer membrane TonB-dependent transporters (TdTs.) Survival within host epithelial cells is important to the pathogenesis of gonococcal disease and may contribute to the persistence of infection. However, the mechanisms by which gonococci acquire iron within this intracellular niche are not currently understood. In this study, we investigated the survival of gonococcal strain FA1090 within ME180 human cervical epithelial cells with respect to high affinity iron acquisition. Intracellular survival was dependent upon iron supplied by the host cell. TonB was expressed in the host cell environment and this protein was critical to gonococcal intracellular survival. Furthermore, expression of the characterized outer membrane transporters TbpA, FetA and LbpA and putative transporters TdfG, TdfH and TdfJ were not necessary for intracellular survival. Conversely, intracellular survival was dependent on expression of the putative transporter, TdfF. Expression of TdfF was detected in the presence of epithelial cell culture media containing fetal bovine serum. Expression was further modulated by iron availability. To our knowledge, this study is the first to demonstrate the specific requirement for a single iron transporter in the survival of a bacterial pathogen within host epithelial cells.
Collapse
Affiliation(s)
- Tracey A Hagen
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | |
Collapse
|
25
|
Nikulin J, Panzner U, Frosch M, Schubert-Unkmeir A. Intracellular survival and replication of Neisseria meningitidis in human brain microvascular endothelial cells. Int J Med Microbiol 2006; 296:553-8. [PMID: 17010667 DOI: 10.1016/j.ijmm.2006.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 06/14/2006] [Accepted: 06/14/2006] [Indexed: 11/30/2022] Open
Abstract
To cause meningitis the extracellular pathogen Neisseria meningitidis has to traverse the blood-cerebrospinal fluid (B-CSF) barrier. Postulating a transcellular passage, meningococci (MC) have been shown to adhere to and enter B-CSF barrier forming human brain microvascular endothelial cells (HBMEC). Furthermore, electron microscopy studies demonstrated that intracellular MC reside within membrane-bound compartments, both solitary and in groups. To investigate the ability of MC to survive and replicate intracellularly, prolonged gentamicin protection assays were performed. Encapsulated bacteria were found to survive and, after an initial delay, to replicate within HBMEC, whereas the number of intracellular capsule-deficient mutants decreased continuously. This strongly suggests that the capsule plays a pivotal role in the intracellular survival of MC. Further investigations were initiated to characterise the membrane-bound compartment, the Neisseria-containing vacuole (NCV). Immunfluorescence microscopy studies showed that NCVs interact with the endocytic pathway acquiring the early endosomal marker protein, transferrin receptor (TfR), and the late endosomal/lysosomal marker protein Lamp-1.
Collapse
Affiliation(s)
- Joanna Nikulin
- Institute of Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Str. 2/E1, D-97080 Wuerzburg, Germany
| | | | | | | |
Collapse
|
26
|
Delany I, Rappuoli R, Scarlato V. Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 2004; 52:1081-90. [PMID: 15130126 DOI: 10.1111/j.1365-2958.2004.04030.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. Four promoters of Neisseria meningitidis predicted to have Fur-binding boxes were selected to study the molecular interactions between Fur and the promoter regions of genes expected to play a central role in survival and pathogenesis. We demonstrate that Fur acts not only as a repressor, but also as an activator of gene expression both in vivo and in vitro. We report that Fur binds to operators located upstream of three promoters that are positively regulated in vivo by Fur and iron, whereas Fur binds to an operator overlapping the classically iron-repressed tbp promoter. Deletion of the upstream operator in the norB promoter abolished activation of transcription in vivo in response to iron and in vitro in response to Fur. The role of such a dual mechanism of Fur regulation during infection is discussed.
Collapse
Affiliation(s)
- Isabel Delany
- Biochemistry and Molecular Biology Unit, IRIS, Chiron S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
27
|
Larson JA, Howie HL, So M. Neisseria meningitidis accelerates ferritin degradation in host epithelial cells to yield an essential iron source. Mol Microbiol 2004; 53:807-20. [PMID: 15255894 DOI: 10.1111/j.1365-2958.2004.04169.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In order to colonize humans and cause disease, pathogenic bacteria must assimilate iron from their host. The vast majority of non-haem iron in humans is localized intracellularly, within the storage molecule ferritin. Despite the vast reserves of iron within ferritin, no pathogen has been demonstrated previously to exploit this molecule as an iron source. Here, we show that the Gram-negative diplococcus Neisseria meningitidis can trigger rapid redistribution and degradation of cytosolic ferritin within infected epithelial cells. Indirect immunofluorescence microscopy revealed that cytosolic ferritin is aggregated and recruited to intracellular meningococci (MC). The half-life of ferritin within cultured epithelial cells was found to decrease from 20.1 to 5.3 h upon infection with MC. Supplementation of infected epithelial cells with ascorbic acid abolished ferritin redistribution and degradation and prevented intracellular MC from replicating. The lysosomal protease inhibitor leupeptin slowed ferritin turnover and also retarded MC replication. Our laboratory has shown recently that MC can interfere with transferrin uptake by infected cells (Bonnah R.A., et al., 2000, Cell Microbiol 2: 207-218) and that, perhaps as a result, the infected cells have a transcriptional profile indicative of iron starvation (Bonnah, R.A., et al., 2004, Cell Microbiol 6: 473-484). In view of these findings, we suggest that accelerated ferritin degradation occurs as a response to an iron starvation state induced by MC infection and that ferritin degradation provides intracellular MC with a critical source of iron.
Collapse
Affiliation(s)
- Jason A Larson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
28
|
Abstract
During periods of endemic disease, about 10 % of the general population harbour Neisseria meningitidis in the nasopharynx. Since N. meningitidis is a strict human pathogen and most patients have not been in contact with other cases, asymptomatic carriers are presumably the major source of the pathogenic strains. Most carrier isolates are shown to lack capsule production. The capsule deficient state of meningococcal strains in the nasopharynx may aid evasion of the human immune defence and hence be selected to survive nasopharyngeal colonization. Carriage itself can be an immunizing process resulting in systemic protective antibody responses. Frequent nasopharyngeal colonization with related bacteria like Neisseria lactamica improves natural immunity to meningococci by the formation of cross-reacting antibodies. While most meningococcal strains recovered from patients belong to a limited number of clonal groups worldwide, strains isolated from carriers comprise numerous genotypes, with only a small proportion of the strains representing invasive clones. During the carriage state, co-colonization with other pathogenic and non-pathogenic bacteria may lead to genetic exchange, which may result in the emergence of new meningococcal clones. The high diversity of meningococcal carrier strains, compared with hypervirulent strains, supports the idea that transmissibility, not invasion, is essential in the life cycle of N. meningitidis.
Collapse
Affiliation(s)
- Siamak P Yazdankhah
- Department of Airborne Infections, Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403 Oslo, Norway 2Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Dominique A Caugant
- Department of Airborne Infections, Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403 Oslo, Norway 2Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Bonnah RA, Muckenthaler MU, Carlson H, Minana B, Enns CA, Hentze MW, So M. Expression of epithelial cell iron-related genes upon infection by Neisseria meningitidis. Cell Microbiol 2004; 6:473-84. [PMID: 15056217 DOI: 10.1111/j.1462-5822.2004.00376.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection by the obligate human pathogens Neisseria meningitidis (MC) and Neisseria gonorrhoeae (GC) reduces the expression of host epithelial cell transferrin receptor 1 (TfR-1) (Bonnah et al., 2000, Cellular Microbiology 2: 207-218). In addition, the rate and pattern of TfR-1 cycling is altered, leading to diminished uptake of Tf-iron by infected host cells. As Tf-iron is important for maintaining iron homeostasis in the eukaryotic cell, these findings raised the possibility that Neisseria infection might affect further pathways of epithelial cell iron metabolism. We used a specialized cDNA microarray platform, the 'IronChip', to investigate the expression of genes involved in iron transport, storage and regulation. We show that mRNA expression of several host genes involved in iron homeostasis is altered. Surprisingly, the general mRNA expression profile of infected cells closely resembled that of uninfected cells grown in an iron-limited environment. An important exception to this profile is TfR-1, the mRNA level of which is strongly reduced. Low TfR-1 expression may be explained in part by decreased activity of the iron-regulatory proteins (IRPs) in MC-infected cells, which may result in the destabilization of TfR-1 mRNA. Intriguingly, low IRP activity contrasts with the decrease in H-ferritin protein levels in infected cells. This finding suggests that low IRP activity may be responsible in part for the decrease in TfR-1 mRNA levels. A discussion of these novel findings in relation to MC infection and virulence is provided.
Collapse
Affiliation(s)
- Robert A Bonnah
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68:154-71. [PMID: 15007100 PMCID: PMC362107 DOI: 10.1128/mmbr.68.1.154-171.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquisition of iron and iron complexes has long been recognized as a major determinant in the pathogenesis of Neisseria meningitidis. In this review, high-affinity iron uptake systems, which allow meningococci to utilize the human host proteins transferrin, lactoferrin, hemoglobin, and haptoglobin-hemoglobin as sources of essential iron, are described. Classic features of bacterial iron transport systems, such as regulation by the iron-responsive repressor Fur and TonB-dependent transport activity, are discussed, as well as more specific features of meningococcal iron transport. Our current understanding of how N. meningitidis acquires iron from the human host and the vaccine potentials of various components of these iron transport systems are also reviewed.
Collapse
Affiliation(s)
- Donna Perkins-Balding
- Rollins Research Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
31
|
Delany I, Ieva R, Alaimo C, Rappuoli R, Scarlato V. The iron-responsive regulator fur is transcriptionally autoregulated and not essential in Neisseria meningitidis. J Bacteriol 2003; 185:6032-41. [PMID: 14526014 PMCID: PMC225026 DOI: 10.1128/jb.185.20.6032-6041.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Accepted: 07/28/2003] [Indexed: 11/20/2022] Open
Abstract
Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. The fur gene in Neisseria meningitidis has been described as an essential gene that may regulate a broad array of genes. We succeeded in obtaining an N. meningitidis mutant with the fur gene knocked out and used it to undertake studies of fur-mediated iron regulation. We show that expression of both Fur and the transferrin binding protein Tbp2 is iron regulated and demonstrate that this regulation is Fur mediated for the Tbp2 protein. Footprinting analysis revealed that Fur binds to two distinct sites upstream of its coding region with different affinities and that these binding sites overlap two promoters that differentially control transcription of the fur gene in response to iron. The presence of two independently regulated fur promoters may allow meningococcus to fine-tune expression of this regulator controlling iron homeostasis, possibly during infection.
Collapse
Affiliation(s)
- Isabel Delany
- Biochemistry and Molecular Biology Unit, IRIS, Chiron S.r.l., 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
32
|
Runyen-Janecky LJ, Reeves SA, Gonzales EG, Payne SM. Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect Immun 2003; 71:1919-28. [PMID: 12654809 PMCID: PMC152062 DOI: 10.1128/iai.71.4.1919-1928.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri possesses multiple iron acquisition systems, including proteins involved in the synthesis and uptake of siderophores and the Feo system for ferrous iron utilization. We identified an additional S. flexneri putative iron transport gene, sitA, in a screen for S. flexneri genes that are induced in the eukaryotic intracellular environment. sitA was present in all Shigella species and in most enteroinvasive Escherichia coli strains but not in any other E. coli isolates tested. The sit locus consists of four genes encoding a potential ABC transport system. The deduced amino acid sequence of the S. flexneri sit locus was homologous to the Salmonella enterica serovar Typhimurium Sit and Yersinia pestis Yfe systems, which mediate both manganese and iron transport. The S. flexneri sit promoter was repressed by either iron or manganese, and the iron repression was partially dependent upon Fur. A sitA::cam mutation was constructed in S. flexneri. The sitA mutant showed reduced growth, relative to the wild type, in Luria broth containing an iron chelator but formed wild-type plaques on Henle cell monolayers, indicating that the sitA mutant was able to acquire iron and/or manganese in the host cell. However, mutants defective in two of these iron acquisition systems (sitA iucD, sitA feoB, and feoB iucD) formed slightly smaller plaques on Henle cell monolayers. A strain carrying mutations in sitA, feoB, and iucD did not form plaques on Henle cell monolayers.
Collapse
Affiliation(s)
- L J Runyen-Janecky
- Section for Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-0162, USA
| | | | | | | |
Collapse
|
33
|
Dietrich G, Kurz S, Hübner C, Aepinus C, Theiss S, Guckenberger M, Panzner U, Weber J, Frosch M. Transcriptome analysis of Neisseria meningitidis during infection. J Bacteriol 2003; 185:155-64. [PMID: 12486052 PMCID: PMC141974 DOI: 10.1128/jb.185.1.155-164.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is the cause of septicemia and meningococcal meningitis. During the course of infection, N. meningitidis encounters multiple environments within its host, which makes rapid adaptation to environmental changes a crucial factor for neisserial pathogenicity. Employing oligonucleotide-based DNA microarrays, we analyzed the transcriptome of N. meningitidis during two key steps of meningococcal infection, i.e., the interaction with epithelial cells (HeLa cells) and endothelial cells (human brain microvascular endothelial cells). Seventy-two genes were differentially regulated after contact with epithelial cells, and 48 genes were differentially regulated after contact with endothelial cells, including a considerable proportion of well-known virulence genes. While a considerable number of genes were in concordance between bacteria adherent to both cell types, we identified several open reading frames that were differentially regulated in only one system. The data obtained with this novel approach may provide insight into the pathogenicity mechanisms of N. meningitidis and could demonstrate the importance of gene regulation on the transcriptional level during different stages of meningococcal infection.
Collapse
Affiliation(s)
- Guido Dietrich
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Barnard TJ, Johnson JR. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 2002; 70:7156-60. [PMID: 12438401 PMCID: PMC133021 DOI: 10.1128/iai.70.12.7156-7160.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IroN was recently identified in the extracellular pathogenic Escherichia coli strain CP9. In this study experimental evidence demonstrating that IroN mediates utilization of the siderophore enterobactin was obtained, thereby establishing IroN as a catecholate siderophore receptor. In a mouse model of ascending urinary tract infection the presence of iroN contributed significantly to CP9's ability to colonize the mouse bladder, kidneys, and urine, evidence that IroN is a urovirulence factor. However, growth in human urine ex vivo and adherence to uroepithelial cells in vitro were equivalent for an isogenic mutant deficient in IroN (CP82) and its wild-type parent (CP9). Taken together, these findings establish that IroN is a siderophore receptor and a urovirulence factor. However, uncertainty exists as to the mechanism(s) via which IroN contributes to urovirulence.
Collapse
Affiliation(s)
- Thomas A Russo
- Department of Medicine, University of Buffalo, New York 14214, USA.
| | | | | | | | | | | |
Collapse
|