1
|
Chen L, Zhao X, Wongso S, Lin Z, Wang S. Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence. THE ISME JOURNAL 2024; 18:wrae214. [PMID: 39441988 PMCID: PMC11538992 DOI: 10.1093/ismejo/wrae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Parasite-host co-evolution results in population extinction or co-existence, yet the factors driving these distinct outcomes remain elusive. In this study, Salmonella strains were individually co-evolved with the lytic phage SF1 for 30 days, resulting in phage extinction or co-existence. We conducted a systematic investigation into the phenotypic and genetic dynamics of evolved host cells and phages to elucidate the evolutionary mechanisms. Throughout co-evolution, host cells displayed diverse phage resistance patterns: sensitivity, partial resistance, and complete resistance, to wild-type phage. Moreover, phage resistance strength showed a robust linear correlation with phage adsorption, suggesting that surface modification-mediated phage attachment predominates as the resistance mechanism in evolved bacterial populations. Additionally, bacterial isolates eliminating phages exhibited higher mutation rates and lower fitness costs in developing resistance compared to those leading to co-existence. Phage resistance genes were classified into two categories: key mutations, characterized by nonsense/frameshift mutations in rfaH-regulated rfb genes, leading to the removal of the receptor O-antigen; and secondary mutations, which involve less critical modifications, such as fimbrial synthesis and tRNA modification. The accumulation of secondary mutations resulted in partial and complete resistance, which could be overcome by evolved phages, whereas key mutations conferred undefeatable complete resistance by deleting receptors. In conclusion, higher key mutation frequencies with lower fitness costs promised strong resistance and eventual phage extinction, whereas deficiencies in fitness cost, mutation rate, and key mutation led to co-existence. Our findings reveal the distinct population dynamics and evolutionary trade-offs of phage resistance during co-evolution, thereby deepening our understanding of microbial interactions.
Collapse
Affiliation(s)
- Lin Chen
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington Street SW, Blacksburg, Virginia 24061, United States
| | - Shelyn Wongso
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zhuohui Lin
- Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
2
|
Cantillo Villa Y, Triga A, Katharios P. Polyinfection in Fish Aeromoniasis: A Study of Co-Isolated Aeromonas Species in Aeromonas veronii Outbreaks. Pathogens 2023; 12:1337. [PMID: 38003801 PMCID: PMC10674900 DOI: 10.3390/pathogens12111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
We studied the phenotypic and genomic characteristics related to the virulence and antibiotic resistance of two Aeromonas strains, which were co-isolated before an outbreak of Aeromonas veronii among diseased seabass on Agathonisi Island, Greece, in April 2015. The first strain, AG2.13.2, is a potentially pathogenic mesophilic variant of Aeromonas salmonicida, and the second, AG2.13.5, corresponds to an Aeromonas rivipollensis related to A. rivipollensis KN-Mc-11N1 with an ANI value of 97.32%. AG2.13.2 lacks the type III secretion system just like other mesophilic strains of A. salmonicida. This characteristic has been associated with lower virulence. However, the genome of AG2.13.2 contains other important virulence factors such as type II and type VI secretion systems, and toxins such as rtxA, aerolysin aer/act, and different types of hemolysins. The strain also carries several genes associated with antibiotic resistance such as the tetE efflux pump, and exhibits resistance to tetracycline, ampicillin, and oxolinic acid. In an in vivo challenge test with gilthead seabream larvae, the A. veronii bv sobria strain AG5.28.6 exhibited the highest virulence among all tested strains. Conversely, both A. salmonicida and A. rivipollensis showed minimal virulence when administered alone. Interestingly, when A. veronii bv sobria AG5.28.6 was co-administered with A. rivipollensis, the larvae survival probability increased compared to those exposed to A. veronii bv sobria AG5.28.6 alone. This finding indicates an antagonistic interaction between A. veronii bv sobria AG5.28.6 and A. rivipollensis AG2.13.5. The co-administration of A. veronii bv sobria AG5.28.6 with Aeromonas salmonicida did not yield distinct survival probabilities. Our results validate that the primary pathogen responsible for European seabass aeromoniasis is Aeromonas veronii bv sobria.
Collapse
Affiliation(s)
- Yanelys Cantillo Villa
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Aquatic Biologicals, Thalassocosmos, 71500 Gournes, Greece
| |
Collapse
|
3
|
Xu T, Rasmussen-Ivey CR, Moen FS, Fernández-Bravo A, Lamy B, Beaz-Hidalgo R, Khan CD, Castro Escarpulli G, Yasin ISM, Figueras MJ, Azzam-Sayuti M, Karim MM, Alam KMM, Le TTT, Thao NHP, Addo S, Duodu S, Ali S, Latif T, Mey S, Somony T, Liles MR. A Global Survey of Hypervirulent Aeromonas hydrophila (vAh) Identified vAh Strains in the Lower Mekong River Basin and Diverse Opportunistic Pathogens from Farmed Fish and Other Environmental Sources. Microbiol Spectr 2023; 11:e0370522. [PMID: 36815836 PMCID: PMC10101000 DOI: 10.1128/spectrum.03705-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
Hypervirulent Aeromonas hydrophila (vAh) has emerged as the etiologic agent of epidemic outbreaks of motile Aeromonas septicemia (MAS) in high-density aquaculture of farmed carp in China and catfish in the United States, which has caused millions of tons of lost fish. We conducted a global survey to better understand the evolution, geographical distribution, and phylogeny of vAh. Aeromonas isolates were isolated from fish that showed clinical symptoms of MAS, and pure cultures were screened for the ability to utilize myo-inositol as the sole carbon source. A total of 113 myo-inositol-utilizing bacterial strains were included in this study, including additional strains obtained from previously published culture collections. Based on a gyrB phylogeny, this collection included 66 A. hydrophila isolates, 48 of which were vAh. This collection also included five new vAh isolates from diseased Pangas catfish (Pangasius pangasius) and striped catfish (Pangasianodon hypophthalmus) obtained in Cambodia and Vietnam, respectively. Genome sequences were generated from representative vAh and non-vAh isolates to evaluate the potential for lateral genetic transfer of the myo-inositol catabolism pathway. Phylogenetic analyses of each of the nine genes required for myo-inositol utilization revealed the close affiliation of vAh strains regardless of geographic origin and suggested lateral genetic transfer of this catabolic pathway from an Enterobacter species. Prediction of virulence factors was conducted to determine differences between vAh and non-vAh strains in terms of virulence and secretion systems. Core genome phylogenetic analyses on vAh isolates and Aeromonas spp. disease isolates (55 in total) were conducted to evaluate the evolutionary relationships among vAh and other Aeromonas sp. isolates, which supported the clonal nature of vAh isolates. IMPORTANCE This global survey of vAh brought together scientists that study fish disease to evaluate the evolution, geographical distribution, phylogeny, and hosts of vAh and other Aeromonas sp. isolates. In addition to vAh isolates from China and the United States, four new vAh isolates were isolated from the lower Mekong River basin in Cambodia and Vietnam, indicating the significant threat of vAh to modern aquaculture and the need for improved biosecurity to prevent vAh spread.
Collapse
Affiliation(s)
- Tingbi Xu
- Department of Biological Sciences, Auburn University, Alabama, USA
| | | | | | - Ana Fernández-Bravo
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, Reus, Spain
| | - Brigitte Lamy
- INSERM U1065, Laboratoire de Bactériologie, CHU Nice, Faculté de Médecine, Université Côte d’Azur, Nice, France
- Centre for Molecular Bacteriology and Infection, Imperial College of London, London, United Kingdom
| | - Roxana Beaz-Hidalgo
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, Reus, Spain
| | - Chan Dara Khan
- Aquatic Animal Health and Disease Management Office, Department of Aquaculture Development, Fisheries Administration, Ministry of Agriculture Forestry and Fisheries, Phnom Penh, Cambodia
| | - Graciela Castro Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ina Salwany M. Yasin
- Department of Aquaculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maria J. Figueras
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, Reus, Spain
| | | | | | | | - Thao Thu Thi Le
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ngo Huynh Phuong Thao
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Samuel Addo
- Department of Marine and Fisheries Sciences, University of Ghana, Legon, Ghana
| | - Samuel Duodu
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Legon, Ghana
| | - Shahzad Ali
- Wildlife Epidemiology and Molecular Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pattoki, Pakistan
| | - Tooba Latif
- Wildlife Epidemiology and Molecular Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pattoki, Pakistan
| | - Sothea Mey
- Aquatic Animal Health and Disease Management Office, Department of Aquaculture Development, Fisheries Administration, Ministry of Agriculture Forestry and Fisheries, Phnom Penh, Cambodia
| | - Thay Somony
- Aquatic Animal Health and Disease Management Office, Department of Aquaculture Development, Fisheries Administration, Ministry of Agriculture Forestry and Fisheries, Phnom Penh, Cambodia
| | - Mark R. Liles
- Department of Biological Sciences, Auburn University, Alabama, USA
| |
Collapse
|
4
|
Antibacterial activity of supernatants of Lactoccocus lactis, Lactobacillus rhamnosus, Pediococcus pentosaceus and curcumin against Aeromonas hydrophila. In vitro study. Vet Res Commun 2022; 46:459-470. [PMID: 34997440 DOI: 10.1007/s11259-021-09871-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Secretions of beneficial intestinal bacteria can inhibit the growth and biofilm formation of a wide range of microorganisms. Curcumin has shown broad spectrum antioxidant, anti-inflammatory, and antimicrobial potential. It is important to evaluate the influence of these secretions with bioactive peptides, in combination with curcumin, to limit growth and inhibit biofilm formation of pathogenic bacteria of importance in aquaculture. In the present study, the supernatants of Lactoccocus lactis NZ9000, Lactobacillus rhamnosus GG and Pediococcus pentosaceus NCDO 990, and curcumin (0,1,10,25 and 50 μM) were used to evaluate their efficacy in growth, inhibition biofilm and membrane permeability of Aeromonas hydrophila CAIM 347 (A. hydrophila). The supernatants of probiotics and curcumin 1,10 and 25 μM exerted similar effects in reducing the growth of A. hydrophila at 12 h of interaction. The supernatants of the probiotics and curcumin 25 and 50 μM exerted similar effects in reducing the biofilm of A. hydrophila. There is a significant increase in the membrane permeability of A. hydrophila in interaction with 50 μM curcumin at two hours of incubation and with the supernatants separately in the same period. Different modes of action of curcumin and bacteriocins separately were demonstrated as effective substitutes for antibiotics in containing A. hydrophila and avoiding the application of antibiotics. The techniques implemented in this study provide evidence that there is no synergy between treatments at the selected concentrations and times.
Collapse
|
5
|
Surface Glucan Structures in Aeromonas spp. Mar Drugs 2021; 19:md19110649. [PMID: 34822520 PMCID: PMC8625153 DOI: 10.3390/md19110649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Aeromonas spp. are generally found in aquatic environments, although they have also been isolated from both fresh and processed food. These Gram-negative, rod-shaped bacteria are mostly infective to poikilothermic animals, although they are also considered opportunistic pathogens of both aquatic and terrestrial homeotherms, and some species have been associated with gastrointestinal and extraintestinal septicemic infections in humans. Among the different pathogenic factors associated with virulence, several cell-surface glucans have been shown to contribute to colonization and survival of Aeromonas pathogenic strains, in different hosts. Lipopolysaccharide (LPS), capsule and α-glucan structures, for instance, have been shown to play important roles in bacterial–host interactions related to pathogenesis, such as adherence, biofilm formation, or immune evasion. In addition, glycosylation of both polar and lateral flagella has been shown to be mandatory for flagella production and motility in different Aeromonas strains, and has also been associated with increased bacterial adhesion, biofilm formation, and induction of the host proinflammatory response. The main aspects of these structures are covered in this review.
Collapse
|
6
|
Gonçalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho EVMM, Coelho LCBB. The genus Aeromonas: A general approach. Microb Pathog 2019; 130:81-94. [PMID: 30849490 DOI: 10.1016/j.micpath.2019.02.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The genus Aeromonas comprises more than thirty Gram-negative bacterial species which mostly act as opportunistic microorganisms. These bacteria are distributed naturally in diverse aquatic ecosystems, where they are easily isolated from animals such as fish and crustaceans. A capacity for adaptation also makes Aeromonas able to colonize terrestrial environments and their inhabitants, so these microorganisms can be identified from different sources, such as soils, plants, fruits, vegetables, birds, reptiles, amphibians, among others. Infectious processes usually develop in immunocompromised humans; in fish and other marine animals this process occurs under conditions of stress. Such events are most often associated with incorrect practices in aquaculture. Aeromonas has element diverse ranges, denominated virulence factors, which promote adhesion, colonization and invasion into host cells. These virulence factors, such as membrane components, enzymes and toxins, for example, are differentially expressed among species, making some strains more virulent than others. Due to their diversity, no single virulence factor was considered determinant in the infectious process generated by these microorganisms. Unlike other genera, Aeromonas species are erroneously differentiated by conventional biochemical tests. Therefore, molecular assays are necessary for this purpose. Nevertheless, new means of identification have been considered in order to generate methods that, like molecular tests, can correctly identify these microorganisms. The main objectives of this review are to explain environmental and structural characteristics of the Aeromonas genus and to discuss virulence mechanisms that these bacteria use to infect aquatic organisms and humans, which are important aspects for aquaculture and public health, respectively. In addition, this review aims to clarify new tests for the precise identification of the species of Aeromonas, contributing to the exact and specific diagnosis of infections by these microorganisms and consequently the treatment.
Collapse
Affiliation(s)
- Rafael Bastos Gonçalves Pessoa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Elba Verônica Matoso Maciel de Carvalho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
7
|
Cao H, Wang M, Wang Q, Xu T, Du Y, Li H, Qian C, Yin Z, Wang L, Wei Y, Wu P, Guo X, Yang B, Liu B. Identifying genetic diversity of O antigens in Aeromonas hydrophila for molecular serotype detection. PLoS One 2018; 13:e0203445. [PMID: 30183757 PMCID: PMC6124807 DOI: 10.1371/journal.pone.0203445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
Aeromonas hydrophila is a globally occurring, potentially virulent, gram-negative opportunistic pathogen that is known to cause water and food-borne diseases around the world. In this study, we use whole genome sequencing and in silico analyses to identify 14 putative O antigen gene clusters (OGCs) located downstream of the housekeeping genes acrB and/or oprM. We have also identified 7 novel OGCs by analyzing 15 publicly available genomes of different A. hydrophila strains. From the 14 OGCs identified initially, we have deduced that O antigen processing genes involved in the wzx/wzy pathway and the ABC transporter (wzm/wzt) pathway exhibit high molecular diversity among different A. hydrophila strains. Using these genes, we have developed a multiplexed Luminex-based array system that can identify up to 14 A. hydrophila strains. By combining our other results and including the sequences of processing genes from 13 other OGCs (7 OGCs identified from publicly available genome sequences and 6 OGCs that were previously published), we also have the data to create an array system that can identify 25 different A. hydrophila serotypes. Although clinical detection, epidemiological surveillance, and tracing of pathogenic bacteria are typically done using serotyping methods that rely on identifying bacterial surface O antigens through agglutination reactions with antisera, molecular methods such as the one we have developed may be quicker and more cost effective. Our assay shows high specificity, reproducibility, and sensitivity, being able to classify A. hydrophila strains using just 0.1 ng of genomic DNA. In conclusion, our findings indicate that a molecular serotyping system for A. hydrophila could be developed based on specific genes, providing an important molecular tool for the identification of A. hydrophila serotypes.
Collapse
Affiliation(s)
- Hengchun Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Min Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Qian Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Tingting Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Huiying Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Chengqian Qian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Lu Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Pan Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
| | - Bin Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
- * E-mail: (BY); (BL)
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, China
- * E-mail: (BY); (BL)
| |
Collapse
|
8
|
Rasmussen-Ivey CR, Hossain MJ, Odom SE, Terhune JS, Hemstreet WG, Shoemaker CA, Zhang D, Xu DH, Griffin MJ, Liu YJ, Figueras MJ, Santos SR, Newton JC, Liles MR. Classification of a Hypervirulent Aeromonas hydrophila Pathotype Responsible for Epidemic Outbreaks in Warm-Water Fishes. Front Microbiol 2016; 7:1615. [PMID: 27803692 PMCID: PMC5067525 DOI: 10.3389/fmicb.2016.01615] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/27/2016] [Indexed: 11/24/2022] Open
Abstract
Lineages of hypervirulent Aeromonas hydrophila (vAh) are the cause of persistent outbreaks of motile Aeromonas septicemia in warm-water fishes worldwide. Over the last decade, this virulent lineage of A. hydrophila has resulted in annual losses of millions of tons of farmed carp and catfish in the People's Republic of China and the United States (US). Multiple lines of evidence indicate US catfish and Asian carp isolates of A. hydrophila affiliated with sequence type 251 (ST251) share a recent common ancestor. To address the genomic context for the putative intercontinental transfer and subsequent geographic spread of this pathogen, we conducted a core genome phylogenetic analysis on 61 Aeromonas spp. genomes, of which 40 were affiliated with A. hydrophila, with 26 identified as epidemic strains. Phylogenetic analyses indicate all ST251 strains form a coherent lineage affiliated with A. hydrophila. Within this lineage, conserved genetic loci unique to A. hydrophila were identified, with some genes present in consistently higher copy numbers than in non-epidemic A. hydrophila isolates. In addition, results from analyses of representative ST251 isolates support the conclusion that multiple lineages are present within US vAh isolated from Mississippi, whereas vAh isolated from Alabama appear clonal. This is the first report of genomic heterogeneity within US vAh isolates, with some Mississippi isolates showing closer affiliation with the Asian grass carp isolate ZC1 than other vAh isolated in the US. To evaluate the biological significance of the identified heterogeneity, comparative disease challenges were conducted with representatives of different vAh genotypes. These studies revealed that isolate ZC1 yielded significantly lower mortality in channel catfish, relative to Alabama and Mississippi vAh isolates. Like other Asian vAh isolates, the ZC1 lineage contains all core genes for a complete type VI secretion system (T6SS). In contrast, more virulent US isolates retain only remnants of the T6SS (clpB, hcp, vgrG, and vasH) which may have functional implications. Collectively, these results characterize a hypervirulent A. hydrophila pathotype that affects farmed fish on multiple continents.
Collapse
Affiliation(s)
| | | | - Sara E Odom
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| | - Jeffery S Terhune
- School of Fisheries, Aquaculture and Aquatic Sciences Auburn, AL, USA
| | | | - Craig A Shoemaker
- Aquatic Animal Health Research Unit, United States Department of Agriculture-Agricultural Research Service Auburn, AL, USA
| | - Dunhua Zhang
- Aquatic Animal Health Research Unit, United States Department of Agriculture-Agricultural Research Service Auburn, AL, USA
| | - De-Hai Xu
- Aquatic Animal Health Research Unit, United States Department of Agriculture-Agricultural Research Service Auburn, AL, USA
| | - Matt J Griffin
- Thad Cochran National Warmwater Aquaculture Center, College of Veterinary Medicine, Mississippi State University Stoneville, MS, USA
| | - Yong-Jie Liu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Maria J Figueras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili Reus, Spain
| | - Scott R Santos
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| | - Joseph C Newton
- Department of Pathobiology, Auburn University Auburn, AL, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| |
Collapse
|
9
|
Affiliation(s)
- Barbara Citterio
- a Department of Biomolecular Sciences; Toxicological, Hygienistic, and Environmental Sciences; University of Urbino "Carlo Bo" ; Urbino , Italy
| | | |
Collapse
|
10
|
Zhang L, Muthana MM, Yu H, McArthur JB, Qu J, Chen X. Characterizing non-hydrolyzing Neisseria meningitidis serogroup A UDP-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase using UDP-N-acetylmannosamine (UDP-ManNAc) and derivatives. Carbohydr Res 2015; 419:18-28. [PMID: 26598987 DOI: 10.1016/j.carres.2015.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/28/2022]
Abstract
Neisseria meningitidis serogroup A non-hydrolyzing uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase (NmSacA) catalyzes the interconversion between UDP-GlcNAc and uridine 5'-diphosphate-N-acetylmannosamine (UDP-ManNAc). It is a key enzyme involved in the biosynthesis of the capsular polysaccharide [-6ManNAcα1-phosphate-]n of N. meningitidis serogroup A, one of the six serogroups (A, B, C, W-135, X, and Y) that account for most cases of N. meningitidis-caused bacterial septicemia and meningitis. N. meningitidis serogroup A is responsible for large epidemics in the developing world, especially in Africa. Here we report that UDP-ManNAc could be used as a substrate for C-terminal His6-tagged recombinant NmSacA (NmSacA-His6) in the absence of UDP-GlcNAc. NmSacA-His6 was activated by UDP-GlcNAc and inhibited by 2-acetamidoglucal and UDP. Substrate specificity study showed that NmSacA-His6 could tolerate several chemoenzymatically synthesized UDP-ManNAc derivatives as substrates although its activity was much lower than non-modified UDP-ManNAc. Homology modeling and molecular docking revealed likely structural determinants of NmSacA substrate specificity. This is the first detailed study of N. meningitidis serogroup A UDP-GlcNAc 2-epimerase.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Musleh M Muthana
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jingyao Qu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Jones BD, Faron M, Rasmussen JA, Fletcher JR. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 2014; 4:32. [PMID: 24639953 PMCID: PMC3945745 DOI: 10.3389/fcimb.2014.00032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies.
Collapse
Affiliation(s)
- Bradley D Jones
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Disease Research, Washington University St. Louis, MO, USA
| | - Matthew Faron
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Jed A Rasmussen
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
12
|
Abstract
Aeromonas species are inhabitants of aquatic environments and are able to cause disease in humans and fish among other animals. In aquaculture, they are responsible for the economically important diseases of furunculosis and motile Aeromonas septicaemia (MAS). Whereas gastroenteritis and wound infections are the major human diseases associated with the genus. As they inhabit and survive in diverse environments, aeromonads possess a wide range of colonisation factors. The motile species are able to swim in liquid environments through the action of a single polar flagellum, the flagellin subunits of which are glycosylated; although essential for function the biological role of glycan addition is yet to be determined. Approximately 60% of aeromonads possess a second lateral flagella system that is expressed in viscous environments for swarming over surfaces; both flagellar systems have been shown to be important in the initial colonisation of surfaces. Subsequently, other non-flagellar colonisation factors are employed; these can be both filamentous and non-filamentous. The aeromonads possess a number of fimbrial systems with the bundle-forming MSHA type IV pilus system, having a major role in human cell adherence. Furthermore, a series of outer-membrane proteins have also been implicated in the aeromonad adhesion process. A number of strains are also capable of cell invasion and that maybe linked with the more invasive diseases of bacteraemia or wound infections. These strains employ cell surface factors that allow the colonisation of these niches that protect them from the host's immune system such as S-layers, capsules or particular lipopolysaccharides.
Collapse
Affiliation(s)
- Rebecca Lowry
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Sabela Balboa
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom; Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
13
|
Implication of lateral genetic transfer in the emergence of Aeromonas hydrophila isolates of epidemic outbreaks in channel catfish. PLoS One 2013; 8:e80943. [PMID: 24278351 PMCID: PMC3835674 DOI: 10.1371/journal.pone.0080943] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/08/2013] [Indexed: 01/29/2023] Open
Abstract
To investigate the molecular basis of the emergence of Aeromonas hydrophila responsible for an epidemic outbreak of motile aeromonad septicemia of catfish in the Southeastern United States, we sequenced 11 A. hydrophila isolates that includes five reference and six recent epidemic isolates. Comparative genomics revealed that recent epidemic A. hydrophila isolates are highly clonal, whereas reference isolates are greatly diverse. We identified 55 epidemic-associated genetic regions with 313 predicted genes that are present in epidemic isolates but absent from reference isolates and 35% of these regions are located within genomic islands, suggesting their acquisition through lateral gene transfer. The epidemic-associated regions encode predicted prophage elements, pathogenicity islands, metabolic islands, fitness islands and genes of unknown functions, and 34 of the genes encoded in these regions were predicted as virulence factors. We found two pilus biogenesis gene clusters encoded within predicted pathogenicity islands. A functional metabolic island that encodes a complete pathway for myo-inositol catabolism was evident by the ability of epidemic A. hydrophila isolates to use myo-inositol as a sole carbon source. Testing of A. hydrophila field isolates found a consistent correlation between myo-inositol utilization as a sole carbon source and the presence of an epidemic-specific genetic marker. All epidemic isolates and one reference isolate shared a novel O-antigen cluster. Altogether we identified four different O-antigen biosynthesis gene clusters within the 11 sequenced A. hydrophila genomes. Our study reveals new insights into the evolutionary changes that have resulted in the emergence of recent epidemic A. hydrophila strains.
Collapse
|
14
|
Raedts J, Lundgren M, Kengen SWM, Li JP, van der Oost J. A novel bacterial enzyme with D-glucuronyl C5-epimerase activity. J Biol Chem 2013; 288:24332-9. [PMID: 23824188 DOI: 10.1074/jbc.m113.476440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosaminoglycans are biologically active polysaccharides that are found ubiquitously in the animal kingdom. The biosynthesis of these complex polysaccharides involves complicated reactions that turn the simple glycosaminoglycan backbone into highly heterogeneous structures. One of the modification reactions is the epimerization of D-glucuronic acid to its C5-epimer L-iduronic acid, which is essential for the function of heparan sulfate. Although L-iduronic acid residues have been shown to exist in polysaccharides of some prokaryotes, there has been no experimental evidence for the existence of a prokaryotic D-glucuronyl C5-epimerase. This work for the first time reports on the identification of a bacterial enzyme with D-glucuronyl C5-epimerase activity. A gene of the marine bacterium Bermanella marisrubri sp. RED65 encodes a protein (RED65_08024) of 448 amino acids that has an overall 37% homology to the human D-glucuronic acid C5-epimerase. Alignment of this peptide with the human and mouse sequences revealed a 60% similarity at the carboxyl terminus. The recombinant protein expressed in Escherichia coli showed epimerization activity toward substrates generated from heparin and the E. coli K5 capsular polysaccharide, thereby providing the first evidence for bacterial D-glucuronyl C5-epimerase activity. These findings may eventually be used for modification of mammalian glycosaminoglycans.
Collapse
Affiliation(s)
- John Raedts
- Laboratory of Microbiology, Wageningen University, 6703 HB Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Singh V, Chaudhary DK, Mani I, Jain R, Mishra BN. Development of diagnostic and vaccine markers through cloning, expression, and regulation of putative virulence-protein-encoding genes of Aeromonas hydrophila. J Microbiol 2013; 51:275-82. [DOI: 10.1007/s12275-013-2437-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/14/2012] [Indexed: 10/26/2022]
|
16
|
Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes. mBio 2013; 4:e00064-13. [PMID: 23611906 PMCID: PMC3638308 DOI: 10.1128/mbio.00064-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic strains remains a challenge for this genus, as it is for other opportunistic pathogens. This paper demonstrates, by using whole-genome sequencing of clinical Aeromonas strains, followed by corresponding virulence assays, that comparative genomics can be used to identify a virulent subtype of A. hydrophila that is aggressive during human infection and more lethal in a mouse model of infection. This aggressive pathotype contained genes for toxin production, toxin secretion, and bacterial motility that likely enabled its pathogenicity. Our results highlight the potential of whole-genome sequencing to transform microbial diagnostics; with further advances in rapid sequencing and annotation, genomic analysis will be able to provide timely information on the identities and virulence potential of clinically isolated microorganisms.
Collapse
|
17
|
Beaz-Hidalgo R, Figueras MJ. Aeromonas spp. whole genomes and virulence factors implicated in fish disease. JOURNAL OF FISH DISEASES 2013; 36:371-388. [PMID: 23305319 DOI: 10.1111/jfd.12025] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 05/27/2023]
Abstract
It is widely recognized that Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish, causing significant mortality in both wild and farmed freshwater and marine fish species that damage the economics of the aquaculture sector. The descriptions of the complete genomes of Aeromonas species have allowed the identification of an important number of virulence genes that affect the pathogenic potential of these bacteria. This review will focus on the most relevant information derived from the available Aeromonas genomes in relation to virulence and on the diverse virulence factors that actively participate in host adherence, colonization and infection, including structural components, extracellular factors, secretion systems, iron acquisition and quorum sensing mechanisms.
Collapse
Affiliation(s)
- R Beaz-Hidalgo
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | |
Collapse
|
18
|
Wu L, Jiang YN, Tang Q, Lin HX, Lu CP, Yao HC. Development of an Aeromonas hydrophila recombinant extracellular protease vaccine. Microb Pathog 2012; 53:183-8. [DOI: 10.1016/j.micpath.2012.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/21/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|
19
|
Yeh HY, Klesius PH. Construction, expression and characterization of 11 putative flagellar apparatus genes of Aeromonas hydrophila AL09-73. JOURNAL OF FISH DISEASES 2012; 35:853-860. [PMID: 22924657 DOI: 10.1111/j.1365-2761.2012.01438.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/27/2011] [Accepted: 09/05/2011] [Indexed: 06/01/2023]
Affiliation(s)
- H-Y Yeh
- Aquatic Animal Health Research Unit, Agricultural Research Service, United States Department of Agriculture, Auburn, AL, USA.
| | | |
Collapse
|
20
|
Shniffer A, Visschedyk DD, Ravulapalli R, Suarez G, Turgeon ZJ, Petrie AA, Chopra AK, Merrill AR. Characterization of an actin-targeting ADP-ribosyltransferase from Aeromonas hydrophila. J Biol Chem 2012; 287:37030-41. [PMID: 22969084 DOI: 10.1074/jbc.m112.397612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mono-ADP-ribosyltransferase (mART) toxins are contributing factors to a number of human diseases, including cholera, diphtheria, traveler's diarrhea, and whooping cough. VahC is a cytotoxic, actin-targeting mART from Aeromonas hydrophila PPD134/91. This bacterium is implicated primarily in diseases among freshwater fish species but also contributes to gastrointestinal and extraintestinal infections in humans. VahC was shown to ADP-ribosylate Arg-177 of actin, and the kinetic parameters were K(m)(NAD(+)) = 6 μM, K(m)(actin) = 24 μM, and k(cat) = 22 s(-1). VahC activity caused depolymerization of actin filaments, which induced caspase-mediated apoptosis in HeLa Tet-Off cells. Alanine-scanning mutagenesis of predicted catalytic residues showed the predicted loss of in vitro mART activity and cytotoxicity. Bioinformatic and kinetic analysis also identified three residues in the active site loop that were critical for the catalytic mechanism. A 1.9 Å crystal structure supported the proposed roles of these residues and their conserved nature among toxin homologues. Several small molecules were characterized as inhibitors of in vitro VahC mART activity and suramin was the best inhibitor (IC(50) = 20 μM). Inhibitor activity was also characterized against two other actin-targeting mART toxins. Notably, these inhibitors represent the first report of broad spectrum inhibition of actin-targeting mART toxins.
Collapse
Affiliation(s)
- Adin Shniffer
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tomás JM. The main Aeromonas pathogenic factors. ISRN MICROBIOLOGY 2012; 2012:256261. [PMID: 23724321 PMCID: PMC3658858 DOI: 10.5402/2012/256261] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022]
Abstract
The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella.
Collapse
Affiliation(s)
- J M Tomás
- Departamento Microbiología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
22
|
The Aeromonas dsbA mutation decreased their virulence by triggering type III secretion system but not flagella production. Microb Pathog 2011; 52:130-9. [PMID: 22198000 DOI: 10.1016/j.micpath.2011.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/17/2011] [Accepted: 10/27/2011] [Indexed: 11/21/2022]
Abstract
Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Dsb (Disulfide bond) proteins play an important role in catalyzing disulfide bond formation in proteins within the periplasmic space. An A. hydrophila dsbA mutant with attenuated virulence using Dictyostelium amoebae as an alternative host model was identified. The attenuated virulence was tested in other animal models (by intraperitoneal injection in fish and mice) and was correlated with the presence of a defective type III secretion system for the first time in non enteric bacteria. The dsbA mutation was shown in several enteric bacteria to involve the outer membrane secretin. The defect in Aeromonas also seems to involve the outer membrane secretin homologue named AscC. However, unlike what happen in Escherichia coli, no changes in motility or flagella expression were observed for A. hydrophila dsbA mutants. The loss of E. coli motility caused by deletion of dsbA is likely due to defective disulfide bond formation in FlgI, a component of the flagella. No disulfide bond formation in FlgI homologues in Aeromonas flagella biogenesis, either polar or lateral, could be expected according to their amino acid residues sequences.
Collapse
|
23
|
Yeh HY, Klesius PH. Over-expression, purification and immune responses to Aeromonas hydrophila AL09-73 flagellar proteins. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1278-1283. [PMID: 21963857 DOI: 10.1016/j.fsi.2011.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/17/2011] [Accepted: 09/18/2011] [Indexed: 05/31/2023]
Abstract
Aeromonas hydrophila is ubiquitous in aquatic environments worldwide and causes many diseases in fish as well as human. Recent outbreaks of aeromonad diseases in channel catfish prompted us to investigate catfish immune responses during infection of A. hydrophila. In this communication, we report to amplify, over-express, purify and characterize 19 A. hydrophila flagellar proteins. All recombinant proteins were confirmed by nucleotide sequencing of expression plasmids, SDS-PAGE analysis and His tag Western blot of induced proteins. Our preliminary result also showed that the purified recombinant FlgK protein reacted strongly to sera from experimentally infected catfish, suggesting that this protein has potential for a novel target for vaccine development. It is also anticipated that these recombinant proteins will provide us with very useful tools to investigate host immune response to this microorganism.
Collapse
Affiliation(s)
- Hung-Yueh Yeh
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832-4352, USA.
| | | |
Collapse
|
24
|
Chhabra G, Upadhyaya T, Dixit A. Molecular cloning, sequence analysis and structure modeling of OmpR, the response regulator of Aeromonas hydrophila. Mol Biol Rep 2011; 39:41-50. [PMID: 21533905 DOI: 10.1007/s11033-011-0708-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/20/2011] [Indexed: 01/03/2023]
Abstract
The ability of bacteria to survive and proliferate in changing environmental conditions, and during host cell invasion is the key to their pathogenicity. In order to achieve this, the bacteria use a signal transduction system, the two component regulatory system, which consists of a sensor kinase and a response regulator. The EnvZ/OmpR system regulates the porin genes ompF/ompC in response to changes in osmolarity. In the present study, the ompR gene of Aeromonas hydrophila (isolate Ah17) was cloned, sequenced and characterized. Further an attempt was made to analyze the structural characteristics of the OmpR protein from Aeromonas hydrophila. The three dimensional structure of the protein was predicted by homology modeling and the modeled structure was compared to other members of two component response regulators. This study would be helpful for structure based drug design approaches to generate drugs against this harmful pathogen to control its proliferation in both human and fish hosts.
Collapse
Affiliation(s)
- Gagan Chhabra
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | |
Collapse
|
25
|
Agarwal S, Gopal K, Chhabra G, Dixit A. Molecular cloning, sequence analysis and homology modeling of galE encoding UDP-galactose 4-epimerase of Aeromonas hydrophila. Bioinformation 2009; 4:216-22. [PMID: 20461162 PMCID: PMC2859578 DOI: 10.6026/97320630004216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 11/15/2009] [Indexed: 11/30/2022] Open
Abstract
A. hydrophila, a ubiquitous gram-negative bacterium present in aquatic environments, has been implicated in illness in humans, fish and amphibians.
Lipopolysaccharides (LPS), a surface component of the outer membrane, are one of the main virulent factors of gram-negative bacteria.
UDP-galactose 4-epimerase (GalE) catalyses the last step in the Leloir pathway of galactose metabolism and provides precursor for the biosynthesis
of extracellular LPS and capsule. Due to its key role in LPS biosynthesis, it is a potential drug target. The present study describes cloning, sequence
analysis and prediction of three dimensional structure of the deduced amino acid sequence of the galE of A. hydrophila AH17. The cloned galE
consists of the putative promoter-operator region, and an open reading frame of 338 amino acid residues. Sequence alignment and predicted 3Dstructure
revealed that the GalE of A. hydrophila consists of the signature sequences of the epimerase super family. The present study reports the
molecular modeling / 3D-structure prediction of GalE of A. hydrophila. Further, the potential regions of the enzyme that can be targeted for drug
design are identified.
Collapse
Affiliation(s)
- Shivani Agarwal
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi - 110067, India
| | | | | | | |
Collapse
|
26
|
The Aeromonas hydrophila wb*O34 gene cluster: genetics and temperature regulation. J Bacteriol 2008; 190:4198-209. [PMID: 18408022 DOI: 10.1128/jb.00153-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aeromonas hydrophila wb*(O34) gene cluster of strain AH-3 (serotype O34) was cloned and sequenced. This cluster contains genes necessary for the production of O34-antigen lipopolysaccharide (LPS) in A. hydrophila. We determined, using either mutation or sequence homology, roles for the majority of genes in the cluster by using the chemical O34-antigen LPS structure obtained for strain AH-3. The O34-antigen LPS export system has been shown to be a Wzy-dependent pathway typical of heteropolysaccharide pathways. Furthermore, the production of A. hydrophila O34-antigen LPS in Escherichia coli K-12 strains is dependent on incorporation of the Gne enzyme (UDP-N-acetylgalactosamine 4-epimerase) necessary for the formation of UDP-galactosamine in these strains. By using rapid amplification of cDNA ends we were able to identify a transcription start site upstream of the terminal wzz gene, which showed differential transcription depending on the growth temperature of the strain. The Wzz protein is able to regulate the O34-antigen LPS chain length. The differential expression of this protein at different temperatures, which was substantially greater at 20 degrees C than at 37 degrees C, explains the previously observed differential production of O34-antigen LPS and its correlation with the virulence of A. hydrophila serotype O34 strains.
Collapse
|
27
|
Upadhyaya T, Singh RK, Dixit A. Molecular cloning and sequence analysis of lamB encoding outer membrane maltose-inducible porin of Aeromonas hydrophila. ACTA ACUST UNITED AC 2007; 18:302-6. [PMID: 17541836 DOI: 10.1080/10425170701248608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aeromonas hydrophila is a significantly important pathogen causing major diseases in humans and fresh water fish. The outer membrane proteins (OMP) which are strong immunogens have been reported to act as adhesins aiding in the attachment of enteropathogenic bacteria. It is of interest to investigate the role of OMP in pathogenesis and their potential as vaccine candidates. In our laboratory, we cloned the gene encoding channel protein LamB porin of A. hydrophila. DNA sequence analysis revealed a full length gene of 1345 bp having a high level of homology with the lamB gene of different bacteria. Open reading frame of A. hydrophila lamB consists of a signal peptide of 25 amino acids, two protein translation start sites ATG present at the 31st and 37th base pairs, a translation termination codon, TAA at 1333rd base pair.
Collapse
Affiliation(s)
- Tanuja Upadhyaya
- Gene Regulation Laboratory, Centre for Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
28
|
Silver AC, Rabinowitz NM, Küffer S, Graf J. Identification of Aeromonas veronii genes required for colonization of the medicinal leech, Hirudo verbana. J Bacteriol 2007; 189:6763-72. [PMID: 17616592 PMCID: PMC2045196 DOI: 10.1128/jb.00685-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most digestive tracts contain a complex consortium of beneficial microorganisms, making it challenging to tease apart the molecular interactions between symbiont and host. The digestive tract of Hirudo verbana, the medicinal leech, is an ideal model system because it harbors a simple microbial community in the crop, comprising the genetically amenable Aeromonas veronii and a Rikenella-like bacterium. Signature-tagged mutagenesis (STM) was used to identify genes required for digestive tract colonization. Of 3,850 transposon (Tn) mutants screened, 46 were identified as colonization mutants. Previously we determined that the complement system of the ingested blood remained active inside the crop and prevented serum-sensitive mutants from colonizing. The identification of 26 serum-sensitive mutants indicated a successful screen. The remaining 20 serum-resistant mutants are described in this study and revealed new insights into symbiont-host interactions. An in vivo competition assay compared the colonization levels of the mutants to that of a wild-type competitor. Attenuated colonization mutants were grouped into five classes: surface modification, regulatory, nutritional, host interaction, and unknown function. One STM mutant, JG736, with a Tn insertion in lpp, encoding Braun's lipoprotein, was characterized in detail. This mutant had a >25,000-fold colonization defect relative to colonization by the wild-type strain at 72 h and, in vitro, an increased sensitivity to sodium dodecyl sulfate, suggesting the presence of an additional antimicrobial property in the crop. The classes of genes identified in this study are consistent with findings from previous STM studies involving pathogenic bacteria, suggesting parallel molecular requirements for beneficial and pathogenic host colonization.
Collapse
Affiliation(s)
- Adam C Silver
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd., Unit-3125, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|
29
|
Canals R, Jiménez N, Vilches S, Regué M, Merino S, Tomás JM. The UDP N-acetylgalactosamine 4-epimerase gene is essential for mesophilic Aeromonas hydrophila serotype O34 virulence. Infect Immun 2006; 74:537-48. [PMID: 16369010 PMCID: PMC1346635 DOI: 10.1128/iai.74.1.537-548.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mesophilic Aeromonas hydrophila strains of serotype O34 typically express smooth lipopolysaccharide (LPS) on their surface. A single mutation in the gene that codes for UDP N-acetylgalactosamine 4-epimerase (gne) confers the O(-) phenotype (LPS without O-antigen molecules) on a strain in serotypes O18 and O34, but not in serotypes O1 and O2. The gne gene is present in all the mesophilic Aeromonas strains tested. No changes were observed for the LPS core in a gne mutant from A. hydrophila strain AH-3 (serotype O34). O34 antigen LPS contains N-acetylgalactosamine, while no such sugar residue forms part of the LPS core from A. hydrophila AH-3. Some of the pathogenic features of A. hydrophila AH-3 gne mutants are drastically reduced (serum resistance or adhesion to Hep-2 cells), and the gne mutants are less virulent for fish and mice compared to the wild-type strain. Strain AH-3, like other mesophilic Aeromonas strains, possess two kinds of flagella, and the absence of O34 antigen molecules by gne mutation in this strain reduced motility without any effect on the biogenesis of both polar and lateral flagella. The reintroduction of the single wild-type gne gene in the corresponding mutants completely restored the wild-type phenotype (presence of smooth LPS) independently of the O wild-type serotype, restored the virulence of the wild-type strain, and restored motility (either swimming or swarming).
Collapse
Affiliation(s)
- Rocío Canals
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Yu HB, Zhang YL, Lau YL, Yao F, Vilches S, Merino S, Tomas JM, Howard SP, Leung KY. Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91. Appl Environ Microbiol 2005; 71:4469-77. [PMID: 16085838 PMCID: PMC1183340 DOI: 10.1128/aem.71.8.4469-4477.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aeromonas hydrophila is a gram-negative opportunistic pathogen of animals and humans. The pathogenesis of A. hydrophila is multifactorial. Genomic subtraction and markers of genomic islands (GIs) were used to identify putative virulence genes in A. hydrophila PPD134/91. Two rounds of genomic subtraction led to the identification of 22 unique DNA fragments encoding 19 putative virulence factors and seven new open reading frames, which are commonly present in the eight virulence strains examined. In addition, four GIs were found, including O-antigen, capsule, phage-associated, and type III secretion system (TTSS) gene clusters. These putative virulence genes and gene clusters were positioned on a physical map of A. hydrophila PPD134/91 to determine their genetic organization in this bacterium. Further in vivo study of insertion and deletion mutants showed that the TTSS may be one of the important virulence factors in A. hydrophila pathogenesis. Furthermore, deletions of multiple virulence factors such as S-layer, serine protease, and metalloprotease also increased the 50% lethal dose to the same level as the TTSS mutation (about 1 log) in a blue gourami infection model. This observation sheds light on the multifactorial and concerted nature of pathogenicity in A. hydrophila. The large number of putative virulence genes identified in this study will form the basis for further investigation of this emerging pathogen and help to develop effective vaccines, diagnostics, and novel therapeutics.
Collapse
Affiliation(s)
- H B Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Republic of Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vilches S, Urgell C, Merino S, Chacón MR, Soler L, Castro-Escarpulli G, Figueras MJ, Tomás JM. Complete type III secretion system of a mesophilic Aeromonas hydrophila strain. Appl Environ Microbiol 2005; 70:6914-9. [PMID: 15528564 PMCID: PMC525241 DOI: 10.1128/aem.70.11.6914-6919.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the existence and genetic organization of a functional type III secretion system (TTSS) in a mesophilic Aeromonas strain by initially using the Aeromonas hydrophila strain AH-3. We report for the first time the complete TTSS DNA sequence of an Aeromonas strain that comprises 35 genes organized in a similar disposition as that in Pseudomonas aeruginosa. Using several gene probes, we also determined the presence of a TTSS in clinical or environmental strains of different Aeromonas species: A. hydrophila, A. veronii, and A. caviae. By using one of the TTSS genes (ascV), we were able to obtain a defined insertion mutant in strain AH-3 (AH-3AscV), which showed reduced toxicity and virulence in comparison with the wild-type strain. Complementation of the mutant strain with a plasmid vector carrying ascV was fully able to restore the wild-type toxicity and virulence.
Collapse
Affiliation(s)
- Silvia Vilches
- Departamento Microbiología, Facultad Biología, Universidad de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yu HB, Rao PSS, Lee HC, Vilches S, Merino S, Tomas JM, Leung KY. A type III secretion system is required for Aeromonas hydrophila AH-1 pathogenesis. Infect Immun 2004; 72:1248-56. [PMID: 14977925 PMCID: PMC356039 DOI: 10.1128/iai.72.3.1248-1256.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aeromonas hydrophila is a gram-negative opportunistic pathogen in fish and humans. Many bacterial pathogens of animals and plants have been shown to inject anti-host virulence determinants into the hosts via a type III secretion system (TTSS). Degenerate primers based on lcrD family genes that are present in every known TTSS allowed us to locate the TTSS gene cluster in A. hydrophila AH-1. A series of genome walking steps helped in the identification of 25 open reading frames that encode proteins homologous to those in TTSSs in other bacteria. PCR-based analysis showed the presence of lcrD homologs (ascV) in all of the 33 strains of A. hydrophila isolated from various sources. Insertional inactivation of two of the TTSS genes (aopB and aopD) led to decreased cytotoxicity in carp epithelial cells, increased phagocytosis, and reduced virulence in blue gourami. These results show that a TTSS is required for A. hydrophila pathogenesis. This is the first report of sequencing and characterization of TTSS gene clusters from A. hydrophila. The TTSS identified here may help in developing suitable vaccines as well as in further understanding of the pathogenesis of A. hydrophila.
Collapse
Affiliation(s)
- H B Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | | | |
Collapse
|
33
|
Braschler TR, Merino S, Tomás JM, Graf J. Complement resistance is essential for colonization of the digestive tract of Hirudo medicinalis by Aeromonas strains. Appl Environ Microbiol 2003; 69:4268-71. [PMID: 12839811 PMCID: PMC165153 DOI: 10.1128/aem.69.7.4268-4271.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From the crop of the medicinal leech, Hirudo medicinalis, only Aeromonas veronii bv. sobria can be cultured consistently. Serum-sensitive A. veronii mutants were unable to colonize H. medicinalis, indicating the importance of the mammalian complement system for this unusual simplicity. Complementation of one selected mutant restored its ability to colonize. Serum-sensitive mutants are the first mutant class with a colonization defect for this symbiosis.
Collapse
Affiliation(s)
- Thomas R Braschler
- Institute for Infectious Diseases, University of Berne, CH-3010 Berne, Switzerland
| | | | | | | |
Collapse
|
34
|
Zhang YL, Lau YL, Arakawa E, Leung KY. Detection and genetic analysis of group II capsules in Aeromonas hydrophila. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1051-1060. [PMID: 12686647 DOI: 10.1099/mic.0.26144-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genetic organization and sequences of the group II capsule gene cluster of Aeromonas hydrophila PPD134/91 have been determined previously. The purified capsular polysaccharides can increase the ability of avirulent strain PPD35/85 to survive in naive tilapia serum but have no inhibitory effect on the adhesion of PPD134/91 to carp epithelial cells. In this study, the presence of group II capsules among 33 randomly chosen A. hydrophila strains was examined by electron microscopy and genetic analysis. Ten strains were found to produce group II capsules. A PCR detection system was developed to identify two types of group II capsules (IIA and IIB) based on their genetic organization in the region II gene clusters. Group IIA capsules in the authors' collection of A. hydrophila strains are mainly found in the O : 18 and O : 34 serogroups, while group IIB capsules are found in the O : 21 and O : 27 serogroups. The presence of group II capsules in A. hydrophila strongly correlates with the serum and phagocyte survival abilities (seven out of ten strains). The results indicate that the authors' PCR detection system can constitute a reliable assay for the classification of group II capsules in A. hydrophila.
Collapse
Affiliation(s)
- Y L Zhang
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Singapore 117543
| | - Y L Lau
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Singapore 117543
| | - E Arakawa
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan 162-8640
| | - K Y Leung
- Tropical Marine Science Institute, The National University of Singapore, Singapore 117543
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Singapore 117543
| |
Collapse
|