1
|
Abstract
Bacteriophages-viruses that infect bacteria-are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Medeea Popescu
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,Immunology Program, School of Medicine, Stanford University, Stanford, California 94305, USA.,These authors contributed equally to this article
| | - Jonas D Van Belleghem
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,These authors contributed equally to this article
| | - Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
2
|
Survival Strategies of Streptococcus pyogenes in Response to Phage Infection. Viruses 2021; 13:v13040612. [PMID: 33918348 PMCID: PMC8066415 DOI: 10.3390/v13040612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
Bacteriophages exert strong evolutionary pressure on their microbial hosts. In their lytic lifecycle, complete bacterial subpopulations are utilized as hosts for bacteriophage replication. However, during their lysogenic lifecycle, bacteriophages can integrate into the host chromosome and alter the host’s genomic make-up, possibly resulting in evolutionary important adjustments. Not surprisingly, bacteria have evolved sophisticated immune systems to protect against phage infection. Streptococcus pyogenes isolates are frequently lysogenic and their prophages have been shown to be major contributors to the virulence of this pathogen. Most S. pyogenes phage research has focused on genomic prophages in relation to virulence, but little is known about the defensive arsenal of S. pyogenes against lytic phage infection. Here, we characterized Phage A1, an S. pyogenes bacteriophage, and investigated several mechanisms that S. pyogenes utilizes to protect itself against phage predation. We show that Phage A1 belongs to the Siphoviridae family and contains a circular double-stranded DNA genome that follows a modular organization described for other streptococcal phages. After infection, the Phage A1 genome can be detected in isolated S. pyogenes survivor strains, which enables the survival of the bacterial host and Phage A1 resistance. Furthermore, we demonstrate that the type II-A CRISPR-Cas system of S. pyogenes acquires new spacers upon phage infection, which are increasingly detectable in the absence of a capsule. Lastly, we show that S. pyogenes produces membrane vesicles that bind to phages, thereby limiting the pool of phages available for infection. Altogether, this work provides novel insight into survival strategies employed by S. pyogenes to combat phage predation.
Collapse
|
3
|
Cravez EM, Nasreddine AY, Halim A. Persistent Streptococcus pyogenes infection of the forearm following blunt trauma. Case Reports Plast Surg Hand Surg 2020; 7:139-144. [PMID: 33354588 PMCID: PMC7738281 DOI: 10.1080/23320885.2020.1858715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Necrotizing soft tissue infections are aggressive manifestations of Streptococcus pyogenes, often described after minor skin trauma. However, a subset of infections may present without cutaneous findings. We report a case of toxic shock syndrome and recalcitrant streptococcal infection of the forearm in a healthy teenager following blunt trauma.
Collapse
Affiliation(s)
- Erin M Cravez
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Adam Y Nasreddine
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Andrea Halim
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Nishiki I, Yoshida T, Fujiwara A. Complete genome sequence and characterization of virulence genes in Lancefield group C Streptococcus dysgalactiae isolated from farmed amberjack (Seriola dumerili). Microbiol Immunol 2019; 63:243-250. [PMID: 31136000 DOI: 10.1111/1348-0421.12716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/19/2023]
Abstract
Lancefield group C Streptococcus dysgalactiae causes infections in farmed fish. Here, the genome of S. dysgalactiae strain kdys0611, isolated from farmed amberjack (Seriola dumerili) was sequenced. The complete genome sequence of kdys0611 consists of a single chromosome and five plasmids. The chromosome is 2,142,780 bp long and has a GC content of 40%. It possesses 2061 coding sequences and 67 tRNA and 6 rRNA operons. One clustered regularly interspaced short palindromic repeat, 125 insertion sequences, and four predicted prophage elements were identified. Phylogenetic analysis based on 126 core genes suggested that the kdys0611 strain is more closely related to S. dysgalactiae subsp. dysgalactiae than to S. dysgalactiae subsp. equisimilis. The genome of kdys0611 harbors 87 genes with sequence similarity to putative virulence-associated genes identified in other bacteria, of which 57 exhibit amino acid identity (>52%) to genes of the S. dysgalactiae subsp. equisimilis GGS124 human clinical isolate. Four putative virulence genes, emm5 (FGCSD_0256), spg_2 (FGCSD_1961), skc (FGCSD_1012), and cna (FGCSD_0159), in kdys0611 did not show significant homology with any deposited S. dysgalactiae genes. The chromosomal sequence of kdys0611 has been deposited in GenBank under Accession No. AP018726. This is the first report of the complete genome sequence of S. dysgalactiae isolated from fish.
Collapse
Affiliation(s)
- Issei Nishiki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | | | - Atushi Fujiwara
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Deniskin R, Shah B, Muñoz FM, Flores AR. Clinical Manifestations and Bacterial Genomic Analysis of Group A Streptococcus Strains That Cause Pediatric Toxic Shock Syndrome. J Pediatric Infect Dis Soc 2018; 8:265-268. [PMID: 30085250 PMCID: PMC6601382 DOI: 10.1093/jpids/piy069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/16/2018] [Indexed: 11/13/2022]
Abstract
We report here 18 cases of pediatric group A streptococcal toxic shock syndrome, associated clinical findings, and bacterial molecular genetic characteristics discovered through whole-genome sequencing. This comparative whole-genome sequencing revealed unique gene content (speK) and polymorphisms (dpiB) in emm87 group A Streptococcus, the relative contributions of which, in combination with the host response, in the development of streptococcal toxic shock syndrome remain to be elucidated.
Collapse
Affiliation(s)
- Roman Deniskin
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston
| | - Brittany Shah
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center at Houston
| | - Flor M Muñoz
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston,Section of Infectious Diseases, Baylor College of Medicine and Texas Children’s Hospital, Houston
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center at Houston,Correspondence: A. R. Flores, MD, MPH, PhD, Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center at Houston, 6431 Fannin St., MSB 3.130, Houston, TX 77030 ()
| |
Collapse
|
6
|
Babbar A, Itzek A, Pieper DH, Nitsche-Schmitz DP. Detection of Streptococcus pyogenes virulence genes in Streptococcus dysgalactiae subsp. equisimilis from Vellore, India. Folia Microbiol (Praha) 2018. [DOI: 10.1007/s12223-018-0595-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Harrison E, Brockhurst MA. Ecological and Evolutionary Benefits of Temperate Phage: What Does or Doesn't Kill You Makes You Stronger. Bioessays 2017; 39. [PMID: 28983932 DOI: 10.1002/bies.201700112] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Indexed: 01/04/2023]
Abstract
Infection by a temperate phage can lead to death of the bacterial cell, but sometimes these phages integrate into the bacterial chromosome, offering the potential for a more long-lasting relationship to be established. Here we define three major ecological and evolutionary benefits of temperate phage for bacteria: as agents of horizontal gene transfer (HGT), as sources of genetic variation for evolutionary innovation, and as weapons of bacterial competition. We suggest that a coevolutionary perspective is required to understand the roles of temperate phages in bacterial populations.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Arthur Willis Environment Centre, Sheffield, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| |
Collapse
|
8
|
Viciani E, Montagnani F, Tordini G, Romano A, Salerni L, De Luca A, Ruggiero P, Manetti AGO. Prevalence of M75 Streptococcus pyogenes Strains Harboring slaA Gene in Patients Affected by Pediatric Obstructive Sleep Apnea Syndrome in Central Italy. Front Microbiol 2017; 8:294. [PMID: 28293224 PMCID: PMC5329643 DOI: 10.3389/fmicb.2017.00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Recently we reported an association between pediatric obstructive sleep apnea syndrome (OSAS) and Group A streptococcus (GAS) sub-acute chronic tonsil colonization. We showed that GAS may contribute to tonsil hyperplasia via a streptolysin O (SLO)-dependent cysteinyl leukotrienes (CysLTs) production, which can trigger T and B cell proliferation. In the present study, we characterized the GAS strains isolated from pediatric OSAS patients in comparison with a panel of age and sex matched GAS strains unrelated to OSAS, but isolated in the same area and during the same period ranging from 2009 to 2013. We found that slaA gene, previously reported to be associated to CysLTs production pathway, was significantly associated to GAS OSAS strains. Moreover, the most numerous group (32%) of the GAS OSAS strains belonged to M75 type, and 6 out of 7 of these strains harbored the slaA gene. Multilocus Sequence Typing (MLST) experiments demonstrated that the clone emm75/ST49/ smeZ, slaA was associated to OSAS cases. In conclusion, we found an association between slaA gene and the GAS OSAS strains, and we showed that the clone emm75/ST49 harboring genes smeZ and slaA was exclusively isolated from patients affected by OSAS, thus suggesting that this genotype might be associated to the pathogenesis of OSAS, although further studies are needed to elucidate the possible role of SlaA in tonsil hypertrophy development.
Collapse
Affiliation(s)
- Elisa Viciani
- GSK Vaccines S.r.l.Siena, Italy; Host-Microbiota Interaction Team, Wellcome Trust Sanger InstituteCambridge, UK
| | - Francesca Montagnani
- Department of Medical Biotechnologies, University of SienaSiena, Italy; Hospital Department of Specialized and Internal Medicine, University Division of Infectious DiseasesSiena, Italy
| | - Giacinta Tordini
- Department of Medical Biotechnologies, University of Siena Siena, Italy
| | - Antonio Romano
- Clinica Otorinolaringoiatrica, Policlinico Universitario "Le Scotte" Siena, Italy
| | - Lorenzo Salerni
- Clinica Otorinolaringoiatrica, Policlinico Universitario "Le Scotte" Siena, Italy
| | - Andrea De Luca
- Department of Medical Biotechnologies, University of SienaSiena, Italy; Hospital Department of Specialized and Internal Medicine, University Division of Infectious DiseasesSiena, Italy
| | | | | |
Collapse
|
9
|
Ibrahim J, Eisen JA, Jospin G, Coil DA, Khazen G, Tokajian S. Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections. PLoS One 2016; 11:e0168177. [PMID: 27977735 PMCID: PMC5158041 DOI: 10.1371/journal.pone.0168177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes is a very important human pathogen, commonly associated with skin or throat infections but can also cause life-threatening situations including sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing and molecular characterization of S. pyogenes have been published to date; however next-generation sequencing (NGS) studies provide a comprehensive collection of an organism’s genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with pharyngitis and skin infection were sequenced and studied for the presence of virulence genes, resistance elements, prophages, genomic recombination, and other genomic features. Additionally, a comparative phylogenetic analysis of the isolates with global clones highlighted their possible evolutionary lineage and their site of infection. The genomes were found to also house a multitude of features including gene regulation systems, virulence factors and antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Joe Ibrahim
- Department of Natural Sciences, Lebanese American University, School of Arts and Sciences, Byblos, Lebanon
| | - Jonathan A. Eisen
- University of California Davis Genome Center, Davis, California, United States of America
| | - Guillaume Jospin
- University of California Davis Genome Center, Davis, California, United States of America
| | - David A. Coil
- University of California Davis Genome Center, Davis, California, United States of America
| | - Georges Khazen
- Department of Computer Science and Mathematics, Lebanese American University, School of Arts and Sciences, Byblos, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, School of Arts and Sciences, Byblos, Lebanon
- * E-mail:
| |
Collapse
|
10
|
Watanabe S, Takemoto N, Ogura K, Miyoshi-Akiyama T. Severe invasive streptococcal infection by Streptococcus pyogenes
and Streptococcus dysgalactiae
subsp. equisimilis. Microbiol Immunol 2016; 60:1-9. [DOI: 10.1111/1348-0421.12334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology; Department of Infection and Immunity; School of Medicine; Jichi Medical University; 3311-1 Yakushiji Shimotsuke-shi Tochigi 329-0498
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| | - Kohei Ogura
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| |
Collapse
|
11
|
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 2015; 17:1721-41. [PMID: 26433203 DOI: 10.1111/cmi.12531] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason N Cole
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anna Henningham
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
12
|
Streptococcus zooepidemicus and Streptococcus equi evolution: the role of CRISPRs. Biochem Soc Trans 2014; 41:1437-43. [PMID: 24256234 DOI: 10.1042/bst20130165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The host-restricted bacterium Streptococcus equi is the causative agent of equine strangles, the most frequently diagnosed infectious disease of horses worldwide. The disease is characterized by abscessation of the lymph nodes of the head and neck, leading to significant welfare and economic cost. S. equi is believed to have evolved from an ancestral strain of Streptococcus zooepidemicus, an opportunistic pathogen of horses and other animals. Comparison of the genome of S. equi strain 4047 with those of S. zooepidemicus identified examples of gene loss due to mutation and deletion, and gene gain through the acquisition of mobile genetic elements that have probably shaped the pathogenic specialization of S. equi. In particular, deletion of the CRISPR (clustered regularly interspaced short palindromic repeats) locus in the ancestor of S. equi may have predisposed the bacterium to acquire and incorporate new genetic material into its genome. These include four prophages and a novel integrative conjugative element. The virulence cargo carried by these mobile genetic elements is believed to have shaped the ability of S. equi to cause strangles. Further sequencing of S. zooepidemicus has highlighted the diversity of this opportunistic pathogen. Again, CRISPRs are postulated to influence evolution, balancing the need for gene gain over genome stability. Analysis of spacer sequences suggest that these pathogens may be susceptible to a limited range of phages and provide further evidence of cross-species exchange of genetic material among Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus dysgalactiae.
Collapse
|
13
|
Korem M, Hidalgo-Grass C, Michael-Gayego A, Nir-Paz R, Salameh S, Moses AE. Streptococcal pyrogenic exotoxin G gene in blood and pharyngeal isolates of Streptococcus dysgalactiae subspecies equisimilis has a limited role in pathogenesis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 47:292-6. [DOI: 10.1016/j.jmii.2012.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 11/30/2022]
|
14
|
Olson AB, Kent H, Sibley CD, Grinwis ME, Mabon P, Ouellette C, Tyson S, Graham M, Tyler SD, Van Domselaar G, Surette MG, Corbett CR. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics 2013; 14:895. [PMID: 24341328 PMCID: PMC3897883 DOI: 10.1186/1471-2164-14-895] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022] Open
Abstract
Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in VNTR numbers that occurred over the course of one year. Conclusions The comparative genomic analysis of the SAG clarifies the phylogenetics of these bacteria and supports the distinct species classification. Numerous potential virulence determinants were identified and provide a foundation for further studies into SAG pathogenesis. Furthermore, the data may be used to enable the development of rapid diagnostic assays and therapeutics for these pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Michael G Surette
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
| | | |
Collapse
|
15
|
Streptococcal superantigens: categorization and clinical associations. Trends Mol Med 2013; 20:48-62. [PMID: 24210845 DOI: 10.1016/j.molmed.2013.10.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 01/01/2023]
Abstract
Superantigens are key virulence factors in the immunopathogenesis of invasive disease caused by group A streptococcus. These protein exotoxins have also been associated with severe group C and group G streptococcal infections. A number of novel streptococcal superantigens have recently been described with some resulting confusion in their classification. In addition to clarifying the nomenclature of streptococcal superantigens and proposing guidelines for their categorization, this review summarizes the evidence supporting their involvement in various clinical diseases including acute rheumatic fever.
Collapse
|
16
|
Tsatsaronis JA, Hollands A, Cole JN, Maamary PG, Gillen CM, Ben Zakour NL, Kotb M, Nizet V, Beatson SA, Walker MJ, Sanderson-Smith ML. Streptococcal collagen-like protein A and general stress protein 24 are immunomodulating virulence factors of group A Streptococcus. FASEB J 2013; 27:2633-43. [PMID: 23531597 DOI: 10.1096/fj.12-226662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Western countries, invasive infections caused by M1T1 serotype group A Streptococcus (GAS) are epidemiologically linked to mutations in the control of virulence regulatory 2-component operon (covRS). In indigenous communities and developing countries, severe GAS disease is associated with genetically diverse non-M1T1 GAS serotypes. Hypervirulent M1T1 covRS mutant strains arise through selection by human polymorphonuclear cells for increased expression of GAS virulence factors such as the DNase Sda1, which promotes neutrophil resistance. The GAS bacteremia isolate NS88.2 (emm 98.1) is a covS mutant that exhibits a hypervirulent phenotype and neutrophil resistance yet lacks the phage-encoded Sda1. Here, we have employed a comprehensive systems biology (genomic, transcriptomic, and proteomic) approach to identify NS88.2 virulence determinants that enhance neutrophil resistance in the non-M1T1 GAS genetic background. Using this approach, we have identified streptococcal collagen-like protein A and general stress protein 24 proteins as NS88.2 determinants that contribute to survival in whole blood and neutrophil resistance in non-M1T1 GAS. This study has revealed new factors that contribute to GAS pathogenicity that may play important roles in resisting innate immune defenses and the development of human invasive infections.
Collapse
Affiliation(s)
- James A Tsatsaronis
- Illawarra Health and Medical Research Institute, and School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Friães A, Pinto FR, Silva-Costa C, Ramirez M, Melo-Cristino J. Superantigen gene complement of Streptococcus pyogenes--relationship with other typing methods and short-term stability. Eur J Clin Microbiol Infect Dis 2012; 32:115-25. [PMID: 22936424 DOI: 10.1007/s10096-012-1726-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/08/2012] [Indexed: 02/06/2023]
Abstract
The profiling of the superantigen (SAg) encoding genes has been frequently used as a complementary typing method for group A streptococci (GAS), but a confusing gene nomenclature and a large diversity of primers used in screening has led to some conflicting results. The aim of this work was to develop a polymerase chain reaction (PCR) method capable of efficiently amplifying all the known allelic variants of these genes, and to evaluate the congruence of this methodology with other commonly used molecular typing methods. The presence of the 11 known SAg genes and two other exotoxin-encoding genes (speB and speF) was tested in a collection of 480 clinical GAS isolates, using two multiplex PCR reactions. The SAg gene profile was compared with other typing methods. Four naturally occurring deletions involving the genes speB, speF, and rgg were characterized, two of which were found among invasive isolates. The absence of the chromosomally encoded genes speG and smeZ was supported by Southern blot hybridization and associated with specific GAS lineages, while the presence of phage-encoded genes was more variable. Positive associations between SAg genes or between SAg profiles and emm types or pulsed-field gel electrophoresis (PFGE) clusters were observed. The results suggest that the SAg profile diversifies faster than other properties commonly used for molecular typing, such as emm type and multilocus sequence typing (MLST) sequence types (STs), and can be a useful complement in GAS molecular epidemiology. Still, the short-term stability of the SAg gene profile among prevalent genetic lineages may largely explain the observed associations between SAg genes.
Collapse
Affiliation(s)
- A Friães
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW A resurgence of invasive group A streptococcal infections highlights the need for better knowledge of streptococcal biology. This review summarizes the recent advances in our understanding of the field. RECENT FINDINGS Invasive group A streptococcal infections cause significant morbidity and mortality worldwide. The current upsurge of invasive infections in developed countries is predominantly linked to the spread of a clonal hypervirulent population of M1T1 serotype strains (emm1), although sporadic increases in other types have been reported, including emm3 strains in the UK, and emm28 strains among cases of puerperal sepsis. Mutations of a regulatory system, CovR/S (control of virulence), are important in the transition of emm1 strains from noninvasive to invasive phenotype. New research has been undertaken to identify major virulence factors that typify the invasive phenotype. In less-developed regions, the importance of rheumatic carditis and need for a vaccine that addresses a much wider range of streptococcal emm types predominates research efforts. SUMMARY Advances in molecular technology have furthered our understanding of virulence factors that underpin group A streptococcus invasiveness. The increased prevalence of invasive disease coupled with the devastating effects of chronic rheumatic heart disease, affecting predominantly low-income regions, underline the need for the development of an effective vaccine.
Collapse
Affiliation(s)
- Nicola N Lynskey
- Department of Infectious Diseases and Immunity, Imperial College London, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
19
|
Shimomura Y, Okumura K, Murayama SY, Yagi J, Ubukata K, Kirikae T, Miyoshi-Akiyama T. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS). BMC Genomics 2011; 12:17. [PMID: 21223537 PMCID: PMC3027156 DOI: 10.1186/1471-2164-12-17] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 01/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. Results We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Conclusion Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors in SDSE and GAS that cause STSS.
Collapse
Affiliation(s)
- Yumi Shimomura
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Taylor AL, Llewelyn MJ. Superantigen-induced proliferation of human CD4+CD25- T cells is followed by a switch to a functional regulatory phenotype. THE JOURNAL OF IMMUNOLOGY 2010; 185:6591-8. [PMID: 21048104 DOI: 10.4049/jimmunol.1002416] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacterial superantigens are potent T cell activators. In humans they cause toxic shock and scarlet fever, and they are implicated in Kawasaki's disease, autoimmunity, atopy, and sepsis. Their function remains unknown, but it may be to impair host immune responses increasing bacterial carriage and transmission. Regulatory (CD25(+)FOXP3(+)) T cells (Tregs) play a role in controlling inflammatory responses to infection. Approximately 2% of circulating T cells are naturally occurring Tregs (nTregs). Conventional Ag stimulation of naive FOXP3(-) T cells induces Ag-specific Tregs. Polyclonal T cell activation has been shown to produce non-Ag-specific Tregs. Because superantigens are unique among microbial virulence factors in their ability to trigger polyclonal T cell activation, we wanted to determine whether superantigen stimulation of T cells could induce non-Ag-specific Tregs. We assessed the effect of superantigen stimulation of human T cells on activation, regulatory markers, and cytokine production by flow cytometry and T cell suppression assays. Stimulation of PBMCs with staphylococcal exotoxin A and streptococcal pyrogenic exotoxins A and K/L resulted in dose-dependent FOXP3 expression. Characterization of this response for streptococcal pyrogenic exotoxin K/L confirmed its Vβ specificity, that CD25(+)FOXP3(+) cells arose from CD25(-) T cells and required APCs. These cells had increased CTLA-4 and CD127 expression, typical of the recently described activated converted Treg-like cells, and exhibited functional suppressor activity comparable to nTregs. Superantigen-stimulated CD25(+)FOXP3(+) T cells expressed IL-10 at lower superantigen concentrations than was required to trigger IFN-γ production. This study provides a mechanism for bacterial evasion of the immune response through the superantigen induction of Tregs.
Collapse
Affiliation(s)
- Amanda L Taylor
- Pathogen-Host Interaction Group, Division of Clinical Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | | |
Collapse
|
21
|
Identification of three novel superantigen-encoding genes in Streptococcus equi subsp. zooepidemicus, szeF, szeN, and szeP. Infect Immun 2010; 78:4817-27. [PMID: 20713629 DOI: 10.1128/iai.00751-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acquisition of superantigen-encoding genes by Streptococcus pyogenes has been associated with increased morbidity and mortality in humans, and the gain of four superantigens by Streptococcus equi is linked to the evolution of this host-restricted pathogen from an ancestral strain of the opportunistic pathogen Streptococcus equi subsp. zooepidemicus. A recent study determined that the culture supernatants of several S. equi subsp. zooepidemicus strains possessed mitogenic activity but lacked known superantigen-encoding genes. Here, we report the identification and activities of three novel superantigen-encoding genes. The products of szeF, szeN, and szeP share 59%, 49%, and 34% amino acid sequence identity with SPEH, SPEM, and SPEL, respectively. Recombinant SzeF, SzeN, and SzeP stimulated the proliferation of equine peripheral blood mononuclear cells, and tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) production, in vitro. Although none of these superantigen genes were encoded within functional prophage elements, szeN and szeP were located next to a prophage remnant, suggesting that they were acquired by horizontal transfer. Eighty-one of 165 diverse S. equi subsp. zooepidemicus strains screened, including 7 out of 15 isolates from cases of disease in humans, contained at least one of these new superantigen-encoding genes. The presence of szeN or szeP, but not szeF, was significantly associated with mitogenic activity in the S. equi subsp. zooepidemicus population (P < 0.000001, P < 0.000001, and P = 0.104, respectively). We conclude that horizontal transfer of these novel superantigens from and within the diverse S. equi subsp. zooepidemicus population is likely to have implications for veterinary and human disease.
Collapse
|
22
|
Ronning CM, Losada L, Brinkac L, Inman J, Ulrich RL, Schell M, Nierman WC, Deshazer D. Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements. BMC Microbiol 2010; 10:202. [PMID: 20667135 PMCID: PMC2920897 DOI: 10.1186/1471-2180-10-202] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/28/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Burkholderia species exhibit enormous phenotypic diversity, ranging from the nonpathogenic, soil- and water-inhabiting Burkholderia thailandensis to the virulent, host-adapted mammalian pathogen B. mallei. Genomic diversity is evident within Burkholderia species as well. Individual isolates of Burkholderia pseudomallei and B. thailandensis, for example, carry a variety of strain-specific genomic islands (GIs), including putative pathogenicity and metabolic islands, prophage-like islands, and prophages. These GIs may provide some strains with a competitive advantage in the environment and/or in the host relative to other strains. RESULTS Here we present the results of analysis of 37 prophages, putative prophages, and prophage-like elements from six different Burkholderia species. Five of these were spontaneously induced to form bacteriophage particles from B. pseudomallei and B. thailandensis strains and were isolated and fully sequenced; 24 were computationally predicted in sequenced Burkholderia genomes; and eight are previously characterized prophages or prophage-like elements. The results reveal numerous differences in both genome structure and gene content among elements derived from different species as well as from strains within species, due in part to the incorporation of additional DNA, or 'morons' into the prophage genomes. Implications for pathogenicity are also discussed. Lastly, RNAseq analysis of gene expression showed that many of the genes in varphi1026b that appear to contribute to phage and lysogen fitness were expressed independently of the phage structural and replication genes. CONCLUSIONS This study provides the first estimate of the relative contribution of prophages to the vast phenotypic diversity found among the Burkholderiae.
Collapse
Affiliation(s)
- Catherine M Ronning
- J Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ikebe T, Ato M, Matsumura T, Hasegawa H, Sata T, Kobayashi K, Watanabe H. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates. PLoS Pathog 2010; 6:e1000832. [PMID: 20368967 PMCID: PMC2848555 DOI: 10.1371/journal.ppat.1000832] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/23/2010] [Indexed: 01/04/2023] Open
Abstract
Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates) and non-invasive infections (59 isolates), 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%). The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors. Group A streptococcus (GAS) causes life-threatening severe invasive diseases, including necrotizing fasciitis and streptococcal toxic shock-like syndrome. Although many studies have attempted to determine factors that are crucial for the onset of streptococcal toxic shock syndrome (STSS), bacterial factors responsible for it have not been clarified. By comparing genome sequences of clinical GAS isolates from STSS with those of non-invasive infections, we showed that mutations of negative regulator genes (csrS, csrR, rgg) were detected at a high frequency of more than 50% in STSS isolates, but at a low frequency of less than 2% in non-invasive isolates. These mutations of negative regulators were found in various emm-genotyped STSS isolates but not in a particular emm genotype. These mutants enhanced virulence in mouse models. Such results indicated that mutations of bacterial negative regulators are crucial for the pathogenesis of STSS due to the overproduction of multiple virulence factors under the de-repressed conditions.
Collapse
Affiliation(s)
- Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Meisal R, Andreasson IKG, Høiby EA, Aaberge IS, Michaelsen TE, Caugant DA. Streptococcus pyogenes isolates causing severe infections in Norway in 2006 to 2007: emm types, multilocus sequence types, and superantigen profiles. J Clin Microbiol 2010; 48:842-51. [PMID: 20042624 PMCID: PMC2832411 DOI: 10.1128/jcm.01312-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/21/2009] [Accepted: 12/17/2009] [Indexed: 11/20/2022] Open
Abstract
To investigate the epidemiological patterns and genetic characteristics of disease caused by group A Streptococcus (GAS), all available isolates from invasive cases in Norway during 2006 to 2007 (262 isolates) were subjected to antimicrobial susceptibility testing, T serotyping, emm typing, and multilocus sequence typing and screened for known streptococcal pyrogenic exotoxin (Spe) genes, smeZ, and ssa. The average incidence rate was 3.1 cases per 100,000 individuals. The most prevalent sequence types (STs) were STs 52, 28, and 334. In association with emm types 28, 77, and 87, the serotype T-28 comprised 24.8% of the strains. emm types 28, 1, and 82 were dominating. In 2007, a sharp increase in the number of emm-6 strains was noted. All strains were sensitive to penicillin and quinupristin-dalfopristin, while 3.4% and 6.1% of the strains were resistant to macrolides and tetracycline, respectively. Furthermore, the emm-6 strains had intermediate susceptibility to ofloxacin. Isolates displayed a wide variety of gene profiles, as shown by the presence or absence of the Spe genes, smeZ, and ssa, but 48% of the isolates fell into one of three profiles. In most cases, an emm type was restricted to one gene profile. Although the incidence decreased during this study, invasive GAS disease still has a high endemic rate, with involvement of both established and emerging emm types displaying variability in virulence gene profiles as well as differences in gender and age group preferences.
Collapse
Affiliation(s)
- Roger Meisal
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ida K. G. Andreasson
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - E. Arne Høiby
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ingeborg S. Aaberge
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Terje E. Michaelsen
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Dominique A. Caugant
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol 2009; 191:4854-62. [PMID: 19502408 PMCID: PMC2715734 DOI: 10.1128/jb.01272-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage phiSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them.
Collapse
|
26
|
Holden MTG, Heather Z, Paillot R, Steward KF, Webb K, Ainslie F, Jourdan T, Bason NC, Holroyd NE, Mungall K, Quail MA, Sanders M, Simmonds M, Willey D, Brooks K, Aanensen DM, Spratt BG, Jolley KA, Maiden MCJ, Kehoe M, Chanter N, Bentley SD, Robinson C, Maskell DJ, Parkhill J, Waller AS. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog 2009; 5:e1000346. [PMID: 19325880 PMCID: PMC2654543 DOI: 10.1371/journal.ppat.1000346] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/24/2009] [Indexed: 11/19/2022] Open
Abstract
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A(2) toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.
Collapse
Affiliation(s)
- Matthew T. G. Holden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zoe Heather
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Romain Paillot
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Karen F. Steward
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Katy Webb
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Fern Ainslie
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Thibaud Jourdan
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Nathalie C. Bason
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nancy E. Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Karen Mungall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mark Simmonds
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David Willey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Karen Brooks
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David M. Aanensen
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Hospital Campus, London, United Kingdom
| | - Brian G. Spratt
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Hospital Campus, London, United Kingdom
| | - Keith A. Jolley
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Martin C. J. Maiden
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael Kehoe
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Neil Chanter
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Stephen D. Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Carl Robinson
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Andrew S. Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| |
Collapse
|
27
|
Commons R, Rogers S, Gooding T, Danchin M, Carapetis J, Robins-Browne R, Curtis N. Superantigen genes in group A streptococcal isolates and their relationship with emm types. J Med Microbiol 2008; 57:1238-1246. [DOI: 10.1099/jmm.0.2008/001156-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Robert Commons
- Murdoch Children’s Research Institute, Royal Children’s Hospital Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Australia
| | - Susan Rogers
- Murdoch Children’s Research Institute, Royal Children’s Hospital Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Australia
| | - Travis Gooding
- Murdoch Children’s Research Institute, Royal Children’s Hospital Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Australia
| | - Margie Danchin
- Infectious Diseases Unit, Department of General Medicine, Royal Children’s Hospital Melbourne, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Australia
| | - Jonathan Carapetis
- Infectious Diseases Unit, Department of General Medicine, Royal Children’s Hospital Melbourne, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Australia
| | - Roy Robins-Browne
- Department of Microbiology & Immunology, The University of Melbourne, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital Melbourne, Australia
| | - Nigel Curtis
- Infectious Diseases Unit, Department of General Medicine, Royal Children’s Hospital Melbourne, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Australia
| |
Collapse
|
28
|
van der Ploeg JR. Characterization of Streptococcus gordonii prophage PH15: complete genome sequence and functional analysis of phage-encoded integrase and endolysin. Microbiology (Reading) 2008; 154:2970-2978. [DOI: 10.1099/mic.0.2008/018739-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jan R. van der Ploeg
- Institute of Oral Biology, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland
| |
Collapse
|
29
|
Maripuu L, Eriksson A, Norgren M. Superantigen gene profile diversity among clinical group A streptococcal isolates. ACTA ACUST UNITED AC 2008; 54:236-44. [PMID: 18754783 DOI: 10.1111/j.1574-695x.2008.00469.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study examines the diversity of superantigen gene profiles between and within emm-genotypes of 92 clinical group A streptococcal isolates (30 STSS, 24 sepsis, 25 erysipelas, and 12 tonsillitis) collected in Sweden between 1986 and 2001. The emm-genotype and the distribution of smeZ, speG, speJ, speA, speC, speH, speI, speK/L, speL/M, speM, and ssa genes, and the smeZ allelic variant were determined using PCR and DNA sequencing. Forty-five emm1 isolates revealed 10 superantigen gene profiles. One profile dominated and was identified in 22 isolates collected over 14 years. The results indicate that a selective advantage maintained this genotype in circulation. The superantigen content among the emm1 isolates ranged from three to seven, with smeZ-1, speG, and speA present in all but one profile. The 47 isolates of 27 other emm-genotypes exhibited 29 superantigen gene profiles. Thus, the distribution of superantigen genes was highly variable within isolates regardless of emm-genotype. Two novel emm1 subtypes and 14 novel smeZ allelic variants were identified. The 22 smeZ alleles were generally linked to the emm-genotype. The results of the investigation show that superantigen gene profiling is useful for tracking spread of clones in the community.
Collapse
Affiliation(s)
- Linda Maripuu
- Biomedical Laboratory Science, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
30
|
Vojtek I, Pirzada ZA, Henriques-Normark B, Mastny M, Janapatla RP, Charpentier E. Lysogenic transfer of group A Streptococcus superantigen gene among Streptococci. J Infect Dis 2008; 197:225-34. [PMID: 18179387 PMCID: PMC3030952 DOI: 10.1086/524687] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A group A Streptococcus (GAS) isolate, serotype M12, recovered from a patient with streptococcal toxic shock syndrome was analyzed for superantigen-carrying prophages, revealing phi149, which encodes superantigen SSA. Sequence analysis of the att-L proximal region of phi149 showed that the phage had a mosaic nature. Remarkably, we successfully obtained lysogenic conversion of GAS clinical isolates of various M serotypes (M1, M3, M5, M12, M19, M28, and M94), as well as of group C Streptococcus equisimilis (GCSE) clinical isolates, via transfer of a recombinant phage phi149::Km(r). Phage phi149::Km(r) from selected lysogenized GAS and GCSE strains could be transferred back to M12 GAS strains. Our data indicate that horizontal transfer of lysogenic phages among GAS can occur across the M-type barrier; these data also provide further support for the hypothesis that toxigenic conversion can occur via lysogeny between species. Streptococci might employ this mechanism specifically to allow more efficient adaptation to changing host challenges, potentially leading to fitter and more virulent clones.
Collapse
Affiliation(s)
- Ivo Vojtek
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Zaid A. Pirzada
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Birgitta Henriques-Normark
- Swedish Institute for Infectious Disease Control, Department of Bacteriology
- Karolinska Institute, Solna, Sweden
| | - Markus Mastny
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Rajendra P. Janapatla
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Emmanuelle Charpentier
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
31
|
Proft T, Schrage B, Fraser JD. The Cytokine Response to Streptococcal Superantigens Varies Between Individual Toxins and Between Individuals: Implications for the Pathogenesis of Group A Streptococcal Diseases. J Interferon Cytokine Res 2007; 27:553-7. [PMID: 17651016 DOI: 10.1089/jir.2006.0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complete set of currently known streptococcal superantigens (SAgs) was tested for efficacy to induce in vitro cytokine responses from 5 different blood donors using the Luminex 100 system. Cytokine responses varied significantly between individual SAgs and between donors with a mixed Th1/Th2 response in 3 donors and a predominantly Th1 or Th2 response in the other 2 donors. Our results suggest that streptococcal SAgs might be involved not only in acute streptococcal diseases but also in chronic inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Thomas Proft
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
32
|
Zhao J, Hayashi T, Saarinen S, Papageorgiou AC, Kato H, Imanishi K, Kirikae T, Abe R, Uchiyama T, Miyoshi-Akiyama T. Cloning, expression, and characterization of the superantigen streptococcal pyrogenic exotoxin G from Streptococcus dysgalactiae. Infect Immun 2007; 75:1721-9. [PMID: 17283088 PMCID: PMC1865666 DOI: 10.1128/iai.01183-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified seven novel variants of streptococcal pyrogenic exotoxin G (SPEGG), a superantigen, in Streptococcus dysgalactiae subsp. dysgalactiae or equisimilis isolates from clinical cases of infection in humans and animals. Phylogenetic analysis of the SPEGG variants indicated two clades in the dendrogram: one composed of variants derived from the bacteria isolated from the humans and the other composed of variants from the bacteria isolated from the animals. Bovine peripheral blood mononuclear cells (PBMCs) were stimulated effectively by recombinant SPEGGs (rSPEGGs) expressed in Escherichia coli, while human PBMCs were not stimulated well by any of the rSPEGGs tested. SPEGGs selectively stimulated bovine T cells bearing Vbeta1,10 and Vbeta4. Bovine serum showed reactivity to the rSPEGG proteins. These results indicated that SPEGGs have properties as superantigens, and it is likely that SPEGGs play a pathogenic role in animals.
Collapse
Affiliation(s)
- Jizi Zhao
- Department of Infectious Diseases, Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sitkiewicz I, Stockbauer KE, Musser JM. Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol 2006; 15:63-9. [PMID: 17194592 DOI: 10.1016/j.tim.2006.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/23/2006] [Accepted: 12/13/2006] [Indexed: 11/23/2022]
Abstract
Phospholipases are ubiquitous and diverse enzymes that induce changes in membrane composition, activate the inflammatory cascade and alter cell signaling pathways. Recent evidence suggests that certain bacterial pathogens have acquired genes encoding secreted phospholipase A2 enzymes through lateral gene transfer events. The two best-studied members of this class of enzyme are ExoU and SlaA, which are produced by Pseudomonas aeruginosa and group A Streptococcus, respectively. These enzymes modulate the host inflammatory response, increase the severity of disease and otherwise alter host-pathogen interactions. We propose that a key function of ExoU and SlaA is to increase the fitness of the subclones expressing these enzymes, thereby increasing the population size of the PLA2-positive strains and enhancing the likelihood of encountering an at-risk host.
Collapse
Affiliation(s)
- Izabela Sitkiewicz
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
Schrage B, Duan G, Yang LP, Fraser JD, Proft T. Different Preparations of Intravenous Immunoglobulin Vary in Their Efficacy to Neutralize Streptococcal Superantigens: Implications for Treatment of Streptococcal Toxic Shock Syndrome. Clin Infect Dis 2006; 43:743-6. [PMID: 16912949 DOI: 10.1086/507037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/31/2006] [Indexed: 11/03/2022] Open
Abstract
Eight different batches of intravenous immunoglobulin from 3 different manufacturers were tested for neutralizing activities against all currently known streptococcal superantigens. Statistically significant variation among different intravenous immunoglobulin preparations (P<.0001) and between individual streptococcal superantigens (P<.0001) was observed. These results might be helpful for optimizing the type and dose of intravenous immunoglobulin used in adjunctive therapy for severe invasive streptococcal disease.
Collapse
Affiliation(s)
- Birgit Schrage
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
35
|
Jing HB, Ning BA, Hao HJ, Zheng YL, Chang D, Jiang W, Jiang YQ. Epidemiological analysis of group A streptococci recovered from patients in China. J Med Microbiol 2006; 55:1101-1107. [PMID: 16849731 DOI: 10.1099/jmm.0.46243-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since the mid-1980s, there has been a resurgence of severe forms of invasive group A streptococcal (GAS) disease in many countries and regions. However, there has not been any systemic epidemiologic analysis of GAS disease reported in mainland China. To analyse the molecular epidemiology of GAS disease, 86 strains from patients in different regions of mainland China were collected. The collection sites included blood, pus, wounds, the epipharynx and other sites. A total of 21 different emm types were identified in the isolates. In both invasive and non-invasive isolates, M1 (29.1%) and M12 (23.3%) were the most prevalent types, a different distribution to M type distributions reported in other countries. Furthermore, minor emm gene sequence alterations were noted for six types. Several important GAS virulence factors were detected by PCR using specific primers. The speB and slo genes were detected in all isolates and were species specific. Four superantigen genes, speA, speC, smeZ and ssa, were found in 52% (45/86), 51% (44/86), 82% (71/86) and 23% (27/86) of isolates, respectively. M1 isolates harboured more speA (84%) and fewer speC genes (44%), while M12 isolates had fewer speA (35%) and more speC genes (100%). There was also an association between some virulence genes and isolation sites, perhaps due to the correlation between the emm type distribution and virulence gene occurrence. For two important virulence genes related to necrotizing fasciitis, the sil gene was only carried by 11 of 86 isolates, and no sil gene contained the start codon ATA. The sla gene rarely occurred in GAS isolates, only four of 86 GAS strains being positive, including two isolates obtained from blood. In antimicrobial susceptibility tests, the overall rate of drug resistance in GAS isolates was higher than reported rates in other countries, and the resistance rates to erythromycin, tetracycline and clindamycin were 91.8, 93.4 and 80%, respectively. This epidemiological study may help to understand the pathogenesis of GAS disease and aid in vaccine development.
Collapse
Affiliation(s)
- Hong-Bo Jing
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Boa-An Ning
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Huai-Jie Hao
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yu-Ling Zheng
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Dong Chang
- 304 Hospital, Haidian District, Beijing, 100037, People's Republic of China
| | - Wei Jiang
- 304 Hospital, Haidian District, Beijing, 100037, People's Republic of China
| | - Yong-Qiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, no. 20 Dongda Street, Fengtai District, Beijing, 100071, People's Republic of China
| |
Collapse
|
36
|
Saitoh M, Tanaka K, Nishimori K, Makino SI, Kanno T, Ishihara R, Hatama S, Kitano R, Kishima M, Sameshima T, Akiba M, Nakazawa M, Yokomizo Y, Uchida I. The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar Typhimurium DT104. MICROBIOLOGY-SGM 2005; 151:3089-3096. [PMID: 16151219 DOI: 10.1099/mic.0.27933-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many bacterial pathogens encode ADP-ribosyltransferase toxins. The authors identified an ADP-ribosyltransferase toxin homologue (ArtA, ArtB) in Salmonella enterica serovar Typhimurium (S. typhimurium) DT104. ArtA is most homologous to a putative pertussis-like toxin subunit present in Salmonella typhi (STY1890) and Salmonella paratyphi A (SPA1609), while ArtB shows homology to a hypothetical periplasmic protein of S. typhi (STY1364) and S. paratyphi A (SPA1188), and a putative pertussis-like toxin subunit in S. typhi (STY1891) and S. paratyphi A (SPA1610). The artA gene was detected from the phage particle fraction upon mitomycin C induction, and the flanking region of artAB contains a prophage-like sequence, suggesting that these putative toxin genes reside within a prophage. Southern blotting analysis revealed that artA is conserved in 12 confirmed DT104 strains and in four related strains which are not phage-typed but are classified into the same group as DT104 by both amplified-fragment length polymorphism and pulsed-field gel electrophoresis. Except for one strain, NCTC 73, all 13 S. typhimurium strains which were classified into different groups from that of DT104 lacked the artA locus. The results suggest that phage-mediated recombination has resulted in the acquisition of art genes in S. typhimurium DT104 strains.
Collapse
Affiliation(s)
- Mariko Saitoh
- Nemuro Livestock Hygiene Service Center, Betsukaimidorimachi-69, Betsukai, Notsukegun 086-0214, Japan
- Hokkaido Research Station, National Institute of Animal Health, Hitsujigaoka-4, Toyohira, Sapporo 062-0045, Japan
| | - Kiyoshi Tanaka
- Hokkaido Research Station, National Institute of Animal Health, Hitsujigaoka-4, Toyohira, Sapporo 062-0045, Japan
| | - Kei Nishimori
- Hokkaido Research Station, National Institute of Animal Health, Hitsujigaoka-4, Toyohira, Sapporo 062-0045, Japan
| | - Sou-Ichi Makino
- Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Japan
| | - Toru Kanno
- Hokkaido Research Station, National Institute of Animal Health, Hitsujigaoka-4, Toyohira, Sapporo 062-0045, Japan
| | - Ryoko Ishihara
- Hokkaido Research Station, National Institute of Animal Health, Hitsujigaoka-4, Toyohira, Sapporo 062-0045, Japan
| | - Shinichi Hatama
- Hokkaido Research Station, National Institute of Animal Health, Hitsujigaoka-4, Toyohira, Sapporo 062-0045, Japan
| | - Rie Kitano
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Masato Kishima
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Toshiya Sameshima
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Masato Akiba
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Muneo Nakazawa
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Yuichi Yokomizo
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
| | - Ikuo Uchida
- Hokkaido Research Station, National Institute of Animal Health, Hitsujigaoka-4, Toyohira, Sapporo 062-0045, Japan
| |
Collapse
|
37
|
Alber J, El-Sayed A, Estoepangestie S, Lämmler C, Zschöck M. Dissemination of the superantigen encoding genes seeL, seeM, szeL and szeM in Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus. Vet Microbiol 2005; 109:135-41. [PMID: 15953700 DOI: 10.1016/j.vetmic.2005.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/29/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
Bacterial superantigens are one of the major virulence factors produced by Streptococcus pyogenes and Staphylococcus aureus. The two novel superantigen encoding genes seeM and seeL were described for S. equi subsp. equi which is known as the causative agent of strangles in equids. In the present study previously characterized S. equi subsp. equi strains and strains of various other animal pathogenic streptococcal species and subspecies were investigated for the presence of the superantigen encoding genes seeM and seeL by polymerase chain reaction. According to these studies seeL and seeM appeared to be a constant characteristic of all investigated S. equi subsp. equi strains. Surprisingly, one S. equi subsp. zooepidemicus strain (S.z. 122) was also positive for both genes. The species identity of this S. equi subsp. zooepidemicus strain could additionally be confirmed by sequencing the 16S rRNA gene and the 16S-23S rDNA intergenic spacer region. The superantigen encoding genes could not be found among additionally investigated S. equi subsp. zooepidemicus strains or among strains of seven other streptococcal species. The seeL and seeM genes of the S. equi subsp. equi strain S.e. CF32 and the genes szeL and szeM of the S. equi subsp. zooepidemicus strain S.z. 122 were cloned and sequenced. A sequence comparison revealed a high degree of sequence homology between seeL, szeL, speL and seeM, szeM and speM, respectively. The superantigenic toxins L and M seemed to be widely distributed virulence factors of S. equi subsp. equi, rare among S. equi subsp. zooepidemicus but did not occur among a number of other animal pathogenic streptococcal species.
Collapse
Affiliation(s)
- J Alber
- Institut für Pharmakologie und Toxikologie, Justus Liebig-Universität Giessen, Frankfurter Str. 107, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
38
|
Davies MR, Tran TN, McMillan DJ, Gardiner DL, Currie BJ, Sriprakash KS. Inter-species genetic movement may blur the epidemiology of streptococcal diseases in endemic regions. Microbes Infect 2005; 7:1128-38. [PMID: 15893492 DOI: 10.1016/j.micinf.2005.03.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/14/2005] [Accepted: 03/15/2005] [Indexed: 11/30/2022]
Abstract
Streptococcus dysgalactiae subsp. equisimilis (human group G streptococcus, GGS) is generally regarded as a commensal organism but can cause a spectrum of human diseases very similar to that caused by S. pyogenes (group A streptococcus, GAS). Lateral acquisition of genes between these two phylogenetically closely related species is well documented. However, the extent and mechanisms of lateral acquisitions is not known. We report here genomic subtraction between a pathogenic GGS isolate and a community GGS isolate and analyses of the gene sequences unique to the pathovar. Our results show that cross-species genetic transfers are common between GGS and two closely related human pathogens, GAS and the group B streptococcus. We also demonstrate that mobile genetic elements, such as phages and transposons, play an important role in the ongoing inter-species transfers of genetic traits between extant organisms in the community. Furthermore, lateral gene transfers between GAS and GGS may occur more frequently in geographical regions of high GAS endemicity. These observations may have important implications in understanding the epidemiology of streptococcal diseases in such regions.
Collapse
Affiliation(s)
- Mark R Davies
- Bacterial Pathogenesis Laboratory, The Queensland Institute of Medical Research, Brisbane, Qld. 4029, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Ikebe T, Hirasawa K, Suzuki R, Isobe J, Tanaka D, Katsukawa C, Kawahara R, Tomita M, Ogata K, Endoh M, Okuno R, Watanabe H. Antimicrobial susceptibility survey of Streptococcus pyogenes isolated in Japan from patients with severe invasive group A streptococcal infections. Antimicrob Agents Chemother 2005; 49:788-90. [PMID: 15673769 PMCID: PMC547282 DOI: 10.1128/aac.49.2.788-790.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed antimicrobial susceptibility against 211 Streptococcus pyogenes strains isolated from patients with severe invasive group A streptococcal infections. Overall, 3.8, 1.4, 1.4, and 0.5% of the isolates were resistant to erythromycin, clindamycin, telithromycin, and ciprofloxacin, respectively, and 10.4% had intermediate resistance to ciprofloxacin. All isolates were susceptible to ampicillin and cefotaxime.
Collapse
Affiliation(s)
- Tadayoshi Ikebe
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004; 68:560-602, table of contents. [PMID: 15353570 PMCID: PMC515249 DOI: 10.1128/mmbr.68.3.560-602.2004] [Citation(s) in RCA: 1122] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like "swarms" of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.
Collapse
Affiliation(s)
- Harald Brüssow
- Nestlé, Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne, Switzerland.
| | | | | |
Collapse
|
41
|
Ventura M, Canchaya C, Pridmore RD, Brüssow H. The prophages of Lactobacillus johnsonii NCC 533: comparative genomics and transcription analysis. Virology 2004; 320:229-42. [PMID: 15016546 DOI: 10.1016/j.virol.2003.11.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 11/04/2003] [Accepted: 11/11/2003] [Indexed: 11/17/2022]
Abstract
Two non-inducible, but apparently complete prophages were identified in the genome of the sequenced Lactobacillus johnsonii strain NCC 533. The 38- and 40-kb-long prophages Lj928 and Lj965 represent distinct lineages of Sfi11-like pac-site Siphoviridae unrelated at the DNA sequence level. The deduced structural proteins from Lj928 demonstrated aa sequence identity with Lactococcus lactis phage TP901-1, while Lj965 shared sequence links with Streptococcus thermophilus phage O1205. With the exception of tRNA genes, inserted between DNA replication and DNA packaging genes, the transcription of the prophage was restricted to the genome segments near both attachment sites. Transcribed genes unrelated to phage functions were inserted between the phage repressor and integrase genes; one group of genes shared sequence relatedness with a mobile DNA element in Staphylococcus aureus. A short, but highly transcribed region was located between the phage lysin and right attachment site; it lacked a protein-encoding function in one prophage.
Collapse
Affiliation(s)
- Marco Ventura
- Nestlé Research Center, Nestec Ltd., CH-1026 Lausanne, Switzerland
| | | | | | | |
Collapse
|
42
|
Murase T, Nagato M, Shirota K, Katoh H, Otsuki K. Pulsed-field gel electrophoresis-based subtyping of DNA degradation-sensitive Salmonella enterica subsp. enterica serovar Livingstone and serovar Cerro isolates obtained from a chicken layer farm. Vet Microbiol 2004; 99:139-43. [PMID: 15019105 DOI: 10.1016/j.vetmic.2003.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 11/19/2003] [Accepted: 11/26/2003] [Indexed: 11/21/2022]
Abstract
Salmonella enterica serovar subsp. enterica Livingstone and serovar Cerro isolates from a commercial egg-producing farm, which had previously been untypeable by pulsed-field gel electrophoresis (PFGE) because of DNA degradation during the PFGE process, successfully gave banding patterns using electrophoresis buffer supplemented with 50 microM thiourea. By PFGE in the presence of thiourea, DNA degradation-sensitive S. enterica serovar Cerro isolates from the commercial egg-producing farm were found to be genetically unrelated to S. enterica serovar Cerro isolates that gave the patterns in the absence of thiourea. Forty-five of 50 (90%) S. enterica serovar Livingstone isolates from the farm showed arbitrarily designated XbaI-digested patterns X1 and X2 that were distinguished by one-band difference and had an identical BlnI-digested pattern. In one of the two layer houses in the farm, the numbers of isolates having the pattern X2 increased from 57% in 1997 to 89% in 1998, whereas virtually all the isolates obtained from the other house in the same period showed the profile X1. This suggests that strains having the pattern X2 might have an advantage to preferentially colonize in the former house.
Collapse
Affiliation(s)
- Toshiyuki Murase
- Faculty of Agriculture, Laboratory of Veterinary Microbiology, Tottori University, 4-101 Koyama, Tottori 680-8553, Japan.
| | | | | | | | | |
Collapse
|
43
|
Hashikawa S, Iinuma Y, Furushita M, Ohkura T, Nada T, Torii K, Hasegawa T, Ohta M. Characterization of group C and G streptococcal strains that cause streptococcal toxic shock syndrome. J Clin Microbiol 2004; 42:186-92. [PMID: 14715751 PMCID: PMC321656 DOI: 10.1128/jcm.42.1.186-192.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twelve strains (the largest number ever reported) of group C and G(1) streptococci (GCS and GGS, respectively) that caused streptococcal toxic shock syndrome (STSS) were collected and characterized. Eleven strains were identified as Streptococcus dysgalactiae subsp. equisimilis, and one strain was identified as Streptococcus equi subsp. zooepidemicus. We found that it was the first reported case of STSS caused by S. equi subsp. zooepidemicus. Cluster analysis according to the 16S rRNA gene (rDNA) sequences revealed that the S. dysgalactiae strains belonged to clusters I and II, both of which were closely related. The emm types and the restriction patterns of chromosomal DNA measured by pulsed-field gel electrophoresis were highly variable in these strains except BL2719 and N1434. The 16S rDNA sequences and other characteristics of these two strains were indistinguishable, suggesting the clonal dissemination of this particular S. dysgalactiae strain in Japan. As the involvement of superantigens in the pathogenesis of group A streptococcus-related STSS has been suggested, we tried to detect known streptococcal superantigens in GCS and GGS strains. However, only the spegg gene was detected in seven S. dysgalactiae strains, with none of the other superantigen genes being detected in any of the strains. However, the sagA gene was detected in all of the strains except Tokyo1291. In the present study no apparent factor(s) responsible for the pathogenesis of STSS was identified, although close genetic relationships of GCS and GGS strains involved in this disease were suggested.
Collapse
Affiliation(s)
- Shinnosuke Hashikawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Banks DJ, Lei B, Musser JM. Prophage induction and expression of prophage-encoded virulence factors in group A Streptococcus serotype M3 strain MGAS315. Infect Immun 2004; 71:7079-86. [PMID: 14638798 PMCID: PMC308911 DOI: 10.1128/iai.71.12.7079-7086.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the highly virulent group A Streptococcus (GAS) serotype M3 strain MGAS315 has six prophages that encode six proven or putative virulence factors. We examined prophage induction and expression of prophage-encoded virulence factors by this strain under in vitro conditions inferred to approximate in vivo conditions. Coculture of strain MGAS315 with Detroit 562 (D562) human epithelial pharyngeal cells induced the prophage encoding streptococcal pyrogenic exotoxin K (SpeK) and extracellular phospholipase A(2) (Sla) and the prophage encoding streptodornase (Sdn). Increased gene copy numbers after induction correlated with increased speK, sla, and sdn transcript levels. Although speK and sla are located contiguously in prophage Phi315.4, these genes were transcribed independently. Whereas production of immunoreactive SpeK was either absent or minimal during coculture of GAS with D562 cells, production of immunoreactive Sla increased substantially. In contrast, despite a lack of induction of the prophage encoding speA during coculture of GAS with D562 cells, the speA transcript level and production of immunoreactive streptococcal pyrogenic exotoxin A (SpeA) increased. Exposure of strain MGAS315 to hydrogen peroxide, an oxidative stressor, induced the prophage encoding mitogenic factor 4 (MF4), and there was a concomitant increase in the mf4 transcript. All prophages of strain MGAS315 that encode virulence factors were induced during culture with mitomycin C, a DNA-damaging agent. However, the virulence factor gene transcript levels and production of the encoded proteins decreased after mitomycin C treatment. Taken together, the results indicate that a complex relationship exists among environmental culture conditions, prophage induction, and production of prophage-encoded virulence factors.
Collapse
Affiliation(s)
- David J Banks
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
45
|
Sumby P, Waldor MK. Transcription of the toxin genes present within the Staphylococcal phage phiSa3ms is intimately linked with the phage's life cycle. J Bacteriol 2004; 185:6841-51. [PMID: 14617648 PMCID: PMC262704 DOI: 10.1128/jb.185.23.6841-6851.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
phiSa3ms, a lysogenic bacteriophage encoding the staphylococcal enterotoxins SEA, SEG, and SEK and the fibrinolytic enzyme staphylokinase (Sak), was identified in the unannotated genome sequence of the hypervirulent community-acquired Staphylococcus aureus strain 476. We found that mitomycin C induction of phiSa3ms led to increased transcription of all four virulence factors. The increase in sea and sak transcription was a result of read-through transcription from upstream latent phage promoters and an increase in phage copy number. The majority of the seg2 and sek2 transcripts were shown to initiate from the upstream phage cI promoter and hence were regulated by factors influencing cI transcription. The lysogeny module of phiSa3ms was shown to have some lambda-like features with divergent cI and cro genes. Band shift assays were used to identify binding sites for both CI and Cro within the region between these genes, suggesting a mechanism of control for the phiSa3ms lytic-lysogenic switch. Our findings suggest that the production of phage-encoded virulence factors in S. aureus may be regulated by processes that govern lysogeny.
Collapse
Affiliation(s)
- Paul Sumby
- Department of Medicine, Tufts University School of Medicine and Howard Hughes Medical Institute, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
46
|
Igwe EI, Shewmaker PL, Facklam RR, Farley MM, van Beneden C, Beall B. Identification of superantigen genesspeM,ssa, andsmeZin invasive strains of beta-hemolytic group C and G streptococci recovered from humans. FEMS Microbiol Lett 2003; 229:259-64. [PMID: 14680708 DOI: 10.1016/s0378-1097(03)00842-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Group C and G Streptococcus dysgalactiae subspecies equisimilis (GCSE and GGSE) cause a substantial percentage of invasive disease caused by beta-hemolytic streptococci. To determine whether Streptococcus pyogenes superantigen (SAg) genes commonly exist within these organisms, 20 recent invasive GCSE and GGSE human isolates and one group G Streptococcus canis human isolate were tested for the presence of SAg genes speH, speJ, speL, speM, ssa and smeZ by polymerase chain reaction (PCR). Prior to this work, sequence-based evidence of the speM, ssa, and smeZ genes in GCSE, GGSE, and S. canis had not been documented. Eleven of the 21 isolates were PCR-positive for the presence of one to two of the SAgs speM, ssa, or smeZ, with four of these isolates carrying ssa+speM or ssa+smeZ. No isolate was positive for speH, speJ and speL. All six ssa-positive GGSE strains harbored the ssa3 allele, previously only found among S. pyogenes strains. All three smeZ-positive GGSE isolates carried one of two smeZ alleles previously only found within S. pyogenes, however the single S. canis isolate carried a new smeZ allele. All five GCSE and GGSE speM-positive isolates harbored a newly discovered speM allele. The identification of these SAgs within S. dysgalactiae subsp. equisimilis and S. canis with identical or near-identical sequences to their counterparts in S. pyogenes suggests frequent interspecies gene exchange between the three beta-hemolytic streptococcal species.
Collapse
Affiliation(s)
- Emeka I Igwe
- Centers for Disease Control and Prevention, Respiratory Diseases Branch, 1600 Clifton Rd, Mailstop CO2, 30333, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- T Proft
- School of Medical Sciences, University of Auckland, Auckland New Zealand
| | | |
Collapse
|
48
|
Ventura M, Canchaya C, Pridmore D, Berger B, Brüssow H. Integration and distribution of Lactobacillus johnsonii prophages. J Bacteriol 2003; 185:4603-8. [PMID: 12867471 PMCID: PMC165743 DOI: 10.1128/jb.185.15.4603-4608.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Lactobacillus johnsonii strain NCC533, two prophages were integrated into tRNA genes and one was disrupted by integration. In a survey, the prophages were restricted to strains sharing an essentially identical restriction pattern. Microarray analysis showed that the prophage DNA represents about 50% of the NCC533 strain-specific DNA.
Collapse
Affiliation(s)
- Marco Ventura
- Nestlé Research Center, CH-1000 Lausanne 26, Vers-chez-les-Blanc, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003; 67:238-76, table of contents. [PMID: 12794192 PMCID: PMC156470 DOI: 10.1128/mmbr.67.2.238-276.2003] [Citation(s) in RCA: 501] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Obregón V, García JL, García E, López R, García P. Genome organization and molecular analysis of the temperate bacteriophage MM1 of Streptococcus pneumoniae. J Bacteriol 2003; 185:2362-8. [PMID: 12644508 PMCID: PMC151507 DOI: 10.1128/jb.185.7.2362-2368.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of MM1 (40,248 bp), a temperate bacteriophage from the Spain(23F)-1 multiresistant epidemic clone of Streptococcus pneumoniae, is organized in 53 open reading frames (ORFs) and in at least five functional clusters. Bioinformatic and N-terminal amino acid sequence analyses enabled the assignment of possible functions to 26 ORFs. Analyses comparing the MM1 genome with those of other bacteriophages revealed similarities, mainly with genomes of phages infecting gram-positive bacteria, which suggest recent exchange of genes between species colonizing the same habitat.
Collapse
Affiliation(s)
- Virginia Obregón
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|