1
|
Supty MSA, Jahan K, Lee JS, Choi KH. Epiphytic Bacterial Community Analysis of Ulva prolifera in Garorim and Muan Bays, Republic of Korea. Microorganisms 2024; 12:1142. [PMID: 38930524 PMCID: PMC11205692 DOI: 10.3390/microorganisms12061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
The bacterial communities related to seaweed can vary considerably across different locations, and these variations influence the seaweed's nutrition, growth, and development. To study this further, we evaluated the bacteria found on the green marine seaweed Ulva prolifera from Garorim Bay and Muan Bay, two key locations on Republic of Korea's west coast. Our analysis found notable differences in the bacterial communities between the two locations. Garorim Bay hosted a more diverse bacterial population, with the highest number of ASVs (871) compared to Muan Bay's 156 ASVs. In Muan Bay, more than 50% of the bacterial community was dominated by Pseudomonadota. On the other hand, Garorim Bay had a more balanced distribution between Bacteroidota and Pseudomonadota (37% and 35.5%, respectively). Additionally, Cyanobacteria, particularly Cyanothece aeruginosa, were found in significant numbers in Garorim Bay, making up 8% of the community. Mineral analysis indicated that Garorim Bay had higher levels of S, Na, Mg, Ca, and Fe. Function-wise, both locations exhibited bacterial enrichment in amino acid production, nucleosides, and nucleotide pathways. In conclusion, this study broadens our understanding of the bacterial communities associated with Ulva prolifera in Korean waters and provides a foundation for future research on the relationships between U. prolifera and its bacteria.
Collapse
Affiliation(s)
| | | | | | - Keun-Hyung Choi
- Department of Earth, Environmental and Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Sharma D, Gautam S, Srivastava N, Khan AM, Bisht D. Comparative Proteomic Analysis of Capsule Proteins in Aminoglycoside-Resistant and Sensitive Mycobacterium tuberculosis Clinical Isolates: Unraveling Potential Drug Targets. Int J Mycobacteriol 2024; 13:197-205. [PMID: 38916392 DOI: 10.4103/ijmy.ijmy_47_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Tuberculosis (TB), a global infectious threat, has seen a concerning rise in aminoglycoside-resistant Mycobacterium tuberculosis (M.tb) strains. The potential role of capsule proteins remains largely unexplored. This layer acts as the primary barrier for tubercle bacilli, attempting to infiltrate host cells and subsequent disease development. METHODS The study aims to bridge this gap by investigating the differentially expressed capsule proteins in aminoglycoside-resistant M.tb clinical isolates compared with drug-sensitive isolates employing two-dimensional gel electrophoresis, mass spectrometry, and bioinformatic approaches. RESULTS We identified eight proteins that exhibited significant upregulation in aminoglycoside-resistant isolates. Protein Rv3029c and Rv2110c were associated with intermediary metabolism and respiration; Rv2462c with cell wall and cell processes; Rv3804c with lipid metabolism; Rv2416c and Rv2623 with virulence and detoxification/adaptation; Rv0020c with regulatory functions; and Rv0639 with information pathways. Notably, the Group-based Prediction System for Prokaryotic Ubiquitin-like Protein (GPS-PUP) algorithm identified potential pupylation sites within all proteins except Rv3804c. Interactome analysis using the STRING 12.0 database revealed potential interactive partners for these proteins, suggesting their involvement in aminoglycoside resistance. Molecular docking studies revealed suitable binding between amikacin and kanamycin drugs with Rv2462c, Rv3804c, and Rv2623 proteins. CONCLUSION As a result, our findings illustrate the multifaceted nature of aminoglycoside resistance in M.tb and the importance of understanding how capsule proteins play a role in counteracting drug efficacy. Identifying the role of these proteins in drug resistance is crucial for developing more effective treatments and diagnostics for TB.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Abdul Mabood Khan
- Division of Clinical Trails and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
3
|
Shang Z, Jiang Y, Yang F, Wu K, Zheng G, Lin Y, Wang C, Xin W, Zhao F. A homologous series of α-glucans from Hemicentrotus pulcherrimus and their immunomodulatory activity. Int J Biol Macromol 2024; 260:129657. [PMID: 38253154 DOI: 10.1016/j.ijbiomac.2024.129657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Seven macromolecular polysaccharides (HPP-2S-HPP-8S) were purified from the gonads of sea urchin Hemicentrotus pulcherrimus. They were characterized as α-glucan homologues, sharing the same α-1,4-glucan backbone substituted at C-6 positions by glucose with HPP-1S that occurs as the major polysaccharide in H. pulcherrimus, while with higher degrees of branching, and additionally possessing minor amounts of mannose and ribose. The branching degree and amounts of non-glucose branches showed a generally increasing tendency across HPP-2S - HPP-8S. These polysaccharides exhibited significant macrophage-activating effects by augmenting the secretion of NO, TNF-α and IL-6, which probably involves the activation of NF-κB and MAPKs signaling pathways. Notably, the polysaccharides with a higher degree of branching exhibited markedly enhanced immunomodulatory capacity with a lowest effective concentration of 1.95 μg/mL. This work provides new cases of bioactive α-glucans and reveals their potential application as immunomodulating agents.
Collapse
Affiliation(s)
- Zhipeng Shang
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yan Jiang
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fuhao Yang
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ke Wu
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Gaoliang Zheng
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yexi Lin
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunhua Wang
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Wenyu Xin
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Feng Zhao
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
4
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Gong Y, Wang J, Li F, Zhu B. Polysaccharides and glycolipids of Mycobacterium tuberculosis and their induced immune responses. Scand J Immunol 2023; 97:e13261. [PMID: 39008002 DOI: 10.1111/sji.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 07/16/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis (M. tuberculosis). The structures of polysaccharides and glycolipids at M. tuberculosis cell wall vary among different strains, which affect the physiology and pathogenesis of mycobacteria by activating or inhibiting innate and acquired immunity. Among them, some components such as lipomannan (LM) and lipoarabinomannan (LAM) activate innate immunity by recognizing some kinds of pattern recognition receptors (PRRs) like Toll-like receptors, while other components like mannose-capped lipoarabinomannan (ManLAM) could prevent innate immune responses by inhibiting the secretion of pro-inflammatory cytokines and maturation of phagosomes. In addition, many glycolipids can activate natural killer T (NKT) cells and CD1-restricted T cells to produce interferon-γ (IFN-γ). Furthermore, humoral immunity against cell wall components, such as antibodies against LAM, plays a role in immunity against M. tuberculosis infection. Cell wall polysaccharides and glycolipids of M. tuberculosis have potential applications as antigens and adjuvants for novel TB subunit vaccines.
Collapse
Affiliation(s)
- Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Mittal E, Roth AT, Seth A, Singamaneni S, Beatty W, Philips JA. Single cell preparations of Mycobacterium tuberculosis damage the mycobacterial envelope and disrupt macrophage interactions. eLife 2023; 12:e85416. [PMID: 36852737 PMCID: PMC9998084 DOI: 10.7554/elife.85416] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023] Open
Abstract
For decades, investigators have studied the interaction of Mycobacterium tuberculosis (Mtb) with macrophages, which serve as a major cellular niche for the bacilli. Because Mtb are prone to aggregation, investigators rely on varied methods to disaggregate the bacteria for these studies. Here, we examined the impact of routinely used preparation methods on bacterial cell envelope integrity, macrophage inflammatory responses, and intracellular Mtb survival. We found that both gentle sonication and filtering damaged the mycobacterial cell envelope and markedly impacted the outcome of infections in mouse bone marrow-derived macrophages. Unexpectedly, sonicated bacilli were hyperinflammatory, eliciting dramatically higher TLR2-dependent gene expression and elevated secretion of IL-1β and TNF-α. Despite evoking enhanced inflammatory responses, sonicated bacilli replicated normally in macrophages. In contrast, Mtb that had been passed through a filter induced little inflammatory response, and they were attenuated in macrophages. Previous work suggests that the mycobacterial cell envelope lipid, phthiocerol dimycocerosate (PDIM), dampens macrophage inflammatory responses to Mtb. However, we found that the impact of PDIM depended on the method used to prepare Mtb. In conclusion, widely used methodologies to disaggregate Mtb may introduce experimental artifacts in Mtb-host interaction studies, including alteration of host inflammatory signaling, intracellular bacterial survival, and interpretation of bacterial mutants.
Collapse
Affiliation(s)
- Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of MedicineSt LouisUnited States
- Department of Molecular Microbiology, Washington University School of MedicineSt LouisUnited States
| | - Andrew T Roth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. LouisSt LouisUnited States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. LouisSt LouisUnited States
- Siteman Cancer Center, Washington UniversitySt. LouisUnited States
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of MedicineSt LouisUnited States
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of MedicineSt LouisUnited States
- Department of Molecular Microbiology, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
7
|
Parbhoo T, Schurz H, Mouton JM, Sampson SL. Persistence of Mycobacterium tuberculosis in response to infection burden and host-induced stressors. Front Cell Infect Microbiol 2022; 12:981827. [PMID: 36530432 PMCID: PMC9755487 DOI: 10.3389/fcimb.2022.981827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction As infection with Mycobacterium tuberculosis progresses, the bacilli experience various degrees of host stressors in the macrophage phagosome such as low pH, nutrient deprivation, or exposure to toxic agents, which promotes cell-to-cell phenotypic variation. This includes a physiologically viable but non- or slowly replicating persister subpopulation, which is characterised by a loss of growth on solid media, while remaining metabolically active. Persisters additionally evade the host immune response and macrophage antimicrobial processes by adapting their metabolic pathways to maintain survival and persistence in the host. Methods A flow cytometry-based dual-fluorescent replication reporter assay, termed fluorescence dilution, provided a culture-independent method to characterize the single-cell replication dynamics of M. tuberculosis persisters following macrophage infection. Fluorescence dilution in combination with reference counting beads and a metabolic esterase reactive probe, calcein violet AM, provided an effective approach to enumerate and characterize the phenotypic heterogeneity within M. tuberculosis following macrophage infection. Results Persister formation appeared dependent on the initial infection burden and intracellular bacterial burden. However, inhibition of phagocytosis by cytochalasin D treatment resulted in a significantly higher median percentage of persisters compared to inhibition of phagosome acidification by bafilomycin A1 treatment. Discussion Our results suggest that different host factors differentially impact the intracellular bacterial burden, adaptive mechanisms and entry into persistence in macrophages.
Collapse
|
8
|
Govindarajan DK, Meghanathan Y, Sivaramakrishnan M, Kothandan R, Muthusamy A, Seviour TW, Kandaswamy K. Enterococcus faecalis thrives in dual-species biofilm models under iron-rich conditions. Arch Microbiol 2022; 204:710. [DOI: 10.1007/s00203-022-03309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
|
9
|
Poulton NC, Rock JM. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:997283. [PMID: 36325467 PMCID: PMC9618640 DOI: 10.3389/fcimb.2022.997283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is among the most difficult infections to treat, requiring several months of multidrug therapy to produce a durable cure. The reasons necessitating long treatment times are complex and multifactorial. However, one major difficulty of treating TB is the resistance of the infecting bacterium, Mycobacterium tuberculosis (Mtb), to many distinct classes of antimicrobials. This review will focus on the major gaps in our understanding of intrinsic drug resistance in Mtb and how functional and chemical-genetics can help close those gaps. A better understanding of intrinsic drug resistance will help lay the foundation for strategies to disarm and circumvent these mechanisms to develop more potent antitubercular therapies.
Collapse
|
10
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
11
|
Madhvi A, Mishra H, Chegou NN, Mkhonza MN, Ndou S, Tromp G, Baker B. Comparison of Cytokines Expression from Human Monocyte-Derived Macrophages Infected with Different Species of Mycobacteria. J Interferon Cytokine Res 2022; 42:141-152. [DOI: 10.1089/jir.2021.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Abhilasha Madhvi
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Hridesh Mishra
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mbali N. Mkhonza
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sedzani Ndou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- DNA sequencing Unit, Central Analytical Facility (CAF), Stellenbosch University, Stellenbosch, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Bienyameen Baker
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Martin DR, Sibuyi NR, Dube P, Fadaka AO, Cloete R, Onani M, Madiehe AM, Meyer M. Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care. Diagnostics (Basel) 2021; 11:1352. [PMID: 34441287 PMCID: PMC8391981 DOI: 10.3390/diagnostics11081352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The transmission of Tuberculosis (TB) is very rapid and the burden it places on health care systems is felt globally. The effective management and prevention of this disease requires that it is detected early. Current TB diagnostic approaches, such as the culture, sputum smear, skin tuberculin, and molecular tests are time-consuming, and some are unaffordable for low-income countries. Rapid tests for disease biomarker detection are mostly based on immunological assays that use antibodies which are costly to produce, have low sensitivity and stability. Aptamers can replace antibodies in these diagnostic tests for the development of new rapid tests that are more cost effective; more stable at high temperatures and therefore have a better shelf life; do not have batch-to-batch variations, and thus more consistently bind to a specific target with similar or higher specificity and selectivity and are therefore more reliable. Advancements in TB research, in particular the application of proteomics to identify TB specific biomarkers, led to the identification of a number of biomarker proteins, that can be used to develop aptamer-based diagnostic assays able to screen individuals at the point-of-care (POC) more efficiently in resource-limited settings.
Collapse
Affiliation(s)
- Darius Riziki Martin
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Nicole Remaliah Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Phumuzile Dube
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Adewale Oluwaseun Fadaka
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Martin Onani
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| |
Collapse
|
13
|
Abstract
Mycobacteria have unique cell envelopes, surface properties, and growth dynamics, which all play a part in the ability of these important pathogens to infect, evade host immunity, disseminate, and resist antibiotic challenges. Recent atomic force microscopy (AFM) studies have brought new insights into the nanometer-scale ultrastructural, adhesive, and mechanical properties of mycobacteria. The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unraveled by AFM force spectroscopy studies. Real-time correlative AFM and fluorescence imaging have delineated a complex interplay between surface ultrastructure, tensile stresses within the cell envelope, and cellular processes leading to division. The unique capabilities of AFM, which include subdiffraction-limit topographic imaging and piconewton force sensitivity, have great potential to resolve important questions that remain unanswered on the molecular interactions, surface properties, and growth dynamics of this important class of pathogens.
Collapse
|
14
|
Durán V, Grabski E, Hozsa C, Becker J, Yasar H, Monteiro JT, Costa B, Koller N, Lueder Y, Wiegmann B, Brandes G, Kaever V, Lehr CM, Lepenies B, Tampé R, Förster R, Bošnjak B, Furch M, Graalmann T, Kalinke U. Fucosylated lipid nanocarriers loaded with antibiotics efficiently inhibit mycobacterial propagation in human myeloid cells. J Control Release 2021; 334:201-212. [PMID: 33865899 DOI: 10.1016/j.jconrel.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Antibiotic treatment of tuberculosis (TB) is complex, lengthy, and can be associated with various adverse effects. As a result, patient compliance often is poor, thus further enhancing the risk of selecting multi-drug resistant bacteria. Macrophage mannose receptor (MMR)-positive alveolar macrophages (AM) constitute a niche in which Mycobacterium tuberculosis replicates and survives. Therefore, we encapsulated levofloxacin in lipid nanocarriers functionalized with fucosyl residues that interact with the MMR. Indeed, such nanocarriers preferentially targeted MMR-positive myeloid cells, and in particular, AM. Intracellularly, fucosylated lipid nanocarriers favorably delivered their payload into endosomal compartments, where mycobacteria reside. In an in vitro setting using infected human primary macrophages as well as dendritic cells, the encapsulated antibiotic cleared the pathogen more efficiently than free levofloxacin. In conclusion, our results point towards carbohydrate-functionalized nanocarriers as a promising tool for improving TB treatment by targeted delivery of antibiotics.
Collapse
Affiliation(s)
- Verónica Durán
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Elena Grabski
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Hanzey Yasar
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI), Department of Drug Delivery (DDEL), Saarbrücken, Germany
| | - João T Monteiro
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Nicole Koller
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.; Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover, Medical School, Germany; German Centre of Lung Research, 30625, Hannover, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI), Department of Drug Delivery (DDEL), Saarbrücken, Germany
| | - Bernd Lepenies
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany..
| | | | - Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Clinic of Immunology and Rheumatology, Hannover Medical School, Hannover, Germany..
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany..
| |
Collapse
|
15
|
Campo-Pérez V, Cendra MDM, Julián E, Torrents E. Easily applicable modifications to electroporation conditions improve the transformation efficiency rates for rough morphotypes of fast-growing mycobacteria. N Biotechnol 2021; 63:10-18. [PMID: 33636348 DOI: 10.1016/j.nbt.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Electroporation is the most widely used and efficient method to transform mycobacteria. Through this technique, fast- and slow-growing mycobacteria with smooth and rough morphotypes have been successfully transformed. However, transformation efficiencies differ widely between species and strains. In this study, the smooth and rough morphotypes of Mycobacteroides abscessus and Mycolicibacterium brumae were used to improve current electroporation procedures for fast-growing rough mycobacteria. The focus was on minimizing three well-known and challenging limitations: the mycobacterial restriction-modification systems, which degrade foreign DNA; clump formation of electrocompetent cells before electroporation; and electrical discharges during pulse delivery, which were reduced by using salt-free DNA solution. Herein, different strategies are presented that successfully address these three limitations and clearly improve the electroporation efficiencies over the current procedures. The results demonstrated that combining the developed strategies during electroporation is highly recommended for the transformation of fast-growing rough mycobacteria.
Collapse
Affiliation(s)
- Víctor Campo-Pérez
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona, 08028, Spain; Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona, 08028, Spain
| | - Esther Julián
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona, 08028, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., Barcelona, 08028, Spain.
| |
Collapse
|
16
|
Chen T, Blanc C, Liu Y, Ishida E, Singer S, Xu J, Joe M, Jenny-Avital ER, Chan J, Lowary TL, Achkar JM. Capsular glycan recognition provides antibody-mediated immunity against tuberculosis. J Clin Invest 2020; 130:1808-1822. [PMID: 31935198 DOI: 10.1172/jci128459] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
A better understanding of all immune components involved in protecting against Mycobacterium tuberculosis infection is urgently needed to inform strategies for novel immunotherapy and tuberculosis (TB) vaccine development. Although cell-mediated immunity is critical, increasing evidence supports that antibodies also have a protective role against TB. Yet knowledge of protective antigens is limited. Analyzing sera from 97 US immigrants at various stages of M. tuberculosis infection, we showed protective in vitro and in vivo efficacy of polyclonal IgG against the M. tuberculosis capsular polysaccharide arabinomannan (AM). Using recently developed glycan arrays, we established that anti-AM IgG induced in natural infection is highly heterogeneous in its binding specificity and differs in both its reactivity to oligosaccharide motifs within AM and its functions in bacillus Calmette-Guérin vaccination and/or in controlled (latent) versus uncontrolled (TB) M. tuberculosis infection. We showed that anti-AM IgG from asymptomatic but not from diseased individuals was protective and provided data suggesting a potential role of IgG2 and specific AM oligosaccharides. Filling a gap in the current knowledge of protective antigens in humans, our data support the key role of the M. tuberculosis surface glycan AM and suggest the importance of targeting specific glycan epitopes within AM in antibody-mediated immunity against TB.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Caroline Blanc
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yanyan Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Elise Ishida
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sarah Singer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jiayong Xu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
17
|
Sebastian J, Nair RR, Swaminath S, Ajitkumar P. Mycobacterium tuberculosis Cells Surviving in the Continued Presence of Bactericidal Concentrations of Rifampicin in vitro Develop Negatively Charged Thickened Capsular Outer Layer That Restricts Permeability to the Antibiotic. Front Microbiol 2020; 11:554795. [PMID: 33391194 PMCID: PMC7773709 DOI: 10.3389/fmicb.2020.554795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Majority of the cells in the bacterial populations exposed to lethal concentrations of antibiotics for prolonged duration succumbs to the antibiotics' sterilizing activity. The remaining cells survive by diverse mechanisms that include reduced permeability of the antibiotics. However, in the cells surviving in the continued presence of lethal concentrations of antibiotics, it is not known whether any cell surface alterations occur that in turn may reduce permeability of the antibiotics. Here we report the presence of a highly negatively charged, hydrophilic, thickened capsular outer layer (TCOL) on a small proportion of the rifampicin surviving population (RSP) of Mycobacterium tuberculosis (Mtb) cells upon prolonged continuous exposure to bactericidal concentrations of rifampicin in vitro. The TCOL reduced the intracellular entry of 5-carboxyfluorescein-rifampicin (5-FAM-rifampicin), a fluorochrome-conjugated rifampicin permeability probe of negligible bacteriocidal activity but comparable properties. Gentle mechanical removal of the TCOL enabled significant increase in the 5-FAM-rifampicin permeability. Zeta potential measurements of the cells' surface charge and hexadecane assay for cell surface hydrophobicity showed that the TCOL imparted high negative charge and polar nature to the cells' surface. Flow cytometry using the MLP and RSP cells, stained with calcofluor white, which specifically binds glucose/mannose units in β (1 → 4) or β (1 → 3) linkages, revealed the presence of lower content of polysaccharides containing such residues in the TCOL. GC-MS analyses of the TCOL and the normal capsular outer layer (NCOL) of MLP cells showed elevated levels of α-D-glucopyranoside, mannose, arabinose, galactose, and their derivatives in the TCOL, indicating the presence of high content of polysaccharides with these residues. We hypothesize that the significantly high thickness and the elevated negative charge of the TCOL might have functioned as a physical barrier restricting the permeability of the relatively non-polar rifampicin. This might have reduced intracellular rifampicin concentration enabling the cells' survival in the continued presence of high doses of rifampicin. In the context of our earlier report on the de novo emergence of rifampicin-resistant genetic mutants of Mtb from the population surviving under lethal doses of the antibiotic, the present findings attain clinical significance if a subpopulation of the tubercle bacilli in tuberculosis patients possesses TCOL.
Collapse
Affiliation(s)
- Jees Sebastian
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sharmada Swaminath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
18
|
Madhvi A, Mishra H, Chegou NN, Tromp G, Van Heerden CJ, Pietersen RD, Leisching G, Baker B. Distinct host-immune response toward species related intracellular mycobacterial killing: A transcriptomic study. Virulence 2020; 11:170-182. [PMID: 32052695 PMCID: PMC7051142 DOI: 10.1080/21505594.2020.1726561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 01/10/2023] Open
Abstract
The comparison of the host immune response when challenged with pathogenic and nonpathogenic species of mycobacteria can provide answers to the unresolved question of how pathogens subvert or inhibit an effective response. We infected human monocyte derived macrophages (hMDMs) with different species of mycobacteria, in increasing order of pathogenicity, i.e. M. smegmatis, M. bovis BCG, and M. tuberculosis R179 that had been cultured in the absence of detergents. RNA was isolated post-infection and transcriptomic analysis using amplicons (Ampliseq) revealed 274 differentially expressed genes (DEGs) across three species, out of which we selected 19 DEGs for further validation. We used qRT-PCR to confirm the differential expression of 19 DEGs. We studied biological network through Ingenuity Pathway Analysis® (IPA) which revealed up-regulated pathways of the interferon and interleukin family related to the killing of M. smegmatis. Apart from interferon and interleukin family, we found one up-regulated (EIF2AK2) and two down-regulated (MT1A and TRIB3) genes as unique potential targets found by Ampliseq and qRT-PCR which may be involved in the intracellular mycobacterial killing. The roles of these genes have not previously been described in tuberculosis. Multiplex ELISA of culture supernatants showed increased host immune response toward M. smegmatis as compared to M. bovis BCG and M.tb R179. These results enhance our understanding of host immune response against M.tb infection.
Collapse
Affiliation(s)
- Abhilasha Madhvi
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Hridesh Mishra
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Novel N. Chegou
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Carel J. Van Heerden
- DNA Sequencing Unit, Central Analytical Facility (CAF), Stellenbosch University, Stellenbosch, South Africa
| | - R. D. Pietersen
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gina Leisching
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bienyameen Baker
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Alipoor SD, Adcock IM, Tabarsi P, Folkerts G, Mortaz E. MiRNAs in tuberculosis: Their decisive role in the fate of TB. Eur J Pharmacol 2020; 886:173529. [PMID: 32919937 DOI: 10.1016/j.ejphar.2020.173529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis (TB) is one of the most lethal global infectious diseases. Despite the availability of much higher levels of technology in health and medicine, tuberculosis still remains a serious global health problem. Mycobacterium tuberculosis has the capacity for prolonged survival inside macrophages by exploiting host metabolic and energy pathways and perturbing autophagy and apoptosis of infected cells. The mechanism(s) underlying this process are not completely understood but evidence suggests that mycobacteria subvert the host miRNA network to enable mycobacterial survival. We present here a comprehensive review on the role of miRNAs in TB immune escape mechanisms and the potential for miRNA-based TB therapeutics. Further validation studies are required to (i) elucidate the precise effect of TB on host miRNAs, (ii) determine the inhibition of mycobacterial burden using miRNA-based therapies and (iii) identify novel miRNA biomarkers that may prove useful in TB diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Viljoen A, Viela F, Kremer L, Dufrêne YF. Fast chemical force microscopy demonstrates that glycopeptidolipids define nanodomains of varying hydrophobicity on mycobacteria. NANOSCALE HORIZONS 2020; 5:944-953. [PMID: 32314749 DOI: 10.1039/c9nh00736a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mycobacterium abscessus is an emerging multidrug-resistant bacterial pathogen causing severe lung infections in cystic fibrosis patients. A remarkable trait of this mycobacterial species is its ability to form morphologically smooth (S) and rough (R) colonies. The S-to-R transition is caused by the loss of glycopeptidolipids (GPLs) in the outer layer of the cell envelope and correlates with an increase in cording and virulence. Despite the physiological and medical importance of this morphological transition, whether it involves changes in cell surface properties remains unknown. Herein, we combine recently developed quantitative imaging (QI) atomic force microscopy (AFM) with hydrophobic tips to quantitatively map the surface structure and hydrophobicity of M. abscessus at high spatiotemporal resolution, and to assess how these properties are modulated by the S-to-R transition and by treatment with an inhibitor of the mycolic acid transporter MmpL3. We discover that loss of GPLs leads to major modifications in surface hydrophobicity, without any apparent change in cell surface ultrastructure. While R bacilli are homogeneously hydrophobic, S bacilli feature unusual variations of nanoscale hydrophobic properties. These previously undescribed cell surface nanodomains are likely to play critical roles in bacterial adhesion, aggregation, phenotypic heterogeneity and transmission, and in turn in virulence and pathogenicity. Our study also suggests that MmpL3 inhibitors show promise in nanomedicine as chemotherapeutic agents to interfere with the highly hydrophobic nature of the mycobacterial cell wall. The advantages of QI-AFM with hydrophobic tips are the ability to map chemical and structural properties simultaneously and at high resolution, applicable to a wide range of biosystems.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
21
|
Briceno RK, Sergent SR, Benites SM, Alocilja EC. Nanoparticle-Based Biosensing Assay for Universally Accessible Low-Cost TB Detection with Comparable Sensitivity as Culture. Diagnostics (Basel) 2019; 9:diagnostics9040222. [PMID: 31847171 PMCID: PMC6963232 DOI: 10.3390/diagnostics9040222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death globally, surpassing HIV. Furthermore, multidrug-resistant and extensively drug-resistant TB have become global public health threats. Care of TB patients starts with quality, accessible, and affordable diagnosis. The study presents a novel technique called nanoparticle-based colorimetric biosensing assay (NCBA) based on the principles of magnetically activated cell enrichment. A total of 1108 sputum samples were subjected to sputum smear microscopy (SSM), NCBA, and standard culture. SSM and NCBA were completed in 20 min; culture was completed in 8 weeks. Results show that NCBA has matching sensitivity of 100.0% and specificity of 99.7% compared to the gold standard culture method at a cost of $0.50/test based on Peruvian conditions. Sputum smear microscopy has 63.87% sensitivity compared to culture. NCBA has the potential of being used in local health clinics as it only requires a microscope that is widely available in many rural areas. Because NCBA could detect low levels of bacterial load comparable to culture, it could be used for rapid and early TB-onset detection. The gain in time is critical as TB is airborne and highly infectious, minimizing contact exposure. Early detection could lead to early treatment, while the patient’s immune system is still high. The low cost makes NCBA affordable and accessible to those who need them the most.
Collapse
Affiliation(s)
- Ruben Kenny Briceno
- Instituto de Investigacion en Ciencia y Tecnologia, Universidad Cesar Vallejo, Trujillo 13100, Peru; (R.K.B.); (S.R.S.); (S.M.B.)
- Hospital Victor Lazarte Echegaray, Trujillo 13100, Peru
- Institute for Global Health, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Shane Ryan Sergent
- Instituto de Investigacion en Ciencia y Tecnologia, Universidad Cesar Vallejo, Trujillo 13100, Peru; (R.K.B.); (S.R.S.); (S.M.B.)
- Institute for Global Health, Michigan State University, East Lansing, MI 48824, USA
- Kingman Regional Medical Center, Kingman, AZ 86409, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Santiago Moises Benites
- Instituto de Investigacion en Ciencia y Tecnologia, Universidad Cesar Vallejo, Trujillo 13100, Peru; (R.K.B.); (S.R.S.); (S.M.B.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C. Alocilja
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
- Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
22
|
Bannantine JP, Wadhwa A, Stabel JR, Eda S. Characterization of Ethanol Extracted Cell Wall Components of Mycobacterium avium Subsp. paratuberculosis. Vet Sci 2019; 6:vetsci6040088. [PMID: 31683552 PMCID: PMC6958465 DOI: 10.3390/vetsci6040088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/02/2022] Open
Abstract
Antigens extracted using ethanol (EtOH) and incorporated in the EtOH vortex ELISA (EVELISA) test have previously shown high specificity and sensitivity for detecting Mycobacterium avium subspecies paratuberculosis (Map) and M. bovis infections in cattle. The objective of this study is to define the components present in the EtOH extract. We show that this extract is composed of lipid, carbohydrate, and proteins on the surface of the bacilli, and that EtOH removes the outer layer structure of Map which comprise these elements. To identify proteins, polyclonal antibodies to the EtOH prep were produced and used to screen a Map genomic expression library. Seven overlapping clones were identified with a single open reading frame, MAP_0585, common to all. MAP_0585, which encodes a hypothetical protein, was recombinantly produced and used to demonstrate strong reactivity in sera from hyperimmunized rabbits, but this protein is not strongly immunogenic in cattle with Johne’s disease. A panel of monoclonal antibodies was used to determine the presence of additional proteins in the EtOH extract. These antibodies demonstrated that a well-known antigen, termed MPB83, is present in M. bovis EtOH extracts and a fatty acid desaturase (MAP_2698c) is present in Map EtOH extracts, while lipoarabinomannan was common to both. The lipid and carbohydrate components of the extract were analyzed using thin layer chromatography and lectin binding, respectively. Lectin biding and protease treatment of the EtOH extract suggest the antigenic component is carbohydrate and not protein. These results give further insight into this important antigen prep for detecting mycobacterial diseases of cattle.
Collapse
Affiliation(s)
- John P Bannantine
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA 50010, USA.
| | - Ashutosh Wadhwa
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA.
| | - Judith R Stabel
- National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA 50010, USA.
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
23
|
Jakkala K, Ajitkumar P. Hypoxic Non-replicating Persistent Mycobacterium tuberculosis Develops Thickened Outer Layer That Helps in Restricting Rifampicin Entry. Front Microbiol 2019; 10:2339. [PMID: 31681204 PMCID: PMC6797554 DOI: 10.3389/fmicb.2019.02339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteria undergo adaptive morphological changes to survive under stress conditions. The present work documents the morphological changes in Mycobacterium tuberculosis (Mtb) cells cultured under hypoxic condition using Wayne’s in vitro hypoxia model involving non-replicating persistence stages 1 and 2 (NRP stage 1 and NRP stage 2) and reveals their physiological significance. Transmission electron microscopy of the NRP stage 2 cells showed uneven but thick outer layer (TOL), unlike the evenly thin outer layer of the actively growing mid-log phase (MLP) cells. On the contrary, the saprophytic Mycobacterium smegmatis NRP stage 2 cells lacked TOL. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) of the Mtb NRP stage 2 cells confirmed the rough uneven surface unlike the smooth surface of the MLP cells. Zeta potential measurements showed high negative charge on the surface of NRP stage 2 cells and polysaccharide specific calcofluor white (CFW) staining of the cells revealed high content of polysaccharide in the TOL. This observation was supported by the real-time PCR data showing high levels of expression of the genes involved in the synthesis of sugars, such as trehalose, mannose and others, which are implicated in polysaccharide synthesis. Experiments to understand the physiological significance of the TOL revealed restricted entry of the biologically low-active 5-carboxyfluorescein-rifampicin (5-FAM-RIF), at concentrations equivalent to microbicidal concentrations of the unconjugated biologically active rifampicin, into the NRP stage 2 cells, unlike in the MLP cells. Further, as expected, mechanical removal of the TOL by mild bead beating or release of the NRP stage 2 cells from hypoxia into normoxia in fresh growth medium also significantly increased 5-FAM-RIF permeability into the NRP stage 2 cells to an extent comparable to that into the MLP cells. Taken together, these observations revealed that Mtb cells under hypoxia develop TOL that helps in restricting rifampicin entry, thereby conferring rifampicin tolerance.
Collapse
Affiliation(s)
- Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
24
|
Sei CJ, Shey BA, Schuman RF, Rikhi N, Muema K, Rodriguez JD, Daum LT, Fourie PB, Fischer GW. Opsonic monoclonal antibodies enhance phagocytic killing activity and clearance of Mycobacterium tuberculosis from blood in a quantitative qPCR mouse model. Heliyon 2019; 5:e02260. [PMID: 31517107 PMCID: PMC6734336 DOI: 10.1016/j.heliyon.2019.e02260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022] Open
Abstract
Background Patients with impaired immunity often have rapid progression of tuberculosis (TB) which can lead to highly lethal Mycobacterium tuberculosis (MTB) sepsis. Opsonic monoclonal antibodies (MABs) directed against MTB that enhance phagocytic killing activity and clearance of MTB from blood may be useful to enhance TB immunity. Methods BALB/c mice were immunized with ethanol-killed MTB (EK-MTB) and MABs were produced and screened by ELISA for binding to killed and live Mycobacterium smegmatis (SMEG) and MTB. MAB opsonophagocytic killing activity (OPKA) was examined using SMEG with HL60 and U-937 cells and MTB with U-937 cells. Clearance of MTB from blood was evaluated in Institute of Cancer Research (ICR) mice given opsonic anti-MTB MABs or saline (control) 24 h prior to intravenous infusion with 108 CFUs gamma-irradiated MTB (HN878). MTB levels in murine blood collected 0.25, 4 and 24 h post-challenge were assessed by qPCR. MAB binding to peptidoglycan (PGN) was examined by ELISA using PGN cell wall mixture and ultra-pure PGN. Results Two MABs (GG9 and JG7) bound to killed and live SMEG and MTB (susceptible and resistant), and promoted OPKA with live MTB. MAB JG7 significantly enhanced OPKA of MTB. Both MABs significantly enhanced clearance of killed MTB from murine blood at 4 and 24 h as measured by qPCR. These opsonic MABs bound to PGN, a major cell wall constituent. Conclusions Anti-MTB MABs that promote bactericidal phagocytic activity of MTB and enhance clearance of killed MTB from the blood, may offer an immunotherapeutic approach for treatment of MTB bacteremia or sepsis, and augment treatment of multi-drug resistant (MDR) or extensively drug resistant (XDR) TB.
Collapse
Affiliation(s)
- Clara J Sei
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD, 20878, USA
| | - Bong-Akee Shey
- Department of Medical Microbiology, University of Pretoria, Prinshof, Pretoria, South Africa
| | | | - Nimisha Rikhi
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD, 20878, USA
| | - Kevin Muema
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD, 20878, USA
| | | | - Luke T Daum
- Longhorn Vaccines and Diagnostics, San Antonio, TX, 78209, USA
| | - P Bernard Fourie
- Department of Medical Microbiology, University of Pretoria, Prinshof, Pretoria, South Africa
| | | |
Collapse
|
25
|
The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J 2019; 476:1995-2016. [PMID: 31320388 PMCID: PMC6698057 DOI: 10.1042/bcj20190324] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/17/2023]
Abstract
Bacterial capsules have evolved to be at the forefront of the cell envelope, making them an essential element of bacterial biology. Efforts to understand the Mycobacterium tuberculosis (Mtb) capsule began more than 60 years ago, but the relatively recent development of mycobacterial genetics combined with improved chemical and immunological tools have revealed a more refined view of capsule molecular composition. A glycogen-like α-glucan is the major constituent of the capsule, with lower amounts of arabinomannan and mannan, proteins and lipids. The major Mtb capsular components mediate interactions with phagocytes that favor bacterial survival. Vaccination approaches targeting the mycobacterial capsule have proven successful in controlling bacterial replication. Although the Mtb capsule is composed of polysaccharides of relatively low complexity, the concept of antigenic variability associated with this structure has been suggested by some studies. Understanding how Mtb shapes its envelope during its life cycle is key to developing anti-infective strategies targeting this structure at the host-pathogen interface.
Collapse
|
26
|
Kermani AA, Roy R, Gopalasingam C, Kocurek KI, Patel TR, Alderwick LJ, Besra GS, Fütterer K. Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria. J Biol Chem 2019; 294:7348-7359. [PMID: 30877199 PMCID: PMC6509496 DOI: 10.1074/jbc.ra118.004297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/13/2019] [Indexed: 11/15/2022] Open
Abstract
A growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and potentially redundant metabolic pathways. Here, we report the crystal structure of the Mycobacterium smegmatis TreS:Pep2 complex, containing trehalose synthase (TreS) and maltokinase (Pep2), which converts trehalose to maltose 1-phosphate as part of the TreS:Pep2-GlgE pathway. The structure, at 3.6 Å resolution, revealed that a diamond-shaped TreS tetramer forms the core of the complex and that pairs of Pep2 monomers bind to opposite apices of the tetramer in a 4 + 4 configuration. However, for the M. smegmatis orthologues, results from isothermal titration calorimetry and analytical ultracentrifugation experiments indicated that the prevalent stoichiometry in solution is 4 TreS + 2 Pep2 protomers. The observed discrepancy between the crystallized complex and the behavior in the solution state may be explained by the relatively weak affinity of Pep2 for TreS (Kd 3.5 μm at mildly acidic pH) and crystal packing favoring the 4 + 4 complex. Proximity of the ATP-binding site in Pep2 to the complex interface provides a rational basis for rate enhancement of Pep2 upon binding to TreS, but the complex structure appears to rule out substrate channeling between the active sites of TreS and Pep2. Our findings provide a structural model for the trehalose synthase:maltokinase complex in M. smegmatis that offers critical insights into capsule assembly.
Collapse
Affiliation(s)
- Ali A Kermani
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rana Roy
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Chai Gopalasingam
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Klaudia I Kocurek
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Trushar R Patel
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Luke J Alderwick
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S Besra
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Klaus Fütterer
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
27
|
Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, Anis FZ, Norazmi MN, Acosta A. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis (Edinb) 2019; 115:26-41. [PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
Collapse
Affiliation(s)
- M E Sarmiento
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - N Alvarez
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - K L Chin
- Department of Biomedical Sciences and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Sabah, Malaysia
| | - F Bigi
- Institute of Biotechnology, INTA, Buenos Aires, Argentina
| | - Y Tirado
- Finlay Institute of Vaccines, La Habana, Cuba
| | - M A García
- Finlay Institute of Vaccines, La Habana, Cuba
| | - F Z Anis
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - M N Norazmi
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| | - A Acosta
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
28
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
29
|
Kolia-Diafouka P, Godreuil S, Bourdin A, Carrère-Kremer S, Kremer L, Van de Perre P, Tuaillon E. Optimized Lysis-Extraction Method Combined With IS6110-Amplification for Detection of Mycobacterium tuberculosis in Paucibacillary Sputum Specimens. Front Microbiol 2018; 9:2224. [PMID: 30319564 PMCID: PMC6167964 DOI: 10.3389/fmicb.2018.02224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/31/2018] [Indexed: 01/21/2023] Open
Abstract
Background: When available, nucleic acid tests (NATs) offer powerful tools to strengthen the potential of tuberculosis (TB) diagnosis assays. The sensitivity of molecular assays is critical for detection of Mycobacterium tuberculosis (MTB) in paucibacillary sputum. Materials and Methods: The impact of targeting repetitive IS6110 sequences on the PCR sensitivity was evaluated across mycobacterium strains and reference material. Six lysis-extraction protocols were compared. Next, 92 clinical sputum specimens including 62 culture-positive samples were tested and the results were compared to sputum-smear microscopy, culture, and Xpert MTB/RIF test. Finally, the capacity to detect low MTB DNA concentrations was assessed in 40 samples containing <1.5 × 102 copies/ml ex vivo or after dilution. Results: The lower limit of detection (LOD) using the IS6110 PCR was 107 genome copies/ml (95% CI: 83–130) using MTB H37Rv as a reference strain, versus 741 genome copies/ml (95% CI: 575–1094) using the senX3 PCR. The proportion of recovered MTB DNA after lysis and extraction ranged from 35 to 82%. The Chelex® method appeared as a more efficient protocol among the six different protocols tested. The sensitivity and specificity in clinical sputum samples were 95.1% (95% CI: 90.7–99.6) and 100% (95% CI: 96.2–100.8), respectively. Among 40 samples with low MTB DNA concentration, 75% tested positive for IS6110 PCR, versus 55% using the Xpert MTB/RIF assay (p = 0.03). Conclusion: Laboratory assays based on an efficient MTB lysis and DNA extraction protocols combined with amplification of IS6110 repeat sequences appear as a sensitive diagnostic method to detect MTB DNA in sputum with low bacterial load.
Collapse
Affiliation(s)
- Pratt Kolia-Diafouka
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, Montpellier, France
| | - Sylvain Godreuil
- UMR MIVEGEC IRD-CNRS-Université de Montpellier, Montpellier, France
| | - Arnaud Bourdin
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Centre Hospitalier Régional Universitaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Severine Carrère-Kremer
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique, UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, Montpellier, France
| |
Collapse
|
30
|
Achkar JM, Prados-Rosales R. Updates on antibody functions in Mycobacterium tuberculosis infection and their relevance for developing a vaccine against tuberculosis. Curr Opin Immunol 2018; 53:30-37. [PMID: 29656063 DOI: 10.1016/j.coi.2018.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 11/16/2022]
Abstract
A more effective vaccine to control tuberculosis (TB), a major global public health problem, is urgently needed. Current vaccine candidates focus predominantly on eliciting cell-mediated immunity but other arms of the immune system also contribute to protection against TB. We review here recent studies that enhance our current knowledge of antibody-mediated functions against Mycobacterium tuberculosis. These findings, which contribute to the increasing evidence that antibodies have a protective role against TB, include demonstrations that firstly distinct human antibody Fc glycosylation patterns, found in latent M. tuberculosis infection but not in active TB, influence the efficacy of the host to control M. tuberculosis infection, secondly antibody isotype influences human antibody functions, and thirdly that antibodies targeting M. tuberculosis surface antigens are protective. We discuss these findings in the context of TB vaccine development and highlight the need for further research on antibody-mediated immunity in M. tuberculosis infection.
Collapse
Affiliation(s)
- Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States.
| | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States; Center for Cooperative Research bioGUNE (CICbioGUNE), Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
31
|
Schreiber PW, Köhler N, Cervera R, Hasse B, Sax H, Keller PM. Detection limit of Mycobacterium chimaera in water samples for monitoring medical device safety: insights from a pilot experimental series. J Hosp Infect 2017; 99:284-289. [PMID: 29175077 DOI: 10.1016/j.jhin.2017.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND A growing number of Mycobacterium chimaera infections after cardiosurgery have been reported by several countries. These potentially fatal infections were traced back to contaminated heater-cooler devices (HCDs), which use water as a heat transfer medium. Aerosolization of water contaminated with M. chimaera from HCDs enables airborne transmission to patients undergoing open chest surgery. Infection control teams test HCD water samples for mycobacterial growth to guide preventive measures. The detection limit of M. chimaera in water samples, however, has not previously been investigated. AIM To determine the detection limit of M. chimaera in water samples using laboratory-based serial dilution tests. METHODS An M. chimaera strain representative of the international cardiosurgery-associated M. chimaera outbreak was used to generate a logarithmic dilution series. Two different water volumes, 50 and 1000mL, were inoculated, and, after identical processing (centrifugation, decantation, and decontamination), seeded on mycobacteria growth indicator tube (MGIT) and Middlebrook 7H11 solid media. FINDINGS MGIT consistently showed a lower detection limit than 7H11 solid media, corresponding to a detection limit of ≥1.44 × 104cfu/mL for 50mL and ≥2.4cfu/mL for 1000mL water samples. Solid media failed to detect M. chimaera in 50mL water samples. CONCLUSION Depending on water volume and culture method, major differences exist in the detection limit of M. chimaera. In terms of sensitivity, 1000mL water samples in MGIT media performed best. Our results have important implications for infection prevention and control strategies in mitigation of the M. chimaera outbreak and healthcare water safety in general.
Collapse
Affiliation(s)
- P W Schreiber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland.
| | - N Köhler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - R Cervera
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - B Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - H Sax
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - P M Keller
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland; Swiss National Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Jankute M, Nataraj V, Lee OYC, Wu HHT, Ridell M, Garton NJ, Barer MR, Minnikin DE, Bhatt A, Besra GS. The role of hydrophobicity in tuberculosis evolution and pathogenicity. Sci Rep 2017; 7:1315. [PMID: 28465507 PMCID: PMC5431016 DOI: 10.1038/s41598-017-01501-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
The evolution of tubercle bacilli parallels a route from environmental Mycobacterium kansasii, through intermediate "Mycobacterium canettii", to the modern Mycobacterium tuberculosis complex. Cell envelope outer membrane lipids change systematically from hydrophilic lipooligosaccharides and phenolic glycolipids to hydrophobic phthiocerol dimycocerosates, di- and pentaacyl trehaloses and sulfoglycolipids. Such lipid changes point to a hydrophobic phenotype for M. tuberculosis sensu stricto. Using Congo Red staining and hexadecane-aqueous buffer partitioning, the hydrophobicity of rough morphology M. tuberculosis and Mycobacterium bovis strains was greater than smooth "M. canettii" and M. kansasii. Killed mycobacteria maintained differential hydrophobicity but defatted cells were similar, indicating that outer membrane lipids govern overall hydrophobicity. A rough M. tuberculosis H37Rv ΔpapA1 sulfoglycolipid-deficient mutant had significantly diminished Congo Red uptake though hexadecane-aqueous buffer partitioning was similar to H37Rv. An M. kansasii, ΔMKAN27435 partially lipooligosaccharide-deficient mutant absorbed marginally more Congo Red dye than the parent strain but was comparable in partition experiments. In evolving from ancestral mycobacteria, related to "M. canettii" and M. kansasii, modern M. tuberculosis probably became more hydrophobic by increasing the proportion of less polar lipids in the outer membrane. Importantly, such a change would enhance the capability for aerosol transmission, affecting virulence and pathogenicity.
Collapse
Affiliation(s)
- Monika Jankute
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Vijayashankar Nataraj
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Houdini H T Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Malin Ridell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Natalie J Garton
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Michael R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - David E Minnikin
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Apoorva Bhatt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
33
|
Sato MR, Oshiro Junior JA, Machado RT, de Souza PC, Campos DL, Pavan FR, da Silva PB, Chorilli M. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther 2017; 11:909-921. [PMID: 28356717 PMCID: PMC5367736 DOI: 10.2147/dddt.s127048] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis. Cessation of treatment before the recommended conclusion may lead to the emergence of multidrug-resistant strains. The aim of this study was to develop nanostructured lipid carriers (NLCs) for use in the treatment of M. tuberculosis. The NLCs comprised the following lipid phase: 2.07% polyoxyethylene 40 stearate, 2.05% caprylic/capric triglyceride, and 0.88% polyoxyl 40 hydrogenated castor oil; the following aqueous phase: 3.50% poloxamer 407 (F1-F6), and 0.50% cetyltrimethylammonium bromide (F7-F12); and incorporated the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2), and [Cu(NCO)2(INH)2]·4H2O (3) to form compounds F11.1, F11.2, and F11.3, respectively. The mean diameter of F11, F11.1, F11.2, and F11.3 ranged from 111.27±21.86 to 134.25±22.72 nm, 90.27±12.97 to 116.46±9.17 nm, 112.4±10.22 to 149.3±15.82 nm, and 78.65±6.00 to 122.00±8.70 nm, respectively. The polydispersity index values for the NLCs ranged from 0.13±0.01 to 0.30±0.09. The NLCs showed significant changes in zeta potential, except for F11.2, with F11, F11.1, F11.2, and F11.3 ranging from 18.87±4.04 to 23.25±1.13 mV, 17.03±1.77 to 21.42±1.87 mV, 20.51±1.88 to 22.60±3.44 mV, and 17.80±1.96 to 25.25±7.78 mV, respectively. Atomic force microscopy confirmed the formation of nanoscale spherical particle dispersions by the NLCs. Differential scanning calorimetry determined the melting points of the constituents of the NLCs. The in vitro activity of copper(II) complex-loaded NLCs against M. tuberculosis H37Rv showed an improvement in the anti-TB activity of 55.4, 27.1, and 41.1 times the activity for complexes 1, 2, and 3, respectively. An in vivo acute toxicity study of complex-loaded NLCs demonstrated their reduced toxicity. The results suggest that NLCs may be a powerful tool to optimize the activity of copper(II) complexes against M. tuberculosis.
Collapse
Affiliation(s)
- Mariana R Sato
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - João A Oshiro Junior
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Rachel Ta Machado
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Paula C de Souza
- Department of Biological Sciences, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Débora L Campos
- Department of Biological Sciences, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Patricia B da Silva
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| |
Collapse
|
34
|
Prados-Rosales R, Carreño L, Cheng T, Blanc C, Weinrick B, Malek A, Lowary TL, Baena A, Joe M, Bai Y, Kalscheuer R, Batista-Gonzalez A, Saavedra NA, Sampedro L, Tomás J, Anguita J, Hung SC, Tripathi A, Xu J, Glatman-Freedman A, Jacobs WR, Chan J, Porcelli SA, Achkar JM, Casadevall A. Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathog 2017; 13:e1006250. [PMID: 28278283 PMCID: PMC5360349 DOI: 10.1371/journal.ppat.1006250] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/21/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
Currently there are a dozen or so of new vaccine candidates in clinical trials for prevention of tuberculosis (TB) and each formulation attempts to elicit protection by enhancement of cell-mediated immunity (CMI). In contrast, most approved vaccines against other bacterial pathogens are believed to mediate protection by eliciting antibody responses. However, it has been difficult to apply this formula to TB because of the difficulty in reliably eliciting protective antibodies. Here, we developed capsular polysaccharide conjugates by linking mycobacterial capsular arabinomannan (AM) to either Mtb Ag85b or B. anthracis protective antigen (PA). Further, we studied their immunogenicity by ELISA and AM glycan microarrays and protection efficacy in mice. Immunization with either Abg85b-AM or PA-AM conjugates elicited an AM-specific antibody response in mice. AM binding antibodies stimulated transcriptional changes in Mtb. Sera from AM conjugate immunized mice reacted against a broad spectrum of AM structural variants and specifically recognized arabinan fragments. Conjugate vaccine immunized mice infected with Mtb had lower bacterial numbers in lungs and spleen, and lived longer than control mice. These findings provide additional evidence that humoral immunity can contribute to protection against Mtb. Vaccine design in the TB field has been driven by the imperative of attempting to elicit strong cell-mediated responses. However, in recent decades evidence has accumulated that humoral immunity can protect against many intracellular pathogens through numerous mechanisms. In this work, we demonstrate that immunization with mycobacterial capsular arabinomannan (AM) conjugates elicited responses that contributed to protection against Mtb infection. We developed two different conjugates including capsular AM linked to the Mtb related protein Ag85b or the Mtb unrelated PA from B. anthracis and found that immunization with AM conjugates elicited antibody populations with different specificities. These surface-specific antibodies could directly modify the transcriptional profile and metabolism of mycobacteria. In addition, we observed a prolonged survival and a reduction in bacterial numbers in lungs and spleen in mice immunized with Ag85b-AM conjugates after infection with Mtb and that the presence of AM-binding antibodies was associated with modest prolongation in survival and a marked reduction in mycobacterial dissemination. Finally, we show that AM is antigenically variable and could potentially form the basis for a serological characterization of mycobacteria based on serotypes.
Collapse
Affiliation(s)
- Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- * E-mail:
| | - Leandro Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Millennium Institute on Immunology and Immunotherapy, Programa Disciplinario de Inmunologia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tingting Cheng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Caroline Blanc
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Brian Weinrick
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Adel Malek
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Center, Edmonton, Alberta, Canada
| | - Andres Baena
- Grupo de Inmunologia Celular e inmunogenetica, Universidad de Antioquia, Medellin, Colombia
| | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Center, Edmonton, Alberta, Canada
| | - Yu Bai
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Center, Edmonton, Alberta, Canada
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ana Batista-Gonzalez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Noemi A. Saavedra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
| | | | - Julen Tomás
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Juan Anguita
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Section 2, Nankang, Taipei, Taiwan
| | - Ashish Tripathi
- Genomics Research Center, Academia Sinica, Section 2, Nankang, Taipei, Taiwan
| | - Jiayong Xu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Aharona Glatman-Freedman
- Infectious Diseases Unit, Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Israel
- Department of Pediatrics, and Department of Family and Community Medicine, New York Medical College, Valhalla, NY, United States of America
| | - Williams R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Jacqueline M. Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| |
Collapse
|
35
|
Li H, Wu M, Shi Y, Javid B. Over-Expression of the Mycobacterial Trehalose-Phosphate Phosphatase OtsB2 Results in a Defect in Macrophage Phagocytosis Associated with Increased Mycobacterial-Macrophage Adhesion. Front Microbiol 2016; 7:1754. [PMID: 27867377 PMCID: PMC5095139 DOI: 10.3389/fmicb.2016.01754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/19/2016] [Indexed: 01/31/2023] Open
Abstract
Trehalose-6-phosphate phosphatase (OtsB2) is involved in the OtsAB trehalose synthesis pathway to produce free trehalose and is strictly essential for mycobacterial growth. We wished to determine the effects of OtsB2 expression on mycobacterial phenotypes such as growth, phagocytosis and survival in macrophages. Mycobacterium bovis-bacillus calmette-guerin (BCG) over-expressing OtsB2 were able to better survive in stationary phase. Over-expression of OtsB2 led to a decrease in phagocytosis but not survival in THP-1 macrophage-like cells, and this was not due to a decrease in general macrophage phagocytic activity. Surprisingly, when we investigated macrophage-mycobacterial interactions by flow cytometry and atomic force microscopy, we discovered that BCG over-expressing OtsB2 have stronger binding to THP-1 cells than wild-type BCG. These results suggest that altering OtsB2 expression has implications for mycobacterial host-pathogen interactions. Macrophage-mycobacteria phagocytic interactions are complex and merit further study.
Collapse
Affiliation(s)
- Hao Li
- Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| | - Mei Wu
- Tsinghua Immunology Institute, School of Medicine, Tsinghua University Beijing, China
| | - Yan Shi
- Tsinghua Immunology Institute, School of Medicine, Tsinghua University Beijing, China
| | - Babak Javid
- Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| |
Collapse
|
36
|
Loots DT, Swanepoel CC, Newton-Foot M, Gey van Pittius NC. A metabolomics investigation of the function of the ESX-1 gene cluster in mycobacteria. Microb Pathog 2016; 100:268-275. [PMID: 27744102 DOI: 10.1016/j.micpath.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The ESX-1 gene cluster, encoding the Type-VII secretion (T7S) system and its virulence associated proteins, ESAT-6 and CFP-10, is thought to be responsible for the transport of extracellular proteins across the hydrophobic and highly impermeable, cell envelope of Mycobacterium, and is involved in virulence in Mycobacterium tuberculosis, the causative agent of tuberculosis. Using a GCxGC-TOFMS metabolomics approach, a M. smegmatis ESX-1 knock-out strain (ΔESX-1ms) was compared to that of the M. smegmatis wild-type parent strain, and the metabolite markers due to the presence or absence of the ESX-1 gene cluster were identified. A general increase in specific metabolites in the ΔESX-1ms, confirmed the roles previously described for ESX-1 in mycolic acid biosynthesis and cell wall integrity. However, a number of other metabolite markers identified indicates ESX-1 has an additional role the in cell envelope structure, altering the levels of antioxidants and energy metabolism. Furthermore, the metabolome profiles correlated with the metabolomic variation observed when comparing a hyper- and hypo-virulent Beijing strain of M. tuberculosis, suggesting that the pathways which modulate virulence in M. tuberculosis are also influenced by ESX-1, reaffirming the previously described association of ESX-1 with virulence and cell envelope biogenesis.
Collapse
Affiliation(s)
- Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, Private Bag x6001, Box 269, 2531, South Africa.
| | - Conrad C Swanepoel
- Human Metabolomics, North-West University, Potchefstroom, Private Bag x6001, Box 269, 2531, South Africa
| | - Mae Newton-Foot
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Nicolaas C Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
37
|
Brambilla C, Llorens-Fons M, Julián E, Noguera-Ortega E, Tomàs-Martínez C, Pérez-Trujillo M, Byrd TF, Alcaide F, Luquin M. Mycobacteria Clumping Increase Their Capacity to Damage Macrophages. Front Microbiol 2016; 7:1562. [PMID: 27757105 PMCID: PMC5047892 DOI: 10.3389/fmicb.2016.01562] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022] Open
Abstract
The rough morphotypes of non-tuberculous mycobacteria have been associated with the most severe illnesses in humans. This idea is consistent with the fact that Mycobacterium tuberculosis presents a stable rough morphotype. Unlike smooth morphotypes, the bacilli of rough morphotypes grow close together, leaving no spaces among them and forming large aggregates (clumps). Currently, the initial interaction of macrophages with clumps remains unclear. Thus, we infected J774 macrophages with bacterial suspensions of rough morphotypes of M. abscessus containing clumps and suspensions of smooth morphotypes, primarily containing isolated bacilli. Using confocal laser scanning microscopy and electron microscopy, we observed clumps of at least five rough-morphotype bacilli inside the phagocytic vesicles of macrophages at 3 h post-infection. These clumps grew within the phagocytic vesicles, killing 100% of the macrophages at 72 h post-infection, whereas the proliferation of macrophages infected with smooth morphotypes remained unaltered at 96 h post-infection. Thus, macrophages phagocytose large clumps, exceeding the bactericidal capacities of these cells. Furthermore, proinflammatory cytokines and granuloma-like structures were only produced by macrophages infected with rough morphotypes. Thus, the present study provides a foundation for further studies that consider mycobacterial clumps as virulence factors.
Collapse
Affiliation(s)
- Cecilia Brambilla
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Marta Llorens-Fons
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Estela Noguera-Ortega
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Cristina Tomàs-Martínez
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Miriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear and Departament de Química, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Thomas F Byrd
- Division of Infection Diseases, Depatment of Medicine, The University of New Mexico School of Medicine, Albuquerque NM, USA
| | - Fernando Alcaide
- Servei de Microbiologia, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona Barcelona, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona Bellaterra, Spain
| |
Collapse
|
38
|
Leisching G, Pietersen RD, Wiid I, Baker B. Virulence, biochemistry, morphology and host-interacting properties of detergent-free cultured mycobacteria: An update. Tuberculosis (Edinb) 2016; 100:53-60. [DOI: 10.1016/j.tube.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/26/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
|
39
|
Noguera-Ortega E, Blanco-Cabra N, Rabanal RM, Sánchez-Chardi A, Roldán M, Guallar-Garrido S, Torrents E, Luquin M, Julián E. Mycobacteria emulsified in olive oil-in-water trigger a robust immune response in bladder cancer treatment. Sci Rep 2016; 6:27232. [PMID: 27265565 PMCID: PMC4893706 DOI: 10.1038/srep27232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/17/2016] [Indexed: 12/22/2022] Open
Abstract
The hydrophobic composition of mycobacterial cell walls leads to the formation of clumps when attempting to resuspend mycobacteria in aqueous solutions. Such aggregation may interfere in the mycobacteria-host cells interaction and, consequently, influence their antitumor effect. To improve the immunotherapeutic activity of Mycobacterium brumae, we designed different emulsions and demonstrated their efficacy. The best formulation was initially selected based on homogeneity and stability. Both olive oil (OO)- and mineral oil-in-water emulsions better preserved the mycobacteria viability and provided higher disaggregation rates compared to the others. But, among both emulsions, the OO emulsion increased the mycobacteria capacity to induce cytokines’ production in bladder tumor cell cultures. The OO-mycobacteria emulsion properties: less hydrophobic, lower pH, more neutralized zeta potential, and increased affinity to fibronectin than non-emulsified mycobacteria, indicated favorable conditions for reaching the bladder epithelium in vivo. Finally, intravesical OO-M. brumae-treated mice showed a significantly higher systemic immune response, together with a trend toward increased tumor-bearing mouse survival rates compared to the rest of the treated mice. The physicochemical characteristics and the induction of a robust immune response in vitro and in vivo highlight the potential of the OO emulsion as a good delivery vehicle for the mycobacterial treatment of bladder cancer.
Collapse
Affiliation(s)
- Estela Noguera-Ortega
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| | - Núria Blanco-Cabra
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| | - Rosa Maria Rabanal
- Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Spain
| | | | - Mónica Roldán
- Servei de Microscopia, Universitat Autònoma de Barcelona, Spain
| | - Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy group, Institute for Bioengineering of Catalonia (IBEC), Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
40
|
Prados-Rosales R, Carreño LJ, Weinrick B, Batista-Gonzalez A, Glatman-Freedman A, Xu J, Chan J, Jacobs WR, Porcelli SA, Casadevall A. The Type of Growth Medium Affects the Presence of a Mycobacterial Capsule and Is Associated With Differences in Protective Efficacy of BCG Vaccination Against Mycobacterium tuberculosis. J Infect Dis 2016; 214:426-37. [PMID: 27234419 DOI: 10.1093/infdis/jiw153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/08/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bacillus Calmette-Guerin (BCG) vaccine is widely used for the prevention of tuberculosis, despite limited efficacy. Most immunological studies of BCG or Mycobacterium tuberculosis strains grow bacteria in the presence of detergent, which also strips the mycobacterial capsule. The impact of the capsule on vaccine efficacy has not been explored. METHODS We tested the influence of detergent in cultures of BCG and M. tuberculosis strains on the outcome of vaccination experiments on mice and transcriptional responses on M. tuberculosis RESULTS Vaccination of mice with encapsulated BCG promoted a more potent immune response relative to vaccination with unencapsulated BCG, including higher polysaccharide-specific capsule antibody titers, higher interferon γ and interleukin 17 splenic responses, and more multifunctional CD4(+) T cells. These differences correlated with variability in the bacterial burden in lung and spleen of mice infected with encapsulated or unencapsulated M. tuberculosis The combination of vaccination and challenge with encapsulated strains resulted in the greatest protection efficacy. The transcriptome of encapsulated M. tuberculosis was similar to that of starvation, hypoxia, stationary phase, or nonreplicating persistence. CONCLUSIONS The presence of detergent in growth media and a capsule on BCG were associated with differences in the outcome of vaccination, implying that these are important variables in immunological studies.
Collapse
Affiliation(s)
- Rafael Prados-Rosales
- Department of Microbiology and Immunology CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | - Leandro J Carreño
- Department of Microbiology and Immunology Millennium Institute on Immunology and Immunotherapy, Programa Disciplinario de Inmunologia, Facultad de Medicina, Universidad de Chile, Santiago
| | - Brian Weinrick
- Department of Microbiology and Immunology Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York
| | | | - Aarona Glatman-Freedman
- Department of Pediatrics, and Department of Family and Community Medicine, New York Medical College, Valhalla, New York
| | - Jiayong Xu
- Department of Microbiology and Immunology Department of Medicine
| | - John Chan
- Department of Microbiology and Immunology Department of Medicine
| | - William R Jacobs
- Department of Microbiology and Immunology Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York
| | | | - Arturo Casadevall
- Department of Microbiology and Immunology Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
41
|
The Host Response to a Clinical MDR Mycobacterial Strain Cultured in a Detergent-Free Environment: A Global Transcriptomics Approach. PLoS One 2016; 11:e0153079. [PMID: 27055235 PMCID: PMC4824497 DOI: 10.1371/journal.pone.0153079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/23/2016] [Indexed: 12/28/2022] Open
Abstract
During Mycobacterium tuberculosis (M.tb) infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM) infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate) using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T), or in detergent-free medium (R179NT). RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax) and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14) were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not be used in infection experiments.
Collapse
|
42
|
Chen T, Blanc C, Eder AZ, Prados-Rosales R, Souza ACO, Kim RS, Glatman-Freedman A, Joe M, Bai Y, Lowary TL, Tanner R, Brennan MJ, Fletcher HA, McShane H, Casadevall A, Achkar JM. Association of Human Antibodies to Arabinomannan With Enhanced Mycobacterial Opsonophagocytosis and Intracellular Growth Reduction. J Infect Dis 2016; 214:300-10. [PMID: 27056953 PMCID: PMC4918826 DOI: 10.1093/infdis/jiw141] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/30/2016] [Indexed: 01/02/2023] Open
Abstract
Background. The relevance of antibodies (Abs) in the defense against Mycobacterium tuberculosis infection remains uncertain. We investigated the role of Abs to the mycobacterial capsular polysaccharide arabinomannan (AM) and its oligosaccharide (OS) fragments in humans. Methods. Sera obtained from 29 healthy adults before and after primary or secondary bacillus Calmette-Guerin (BCG) vaccination were assessed for Ab responses to AM via enzyme-linked immunosorbent assays, and to AM OS epitopes via novel glycan microarrays. Effects of prevaccination and postvaccination sera on BCG phagocytosis and intracellular survival were assessed in human macrophages. Results. Immunoglobulin G (IgG) responses to AM increased significantly 4–8 weeks after vaccination (P < .01), and sera were able to opsonize BCG and M. tuberculosis grown in both the absence and the presence of detergent. Phagocytosis and intracellular growth inhibition were significantly enhanced when BCG was opsonized with postvaccination sera (P < .01), and these enhancements correlated significantly with IgG titers to AM (P < .05), particularly with reactivity to 3 AM OS epitopes (P < .05). Furthermore, increased phagolysosomal fusion was observed with postvaccination sera. Conclusions. Our results provide further evidence for a role of Ab-mediated immunity to tuberculosis and suggest that IgG to AM, especially to some of its OS epitopes, could contribute to the defense against mycobacterial infection in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Aharona Glatman-Freedman
- Department of Pediatrics Department of Family and Community Medicine, New York Medical College, Valhalla, New York Infectious Diseases Unit, Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer
| | - Maju Joe
- Alberta Glycomics Centre Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Yu Bai
- Alberta Glycomics Centre Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Rachel Tanner
- Jenner Institute, University of Oxford, United Kingdom
| | | | | | - Helen McShane
- Jenner Institute, University of Oxford, United Kingdom
| | - Arturo Casadevall
- Department of Medicine Department of Microbiology and Immunology Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
43
|
van de Weerd R, Boot M, Maaskant J, Sparrius M, Verboom T, van Leeuwen LM, Burggraaf MJ, Paauw NJ, Dainese E, Manganelli R, Bitter W, Appelmelk BJ, Geurtsen J. Inorganic Phosphate Limitation Modulates Capsular Polysaccharide Composition in Mycobacteria. J Biol Chem 2016; 291:11787-99. [PMID: 27044743 DOI: 10.1074/jbc.m116.722454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis is protected by an unusual and highly impermeable cell envelope that is critically important for the successful colonization of the host. The outermost surface of this cell envelope is formed by capsular polysaccharides that play an important role in modulating the initial interactions once the bacillus enters the body. Although the bioenzymatic steps involved in the production of the capsular polysaccharides are emerging, information regarding the ability of the bacterium to modulate the composition of the capsule is still unknown. Here, we study the mechanisms involved in regulation of mycobacterial capsule biosynthesis using a high throughput screen for gene products involved in capsular α-glucan production. Utilizing this approach we identified a group of mutants that all carried mutations in the ATP-binding cassette phosphate transport locus pst These mutants collectively exhibited a strong overproduction of capsular polysaccharides, including α-glucan and arabinomannan, suggestive of a role for inorganic phosphate (Pi) metabolism in modulating capsular polysaccharide production. These findings were corroborated by the observation that growth under low Pi conditions as well as chemical activation of the stringent response induces capsule production in a number of mycobacterial species. This induction is, in part, dependent on σ factor E. Finally, we show that Mycobacterium marinum, a model organism for M. tuberculosis, encounters Pi stress during infection, which shows the relevance of our findings in vivo.
Collapse
Affiliation(s)
- Robert van de Weerd
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands,
| | - Maikel Boot
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Janneke Maaskant
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Marion Sparrius
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Theo Verboom
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Lisanne M van Leeuwen
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Maroeska J Burggraaf
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Nanne J Paauw
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, P. O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Elisa Dainese
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Wilbert Bitter
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands, Department of Molecular Microbiology, VU University Amsterdam, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands, and
| | - Ben J Appelmelk
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands,
| | - Jeroen Geurtsen
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| |
Collapse
|
44
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
45
|
McCormack RM, de Armas LR, Shiratsuchi M, Fiorentino DG, Olsson ML, Lichtenheld MG, Morales A, Lyapichev K, Gonzalez LE, Strbo N, Sukumar N, Stojadinovic O, Plano GV, Munson GP, Tomic-Canic M, Kirsner RS, Russell DG, Podack ER. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. eLife 2015; 4. [PMID: 26402460 PMCID: PMC4626811 DOI: 10.7554/elife.06508] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 09/23/2015] [Indexed: 01/09/2023] Open
Abstract
Perforin-2 (MPEG1) is a pore-forming, antibacterial protein with broad-spectrum activity. Perforin-2 is expressed constitutively in phagocytes and inducibly in parenchymal, tissue-forming cells. In vitro, Perforin-2 prevents the intracellular replication and proliferation of bacterial pathogens in these cells. Perforin-2 knockout mice are unable to control the systemic dissemination of methicillin-resistant Staphylococcus aureus (MRSA) or Salmonella typhimurium and perish shortly after epicutaneous or orogastric infection respectively. In contrast, Perforin-2-sufficient littermates clear the infection. Perforin-2 is a transmembrane protein of cytosolic vesicles -derived from multiple organelles- that translocate to and fuse with bacterium containing vesicles. Subsequently, Perforin-2 polymerizes and forms large clusters of 100 Å pores in the bacterial surface with Perforin-2 cleavage products present in bacteria. Perforin-2 is also required for the bactericidal activity of reactive oxygen and nitrogen species and hydrolytic enzymes. Perforin-2 constitutes a novel and apparently essential bactericidal effector molecule of the innate immune system.
Collapse
Affiliation(s)
- Ryan M McCormack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Lesley R de Armas
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Motoaki Shiratsuchi
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Desiree G Fiorentino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Melissa L Olsson
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Mathias G Lichtenheld
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Alejo Morales
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Kirill Lyapichev
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Louis E Gonzalez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Neelima Sukumar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
| | - Gregory V Plano
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - George P Munson
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
| |
Collapse
|
46
|
Subinhibitory Doses of Aminoglycoside Antibiotics Induce Changes in the Phenotype of Mycobacterium abscessus. Antimicrob Agents Chemother 2015. [PMID: 26195529 DOI: 10.1128/aac.01132-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subinhibitory doses of antibiotics have been shown to cause changes in bacterial morphology, adherence ability, and resistance to antibiotics. In this study, the effects of subinhibitory doses of aminoglycoside antibiotics on Mycobacterium abscessus were investigated. The treatment of M. abscessus cells with subinhibitory doses of amikacin was found to change their colony from a smooth to a rough morphotype and increase their ability to adhere to a polyvinylchloride plate, aggregate in culture, and resist phagocytosis and killing by macrophages. M. abscessus cells treated with a subinhibitory dose of amikacin also became more potent in Toll-like receptor 2 (TLR-2) stimulation, leading to increased tumor necrosis factor alpha (TNF-α) production by macrophages. The MAB_3508c gene was shown to play a role in mediating these phenotypic changes, as its expression in M. abscessus cells was increased when they were treated with a subinhibitory dose of amikacin. In addition, overexpression of MAB_3508c in M. abscessus cells caused changes similar to those induced by subinhibitory doses of amikacin, including a switch from smooth to rough colony morphology, increased ability to aggregate in liquid culture, decreased motility, and increased resistance to killing by macrophages. These findings suggest the importance of using sufficient doses of antibiotics for the treatment of M. abscessus infections.
Collapse
|
47
|
Ramsugit S, Pillay M. Mycobacterium tuberculosis Pili promote adhesion to and invasion of THP-1 macrophages. Jpn J Infect Dis 2015; 67:476-8. [PMID: 25410564 DOI: 10.7883/yoken.67.476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Central to the paradigm of the pathogenesis of Mycobacterium tuberculosis is its ability to attach to, enter, and subsequently survive in host macrophages. However, little is known regarding the bacterial adhesins and invasins involved in this interaction with host macrophages. Pili are cell-surface structures produced by certain bacteria and have been implicated in adhesion to and invasion of phagocytes in several species. M. tuberculosis pili (MTP) are encoded by the Rv3312A (mtp) gene. In the present study, we assessed the ability of a Δmtp mutant and an mtp-complemented clinical strain to adhere to and invade THP-1 macrophages in comparison with the parental strain by determining colony-forming units. Both adhesion to and invasion of macrophages, although not reaching significance, were markedly reduced by 42.16% (P = 0.107) and 69.02% (P = 0.052), respectively, in the pili-deficient Δmtp mutant as compared with the wild-type. The pili-overexpressing complemented strain showed significantly higher levels of THP-1 macrophage adhesion (P = 0.000) and invasion (P = 0.040) than the mutant. We, thus, identified a novel adhesin and invasin of M. tuberculosis involved in adhesion to and invasion of macrophages.
Collapse
Affiliation(s)
- Saiyur Ramsugit
- Medical Microbiology and Infection Control, University of KwaZulu-Natal
| | | |
Collapse
|
48
|
Alnimr AM. Dormancy models for Mycobacterium tuberculosis: A minireview. Braz J Microbiol 2015; 46:641-7. [PMID: 26413043 PMCID: PMC4568887 DOI: 10.1590/s1517-838246320140507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022] Open
Abstract
Dormancy models for Mycobacterium tuberculosis play important roles
in understanding various aspects of tuberculosis pathogenesis and in the testing of
novel therapeutic regimens. By simulating the latent tuberculosis infection, in which
the bacteria exist in a non-replicative state, the models demonstrate reduced
susceptibility to antimycobacterial agents. This minireview outlines the models
available for simulating latent tuberculosis both in vitro and in
several animal species. Additionally, this minireview discusses the advantages and
disadvantages of these models for investigating the bacterial subpopulations and
susceptibilities to sterilization by various antituberculosis drugs.
Collapse
Affiliation(s)
- Amani M Alnimr
- King Fahad Hospital of the University, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| |
Collapse
|
49
|
Increased extracellular ATP: an omen of bacterial RTX toxin-induced hemolysis? Toxins (Basel) 2015; 6:2432-4. [PMID: 25221806 PMCID: PMC4147591 DOI: 10.3390/toxins6082432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
van de Weerd R, Berbís MA, Sparrius M, Maaskant JJ, Boot M, Paauw NJ, de Vries N, Boon L, Baba O, Cañada FJ, Geurtsen J, Jiménez-Barbero J, Appelmelk BJ. A murine monoclonal antibody to glycogen: characterization of epitope-fine specificity by saturation transfer difference (STD) NMR spectroscopy and its use in mycobacterial capsular α-glucan research. Chembiochem 2015; 16:977-89. [PMID: 25766777 DOI: 10.1002/cbic.201402713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major pathogen responsible for 1.5 million deaths annually. This bacterium is characterized by a highly unusual and impermeable cell envelope, which plays a key role in mycobacterial survival and virulence. Although many studies have focused on the composition and functioning of the mycobacterial cell envelope, the capsular α-glucan has received relatively minor attention. Here we show that a murine monoclonal antibody (Mab) directed against glycogen cross-reacts with mycobacterial α-glucans, polymers of α(1-4)-linked glucose residues with α(1-6)-branch points. We identified the Mab epitope specificity by saturation transfer difference NMR and show that the α(1-4)-linked glucose residues are important in glucan-Mab interaction. The minimal epitope is formed by (linear) maltotriose. Notably, a Mycobacterium mutant lacking the branching enzyme GlgB does not react with the Mab; this suggests that the α(1-6)-branches form part of the epitope. These seemingly conflicting data can be explained by the fact that in the mutant the linear form of the α-glucan (amylose) is insoluble. This Mab was subsequently used to develop several techniques helpful in capsular α-glucan research. By using a capsular glucan-screening methodology based on this Mab we were able to identify several unknown genes involved in capsular α-glucan biogenesis. Additionally, we developed two methods for the detection of capsular α-glucan levels. This study therefore opens new ways to study capsular α-glucan and to identify possible targets for further research.
Collapse
Affiliation(s)
- Robert van de Weerd
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam (The Netherlands)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|