1
|
Dutka P, Liu Y, Maggi S, Ghosal D, Wang J, Carter SD, Zhao W, Vijayrajratnam S, Vogel JP, Jensen GJ. Structure and Function of the Dot/Icm T4SS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533729. [PMID: 36993699 PMCID: PMC10055428 DOI: 10.1101/2023.03.22.533729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The Legionella pneumophila Dot/Icm type IV secretion system (T4SS) delivers effector proteins into host cells during infection. Despite its significance as a potential drug target, our current understanding of its atomic structure is limited to isolated subcomplexes. In this study, we used subtomogram averaging and integrative modeling to construct a nearly-complete model of the Dot/Icm T4SS accounting for seventeen protein components. We locate and provide insights into the structure and function of six new components including DotI, DotJ, DotU, IcmF, IcmT, and IcmX. We find that the cytosolic N-terminal domain of IcmF, a key protein forming a central hollow cylinder, interacts with DotU, providing insight into previously uncharacterized density. Furthermore, our model, in combination with analyses of compositional heterogeneity, explains how the cytoplasmic ATPase DotO is connected to the periplasmic complex via interactions with membrane-bound DotI/DotJ proteins. Coupled with in situ infection data, our model offers new insights into the T4SS-mediated secretion mechanism.
Collapse
Affiliation(s)
- Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuxi Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Jue Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Wei Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
2
|
Yadav A, Brewer MN, Elshahed MS, Shaw EI. Comparative Transcriptomics and Genomics from Continuous Axenic Media Growth Identifies Coxiella burnetii Intracellular Survival Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527305. [PMID: 36798183 PMCID: PMC9934583 DOI: 10.1101/2023.02.06.527305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a "Reverse evolution" approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
| | - Melissa N. Brewer
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
- Biological Sciences. Southeastern Oklahoma State University. Durant, OK. USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
| | - Edward I. Shaw
- Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater, OK.USA
- Department of Biomedical Sciences. Philadelphia College of Osteopathic Medicine. Moultrie, GA. USA
| |
Collapse
|
3
|
Yadav A, Brewer MN, Elshahed MS, Shaw EI. Comparative transcriptomics and genomics from continuous axenic media growth identifies Coxiella burnetii intracellular survival strategies. Pathog Dis 2023; 81:ftad009. [PMID: 37193663 PMCID: PMC10237335 DOI: 10.1093/femspd/ftad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023] Open
Abstract
Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a 'reverse evolution' approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (Sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic, and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
| | - Melissa N Brewer
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
- Biological Sciences, Southeastern Oklahoma State University, 74078 Durant, OK, United States
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
| | - Edward I Shaw
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, 74078 Moultrie, GA, United States
| |
Collapse
|
4
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Ge Z, Yuan P, Chen L, Chen J, Shen D, She Z, Lu Y. New Global Insights on the Regulation of the Biphasic Life Cycle and Virulence Via ClpP-Dependent Proteolysis in Legionella pneumophila. Mol Cell Proteomics 2022; 21:100233. [PMID: 35427813 PMCID: PMC9112007 DOI: 10.1016/j.mcpro.2022.100233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, causes Legionnaires’ disease in humans that is characterized by severe pneumonia. This bacterium adopts a distinct biphasic life cycle consisting of a nonvirulent replicative phase and a virulent transmissive phase in response to different environmental conditions. Hence, the timely and fine-tuned expression of growth and virulence factors in a life cycle–dependent manner is crucial for survival and replication. Here, we report that the completion of the biphasic life cycle and bacterial pathogenesis is greatly dependent on the protein homeostasis regulated by caseinolytic protease P (ClpP)-dependent proteolysis. We characterized the ClpP-dependent dynamic profiles of the regulatory and substrate proteins during the biphasic life cycle of L. pneumophila using proteomic approaches and discovered that ClpP-dependent proteolysis specifically and conditionally degraded the substrate proteins, thereby directly playing a regulatory role or indirectly controlling cellular events via the regulatory proteins. We further observed that ClpP-dependent proteolysis is required to monitor the abundance of fatty acid biosynthesis–related protein Lpg0102/Lpg0361/Lpg0362 and SpoT for the normal regulation of L. pneumophila differentiation. We also found that the control of the biphasic life cycle and bacterial virulence is independent. Furthermore, the ClpP-dependent proteolysis of Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system and effector proteins at a specific phase of the life cycle is essential for bacterial pathogenesis. Therefore, our findings provide novel insights on ClpP-dependent proteolysis, which spans a broad physiological spectrum involving key metabolic pathways that regulate the transition of the biphasic life cycle and bacterial virulence of L. pneumophila, facilitating adaptation to aquatic and intracellular niches. ClpP is the major determinant of biphasic life cycle–dependent protein turnover. ClpP-dependent proteolysis monitors SpoT abundance for cellular differentiation. ClpP-dependent regulation of life cycle and bacterial virulence is independent. ClpP-dependent proteolysis of T4BSS and effector proteins is vital for virulence.
Collapse
Affiliation(s)
- Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Peibo Yuan
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingming Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyi Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Cheng E, Dorjsuren D, Lehman S, Larson CL, Titus SA, Sun H, Zakharov A, Rai G, Heinzen RA, Simeonov A, Machner MP. A Comprehensive Phenotypic Screening Strategy to Identify Modulators of Cargo Translocation by the Bacterial Type IVB Secretion System. mBio 2022; 13:e0024022. [PMID: 35258332 PMCID: PMC9040768 DOI: 10.1128/mbio.00240-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
Bacterial type IV secretion systems (T4SSs) are macromolecular machines that translocate effector proteins across multiple membranes into infected host cells. Loss of function mutations in genes encoding protein components of the T4SS render bacteria avirulent, highlighting the attractiveness of T4SSs as drug targets. Here, we designed an automated high-throughput screening approach for the identification of compounds that interfere with the delivery of a reporter-effector fusion protein from Legionella pneumophila into RAW264.7 mouse macrophages. Using a fluorescence resonance energy transfer (FRET)-based detection assay in a bacteria/macrophage coculture format, we screened a library of over 18,000 compounds and, upon vetting compound candidates in a variety of in vitro and cell-based secondary screens, isolated several hits that efficiently interfered with biological processes that depend on a functional T4SS, such as intracellular bacterial proliferation or lysosomal avoidance, but had no detectable effect on L. pneumophila growth in culture medium, conditions under which the T4SS is dispensable. Notably, the same hit compounds also attenuated, to varying degrees, effector delivery by the closely related T4SS from Coxiella burnetii, notably without impacting growth of this organism within synthetic media. Together, these results support the idea that interference with T4SS function is a possible therapeutic intervention strategy, and the emerging compounds provide tools to interrogate at a molecular level the regulation and dynamics of these virulence-critical translocation machines. IMPORTANCE Multi-drug-resistant pathogens are an emerging threat to human health. Because conventional antibiotics target not only the pathogen but also eradicate the beneficial microbiota, they often cause additional clinical complications. Thus, there is an urgent need for the development of "smarter" therapeutics that selectively target pathogens without affecting beneficial commensals. The bacterial type IV secretion system (T4SS) is essential for the virulence of a variety of pathogens but dispensable for bacterial viability in general and can, thus, be considered a pathogen's Achilles heel. By identifying small molecules that interfere with cargo delivery by the T4SS from two important human pathogens, Legionella pneumophila and Coxiella burnetii, our study represents the first step in our pursuit toward precision medicine by developing pathogen-selective therapeutics capable of treating the infections without causing harm to commensal bacteria.
Collapse
Affiliation(s)
- Eric Cheng
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dorjbal Dorjsuren
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Stephanie Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles L. Larson
- Laboratory of Bacteriology, Coxiella Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Steven A. Titus
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Hongmao Sun
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Alexey Zakharov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Robert A. Heinzen
- Laboratory of Bacteriology, Coxiella Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Matthias P. Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Kitao T, Kubori T, Nagai H. Recent advances in structural studies of the Legionella pneumophila Dot/Icm type IV secretion system. Microbiol Immunol 2021; 66:67-74. [PMID: 34807482 PMCID: PMC9302130 DOI: 10.1111/1348-0421.12951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm type IV secretion system to translocate approximately 300 effector proteins to establish a replicative niche known as the Legionella‐containing vacuole. The Dot/Icm system is classified as a type IVB secretion system, which is evolutionarily closely related to the I‐type conjugation systems and is distinct from type IVA secretion systems, such as the Agrobacterium VirB/D4 system. Although both type IVA and IVB systems directly transport nucleic acids or proteins into the cytosol of recipient cells, the components and architecture of type IVB systems are much more complex than those of type IVA systems. Taking full advantage of rapidly developing cryo‐electron microscopy techniques, the structural details of the transport apparatus and coupling complexes in the Dot/Icm system have been clarified in the past few years. In this review, we summarize recent progress in the structural studies of the L. pneumophila type IVB secretion system and the insights gained into the mechanisms of substrate recognition and transport.
Collapse
Affiliation(s)
- Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, Gifu, Gifu, 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, Gifu, Gifu, 501-1194, Japan
| |
Collapse
|
8
|
Budowa IV systemu sekrecji Legionella pneumophilai jego znaczenie w patogenezie. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Bakterie Legionella pneumophila w środowisku naturalnym pasożytują wewnątrz komórek wybranych gatunków pierwotniaków, a po przedostaniu się do sztucznych systemów dystrybucji wody stają się ważnym czynnikiem etiologicznym zapalenia płuc u ludzi. Główną cechą determinującą patogenność tych bakterii jest zdolność do życia i replikacji w makrofagach płucnych, czyli w komórkach wyspecjalizowanych do fagocytozy, zabijania i trawienia mikroorganizmów. Warunkiem wstępnym rozwoju infekcji jest przełamanie mechanizmów bójczych makrofagów i utworzenie wakuoli replikacyjnej LCV (Legionella containing vacuole). Biogeneza wakuoli LCV jest możliwa dzięki sprawnemu funkcjonowaniu IV systemu sekrecji Dot/Icm, który jest wielobiałkowym, złożonym kompleksem umiejscowionym w wewnętrznej i zewnętrznej membranie osłony komórkowej bakterii. System Dot/Icm liczy 27 elementów, na które składają się m.in. kompleks rdzeniowo-transmembranowy, tworzący strukturalny szkielet całego systemu oraz kompleks białek sprzęgających. Geny kodujące komponenty systemu Dot/Icm są zorganizowane na dwóch regionach chromosomu bak-teryjnego. System sekrecji Dot/Icm umożliwia L. pneumophila wprowadzenie do cytozolu komórki gospodarza ponad 300 białek efektorowych, których skoordynowane działanie powoduje utrzymanie integralności błony wakuoli replikacyjnej oraz pozwala na manipulowanie różnymi procesami komórki. Ważnym elementem strategii wewnątrzkomórkowego namnażania się L. pneumophila jest modulowanie transportu pęcherzykowego, interakcja z retikulum endoplazmatycznym oraz zakłócenie biosyntezy białek, procesów autofagii i apoptozy komórki gospodarza. Poznanie złożonych mechanizmów regulacji i funkcji białek efektorowych systemu Dot/Icm ma decydujące znaczenie w zapobieganiu i leczeniu choroby legionistów.
Collapse
|
9
|
Genomic Characterization Provides an Insight into the Pathogenicity of the Poplar Canker Bacterium Lonsdalea populi. Genes (Basel) 2021; 12:genes12020246. [PMID: 33572241 PMCID: PMC7914447 DOI: 10.3390/genes12020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
An emerging poplar canker caused by the gram-negative bacterium, Lonsdalea populi, has led to high mortality of hybrid poplars Populus × euramericana in China and Europe. The molecular bases of pathogenicity and bark adaptation of L. populi have become a focus of recent research. This study revealed the whole genome sequence and identified putative virulence factors of L. populi. A high-quality L. populi genome sequence was assembled de novo, with a genome size of 3,859,707 bp, containing approximately 3434 genes and 107 RNAs (75 tRNA, 22 rRNA, and 10 ncRNA). The L. populi genome contained 380 virulence-associated genes, mainly encoding for adhesion, extracellular enzymes, secretory systems, and two-component transduction systems. The genome had 110 carbohydrate-active enzyme (CAZy)-coding genes and putative secreted proteins. The antibiotic-resistance database annotation listed that L. populi was resistant to penicillin, fluoroquinolone, and kasugamycin. Analysis of comparative genomics found that L. populi exhibited the highest homology with the L. britannica genome and L. populi encompassed 1905 specific genes, 1769 dispensable genes, and 1381 conserved genes, suggesting high evolutionary diversity and genomic plasticity. Moreover, the pan genome analysis revealed that the N-5-1 genome is an open genome. These findings provide important resources for understanding the molecular basis of the pathogenicity and biology of L. populi and the poplar-bacterium interaction.
Collapse
|
10
|
Das S, Ray S, Arunima A, Sahu B, Suar M. A ROD9 island encoded gene in Salmonella Enteritidis plays an important role in acid tolerance response and helps in systemic infection in mice. Virulence 2020; 11:247-259. [PMID: 32116124 PMCID: PMC7051147 DOI: 10.1080/21505594.2020.1733203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 10/31/2022] Open
Abstract
Salmonella, like other pathogenic bacteria has undergone multiple genomic alterations to adapt itself into specific host environments executing varied degrees of virulence through evolution. Such variations in genome content have been assumed to lead the closely related non-typhoidal serovars, S. Enteritidis, and S. Typhimurium to exhibit Type Three Secretion System -2 (T3SS-2) based diverse colonization and inflammation kinetics. Mutually exclusive genes present in either of the serovars are recently being studied and in our currentwork, we focused on a particular island ROD9, present in S. Enteritidis but not in S. Typhimurium. Earlier reports have identified a few genes from this island to be responsible for virulence in vitro as well as in vivo. In this study, we have identified another gene, SEN1008 from the same island encoding a hypothetical protein to be a potential virulence determinant showing systemic attenuation upon mutation in C57BL/6 mice infection model. The isogenic mutant strain displayed reduced adhesion to epithelial cells in vitro as well as was highly immotile. It was also deficient in intracellular replication in vitro, with a highly suppressed SPI-2and failed to cause acute colitis at 72-h p.i.in vivo. Moreover, on acid exposure, SEN1008 showed 17 folds and 2 fold up-regulations during adaptation and challenge phases,respectively and ΔSEN1008 failed to survive during ATR assay, indicating its role under acid stress. Together, our findings suggested ΔSEN1008 to be significantly attenuated and we propose this gene to be a potent factor responsible for S. Enteritidis pathogenesis.
Collapse
Affiliation(s)
- Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Bikash Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India
| |
Collapse
|
11
|
Zhou M, Lan Y, Wang S, Liu Q, Jian Z, Li Y, Chen X, Yan Q, Liu W. Epidemiology and molecular characteristics of the type VI secretion system in Klebsiella pneumoniae isolated from bloodstream infections. J Clin Lab Anal 2020; 34:e23459. [PMID: 32656871 PMCID: PMC7676210 DOI: 10.1002/jcla.23459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background The type VI secretion system (T6SS) has been identified as a novel virulence factor. This study aimed to investigate the prevalence of the T6SS genes in Klebsiella pneumoniae‐induced bloodstream infections (BSIs). We also evaluated clinical and molecular characteristics of T6SS‐positive K pneumoniae. Methods A total of 344 non‐repetitive K. pneumoniae bloodstream isolates and relevant clinical data were collected from January 2016 to January 2019. For all isolates, T6SS genes, capsular serotypes, and virulence genes were detected by polymerase chain reaction, and antimicrobial susceptibility was tested by VITEK® 2 Compact. MLST was being conducted for hypervirulent K. pneumoniae (HVKP). Results 69 (20.1%) were identified as T6SS‐positive K. pneumoniae among 344 isolates recovered from patients with BSIs. The rate of K1 capsular serotypes and ten virulence genes in T6SS‐positive strains was higher than T6SS‐negative strains (P = .000). The T6SS‐positive rate was significantly higher than T6SS‐negative rate among HVKP isolates. (P = .000). The T6SS‐positive K. pneumoniae isolates were significantly more susceptible to cefoperazone‐sulbactam, ampicillin‐sulbactam, cefazolin, ceftriaxone, cefotan, aztreonam, ertapenem, amikacin, gentamicin, levofloxacin, and ciprofloxacin (P < 0.05). More strains isolated from the community and liver abscess were T6SS‐positive K. pneumoniae (P < .05). Multivariate regression analysis indicated that community‐acquired BSIs (OR 2.986), the carriage of wcaG (OR 10.579), iucA (OR 2.441), and p‐rmpA (OR 7.438) virulence genes, and biliary diseases (OR 5.361) were independent risk factors for T6SS‐positive K. pneumoniae‐induced BSIs. Conclusion The T6SS‐positive K. pneumoniae was prevalent in individuals with BSIs. T6SS‐positive K. pneumoniae strains seemed to be hypervirulent which revealed the potential pathogenicity of this emerging gene cluster.
Collapse
Affiliation(s)
- Mao Zhou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - You Lan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qingxia Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yanming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Gomez-Valero L, Chiner-Oms A, Comas I, Buchrieser C. Evolutionary Dissection of the Dot/Icm System Based on Comparative Genomics of 58 Legionella Species. Genome Biol Evol 2020; 11:2619-2632. [PMID: 31504472 PMCID: PMC6761968 DOI: 10.1093/gbe/evz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
The Dot/Icm type IVB secretion system of Legionella pneumophila is essential for its pathogenesis by delivering >300 effector proteins into the host cell. However, their precise secretion mechanism and which components interact with the host cell is only partly understood. Here, we undertook evolutionary analyses of the Dot/Icm system of 58 Legionella species to identify those components that interact with the host and/or the substrates. We show that high recombination rates are acting on DotA, DotG, and IcmX, supporting exposure of these proteins to the host. Specific amino acids under positive selection on the periplasmic region of DotF, and the cytoplasmic domain of DotM, support a role of these regions in substrate binding. Diversifying selection acting on the signal peptide of DotC suggests its interaction with the host after cleavage. Positive selection acts on IcmR, IcmQ, and DotL revealing that these components are probably participating in effector recognition and/or translocation. Furthermore, our results predict the participation in host/effector interaction of DotV and IcmF. In contrast, DotB, DotO, most of the core subcomplex elements, and the chaperones IcmS-W show a high degree of conservation and not signs of recombination or positive selection suggesting that these proteins are under strong structural constraints and have an important role in maintaining the architecture/function of the system. Thus, our analyses of recombination and positive selection acting on the Dot/Icm secretion system predicted specific Dot/Icm components and regions implicated in host interaction and/or substrate recognition and translocation, which will guide further functional analyses.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Departement of Microbiology, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR3525, Paris, France
| | - Alvaro Chiner-Oms
- Unidad Mixta "Infección y Salud Pública" FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas, Spain
| | - Iñaki Comas
- CIBER en Epidemiología y Salud Pública, Valencia, Spain.,Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Carmen Buchrieser
- Institut Pasteur, Departement of Microbiology, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR3525, Paris, France
| |
Collapse
|
13
|
Hsieh PF, Lu YR, Lin TL, Lai LY, Wang JT. Klebsiella pneumoniae Type VI Secretion System Contributes to Bacterial Competition, Cell Invasion, Type-1 Fimbriae Expression, and In Vivo Colonization. J Infect Dis 2019; 219:637-647. [PMID: 30202982 PMCID: PMC6350951 DOI: 10.1093/infdis/jiy534] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023] Open
Abstract
Background We previously isolated a Klebsiella pneumoniae strain, NTUH-K2044, from a community-acquired pyogenic liver abscess (PLA) patient. Analysis of the NTUH-K2044 genome revealed that this strain harbors 2 putative type VI secretion system (T6SS)-encoding gene clusters. Methods The distribution of T6SS genes in the PLA and intestinal-colonizing K pneumoniae clinical isolates was examined. icmF1-, icmF2-, icmF1/icmF2-, and hcp-deficient K pneumoniae strains were constructed using an unmarked deletion method. The roles of T6SSs in antibacterial activity, type-1 fimbriae expression, cell adhesion, and invasion and intestinal colonization were determined. Results The prevalence of T6SSs is higher in the PLA strains than in the intestinal-colonizing strains (37 of 42 vs 54 of 130). Deletion of icmF1/icmF2 and hcp genes significantly reduced interbacterial and intrabacterial killing. Strain deleted for icmF1 and icmF2 exhibited decreased transcriptional expression of type-1 fimbriae and reduced adherence to and invasion of human colorectal epithelial cells and was attenuated for in vivo competition to enable colonization of the host gut. Finally, Hcp expression in K pneumoniae was silenced by the histone-like nucleoid structuring protein via direct binding. Conclusions These results provide new insights into T6SS-mediated bacterial competition and attachment in K pneumoniae and could facilitate the prevention of K pneumoniae infection.
Collapse
Affiliation(s)
- Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei
| | - Yi-Rou Lu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei
| | - Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei.,Department of Internal Medicine, National Taiwan University Hospital, Taipei
| |
Collapse
|
14
|
Ghosal D, Jeong KC, Chang YW, Gyore J, Teng L, Gardner A, Vogel JP, Jensen GJ. Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS. Nat Microbiol 2019; 4:1173-1182. [PMID: 31011165 PMCID: PMC6588468 DOI: 10.1038/s41564-019-0427-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/12/2019] [Indexed: 01/10/2023]
Abstract
Legionella pneumophila survives and replicates inside host cells by secreting ~300 effectors through the defective in organelle trafficking (Dot)/intracellular multiplication (Icm) type IVB secretion system (T4BSS). Here, we used complementary electron cryotomography and immunofluorescence microscopy to investigate the molecular architecture and biogenesis of the Dot/Icm secretion apparatus. Electron cryotomography mapped the location of the core and accessory components of the Legionella core transmembrane subcomplex, revealing a well-ordered central channel that opens into a large, windowed secretion chamber with an unusual 13-fold symmetry. Immunofluorescence microscopy deciphered an early-stage assembly process that begins with the targeting of Dot/Icm components to the bacterial poles. Polar targeting of this T4BSS is mediated by two Dot/Icm proteins, DotU and IcmF, that, interestingly, are homologues of the T6SS membrane complex components TssL and TssM, suggesting that the Dot/Icm T4BSS is a hybrid system. Together, these results revealed that the Dot/Icm complex assembles in an 'axial-to-peripheral' pattern.
Collapse
Affiliation(s)
- Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kwangcheol C Jeong
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Animal Sciences & Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Gyore
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Lin Teng
- Department of Animal Sciences & Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Adam Gardner
- Molecular Graphics Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
15
|
Christensen LM, Sule P, Strain M, Cirillo JD. Legionella pneumophila p45 element influences host cell entry and sensitivity to sodium. PLoS One 2019; 14:e0218941. [PMID: 31246988 PMCID: PMC6597080 DOI: 10.1371/journal.pone.0218941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/12/2019] [Indexed: 11/19/2022] Open
Abstract
Legionella pneumophila are environmental bacteria found ubiquitously in both natural and man-made water reservoirs, sometimes as constituents of biofilm communities, but mostly intracellularly within protozoal hosts. In the event that Legionella become aerosolized in water droplets and inhaled by humans, they can cause a potentially fatal form of pneumonia called Legionnaires' disease. Strains of L. pneumophila have highly plastic genomes that harbor numerous inter- and intra-genomic elements, enhancing their ability to live under diverse environmental conditions. One such mobile genomic element, p45 carries ~45 kbp of genes, including the Lvh (Legionella Vir homolog) type IVa secretion system. This element was evaluated for its contribution to L. pneumophila environmental resilience and virulence-related characteristics by comparing clinically isolated strain Philadelphia-1 that carries p45, Lp01 that lacks p45, and Lp01 with p45 reintroduced, Lp01+p45. We found that the p45 element impacts host cell entry and resistance to sodium, both virulence-related characteristics in Legionella species.
Collapse
Affiliation(s)
- Lanette M. Christensen
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Madison Strain
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| |
Collapse
|
16
|
Christie PJ, Gomez Valero L, Buchrieser C. Biological Diversity and Evolution of Type IV Secretion Systems. Curr Top Microbiol Immunol 2019; 413:1-30. [PMID: 29536353 PMCID: PMC5912172 DOI: 10.1007/978-3-319-75241-9_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial type IV secretion systems (T4SSs) are a highly functionally and structurally diverse superfamily of secretion systems found in many species of Gram-negative and -positive bacteria. Collectively, the T4SSs can translocate DNA and monomeric and multimeric protein substrates to a variety of bacterial and eukaryotic cell types. Detailed phylogenomics analyses have established that the T4SSs evolved from ancient conjugation machines whose original functions were to disseminate mobile DNA elements within and between bacterial species. How members of the T4SS superfamily evolved to recognize and translocate specific substrate repertoires to prokaryotic or eukaryotic target cells is a fascinating question from evolutionary, biological, and structural perspectives. In this chapter, we will summarize recent findings that have shaped our current view of the biological diversity of the T4SSs. We focus mainly on two subtypes, designated as the types IVA (T4ASS) and IVB (T4BSS) systems that respectively are represented by the paradigmatic Agrobacterium tumefaciens VirB/VirD4 and Legionella pneumophila Dot/Icm T4SSs. We present current information about the composition and architectures of these representative systems. We also describe how these and a few related T4ASS and T4BSS members evolved as specialized nanomachines through acquisition of novel domains or subunits, a process that ultimately generated extensive genetic and structural mosaicism among this secretion superfamily. Finally, we present new phylogenomics information establishing that the T4BSSs are much more broadly distributed than initially envisioned.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| | - Laura Gomez Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724, Paris, France
- CNRS, UMR 3525, 75724, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724, Paris, France
- CNRS, UMR 3525, 75724, Paris, France
| |
Collapse
|
17
|
Huang L, Liu W, Jiang Q, Zuo Y, Su Y, Zhao L, Qin Y, Yan Q. Integration of Transcriptomic and Proteomic Approaches Reveals the Temperature-Dependent Virulence of Pseudomonas plecoglossicida. Front Cell Infect Microbiol 2018; 8:207. [PMID: 29977868 PMCID: PMC6021524 DOI: 10.3389/fcimb.2018.00207] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/05/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas plecoglossicida is a facultative pathogen that is associated with diseases of multiple fish, mainly at 15–20°C. Although fish disease caused by P. plecoglossicida has led to significant economic losses, the mechanisms of the temperature-dependent virulence are unclear. Here, we identify potential pathogenicity mechanisms and demonstrate the direct regulation of several virulence factors by temperature with transcriptomic and proteomic analyses, quantitative real-time PCR (qRT-PCR), RNAi, pyoverdine (PVD) quantification, the chrome azurol S (CAS) assay, growth curve measurements, a biofilm assay, and artificial infection. The principal component analysis, the heat map generation and hierarchical clustering, together with the functional annotations of the differentially expressed genes (DEGs) demonstrated that, under different growth temperatures, the animation and focus of P. plecoglossicida are quite different, which may be the key to pathogenicity. Genes involved in PVD synthesis and in the type VI secretion system (T6SS) are specifically upregulated at the virulent temperature of 18°C. Silencing of the PVD-synthesis-related genes reduces the iron acquisition, growth, biofilm formation, distribution in host organs and virulence of the bacteria. Silencing of the T6SS genes also leads to the reduction of biofilm formation, distribution in host organs and virulence. These findings reveal that temperature regulates multiple virulence mechanisms in P. plecoglossicida, especially through iron acquisition and T6SS secretion. Meanwhile, integration of transcriptomic and proteomic data provide us with a new perspective into the pathogenesis of P. plecoglossicida, which would not have been easy to catch at either the protein or mRNA differential analyses alone, thus illustrating the power of multi-omics analyses in microbiology.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Wenjia Liu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingling Jiang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
18
|
IcmF and DotU are required for the virulence of Acidovorax oryzae strain RS-1. Arch Microbiol 2018; 200:897-910. [DOI: 10.1007/s00203-018-1497-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
|
19
|
Cortés M, Sánchez P, Ruiz P, Haro R, Sáez J, Sánchez F, Hernández M, Oliver C, Yáñez AJ. In vitro expression of Sec-dependent pathway and type 4B secretion system in Piscirickettsia salmonis. Microb Pathog 2017; 110:586-593. [PMID: 28789875 DOI: 10.1016/j.micpath.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/18/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022]
Abstract
Piscirickettsia salmonis is an intracellular bacterium and the causative agent of Piscirickettsiosis, a disease responsible for considerable mortalities in the Chilean salmon farming industry. Currently, P. salmonis protein translocation across the membrane and the mechanisms by which virulence factors are delivered to host cells are poorly understood. However, it is known that Gram-negative bacteria possess several mechanisms that transport proteins to the periplasmic and extracellular compartments. The aim of this study was to evaluate the expressional changes of several genes in the P. salmonis Sec-dependent pathway and type 4B secretion system during in vitro infection. Genes homologous and the main proteins belonging to Sec-dependent pathway and Type 4 Dot/Icm secretion system were found in the genome and proteome of P. salmonis AUSTRAL-005 strain. Additionally, several genes of these protein transport mechanisms were overexpressed during in vitro P. salmonis infection in SHK-1 cell line. The obtained data indicate that the Sec-dependent pathway and Type 4B secretion system are biologically active during P. salmonis infection. These mechanisms could contribute to the recycling of proteins into the inner and outer bacterial membrane and in translocate virulence factors to infected cell, which would favor the structural integrity and virulence of this bacterium.
Collapse
Affiliation(s)
- Marcos Cortés
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566 Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4070007 Concepción, Chile
| | - Patricio Sánchez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566 Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4070007 Concepción, Chile
| | - Pamela Ruiz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566 Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4070007 Concepción, Chile
| | - Ronie Haro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566 Valdivia, Chile; Austral-OMICS, Universidad Austral de Chile, 5110566 Valdivia, Chile
| | - Jerson Sáez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566 Valdivia, Chile
| | - Fabián Sánchez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566 Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4070007 Concepción, Chile
| | - Mauricio Hernández
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566 Valdivia, Chile; Austral-OMICS, Universidad Austral de Chile, 5110566 Valdivia, Chile
| | - Cristian Oliver
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566 Valdivia, Chile; Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Viña del Mar, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4070007 Concepción, Chile.
| | - Alejandro J Yáñez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566 Valdivia, Chile; Austral-OMICS, Universidad Austral de Chile, 5110566 Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4070007 Concepción, Chile.
| |
Collapse
|
20
|
Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc Natl Acad Sci U S A 2017; 114:8077-8082. [PMID: 28696299 DOI: 10.1073/pnas.1621438114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A recurrent emerging theme is the targeting of proteins to subcellular microdomains within bacterial cells, particularly to the poles. In most cases, it has been assumed that this localization is critical to the protein's function. Legionella pneumophila uses a type IVB secretion system (T4BSS) to export a large number of protein substrates into the cytoplasm of host cells. Here we show that the Legionella export apparatus is localized to the bacterial poles, as is consistent with many T4SS substrates being retained on the phagosomal membrane adjacent to the poles of the bacterium. More significantly, we were able to demonstrate that polar secretion of substrates is critically required for Legionella's alteration of the host endocytic pathway, an activity required for this pathogen's virulence.
Collapse
|
21
|
Lin J, Cheng J, Chen K, Guo C, Zhang W, Yang X, Ding W, Ma L, Wang Y, Shen X. The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol 2015; 5:70. [PMID: 26484316 PMCID: PMC4589678 DOI: 10.3389/fcimb.2015.00070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/18/2015] [Indexed: 11/24/2022] Open
Abstract
The type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria. Three separate T6SSs called H1-, H2-, and H3-T6SS have been discovered in Pseudomonas aeruginosa PAO1. Recent studies suggest that, in contrast to the H1-T6SS that targets prokaryotic cells, H2- and H3-T6SS are involved in interactions with both prokaryotic and eukaryotic cells. However, the detailed functions of T6SS components are still uncharacterized. The intracellular multiplication factor (IcmF) protein is conserved in type VI secretion systems (T6SS) of all different bacterial pathogens. Bioinformatic analysis revealed that IcmF3 in P. aeruginosa PAO1 is different from other IcmF homologs and may represent a new branch of these proteins with distinct functions. Herein, we have investigated the function of IcmF3 in this strain. We have shown that deletion of the icmF3 gene in P. aeruginosa PAO1 is associated with pleiotropic phenotypes. The icmF3 mutant has variant colony morphology and an hypergrowth phenotype in iron-limiting medium. Surprisingly, this mutant is also defective for the production of pyoverdine, as well as defects in swimming motility and virulence in a C. elegans worm model. The icmF3 mutant exhibits higher conjugation frequency than the wild type and increased biofilm formation on abiotic surfaces. Additionally, expression of two phenazine biosynthetic loci is increased in the icmF3 mutant, leading to the overproduction of pyocyanin. Finally, the mutant exhibits decreased susceptibility to aminoglycosides such as tobramycin and gentamicin. And the detected phenotypes can be restored completely or partially by trans complementation of wild type icmF3 gene. The pleiotropic effects observed upon icmF3 deletion demonstrate that icmF3 plays critical roles in both pathogenesis and environmental adaptation in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Jinshui Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Juanli Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China ; Life Sciences Department, Yuncheng University Yuncheng, China
| | - Keqi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Chenghao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Xu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Wei Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Li Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| |
Collapse
|
22
|
Jeong KC, Sexton JA, Vogel JP. Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog 2015; 11:e1004695. [PMID: 25774515 PMCID: PMC4361747 DOI: 10.1371/journal.ppat.1004695] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Modulation of host cell function is vital for intracellular pathogens to survive and replicate within host cells. Most commonly, these pathogens utilize specialized secretion systems to inject substrates (also called effector proteins) that function as toxins within host cells. Since it would be detrimental for an intracellular pathogen to immediately kill its host cell, it is essential that secreted toxins be inactivated or degraded after they have served their purpose. The pathogen Legionella pneumophila represents an ideal system to study interactions between toxins as it survives within host cells for approximately a day and its Dot/Icm type IVB secretion system (T4SS) injects a vast number of toxins. Previously we reported that the Dot/Icm substrates SidE, SdeA, SdeB, and SdeC (known as the SidE family of effectors) are secreted into host cells, where they localize to the cytoplasmic face of the Legionella containing vacuole (LCV) in the early stages of infection. SidJ, another effector that is unrelated to the SidE family, is also encoded in the sdeC-sdeA locus. Interestingly, while over-expression of SidE family proteins in a wild type Legionella strain has no effect, we found that their over-expression in a ∆sidJ mutant completely inhibits intracellular growth of the strain. In addition, we found expression of SidE proteins is toxic in both yeast and mammalian HEK293 cells, but this toxicity can be suppressed by co-expression of SidJ, suggesting that SidJ may modulate the function of SidE family proteins. Finally, we were able to demonstrate both in vivo and in vitro that SidJ acts on SidE proteins to mediate their disappearance from the LCV, thereby preventing lethal intoxication of host cells. Based on these findings, we propose that SidJ acts as a metaeffector to control the activity of other Legionella effectors. A key attribute of many pathogens is their ability to survive and replicate within eukaryotic host cells. One such pathogen, Legionella pneumophila, is able to grow within macrophages in the lungs, thereby causing a form of pneumonia called Legionnaires’ Disease. L. pneumophila causes disease by translocating several hundred proteins into the host cell. These proteins are typically referred to as ‘‘effectors’’, as they function as toxins to alter normal host cell function. However, since L. pneumophila remains within the host cells for approximately one day, continual poisoning of the eukaryotic cells by the bacterial effectors will result in the premature death of the host cell, thus restricting the growth of the pathogen. Previously the L. pneumophila secreted protein LubX was described as a “metaeffector”, which has been defined as an effector that acts directly on another effector to modulate its function inside the host cell. LubX accomplishes this task by directing the degradation of another effector, SidH. Here we report a second L. pneumophila metaeffector, SidJ, acts in a similar manner to neutralize SidE family effectors by removing them from the intracellular compartment that contains the bacterium. This further establishes the concept of metaeffectors, which are likely to be critical to how Legionella and many other pathogens cause disease.
Collapse
Affiliation(s)
- Kwang Cheol Jeong
- Department of Animal Sciences & Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jessica A. Sexton
- Chemical Engineering Department, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
23
|
Wang S, Dai J, Meng Q, Han X, Han Y, Zhao Y, Yang D, Ding C, Yu S. DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli. Front Microbiol 2014; 5:588. [PMID: 25426107 PMCID: PMC4224132 DOI: 10.3389/fmicb.2014.00588] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/20/2014] [Indexed: 11/13/2022] Open
Abstract
Type VI secretion systems (T6SSs) contribute to pathogenicity in many pathogenic bacteria. Three distinguishable T6SS loci have been discovered in avian pathogenic Escherichia coli (APEC). The sequence of APEC T6SS2 locus is highly similar to the sequence of the newborn meningitis Escherichia coli (NMEC) RS218 T6SS locus, which might contribute to meningitis pathogenesis. However, little is known about the function of APEC T6SS2. We showed that the APEC T6SS2 component organelle trafficking protein (DotU) could elicit antibodies in infected ducks, suggesting that DotU might be involved in APEC pathogenicity. To investigate DotU in APEC pathogenesis, mutant and complemented strains were constructed and characterized. Inactivation of the APEC dotU gene attenuated virulence in ducks, diminished resistance to normal duck serum, and reduced survival in macrophage cells and ducks. Furthermore, deletion of the dotU gene abolished hemolysin-coregulated protein (Hcp) 1 secretion, leading to decreased interleukin (IL)-6 and IL-8 gene expression in HD-11 chicken macrophages. These functions were restored for the complementation strain. Our results demonstrated that DotU plays key roles in the APEC pathogenesis, Hcp1 secretion, and intracellular host response modulation.
Collapse
Affiliation(s)
- Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences Shanghai, China
| | - Jianjun Dai
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Qingmei Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences Shanghai, China ; College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences Shanghai, China
| | - Yue Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences Shanghai, China
| | - Yichao Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences Shanghai, China
| | - Denghui Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences Shanghai, China
| |
Collapse
|
24
|
Vannini A, Roncarati D, Spinsanti M, Scarlato V, Danielli A. In depth analysis of the Helicobacter pylori cag pathogenicity island transcriptional responses. PLoS One 2014; 9:e98416. [PMID: 24892739 PMCID: PMC4043881 DOI: 10.1371/journal.pone.0098416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/01/2014] [Indexed: 01/15/2023] Open
Abstract
The severity of symptoms elicited by the widespread human pathogen Helicobacter pylori is strongly influenced by the genetic diversity of the infecting strain. Among the most important pathogen factors that carry an increased risk for gastric cancer are specific genotypes of the cag pathogenicity island (cag-PAI), encoding a type IV secretion system (T4SS) responsible for the translocation of the CagA effector oncoprotein. To date, little is known about the regulatory events important for the expression of a functional cag-T4SS. Here we demonstrate that the cag-PAI cistrons are subjected to a complex network of direct and indirect transcriptional regulations. We show that promoters of cag operons encoding structural T4SS components display homogeneous transcript levels, while promoters of cag operons encoding accessory factors vary considerably in their basal transcription levels and responses. Most cag promoters are transcriptionally responsive to growth-phase, pH and other stress-factors, although in many cases in a pleiotropic fashion. Interestingly, transcription from the Pcagζ promoter controlling the expression of transglycolase and T4SS stabilizing factors, is triggered by co-culture with a gastric cell line, providing an explanation for the increased formation of the secretion system observed upon bacterial contact with host cells. Finally, we demonstrate that the highly transcribed cagA oncogene is repressed by iron limitation through a direct apo-Fur regulation mechanism. Together the results shed light on regulatory aspects of the cag-PAI, which may be involved in relevant molecular and etiological aspects of H. pylori pathogenesis.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Marco Spinsanti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| |
Collapse
|
25
|
Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, Douzi B, Journet L, Cambillau C, Cascales E. Architecture and assembly of the Type VI secretion system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1664-73. [PMID: 24681160 DOI: 10.1016/j.bbamcr.2014.03.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
The Type VI secretion system (T6SS) delivers protein effectors to diverse cell types including prokaryotic and eukaryotic cells, therefore it participates in inter-bacterial competition and pathogenesis. The T6SS is constituted of an envelope-spanning complex anchoring a cytoplasmic tubular edifice. This tubular structure is evolutionarily, functionally and structurally related to the tail of contractile phages. It is composed of an inner tube tipped by a spike complex, and engulfed within a sheath-like structure. This structure assembles onto a platform called "baseplate" that is connected to the membrane sub-complex. The T6SS functions as a nano-crossbow: upon contraction of the sheath, the inner tube is propelled towards the target cell, allowing effector delivery. This review focuses on the architecture and biogenesis of this fascinating secretion machine, highlighting recent advances regarding the assembly of the membrane or tail complexes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Abdelrahim Zoued
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Yannick R Brunet
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Eric Durand
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Marie-Stéphanie Aschtgen
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Laureen Logger
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Badreddine Douzi
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Laure Journet
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Eric Cascales
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
26
|
Weber BS, Miyata ST, Iwashkiw JA, Mortensen BL, Skaar EP, Pukatzki S, Feldman MF. Genomic and functional analysis of the type VI secretion system in Acinetobacter. PLoS One 2013; 8:e55142. [PMID: 23365692 PMCID: PMC3554697 DOI: 10.1371/journal.pone.0055142] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
The genus Acinetobacter is comprised of a diverse group of species, several of which have raised interest due to potential applications in bioremediation and agricultural purposes. In this work, we show that many species within the genus Acinetobacter possess the genetic requirements to assemble a functional type VI secretion system (T6SS). This secretion system is widespread among Gram negative bacteria, and can be used for toxicity against other bacteria and eukaryotic cells. The most studied species within this genus is A. baumannii, an emerging nosocomial pathogen that has become a significant threat to healthcare systems worldwide. The ability of A. baumannii to develop multidrug resistance has severely reduced treatment options, and strains resistant to most clinically useful antibiotics are frequently being isolated. Despite the widespread dissemination of A. baumannii, little is known about the virulence factors this bacterium utilizes to cause infection. We determined that the T6SS is conserved and syntenic among A. baumannii strains, although expression and secretion of the hallmark protein Hcp varies between strains, and is dependent on TssM, a known structural protein required for T6SS function. Unlike other bacteria, A. baumannii ATCC 17978 does not appear to use its T6SS to kill Escherichia coli or other Acinetobacter species. Deletion of tssM does not affect virulence in several infection models, including mice, and did not alter biofilm formation. These results suggest that the T6SS fulfils an important but as-yet-unidentified role in the various lifestyles of the Acinetobacter spp.
Collapse
Affiliation(s)
- Brent S. Weber
- Alberta Glycomics Center, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah T. Miyata
- Department of Medical Microbiology and Immunology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy A. Iwashkiw
- Alberta Glycomics Center, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Brittany L. Mortensen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, Heritage Medical Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Mario F. Feldman
- Alberta Glycomics Center, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
27
|
Lossi NS, Manoli E, Förster A, Dajani R, Pape T, Freemont P, Filloux A. The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure. J Biol Chem 2013; 288:7536-7548. [PMID: 23341461 PMCID: PMC3597794 DOI: 10.1074/jbc.m112.439273] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein secretion systems in Gram-negative bacteria evolved into a variety of molecular nanomachines. They are related to cell envelope complexes, which are involved in assembly of surface appendages or transport of solutes. They are classified as types, the most recent addition being the type VI secretion system (T6SS). The T6SS displays similarities to bacteriophage tail, which drives DNA injection into bacteria. The Hcp protein is related to the T4 bacteriophage tail tube protein gp19, whereas VgrG proteins structurally resemble the gp27/gp5 puncturing device of the phage. The tube and spike of the phage are pushed through the bacterial envelope upon contraction of a tail sheath composed of gp18. In Vibrio cholerae it was proposed that VipA and VipB assemble into a tail sheathlike structure. Here we confirm these previous data by showing that HsiB1 and HsiC1 of the Pseudomonas aeruginosa H1-T6SS assemble into tubules resulting from stacking of cogwheel-like structures showing predominantly 12-fold symmetry. The internal diameter of the cogwheels is ∼100 Å, which is large enough to accommodate an Hcp tube whose external diameter has been reported to be 85 Å. The N-terminal 212 residues of HsiC1 are sufficient to form a stable complex with HsiB1, but the C terminus of HsiC1 is essential for the formation of the tubelike structure. Bioinformatics analysis suggests that HsiC1 displays similarities to gp18-like proteins in its C-terminal region. In conclusion, we provide further structural and mechanistic insights into the T6SS and show that a phage sheathlike structure is likely to be a conserved element across all T6SSs.
Collapse
Affiliation(s)
- Nadine S Lossi
- Medical Research Council Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Eleni Manoli
- Medical Research Council Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andreas Förster
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rana Dajani
- Medical Research Council Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tillmann Pape
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul Freemont
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alain Filloux
- Medical Research Council Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
28
|
Qiu J, Luo ZQ. Effector translocation by the Legionella Dot/Icm type IV secretion system. Curr Top Microbiol Immunol 2013; 376:103-15. [PMID: 23918176 DOI: 10.1007/82_2013_345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Legionella pneumophila is an opportunistic pathogen responsible for Legionnaires' disease. This bacterium survives and replicates within phagocytes by bypassing their bactericidal activity. Intracellular replication of L. pneumophila requires the Dot/Icm type IV secretion system made of approximately 27 proteins that presumably traverses the bacterial and phagosomal membranes. The perturbation of the host killing ability largely is mediated by the collective functions of the protein substrates injected into host cells via the Dot/Icm transporter. Proper protein translocation by Dot/Icm is determined by a number of factors, including signals recognizable by the translocator, chaperones that may facilitate the proper folding of substrates and transcriptional regulation and protein stability that determine the abundance and temporal transfer of the substrates. Although a large number of Dot/Icm substrates have been identified, investigation to understand the translocation is ongoing. Here we summarized the recent advancements in our understanding of the factors that determine the protein translocation activity of the Dot/Icm transporter.
Collapse
Affiliation(s)
- Jiazhang Qiu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
29
|
Zhang W, Wang Y, Song Y, Wang T, Xu S, Peng Z, Lin X, Zhang L, Shen X. A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol 2012; 15:557-69. [PMID: 23094603 DOI: 10.1111/1462-2920.12005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 09/23/2012] [Indexed: 12/22/2022]
Abstract
Type VI secretion systems (T6SSs) which widely distributed in Gram-negative bacteria have been primarily studied in the context of cell interactions with eukaryotic hosts or other bacteria. We have recently identified a thermoregulated T6SS4 in the enteric pathogen Yersinia pseudotuberculosis. Here we report that OmpR directly binds to the promoter of T6SS4 operon and regulates its expression. Further, we observed that the OmpR-regulated T6SS4 is essential for bacterial survival under acidic conditions and that its expression is induced by low pH. Moreover, we showed that T6SS4 plays a role in pumping H(+) out of the cell to maintain intracellular pH homeostasis. The acid tolerance phenotype of T6SS4 is dependent on the ATPase activity of ClpV4, one of the components of T6SS4. These results not only uncover a novel strategy utilized by Y. pseudotuberculosis for acid resistance, but also reveal that T6SS, a bacteria secretion system known to be functional in protein transportation has an unexpected function in H(+) extrusion under acid conditions.
Collapse
Affiliation(s)
- Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aschtgen MS, Zoued A, Lloubès R, Journet L, Cascales E. The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. Microbiologyopen 2012; 1:71-82. [PMID: 22950014 PMCID: PMC3426401 DOI: 10.1002/mbo3.9] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 01/09/2023] Open
Abstract
Type VI secretion systems (T6SS) are macromolecular complexes present in Gram-negative bacteria. T6SS are structurally similar to the bacteriophage cell-puncturing device and have been shown to mediate bacteria–host or bacteria–bacteria interactions. T6SS assemble from 13 to 20 proteins. In enteroaggregative Escherichia coli (EAEC), one of the subassemblies is composed of four proteins that form a trans-envelope complex: the TssJ outer membrane lipoprotein, the peptidoglycan-anchored inner membrane TagL protein, and two putative inner membrane proteins, TssL and TssM. In this study, we characterized the TssL protein of the EAEC Sci-1 T6SS in terms of localization, topology, and function. TssL is a critical component of the T6SS, anchored to the inner membrane through a single transmembrane segment located at the extreme C-terminus of the protein. We further show that this transmembrane segment is essential for the function of the protein and its proper insertion in the inner membrane is dependent upon YidC and modulated by the Hsp70 homologue DnaK.
Collapse
Affiliation(s)
- Marie-Stéphanie Aschtgen
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université CNRS - UMR 7255, 31 chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
31
|
Voth DE, Broederdorf LJ, Graham JG. Bacterial Type IV secretion systems: versatile virulence machines. Future Microbiol 2012; 7:241-57. [PMID: 22324993 DOI: 10.2217/fmb.11.150] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many bacterial pathogens employ multicomponent protein complexes to deliver macromolecules directly into their eukaryotic host cell to promote infection. Some Gram-negative pathogens use a versatile Type IV secretion system (T4SS) that can translocate DNA or proteins into host cells. T4SSs represent major bacterial virulence determinants and have recently been the focus of intense research efforts designed to better understand and combat infectious diseases. Interestingly, although the two major classes of T4SSs function in a similar manner to secrete proteins, the translocated 'effectors' vary substantially from one organism to another. In fact, differing effector repertoires likely contribute to organism-specific host cell interactions and disease outcomes. In this review, we discuss the current state of T4SS research, with an emphasis on intracellular bacterial pathogens of humans and the diverse array of translocated effectors used to manipulate host cells.
Collapse
Affiliation(s)
- Daniel E Voth
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
32
|
Bröms JE, Meyer L, Lavander M, Larsson P, Sjöstedt A. DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity. PLoS One 2012; 7:e34639. [PMID: 22514651 PMCID: PMC3326028 DOI: 10.1371/journal.pone.0034639] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/02/2012] [Indexed: 12/23/2022] Open
Abstract
The Gram-negative bacterium Francisella tularensis causes tularemia, a disease which requires bacterial escape from phagosomes of infected macrophages. Once in the cytosol, the bacterium rapidly multiplies, inhibits activation of the inflammasome and ultimately causes death of the host cell. Of importance for these processes is a 33-kb gene cluster, the Francisella pathogenicity island (FPI), which is believed to encode a type VI secretion system (T6SS). In this study, we analyzed the role of the FPI-encoded proteins VgrG and DotU, which are conserved components of type VI secretion (T6S) clusters. We demonstrate that in F. tularensis LVS, VgrG was shown to form multimers, consistent with its suggested role as a trimeric membrane puncturing device in T6SSs, while the inner membrane protein DotU was shown to stabilize PdpB/IcmF, another T6SS core component. Upon infection of J774 cells, both ΔvgrG and ΔdotU mutants did not escape from phagosomes, and subsequently, did not multiply or cause cytopathogenicity. They also showed impaired activation of the inflammasome and marked attenuation in the mouse model. Moreover, all of the DotU-dependent functions investigated here required the presence of three residues that are essentially conserved among all DotU homologues. Thus, in agreement with a core function in T6S clusters, VgrG and DotU play key roles for modulation of the intracellular host response as well as for the virulence of F. tularensis.
Collapse
Affiliation(s)
- Jeanette E Bröms
- Clinical Bacteriology, Department of Clinical Microbiology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
33
|
The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol 2012; 419:277-83. [PMID: 22504227 DOI: 10.1016/j.jmb.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 01/11/2023]
Abstract
Type six secretion systems (T6SSs) are found in many Gram-negative bacteria and are important for their virulence or their ecological competitiveness. The multicomponent T6SSs are responsible for the translocation of effector molecules into target eukaryotic or prokaryotic cells. The Francisella pathogenicity island encodes a putative T6SS that Francisella novicida requires for intramacrophage growth and virulence during infection of rodents. Here, we present the X-ray crystal structure of the conserved type six secretion component TssL (DotU) from F. novicida. The structure of this protein, which is referred to as Ftn_TssL, revealed an all-α-helical fold that is a unique fusion of two 3-helix bundles. The sequence of Ftn_TssL shows low identity to presumed homologs that are found in most T6SSs. The structure of Ftn_TssL, however, has allowed us to provide bioinformatics evidence that the F. novicida TssL has a fold that is very likely representative for TssL forms from both T6SSs and from the distantly related B subclass of type four secretion systems. A map of sequence conservation on the TssL structure revealed a surface-exposed groove that may represent a functional site on the protein.
Collapse
|
34
|
Durand E, Zoued A, Spinelli S, Watson PJH, Aschtgen MS, Journet L, Cambillau C, Cascales E. Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem 2012; 287:14157-68. [PMID: 22371492 DOI: 10.1074/jbc.m111.338731] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families.
Collapse
Affiliation(s)
- Eric Durand
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
de Bruin OM, Duplantis BN, Ludu JS, Hare RF, Nix EB, Schmerk CL, Robb CS, Boraston AB, Hueffer K, Nano FE. The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. MICROBIOLOGY-SGM 2011; 157:3483-3491. [PMID: 21980115 DOI: 10.1099/mic.0.052308-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Francisella pathogenicity island (FPI) encodes proteins thought to compose a type VI secretion system (T6SS) that is required for the intracellular growth of Francisella novicida. In this work we used deletion mutagenesis and genetic complementation to determine that the intracellular growth of F. novicida was dependent on 14 of the 18 genes in the FPI. The products of the iglABCD operon were localized by the biochemical fractionation of F. novicida, and Francisella tularensis LVS. Sucrose gradient separation of water-insoluble material showed that the FPI-encoded proteins IglA, IglB and IglC were found in multiple fractions, especially in a fraction that did not correspond to a known membrane fraction. We interpreted these data to suggest that IglA, IglB and IglC are part of a macromolecular structure. Analysis of published structural data suggested that IglC is an analogue of Hcp, which is thought to form long nano-tubes. Thus the fractionation properties of IglA, IglB and IglC are consistent with the current model of the T6SS apparatus, which supposes that IglA and IglB homologues form an outer tube structure that surrounds an inner tube composed of Hcp (IglC) subunits. Fractionation of F. novicida expressing FLAG-tagged DotU (IcmH homologue) and PdpB (IcmF homologue) showed that these proteins localize to the inner membrane. Deletion of dotU led to the cleavage of PdpB, suggesting an interaction of these two proteins that is consistent with results obtained with other T6SSs. Our results may provide a mechanistic basis for many of the studies that have examined the virulence properties of Francisella mutants in FPI genes, namely that the observed phenotypes of the mutants are the result of the disruption of the FPI-encoded T6SS structure.
Collapse
Affiliation(s)
- Olle M de Bruin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Barry N Duplantis
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jagjit S Ludu
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Rebekah F Hare
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Eli B Nix
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Crystal L Schmerk
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Craig S Robb
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Karsten Hueffer
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Francis E Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
36
|
de Pace F, Boldrin de Paiva J, Nakazato G, Lancellotti M, Sircili MP, Guedes Stehling E, Dias da Silveira W, Sperandio V. Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. MICROBIOLOGY (READING, ENGLAND) 2011. [PMID: 21778203 DOI: 10.1099/mic.0.050005–0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intracellular multiplication factor (IcmF) protein is a component of the recently described type VI secretion system (T6SS). IcmF has been shown to be required for intra-macrophage replication and inhibition of phagosome-lysosome fusion in Legionella pneumophila. In Vibrio cholerae it is involved in motility, adherence and conjugation. Given that we previously reported that two T6SS genes (hcp and clpV) contribute to the pathogenesis of a septicaemic strain (SEPT362) of avian pathogenic Escherichia coli (APEC), we investigated the function of IcmF in this strain. Further elucidation of the virulence mechanisms of APEC is important because this pathogen is responsible for financial losses in the poultry industry, and is closely related to human extraintestinal pathogenic E. coli (ExPEC) strains, representing a potential zoonotic risk, as well as serving as a reservoir of virulence genes. Here we show that an APEC icmF mutant has decreased adherence to and invasion of epithelial cells, as well as decreased intra-macrophage survival. The icmF mutant is also defective for biofilm formation on abiotic surfaces. Additionally, expression of the flagella operon is decreased in the icmF mutant, leading to decreased motility. The combination of these phenotypes culminates in this mutant being altered for infection in chicks. These results suggest that IcmF in APEC may play a role in disease, and potentially also in the epidemiological spread of this pathogen through enhancement of biofilm formation.
Collapse
Affiliation(s)
- Fernanda de Pace
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Jacqueline Boldrin de Paiva
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | | | - Marcelo Lancellotti
- Department of Biochemistry, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | | | - Eliana Guedes Stehling
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Wanderley Dias da Silveira
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Vanessa Sperandio
- University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| |
Collapse
|
37
|
de Pace F, Boldrin de Paiva J, Nakazato G, Lancellotti M, Sircili MP, Guedes Stehling E, Dias da Silveira W, Sperandio V. Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. MICROBIOLOGY-SGM 2011; 157:2954-2962. [PMID: 21778203 DOI: 10.1099/mic.0.050005-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The intracellular multiplication factor (IcmF) protein is a component of the recently described type VI secretion system (T6SS). IcmF has been shown to be required for intra-macrophage replication and inhibition of phagosome-lysosome fusion in Legionella pneumophila. In Vibrio cholerae it is involved in motility, adherence and conjugation. Given that we previously reported that two T6SS genes (hcp and clpV) contribute to the pathogenesis of a septicaemic strain (SEPT362) of avian pathogenic Escherichia coli (APEC), we investigated the function of IcmF in this strain. Further elucidation of the virulence mechanisms of APEC is important because this pathogen is responsible for financial losses in the poultry industry, and is closely related to human extraintestinal pathogenic E. coli (ExPEC) strains, representing a potential zoonotic risk, as well as serving as a reservoir of virulence genes. Here we show that an APEC icmF mutant has decreased adherence to and invasion of epithelial cells, as well as decreased intra-macrophage survival. The icmF mutant is also defective for biofilm formation on abiotic surfaces. Additionally, expression of the flagella operon is decreased in the icmF mutant, leading to decreased motility. The combination of these phenotypes culminates in this mutant being altered for infection in chicks. These results suggest that IcmF in APEC may play a role in disease, and potentially also in the epidemiological spread of this pathogen through enhancement of biofilm formation.
Collapse
Affiliation(s)
- Fernanda de Pace
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Jacqueline Boldrin de Paiva
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | | | - Marcelo Lancellotti
- Department of Biochemistry, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | | | - Eliana Guedes Stehling
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Wanderley Dias da Silveira
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas - Unicamp, Campinas, SP CP6109, Brazil
| | - Vanessa Sperandio
- University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| |
Collapse
|
38
|
Records AR. The type VI secretion system: a multipurpose delivery system with a phage-like machinery. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:751-757. [PMID: 21361789 DOI: 10.1094/mpmi-11-10-0262] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Whether they live in the soil, drift in the ocean, survive in the lungs of human hosts or reside on the surfaces of leaves, all bacteria must cope with an array of environmental stressors. Bacteria have evolved an impressive suite of protein secretion systems that enable their survival in hostile environments and facilitate colonization of eukaryotic hosts. Collectively, gram-negative bacteria produce six distinct secretion systems that deliver proteins to the extracellular milieu or directly into the cytosol of host cells. The type VI secretion system (T6SS) was discovered recently and is encoded in at least one fourth of all sequenced gram-negative bacterial genomes. T6SS proteins are evolutionarily and structurally related to phage proteins, and it is likely that the T6SS apparatus is reminiscent of phage injection machinery. Most studies of T6SS function have been conducted in the context of host-pathogen interactions. However, the totality of data suggests that the T6SS is a versatile tool with roles in virulence, symbiosis, interbacterial interactions, and antipathogenesis. This review gives a brief history of T6SS discovery and an overview of the pathway's predicted structure and function. Special attention is paid to research addressing the T6SS of plant-associated bacteria, including pathogens, symbionts and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- Angela R Records
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
39
|
Nagai H, Kubori T. Type IVB Secretion Systems of Legionella and Other Gram-Negative Bacteria. Front Microbiol 2011; 2:136. [PMID: 21743810 PMCID: PMC3127085 DOI: 10.3389/fmicb.2011.00136] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/11/2011] [Indexed: 12/03/2022] Open
Abstract
Type IV secretion systems (T4SSs) play a central role in the pathogenicity of many important pathogens, including Agrobacterium tumefaciens, Helicobacter pylori, and Legionella pneumophila. The T4SSs are related to bacterial conjugation systems, and are classified into two subgroups, type IVA (T4ASS) and type IVB (T4BSS). The T4BSS, which is closely related to conjugation systems of IncI plasmids, was originally found in human pathogen L. pneumophila; pathogenesis by L. pneumophila infection requires functional Dot/Icm T4BSS. A zoonotic pathogen, Coxiella burnetii, and an arthropod pathogen, Rickettsiella grylli – both of which carry T4BSSs highly similar to the Legionella Dot/Icm system – are evolutionarily closely related and comprise a monophyletic group. A growing body of bacterial genomic information now suggests that T4BSSs are not limited to Legionella and related bacteria and IncI plasmids. Here, we review the current knowledge on T4BSS apparatus and component proteins, gained mainly from studies on L. pneumophila Dot/Icm T4BSS. Recent structural studies, along with previous findings, suggest that the Dot/Icm T4BSS contains components with primary or higher-order structures similar to those in other types of secretion systems – types II, III, IVA, and VI, thus highlighting the mosaic nature of T4BSS architecture.
Collapse
Affiliation(s)
- Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University Osaka, Japan
| | | |
Collapse
|
40
|
Beare PA, Sandoz KM, Omsland A, Rockey DD, Heinzen RA. Advances in genetic manipulation of obligate intracellular bacterial pathogens. Front Microbiol 2011; 2:97. [PMID: 21833334 PMCID: PMC3153054 DOI: 10.3389/fmicb.2011.00097] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/19/2011] [Indexed: 11/22/2022] Open
Abstract
Infections by obligate intracellular bacterial pathogens result in significant morbidity and mortality worldwide. These bacteria include Chlamydia spp., which causes millions of cases of sexually transmitted disease and blinding trachoma annually, and members of the α-proteobacterial genera Anaplasma, Ehrlichia, Orientia, and Rickettsia, agents of serious human illnesses including epidemic typhus. Coxiella burnetii, the agent of human Q fever, has also been considered a prototypical obligate intracellular bacterium, but recent host cell-free (axenic) growth has rescued it from obligatism. The historic genetic intractability of obligate intracellular bacteria has severely limited molecular dissection of their unique lifestyles and virulence factors involved in pathogenesis. Host cell restricted growth is a significant barrier to genetic transformation that can make simple procedures for free-living bacteria, such as cloning, exceedingly difficult. Low transformation efficiency requiring long-term culture in host cells to expand small transformant populations is another obstacle. Despite numerous technical limitations, the last decade has witnessed significant gains in genetic manipulation of obligate intracellular bacteria including allelic exchange. Continued development of genetic tools should soon enable routine mutation and complementation strategies for virulence factor discovery and stimulate renewed interest in these refractory pathogens. In this review, we discuss the technical challenges associated with genetic transformation of obligate intracellular bacteria and highlight advances made with individual genera.
Collapse
Affiliation(s)
- Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | | | | | | | | |
Collapse
|
41
|
Bröms JE, Sjöstedt A, Lavander M. The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front Microbiol 2010; 1:136. [PMID: 21687753 PMCID: PMC3109350 DOI: 10.3389/fmicb.2010.00136] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/02/2010] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a highly virulent gram-negative intracellular bacterium that causes the zoonotic disease tularemia. Essential for its virulence is the ability to multiply within host cells, in particular monocytic cells. The bacterium has developed intricate means to subvert host immune mechanisms and thereby facilitate its intracellular survival by preventing phagolysosomal fusion followed by escape into the cytosol, where it multiplies. Moreover, it targets and manipulates numerous host cell signaling pathways, thereby ameliorating the otherwise bactericidal capacity. Many of the underlying molecular mechanisms still remain unknown but key elements, directly or indirectly responsible for many of the aforementioned mechanisms, rely on the expression of proteins encoded by the Francisella pathogenicity island (FPI), suggested to constitute a type VI secretion system. We here describe the current knowledge regarding the components of the FPI and the roles that have been ascribed to them.
Collapse
Affiliation(s)
- Jeanette E Bröms
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University Umeå, Sweden
| | | | | |
Collapse
|
42
|
Sarris PF, Skandalis N, Kokkinidis M, Panopoulos NJ. In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. MOLECULAR PLANT PATHOLOGY 2010; 11:795-804. [PMID: 21091602 PMCID: PMC6640432 DOI: 10.1111/j.1364-3703.2010.00644.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Type VI secretion systems (T6SS) of Gram-negative bacteria form injectisomes that have the potential to translocate effector proteins into eukaryotic host cells. In silico analysis of the genomes in six Pseudomonas syringae pathovars revealed that P. syringae pv. tomato DC3000, pv. tabaci ATCC 11528, pv. tomato T1 and pv. oryzae 1-6 each carry two putative T6SS gene clusters (HSI-I and HSI-II; HSI: Hcp secretion island), whereas pv. phaseolicola 1448A and pv. syringae B728 each carry one. The pv. tomato DC3000 HSI-I and pv. tomato T1 HSI-II possess a highly similar organization and nucleotide sequence, whereas the pv. tomato DC3000, pv. oryzae 1-6 and pv. tabaci 11528 HSI-II are more divergent. Putative effector orthologues vary in number among the strains examined. The Clp-ATPases and IcmF orthologues form distinct phylogenetic groups: the proteins from pv. tomato DC3000, pv. tomato T1, pv. oryzae and pv. tabaci 11528 from HSI-II group together with most orthologues from other fluorescent pseudomonads, whereas those from pv. phaseolicola, pv. syringae, pv. tabaci, pv. tomato T1 and pv. oryzae from HSI-I group closer to the Ralstonia solanacearum and Xanthomonas orthologues. Our analysis suggests multiple independent acquisitions and possible gene attrition/loss of putative T6SS genes by members of P. syringae.
Collapse
Affiliation(s)
- Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece.
| | | | | | | |
Collapse
|
43
|
|
44
|
The ClpP protease homologue is required for the transmission traits and cell division of the pathogen Legionella pneumophila. BMC Microbiol 2010; 10:54. [PMID: 20167127 PMCID: PMC2838875 DOI: 10.1186/1471-2180-10-54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 02/19/2010] [Indexed: 01/04/2023] Open
Abstract
Background Legionella pneumophila, the intracellular bacterial pathogen that causes Legionnaires' disease, exhibit characteristic transmission traits such as elevated stress tolerance, shortened length and virulence during the transition from the replication phase to the transmission phase. ClpP, the catalytic core of the Clp proteolytic complex, is widely involved in many cellular processes via the regulation of intracellular protein quality. Results In this study, we showed that ClpP was required for optimal growth of L. pneumophila at high temperatures and under several other stress conditions. We also observed that cells devoid of clpP exhibited cell elongation, incomplete cell division and compromised colony formation. Furthermore, we found that the clpP-deleted mutant was more resistant to sodium stress and failed to proliferate in the amoebae host Acanthamoeba castellanii. Conclusions The data present in this study illustrate that the ClpP protease homologue plays an important role in the expression of transmission traits and cell division of L. pneumophila, and further suggest a putative role of ClpP in virulence regulation.
Collapse
|
45
|
A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 2010; 192:155-68. [PMID: 19880608 DOI: 10.1128/jb.01260-09] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We recently delineated the importance of a type VI secretion system (T6SS) gene cluster in the virulence of diarrheal isolate SSU of Aeromonas hydrophila and showed that VasH, a sigma(54) activator and T6SS component, was involved in the production of its associated effectors, e.g., hemolysin-coregulated protein. To identify additional T6SS effectors and/or secreted proteins, we subjected culture supernatants from deletion mutants of A. hydrophila, namely, a Delta act mutant (a T2SS-associated cytotoxic enterotoxin-encoding gene) and a Delta act Delta vasH mutant, to 2-dimensional gel electrophoresis and mass spectrometric analysis. Based on these approaches, we identified a member of the VgrG protein family, VgrG1, that contained a vegetative insecticidal protein (VIP-2) domain at its carboxyl-terminal end. Consequently, the vgrG1 gene was cloned in pBI-EGFP and pET-30a vectors to be expressed in HeLa Tet-Off cells and Escherichia coli, respectively. We assessed the ADP-ribosyltransferase (ADPRT) activity of various domains of purified recombinant VgrG1 (rVgrG1) and provided evidence that only the full-length VgrG1, as well as its carboxyl-terminal domain encoding the VIP-2 domain, showed ADPRT activity. Importantly, bacterium-host cell interaction was needed for the T6SS to induce cytotoxicity in eukaryotic cells, and we demonstrated translocation of VgrG1. Furthermore, our data indicated that expression of the genes encoding the full-length VgrG1 and its carboxyl-terminal domain in HeLa Tet-Off cells disrupted the actin cytoskeleton, which was followed by a decrease in cell viability and an increase in apoptosis. Taken together, these findings demonstrated for the first time that VgrG1 of A. hydrophila possessed actin ADPRT activity associated with its VIP-2 domain and that this domain alone was able to induce a rounded phenotype in HeLa Tet-Off cells, followed by apoptosis mediated by caspase 9 activation.
Collapse
|
46
|
Pore formation triggered by Legionella spp. is an Nlrc4 inflammasome-dependent host cell response that precedes pyroptosis. Infect Immun 2010; 78:1403-13. [PMID: 20048047 DOI: 10.1128/iai.00905-09] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Legionella pneumophila, the etiological agent of Legionnaires disease, is known to trigger pore formation in bone marrow-derived macrophages (BMMs) by mechanisms dependent on the type IVB secretion system known as Dot/Icm. Here, we used several mutants of L. pneumophila in combination with knockout mice to assess the host and bacterial factors involved in pore formation in BMMs. We found that regardless of Dot/Icm activity, pore formation does not occur in BMMs deficient in caspase-1 and Nlrc4/Ipaf. Pore formation was temporally associated with interleukin-1beta secretion and preceded host cell lysis and pyroptosis. Pore-forming ability was dependent on bacterial Dot/Icm but independent of several effector proteins, multiplication, and de novo protein synthesis. Flagellin, which is known to trigger the Nlrc4 inflammasome, was required for pore formation as flaA mutant bacteria failed to induce cell permeabilization. Accordingly, transfection of purified flagellin was sufficient to trigger pore formation independent of infection. By using 11 different Legionella species, we found robust pore formation in response to L. micdadei, L. bozemanii, L. gratiana, L. jordanis, and L. rubrilucens, and this trait correlated with flagellin expression by these species. Together, the results suggest that pore formation is neither L. pneumophila specific nor the result of membrane damage induced by Dot/Icm activity; instead, it is a highly coordinated host cell response dependent on host Nlrc4 and caspase-1 and on bacterial flagellin and type IV secretion system.
Collapse
|
47
|
Blondel CJ, Jiménez JC, Contreras I, Santiviago CA. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics 2009; 10:354. [PMID: 19653904 PMCID: PMC2907695 DOI: 10.1186/1471-2164-10-354] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/04/2009] [Indexed: 12/31/2022] Open
Abstract
Background The recently described Type VI Secretion System (T6SS) represents a new paradigm of protein secretion in bacteria. A number of bioinformatic studies have been conducted to identify T6SS gene clusters in the available bacterial genome sequences. According to these studies, Salmonella harbors a unique T6SS encoded in the Salmonella Pathogenicity Island 6 (SPI-6). Since these studies only considered few Salmonella genomes, the present work aimed to identify novel T6SS loci by in silico analysis of every genome sequence of Salmonella available. Results The analysis of sequencing data from 44 completed or in progress Salmonella genome projects allowed the identification of 3 novel T6SS loci. These clusters are located in differentially-distributed genomic islands we designated SPI-19, SPI-20 and SPI-21, respectively. SPI-19 was identified in a subset of S. enterica serotypes including Dublin, Weltevreden, Agona, Gallinarum and Enteritidis. In the later, an internal deletion eliminated most of the island. On the other hand, SPI-20 and SPI-21 were restricted to S. enterica subspecies arizonae (IIIa) serotype 62:z4,z23:-. Remarkably, SPI-21 encodes a VgrG protein containing a C-terminal extension similar to S-type pyocins of Pseudomonas aeruginosa. This is not only the first evolved VgrG described in Salmonella, but also the first evolved VgrG including a pyocin domain described so far in the literature. In addition, the data indicate that SPI-6 T6SS is widely distributed in S. enterica and absent in serotypes Enteritidis, Gallinarum, Agona, Javiana, Paratyphi B, Virchow, IIIa 62:z4,z23:- and IIIb 61:1,v:1,5,(7). Interestingly, while some serotypes harbor multiple T6SS (Dublin, Weltvreden and IIIa 62:z4,z23:-) others do not encode for any (Enteritidis, Paratyphi B, Javiana, Virchow and IIIb 61:1,v:1,5,(7)). Comparative and phylogenetic analyses indicate that the 4 T6SS loci in Salmonella have a distinct evolutionary history. Finally, we identified an orphan Hcp-like protein containing the Hcp/COG3157 domain linked to a C-terminal extension. We propose to designate this and related proteins as "evolved Hcps". Conclusion Altogether, our data suggest that (i) the Salmonella T6SS loci were acquired by independent lateral transfer events and (ii) evolved to contribute in the adaptation of the serotypes to different lifestyles and environments, including animal hosts. Notably, the presence of an evolved VgrG protein related to pyocins suggests a novel role for T6SS in bacterial killing. Future studies on the roles of the identified T6SS loci will expand our knowledge on Salmonella pathogenesis and host specificity.
Collapse
Affiliation(s)
- Carlos J Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
48
|
An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 2009; 191:4316-29. [PMID: 19395482 DOI: 10.1128/jb.00029-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpL(M), an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpL(M) and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of beta-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpL(M) is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impL(M) mutants with substitutions or deletions in the Walker A motif failed to complement the impL(M) deletion mutant for Hcp secretion, which provided evidence that ImpL(M) may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpL(M) and another essential T6SS component, ImpK(L). Topology and biochemical fractionation analyses suggested that ImpK(L) is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpL(M)-ImpK(L) interaction domains suggested that ImpL(M) interacts with ImpK(L) via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpL(M) interacts with ImpK(L), and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.
Collapse
|
49
|
Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 2009. [PMID: 19284603 DOI: 10.1186/1471-2164.10-104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND The availability of hundreds of bacterial genomes allowed a comparative genomic study of the Type VI Secretion System (T6SS), recently discovered as being involved in pathogenesis. By combining comparative and phylogenetic approaches using more than 500 prokaryotic genomes, we characterized the global T6SS genetic structure in terms of conservation, evolution and genomic organization. RESULTS This genome wide analysis allowed the identification of a set of 13 proteins constituting the T6SS protein core and a set of conserved accessory proteins. 176 T6SS loci (encompassing 92 different bacteria) were identified and their comparison revealed that T6SS-encoded genes have a specific conserved genetic organization. Phylogenetic reconstruction based on the core genes showed that lateral transfer of the T6SS is probably its major way of dissemination among pathogenic and non-pathogenic bacteria. Furthermore, the sequence analysis of the VgrG proteins, proposed to be exported in a T6SS-dependent way, confirmed that some C-terminal regions possess domains showing similarities with adhesins or proteins with enzymatic functions. CONCLUSION The core of T6SS is composed of 13 proteins, conserved in both pathogenic and non-pathogenic bacteria. Subclasses of T6SS differ in regulatory and accessory protein content suggesting that T6SS has evolved to adapt to various microenvironments and specialized functions. Based on these results, new functional hypotheses concerning the assembly and function of T6SS proteins are proposed.
Collapse
Affiliation(s)
- Frédéric Boyer
- CEA, iRTSV, Laboratoire Biologie, Informatique et Mathématiques, Grenoble, France.
| | | | | | | | | |
Collapse
|
50
|
Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 2009; 10:104. [PMID: 19284603 PMCID: PMC2660368 DOI: 10.1186/1471-2164-10-104] [Citation(s) in RCA: 426] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of hundreds of bacterial genomes allowed a comparative genomic study of the Type VI Secretion System (T6SS), recently discovered as being involved in pathogenesis. By combining comparative and phylogenetic approaches using more than 500 prokaryotic genomes, we characterized the global T6SS genetic structure in terms of conservation, evolution and genomic organization. RESULTS This genome wide analysis allowed the identification of a set of 13 proteins constituting the T6SS protein core and a set of conserved accessory proteins. 176 T6SS loci (encompassing 92 different bacteria) were identified and their comparison revealed that T6SS-encoded genes have a specific conserved genetic organization. Phylogenetic reconstruction based on the core genes showed that lateral transfer of the T6SS is probably its major way of dissemination among pathogenic and non-pathogenic bacteria. Furthermore, the sequence analysis of the VgrG proteins, proposed to be exported in a T6SS-dependent way, confirmed that some C-terminal regions possess domains showing similarities with adhesins or proteins with enzymatic functions. CONCLUSION The core of T6SS is composed of 13 proteins, conserved in both pathogenic and non-pathogenic bacteria. Subclasses of T6SS differ in regulatory and accessory protein content suggesting that T6SS has evolved to adapt to various microenvironments and specialized functions. Based on these results, new functional hypotheses concerning the assembly and function of T6SS proteins are proposed.
Collapse
Affiliation(s)
- Frédéric Boyer
- CEA, iRTSV, Laboratoire Biologie, Informatique et Mathématiques, Grenoble, France.
| | | | | | | | | |
Collapse
|