1
|
Chegini Z, Khoshbayan A, Kashi M, Zare Shahraki R, Didehdar M, Shariati A. The possible pathogenic mechanisms of microorganisms in infertility: a narrative review. Arch Microbiol 2025; 207:27. [PMID: 39777552 DOI: 10.1007/s00203-024-04231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Infertility can harm a patient in physical, psychological, spiritual, and medical ways. This illness is unusual because it affects the patient's companion and the patient individually. Infertility is a multifactorial disease, and various etiological factors like infection are known to develop this disorder. Recently published studies reported that different bacteria, such as Chlamydia trachomatis, Mycoplasma spp., Ureaplasma urealyticum, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, can lead to infertility by immunopathological effects, oxidative stress, and adverse effects on sperm concentration, motility, morphology, and DNA condensation. Among viruses, Human papillomavirus and Herpes simplex virus reduce sperm progressive motility and sperm concentration. The viruses can lead to the atrophy of the germinal epithelium and degenerative changes in the testes. Candida albicans also harm sperm quality, motility, and chromatin integrity and induce apoptosis in sperm cells. Finally, Trichomonas vaginalis leads to distorted heads, broken necks, and acrosomes exocytosis in sperms. This parasite decreases sperm viability and functional integrity. Noteworthy, oxidative stress could have a role in many pathological changes in the reproductive system. Recent findings show that microorganisms can increase reactive oxygen species concentration inside the host cells, leading to oxidative stress and sperm distress and dysfunction. Therefore, this article explores the potential significance of critical bacteria linked to infertility and their pathogenic mechanisms that can affect sperm function and the female reproductive system.
Collapse
Affiliation(s)
- Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Kashi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Raha Zare Shahraki
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
2
|
Ling H, Luo L, Dai X, Chen H. Fallopian tubal infertility: the result of Chlamydia trachomatis-induced fallopian tubal fibrosis. Mol Cell Biochem 2021; 477:205-212. [PMID: 34652537 DOI: 10.1007/s11010-021-04270-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Chlamydia trachomatis is one of the most common pathogens of sexually transmitted diseases, and its incidence in genital tract infections is now 4.7% in south China. Infertility is the end result of C. trachomatis-induced fallopian tubal fibrosis and is receiving intense attention from scientists worldwide. To reduce the incidence of infertility, it is important to understand the pathology-related changes of the genital tract where C. trachomatis infection is significant, especially the mechanism of fibrosis formation. During fibrosis development, the fallopian tube becomes sticky and occluded, which will eventually lead to tubal infertility. At present, the mechanism of fallopian tubal fibrosis induced by C. trachomatis infection is unclear. Our study attempted to summarize the possible mechanisms of fibrosis caused by C. trachomatis infection in the fallopian tube by reviewing published studies and further providing potential therapeutic targets to reduce the occurrence of infertility. This study also provides ideas for future research. Factors leading to fallopian tube fibrosis include inflammatory factors, miRNA, ECT, cHSP, and host factors. We hypothesized that C. trachomatis mediates the transcription and translation of EMT and ECM via upregulating TGF signaling pathway, which leads to the formation of fallopian tube fibrosis and ultimately to tubal infertility.
Collapse
Affiliation(s)
- Hua Ling
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China
| | - Lipei Luo
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China
| | - Xingui Dai
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China.
- The First People's Hospital of Chenzhou, Chenzhou, 423000, People's Republic of China.
- The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| | - Hongliang Chen
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China.
- The First People's Hospital of Chenzhou, Chenzhou, 423000, People's Republic of China.
- The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| |
Collapse
|
3
|
Chlamydia trachomatis: the Persistent Pathogen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00203-17. [PMID: 28835360 DOI: 10.1128/cvi.00203-17] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium whose only natural host is humans. Although presenting as asymptomatic in most women, genital tract chlamydial infections are a leading cause of pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. C. trachomatis has evolved successful mechanisms to avoid destruction by autophagy and the host immune system and persist within host epithelial cells. The intracellular form of this organism, the reticulate body, can enter into a persistent nonreplicative but viable state under unfavorable conditions. The infectious form of the organism, the elementary body, is again generated when the immune attack subsides. In its persistent form, C. trachomatis ceases to produce its major structural and membrane components, but synthesis of its 60-kDa heat shock protein (hsp60) is greatly upregulated and released from the cell. The immune response to hsp60, perhaps exacerbated by repeated cycles of productive infection and persistence, may promote damage to fallopian tube epithelial cells, scar formation, and tubal occlusion. The chlamydial and human hsp60 proteins are very similar, and hsp60 is one of the first proteins produced by newly formed embryos. Thus, the development of immunity to epitopes in the chlamydial hsp60 that are also present in the corresponding human hsp60 may increase susceptibility to pregnancy failure in infected women. Delineation of host factors that increase the likelihood that C. trachomatis will avoid immune destruction and survive within host epithelial cells and utilization of this knowledge to design individualized preventative and treatment protocols are needed to more effectively combat infections by this persistent pathogen.
Collapse
|
4
|
Lau Q, Griffith JE, Higgins DP. Identification of MHCII variants associated with chlamydial disease in the koala (Phascolarctos cinereus). PeerJ 2014; 2:e443. [PMID: 25024912 PMCID: PMC4081129 DOI: 10.7717/peerj.443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/02/2014] [Indexed: 01/19/2023] Open
Abstract
Chlamydiosis, the most common infectious disease in koalas, can cause chronic urogenital tract fibrosis and infertility. High titres of serum immunoglobulin G against 10 kDa and 60 kDa chlamydial heat-shock proteins (c-hsp10 and c-hsp60) are associated with fibrous occlusion of the koala uterus and uterine tube. Murine and human studies have identified associations between specific major histocompatibility complex class II (MHCII) alleles or genotypes, and higher c-hsp 60 antibody levels or chlamydia-associated disease and infertility. In this study, we characterised partial MHCII DAB and DBB genes in female koalas (n = 94) from a single geographic population, and investigated associations among antibody responses to c-hsp60 quantified by ELISA, susceptibility to chlamydial infection, or age. The identification of three candidate MHCII variants provides additional support for the functional role of MHCII in the koala, and will inform more focused future studies. This is the first study to investigate an association between MHC genes with chlamydial pathogenesis in a non-model, free-ranging species.
Collapse
Affiliation(s)
- Quintin Lau
- Faculty of Veterinary Science, The University of Sydney , NSW , Australia
| | - Joanna E Griffith
- Faculty of Veterinary Science, The University of Sydney , NSW , Australia
| | - Damien P Higgins
- Faculty of Veterinary Science, The University of Sydney , NSW , Australia
| |
Collapse
|
5
|
Chowdhury N, Kingston JJ, Whitaker WB, Carpenter MR, Cohen A, Boyd EF. Sequence and expression divergence of an ancient duplication of the chaperonin groESEL operon in Vibrio species. MICROBIOLOGY-SGM 2014; 160:1953-1963. [PMID: 24913685 DOI: 10.1099/mic.0.079194-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heat-shock proteins are molecular chaperones essential for protein folding, degradation and trafficking. The human pathogen Vibrio vulnificus encodes a copy of the groESEL operon in both chromosomes and these genes share <80 % similarity with each other. Comparative genomic analysis was used to determine whether this duplication is prevalent among Vibrionaceae specifically or Gammaproteobacteria in general. Among the Vibrionaceae complete genome sequences in the database (31 species), seven Vibrio species contained a copy of groESEL in each chromosome, including the human pathogens Vibrio cholerae, Vibrio parahaemolyticus and V. vulnificus. Phylogenetic analysis of GroEL among the Gammaproteobacteria indicated that GroESEL-1 encoded in chromosome I was the ancestral copy and GroESEL-2 in chromosome II arose by an ancient gene duplication event. Interestingly, outside of the Vibrionaceae within the Gammaproteobacteria, groESEL chromosomal duplications were rare among the 296 genomes examined; only five additional species contained two or more copies. Examination of the expression pattern of groEL from V. vulnificus cells grown under different conditions revealed differential expression between the copies. The data demonstrate that groEL-1 was more highly expressed during growth in exponential phase than groEL-2 and a similar pattern was also found in both V. cholerae and V. parahaemolyticus. Overall these data suggest that retention of both copies of groESEL in Vibrio species may confer an evolutionary advantage.
Collapse
Affiliation(s)
- Nityananda Chowdhury
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Joseph J Kingston
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - W Brian Whitaker
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Megan R Carpenter
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Analuisa Cohen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
6
|
Cunningham K, Stansfield SH, Patel P, Menon S, Kienzle V, Allan JA, Huston WM. The IL-6 response to Chlamydia from primary reproductive epithelial cells is highly variable and may be involved in differential susceptibility to the immunopathological consequences of chlamydial infection. BMC Immunol 2013; 14:50. [PMID: 24238294 PMCID: PMC4225670 DOI: 10.1186/1471-2172-14-50] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/14/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis infection results in reproductive damage in some women. The process and factors involved in this immunopathology are not well understood. This study aimed to investigate the role of primary human cellular responses to chlamydial stress response proteases and chlamydial infection to further identify the immune processes involved in serious disease sequelae. RESULTS Laboratory cell cultures and primary human reproductive epithelial cultures produced IL-6 in response to chlamydial stress response proteases (CtHtrA and CtTsp), UV inactivated Chlamydia, and live Chlamydia. The magnitude of the IL-6 response varied considerably (up to 1000 pg ml(-1)) across different primary human reproductive cultures. Thus different levels of IL-6 production by reproductive epithelia may be a determinant in disease outcome. Interestingly, co-culture models with either THP-1 cells or autologous primary human PBMC generally resulted in increased levels of IL-6, except in the case of live Chlamydia where the level of IL-6 was decreased compared to the epithelial cell culture only, suggesting this pathway may be able to be modulated by live Chlamydia. PBMC responses to the stress response proteases (CtTsp and CtHtrA) did not significantly vary for the different participant cohorts. Therefore, these proteases may possess conserved innate PAMPs. MAP kinases appeared to be involved in this IL-6 induction from human cells. Finally, we also demonstrated that IL-6 was induced by these proteins and Chlamydia from mouse primary reproductive cell cultures (BALB/C mice) and mouse laboratory cell models. CONCLUSIONS We have demonstrated that IL-6 may be a key factor for the chlamydial disease outcome in humans, given that primary human reproductive epithelial cell culture showed considerable variation in IL-6 response to Chlamydia or chlamydial proteins, and that the presence of live Chlamydia (but not UV killed) during co-culture resulted in a reduced IL-6 response suggesting this response may be moderated by the presence of the organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wilhelmina M Huston
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Q Block, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
7
|
Abstract
Trachoma, caused by Chlamydia trachomatis (Ct), is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNγ-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development.
Collapse
|
8
|
Linhares IM, Witkin SS. Immunopathogenic consequences of Chlamydia trachomatis 60 kDa heat shock protein expression in the female reproductive tract. Cell Stress Chaperones 2010; 15:467-73. [PMID: 20182835 PMCID: PMC3006632 DOI: 10.1007/s12192-010-0171-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 01/26/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that infects chiefly urogenital and ocular epithelial cells. In some infected women the microorganism migrates to the upper reproductive tract resulting in a chronic, but asymptomatic, infection. The immune response to this infection, production of interferon-gamma and pro-inflammatory cytokines, results in interruption of chlamydial intracellular replication. However, the Chlamydia remains viable and enters into a persistent state. In this form, most chlamydial genes are inactive. An exception is the gene coding for the 60 kDa heat shock protein (hsp60), which is synthesized in increased amounts and is released into the extracellular milieu. The chronic release of chlamydial hsp60 induces a local pro-inflammatory immune response in fallopian tube epithelia and results in scar formation and tubal occlusion. In addition, long-term exposure of the maternal immune system to the chlamydial hsp60 eventually results in the release of tolerance and generation of an immune response that recognizes regions of the chlamydial hsp60 that are also present in the human hsp60. Production of cross-reacting antibodies and cell-mediated immunity to the human hsp60 is detrimental to subsequent pregnancy outcome and may also possibly increase susceptibility to atherosclerosis, autoimmune disorders, or malignancies.
Collapse
Affiliation(s)
- Iara Moreno Linhares
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, 525 East 68th Street, P.O. Box 35, New York, NY 10065 USA
- Department of Gynecology, University of Sao Paulo Medical School and Hospital das Clinicas, Sao Paulo, Brazil
| | - Steven S. Witkin
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, 525 East 68th Street, P.O. Box 35, New York, NY 10065 USA
| |
Collapse
|
9
|
Darville T, Hiltke TJ. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Dis 2010; 201 Suppl 2:S114-25. [PMID: 20524234 DOI: 10.1086/652397] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Although the pathologic consequences of C. trachomatis genital infection are well-established, the mechanism(s)that result in chlamydia-induced tissue damage are not fully understood. We reviewed in vitro, animal, and human data related to the pathogenesis of chlamydial disease to better understand how reproductive sequelae result from C. trachomatis infection. Abundant in vitro data suggest that the inflammatory response to chlamydiae is initiated and sustained by actively infected nonimmune host epithelial cells. The mouse model indicates a critical role for chlamydia activation of the innate immune receptor, Toll-like receptor 2, and subsequent inflammatory cell influx and activation, which contributes to the development of chronic genital tract tissue damage. Data from recent vaccine studies in the murine model and from human immunoepidemiologic studies support a role for chlamydia-specific CD4 Th1-interferon-g-producing cells in protection from infection and disease. However, limited evidence obtained using animal models of repeated infection indicates that, although the adaptive T cell response is a key mechanism involved in controlling or eliminating infection, it may have a double-edged nature and contribute to tissue damage. Important immunologic questions include whether anamnestic CD4 T cell responses drive disease rather than protect against disease and the role of specific immune cells and inflammatory mediators in the induction of tissue damage with primary and repeated infections. Continued study of the complex molecular and cellular interactions between chlamydiae and their host and large-scale prospective immunoepidemiologic and immunopathologic studies are needed to address gaps in our understanding of pathogenesis that thwart development of optimally effective control programs, including vaccine development.
Collapse
Affiliation(s)
- Toni Darville
- Departments of Pediatrics and Immunology, University of Pittsburgh Medical Cente, USA
| | | |
Collapse
|
10
|
Carey AJ, Beagley KW. Chlamydia trachomatis, a hidden epidemic: effects on female reproduction and options for treatment. Am J Reprod Immunol 2010; 63:576-86. [PMID: 20192953 DOI: 10.1111/j.1600-0897.2010.00819.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The number of genital tract Chlamydia trachomatis infections is steadily increasing worldwide, with approximately 50-70% of infections asymptomatic. There is currently no uniform screening practice, current antibiotic treatment has failed to prevent the increased incidence, and there is no vaccine available. We examined studies on the epidemiology of C. trachomatis infections, the effects infections have on the female reproductive tract and subsequent reproductive health and what measures are being taken to reduce these problems. Undetected or multiple infections in women can lead to the development of severe reproductive sequelae, including pelvic inflammatory disease and tubal infertility. There are two possible paradigms of chlamydial pathogenesis, the cellular and immunological paradigms. While many vaccine candidates are being extensively tested in animal models, they are still years from clinical trials. With no vaccine available and antibiotic treatment unable to halt the increased incidence, infection rates will continue to increase and cause a significant burden on health care systems.
Collapse
Affiliation(s)
- Alison J Carey
- Institute of Health & Biomedical Innovation, School of Life Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Qld, Australia
| | | |
Collapse
|
11
|
Abstract
Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents—bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.
Collapse
Affiliation(s)
- Murray B Gardner
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
12
|
In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evol Biol 2007; 7:81. [PMID: 17519003 PMCID: PMC1892554 DOI: 10.1186/1471-2148-7-81] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/22/2007] [Indexed: 12/26/2022] Open
Abstract
Background Heat-shock proteins are specialized molecules performing different and essential roles in the cell including protein degradation, folding and trafficking. GroEL is a 60 Kda heat-shock protein ubiquitous in bacteria and has been regarded as an important molecule implicated in chronic inflammatory processes caused by Chlamydiae infections. GroEL in Chlamydiae became duplicated at the origin of the Chlamydiae lineage presenting three distinct molecular chaperones, namely the original protein GroEL1 (Ct110), and its paralogous proteins GroEL2 (Ct604) and GroEL3 (Ct755). These chaperones present differential and independent expressions during the different stages of Chlamydiae infections and have been suggested to present differential physiological and regulatory roles. Results In this comprehensive in silico study we show that GroEL protein paralogs have diverged functionally after the different gene duplication events and that this divergence has occurred mainly between GroEL3 and GroEL1. GroEL2 presents an intermediate functional divergence pattern from GroEL1. Our results point to the different protein-protein interaction patterns between GroEL paralogs and known GroEL protein clients supporting their functional divergence after groEL gene duplication. Analysis of selective constraints identifies periods of adaptive evolution after gene duplication that led to the fixation of amino acid replacements in GroEL protein domains involved in the interaction with GroEL protein clients. Conclusion We demonstrate that GroEL protein copies in Chlamydiae species have diverged functionally after the gene duplication events. We also show that functional divergence has occurred in important functional regions of these GroEL proteins and that very probably have affected the ancestral GroEL regulatory role and protein-protein interaction patterns with GroEL client proteins. Most of the amino acid replacements that have affected interaction with protein clients and that were responsible for the functional divergence between GroEL paralogs were fixed by adaptive evolution after the groEL gene duplication events.
Collapse
|
13
|
Giles DK, Whittimore JD, LaRue RW, Raulston JE, Wyrick PB. Ultrastructural analysis of chlamydial antigen-containing vesicles everting from the Chlamydia trachomatis inclusion. Microbes Infect 2006; 8:1579-91. [PMID: 16698305 DOI: 10.1016/j.micinf.2006.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/18/2022]
Abstract
Several chlamydial antigens have been detected in the infected epithelial cell cytosol and on the host cell surface prior to their presumed natural release at the end of the 72-96 h developmental cycle. These extra-inclusion antigens are proposed to influence vital host cell functions, antigen trafficking and presentation and, ultimately, contribute to a prolonged inflammatory response. To begin to dissect the mechanisms for escape of these antigens from the chlamydial inclusion, which are enhanced on exposure to antibiotics, polarized endometrial epithelial cells (HEC-1B) were infected with Chlamydia trachomatis serovar E for 36 h or 48 h. Infected cells were then exposed to chemotactic human polymorphonuclear neutrophils not loaded or pre-loaded in vitro with the antibiotic azithromycin. Viewed by electron microscopy, the azithromycin-mediated killing of chlamydiae involved an increase in chlamydial outer membrane blebbing followed by the appearance of the blebs in larger vesicles (i) everting from but still associated with the inclusion as well as (ii) external to the inclusion. Evidence that the vesicles originated from the chlamydial inclusion membrane was shown by immuno-localization of inclusion membrane proteins A, F, and G on the vesicular membranes. Chlamydial heat shock protein 60 (chsp60) copies 2 and 3, but not copy 1, were released from RB and incorporated into the everted inclusion membrane vesicles and delivered to the infected cell surface. These data represent direct evidence for one mechanism of early antigen delivery, albeit membrane-bound, beyond the confines of the chlamydial inclusion.
Collapse
Affiliation(s)
- David K Giles
- Department of Microbiology, Box 70579, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| | | | | | | | | |
Collapse
|
14
|
Wilson AC, Wu CC, Yates JR, Tan M. Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein. J Bacteriol 2005; 187:7535-42. [PMID: 16237037 PMCID: PMC1272993 DOI: 10.1128/jb.187.21.7535-7542.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the pathogenic bacterium Chlamydia trachomatis, a transcriptional repressor, HrcA, regulates the major heat shock operons, dnaK and groE. Cellular stress causes a transient increase in transcription of these heat shock operons through relief of HrcA-mediated repression, but the pathway leading to derepression is unclear. Elevated temperature alone is not sufficient, and it is hypothesized that additional chlamydial factors play a role. We used DNA affinity chromatography to purify proteins that interact with HrcA in vivo and identified a higher-order complex consisting of HrcA, GroEL, and GroES. This endogenous HrcA complex migrated differently than recombinant HrcA, but the complex could be disrupted, releasing native HrcA that resembled recombinant HrcA. In in vitro assays, GroEL increased the ability of HrcA to bind to the CIRCE operator and to repress transcription. Other chlamydial heat shock proteins, including the two additional GroEL paralogs present in all chlamydial species, did not modulate HrcA activity.
Collapse
Affiliation(s)
- Adam C Wilson
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | | | | | | |
Collapse
|
15
|
Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 2005; 5:149-61. [PMID: 15688042 DOI: 10.1038/nri1551] [Citation(s) in RCA: 451] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sexually transmitted Chlamydia trachomatis infections are a serious public-health problem. With more than 90 million new cases occurring annually, C. trachomatis is the most common cause of bacterial sexually transmitted disease worldwide. Recent progress in elucidating the immunobiology of Chlamydia muridarum infection of mice has helped to guide the interpretation of immunological findings in studies of human C. trachomatis infection and has led to the development of a common model of immunity. In this review, we describe our current understanding of the immune response to infection with Chlamydia spp. and how this information is improving the prospects for development of a vaccine against infection with C. trachomatis.
Collapse
Affiliation(s)
- Robert C Brunham
- University of British Columbia Centre for Disease Control, Vancouver, British Columbia V5Z 4R4, Canada.
| | | |
Collapse
|
16
|
Longbottom D, Livingstone M. Vaccination against chlamydial infections of man and animals. Vet J 2004; 171:263-75. [PMID: 16490708 DOI: 10.1016/j.tvjl.2004.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Vaccination is the best approach for controlling the spread of chlamydial infections, in animal and human populations. This review summarises the progress that has been made towards the development of effective vaccines over the last 50 years, and discusses current vaccine strategies. The ultimate goal of vaccine research is to develop efficacious vaccines that induce sterile, long-lasting, heterotypic protective immune responses. To date, the greatest success has been in developing whole organism based killed or live attenuated vaccines against the animal pathogens Chlamydophila abortus and Chlamydophila felis. However, similar approaches have proved unsuccessful in combating human chlamydial infections. More recently, emphasis has been placed on the development of subunit or multicomponent vaccines, as cheaper, safer and more stable alternatives. Central to this is a need to identify candidate vaccine antigens, which is being aided by the sequencing of representative genomes of all of the chlamydial species. In addition, it is necessary to identify suitable adjuvants and develop methods for antigen delivery that are capable of eliciting mucosal and systemic cellular and humoral immune responses. DNA vaccination in particular holds much promise, particularly in terms of safety and stability, although it has so far been less effective in humans and large animals than in mice. Thus, much research still needs to be done to improve the delivery of plasmid DNA, as well as the expression and presentation of antigens to ensure that effective immune responses are induced.
Collapse
Affiliation(s)
- D Longbottom
- Moredun Research Institute, Pentlands Science Park, International Research Center, Bush Loan, Penicuik, Midlothian, Edinburgh EH26 0PZ, UK.
| | | |
Collapse
|