1
|
Gupta T, Lata K, Chattopadhyay K, Pal SK. Utilizing an aqueous-liquid crystal interface to investigate membrane protein interactions and mutation effects of a pore-forming toxin. J Mater Chem B 2025; 13:5358-5364. [PMID: 40226880 DOI: 10.1039/d4tb02117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Listeriolysin O (LLO) is a crucial cholesterol-dependent cytolysin (CDC) secreted by Listeria monocytogenes. LLO lyses the phagosomal membrane via pore-formation, resulting in pathogenesis. CDCs' ability to recognize and bind to membrane cholesterol is a hallmark in the pathogenesis of these pore-forming toxins, distinguishing them from other toxins. Conservation of the cholesterol-recognition motif (CRM) has been discovered to be one of the prerequisites for the membrane binding of some CDCs, but the role of the CRM for LLO binding and pore-formation is still unclear. Therefore, we investigated LLO-mediated lipid remodelling at a nanomolar concentration using the interfacial properties of a biomimetic liquid crystal (LC)-aqueous interface. The examination addresses the significance of the CRM in protein structure and membrane reorganizations for the cholesterol-mediated binding of LLO. We report that the CRM assists in the binding of LLO in a unique amphipathic environment, especially at low cholesterol levels. However, eliminating or substituting the CRM from LLO significantly alters the threshold cholesterol level required for its activity. This study also reveals the effect of cholesterol-dependent membrane dynamics in the association and activity of LLO. Our findings suggest a novel paradigm that opens up an array of possibilities for discovering sequential mutations and delineating the molecular mechanisms of CDCs in nanomolar concentration regimes.
Collapse
Affiliation(s)
- Tarang Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| |
Collapse
|
2
|
Gopalakrishnan S, Jayapal P, John J. Pneumococcal surface proteins as targets for next-generation vaccines: Addressing the challenges of serotype variation. Diagn Microbiol Infect Dis 2025; 113:116870. [PMID: 40347702 DOI: 10.1016/j.diagmicrobio.2025.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/20/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Streptococcus pneumoniae is a major global pathogen causing significant morbidity and mortality, particularly among children, the elderly, and immunocompromised populations. While pneumococcal conjugate vaccines (PCVs) have successfully reduced invasive pneumococcal disease (IPD), challenges such as serotype replacement and non-encapsulated strains necessitate serotype-independent vaccine strategies. Pneumococcal surface proteins, including pneumolysin (Ply), choline-binding proteins (CBPs), and histidine triad proteins (PHTs), represent promising universal vaccine targets due to their conserved nature and roles in adhesion, immune evasion, and biofilm formation. Advances in protein engineering, such as detoxified Ply derivatives and multivalent formulations incorporating PhtD and PspA, demonstrate potential in preclinical studies. Novel technologies, including reverse vaccinology and extracellular vesicle-based platforms, further accelerate innovation. This review highlights recent progress in pneumococcal surface protein research, emphasizing their potential to address the limitations of PCVs and mitigate antibiotic-resistant pneumococcal strains, representing a transformative approach to global pneumococcal disease prevention.
Collapse
Affiliation(s)
- Sangeetha Gopalakrishnan
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India; Division of Laboratories, Biochemistry & Hematology Section, Central Leprosy Teaching and Research Institute, Chengalpattu, India
| | - Premkumar Jayapal
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India; School of Bio & Chemical Engineering, Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, India.
| | - James John
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India.
| |
Collapse
|
3
|
Chatterjee A, Naskar P, Mishra S, Dutta S. Pore Formation by Pore Forming Proteins in Lipid Membranes: Structural Insights Through Cryo-EM. J Membr Biol 2025:10.1007/s00232-025-00344-5. [PMID: 40155553 DOI: 10.1007/s00232-025-00344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Many pathogenic bacteria utilize their complicated appalling arsenal, bacterial virulence factors, to attack host cells by damaging the host cell membrane and neutralizing host defense mechanisms. Bacterial pore-forming proteins (PFPs) are one of them, they include a distinct class of secreted soluble toxin monomers, which binds to the specific cell surface receptors and /or lipids, oligomerizes as an amphipathic transmembrane pore complex on host cell membranes, and deforms the integrity of the plasma membrane. Researchers have focused on characterizing the structure and function of different Pore Forming Toxins (PFTs) from various organisms, where most of the structural studies employed X-ray crystallography, single-particle cryo-EM, and cryo-electron tomography. However, historically, most of these previous studies focused on using detergent to solubilize and oligomerize the PFTs. Additionally, previous studies have also shown that lipid membranes and lipid components, including cell surface receptors, play a critical role in pore formation and oligomerization. However, there are limited studies available that aim to resolve the structure and function of PFTs in liposomes. In this review article, we majorly focused on structural and functional studies of pore-forming toxins in the presence of detergents, lipid nanodiscs, and liposomes. We will also discuss the challenges and benefits of using liposomes to study pore-forming proteins in more biologically relevant membrane environments.
Collapse
Affiliation(s)
- Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Prasenjit Naskar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Suman Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
4
|
Gregg B, Guerra AJ, Raverty SA, Sardinha-Silva A, Kafsack BF, Schultz TL, Gurczynski SJ, Moore BB, Carruthers VB, Grigg ME. Toxoplasma induced cytokine release syndrome is critically dependent on the expression of pore-forming Perforin-Like Protein-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643671. [PMID: 40166190 PMCID: PMC11956978 DOI: 10.1101/2025.03.17.643671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Acute virulence in Toxoplasma gondii is linked to an excessive proinflammatory cytokine cascade during laboratory murine infection. Previous work showed that T. gondii secretes a pore forming protein, PLP1, that is required for efficient cytolytic egress from host cells. Deletion of the PLP1 gene results in defective egress from infected culture cells and a marked reduction in parasite virulence. The goal of the present study was to gain insight into the nature of the attenuated virulence observed in PLP1 knockout compared to wild type (WT) RH parasites. Using in vivo bioluminescence imaging, we show that parasites lacking PLP1 establish an acute infection and disseminate throughout the infected mice. Histological tissue analysis indicates that parasites cause severe pathology, even in the absence of PLP1. However, mice infected with Δplp1 parasites evoke a protective inflammatory response, demonstrated by mouse survival and control of infection. Flow cytometric analysis was used to determine cellular changes occurring during both WT and Δplp1 parasite infection. Parasite control in the Δplp1 infection was associated with earlier activation of myeloid cells and a moderate neutrophil response that, by comparison, becomes the dominant infiltrating cell type of WT infection. Positive disease outcome during Δplp1 parasite infection is also associated with regulated induction of proinflammatory cytokines, including IFN-γ and TNF-α, and an earlier IL-10 regulatory response that is dysregulated during WT infection. Together these findings suggest a key role for Toxoplasma PLP1 in promoting a lethal inflammatory immune response during acute infection with a virulent strain of the parasite.
Collapse
Affiliation(s)
- Beth Gregg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alfredo J. Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen A. Raverty
- Animal Health Centre, Ministry of Agriculture, Abbotsford, British Columbia, V3G 2M3, Canada
| | - Aline Sardinha-Silva
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bjorn F.C. Kafsack
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Tracey L. Schultz
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Sanduja P, Schmieder SS, Baddal B, Tian S, Velarde JJ, Lencer WI, Dong M, Wessels MR. SLO co-opts host cell glycosphingolipids to access cholesterol-rich lipid rafts for enhanced pore formation and cytotoxicity. mBio 2025; 16:e0377724. [PMID: 39835825 PMCID: PMC11898750 DOI: 10.1128/mbio.03777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Streptolysin O (SLO) is a virulence determinant of group A Streptococcus (S. pyogenes), the agent of streptococcal sore throat and severe invasive infections. SLO is a member of a family of bacterial pore-forming toxins known as cholesterol-dependent cytolysins, which require cell membrane cholesterol for pore formation. While cholesterol is essential for cytolytic activity, accumulating data suggest that cell surface glycans may also participate in the binding of SLO and other cholesterol-dependent cytolysins to host cells. Here, we find that unbiased CRISPR screens for host susceptibility factors for SLO cytotoxicity identified genes encoding enzymes involved in the earliest steps of glycosphingolipid (GSL) biosynthesis. Targeted knockouts of these genes conferred relative resistance to SLO cytotoxicity in two independent human cell lines. Inactivation of ugcg, which codes for UDP-glucose ceramide glucosyltransferase, the enzyme catalyzing the first glycosylation step in GSL biosynthesis, reduced the clustering of SLO on the cell surface. This result suggests that binding to GSLs serves to cluster SLO molecules at lipid rafts where both GSLs and cholesterol are abundant. SLO clustering and susceptibility to SLO cytotoxicity were restored by reconstituting the GSL content of ugcg knockout cells with ganglioside GM1, but susceptibility to SLO cytotoxicity was not restored by a GM1 variant that lacks an oligosaccharide head group required for SLO binding, nor by a variant with a "kinked" acyl chain that prevents efficient packing of the ganglioside ceramide moiety with cholesterol. Thus, SLO appears to co-opt cell surface glycosphingolipids to gain access to lipid rafts for increased efficiency of pore formation and cytotoxicity. IMPORTANCE Group A Streptococcus is a global public health concern as it causes streptococcal sore throat and less common but potentially life-threatening invasive infections. Invasive infections have been associated with bacterial strains that produce large amounts of a secreted toxin, streptolysin O (SLO), which belongs to a family of pore-forming toxins produced by a variety of bacterial species. This study reveals that SLO binds to a class of molecules known as glycosphingolipids on the surface of human cells and that this interaction promotes efficient binding of SLO to cholesterol in the cell membrane and enhances pore formation. Understanding how SLO damages human cells provides new insight into streptococcal infection and may inform new approaches to treatment and prevention.
Collapse
Affiliation(s)
- Pooja Sanduja
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie S. Schmieder
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Digestive Diseases Center, Boston, Massachusetts, USA
| | - Buket Baddal
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jorge J. Velarde
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne I. Lencer
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Digestive Diseases Center, Boston, Massachusetts, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R. Wessels
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Zan B, Ulmschneider MB, Ulmschneider JP. The difference between MelP5 and melittin membrane poration. Sci Rep 2025; 15:7442. [PMID: 40033017 PMCID: PMC11876596 DOI: 10.1038/s41598-025-91951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Melittin, a natural peptide found in bees, has been shown to induce pore formation in cell membranes. However, its artificial mutant, MelP5 can do so at concentrations 200 times lower than melittin. The mechanism of the enhanced portion ability is not fully understood. By conducting all-atom molecular dynamics (MD) simulations, we found that MelP5 forms a stable pore that is macro-molecular sized. Our results suggest that the mutation of five amino acids from melittin reduces the electrostatic repulsion between peptides and strengthens hydrophobic interactions between MelP5 and lipid tails, resulting in the formation of a stable and larger pore. Furthermore, we found that cholesterol (CHOL), which occupies 30% in mammalian cell membranes, plays a crucial role in enhancing the pore formation of MelP5. As the amount of CHOL increases, the pore becomes larger, more stable, and forms more quickly. The presence of CHOL also promotes the formation of oligomers, which further support the pore. Our findings indicate that CHOL promotes the insertion of peptides into the membrane and reduces the amount of surface state peptides, thereby stabilizing the pore. These results highlight the important role of CHOL in membrane permeabilization by MelP5 and provide new insights into the mechanism of action of membrane-active antimicrobial peptides.
Collapse
Affiliation(s)
- Bing Zan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Department of Chemistry, King's College London, London, UK
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | | | - Jakob P Ulmschneider
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Siquenique S, Ackerman S, Schroeder A, Sarmento B. Bioengineering lipid-based synthetic cells for therapeutic protein delivery. Trends Biotechnol 2025; 43:348-363. [PMID: 39209601 DOI: 10.1016/j.tibtech.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Synthetic cells (SCs) offer a promising approach for therapeutic protein delivery, combining principles from synthetic biology and drug delivery. Engineered to mimic natural cells, SCs provide biocompatibility and versatility, with precise control over their architecture and composition. Protein production is essential in living cells, and SCs aim to replicate this process using compartmentalized cell-free protein synthesis systems within lipid bilayers. Lipid bilayers serve as favored membranes in SC design due to their similarity to the biological cell membrane. Moreover, engineering lipidic membranes enable tissue-specific targeting and immune evasion, while stimulus-responsive SCs allow for triggered protein production and release. This Review explores lipid-based SCs as platforms for therapeutic protein delivery, discussing their design principles, functional attributes, and translational challenges and potential.
Collapse
Affiliation(s)
- Sónia Siquenique
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Shanny Ackerman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
8
|
Aggarwal SD, Lokken-Toyli KL, Weiser JN. Pneumococcal pneumonia is driven by increased bacterial turnover due to bacteriocin-mediated intra-strain competition. Commun Biol 2024; 7:1628. [PMID: 39638898 PMCID: PMC11621112 DOI: 10.1038/s42003-024-07176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Using chromosomal barcoding, we observed that >97% of the Streptococcus pneumoniae (Spn) population turns over in the lung within 2 days post-inoculation in a murine model. This marked collapse of diversity and bacterial turnover was associated with acute inflammation (severe pneumococcal pneumonia), high bacterial numbers in the lungs, bacteremia, and mortality. Intra-strain competition mediated by the blp locus, which expresses bacteriocins in a quorum-sensing-dependent manner, was required for each of these effects. Bacterial turnover from the activity of Blp-bacteriocins increased the release of the pneumococcal toxin, pneumolysin (Ply), which was sufficient to account for the lung pathology. The ability of Ply to evade complement, rather than its pore-forming activity, prevented opsonophagocytic clearance of Spn enabling its multiplication in the lung, facilitating the inflammatory response and subsequent invasion into the bloodstream. Thus, our study demonstrates how an appreciation for bacterial population dynamics during infection provides new insight into pathogenesis.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | | | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Young LN, Sherrard A, Zhou H, Shaikh F, Hutchings J, Riggi M, Rosen MK, Giraldez AJ, Villa E. ExoSloNano: Multi-Modal Nanogold Tags for identification of Macromolecules in Live Cells & Cryo-Electron Tomograms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617288. [PMID: 39416124 PMCID: PMC11482945 DOI: 10.1101/2024.10.12.617288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
Collapse
Affiliation(s)
- Lindsey N Young
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Huabin Zhou
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Michael K Rosen
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| |
Collapse
|
10
|
Wu C, Meuser ME, Rey JS, Meshkin H, Yang R, Devarkar SC, Freniere C, Shi J, Aiken C, Perilla JR, Xiong Y. Structural insights into inhibitor mechanisms on immature HIV-1 Gag lattice revealed by high-resolution in situ single-particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617473. [PMID: 39416065 PMCID: PMC11483028 DOI: 10.1101/2024.10.09.617473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
HIV-1 inhibitors, such as Bevirimat (BVM) and Lenacapavir (LEN), block the production and maturation of infectious virions. However, their mechanisms remain unclear due to the absence of high-resolution structures for BVM complexes and LEN's structural data being limited to the mature capsid. Utilizing perforated virus-like particles (VLPs) produced from mammalian cells, we developed an approach to determine in situ cryo-electron microscopy (cryo-EM) structures of HIV-1 with inhibitors. This allowed for the first structural determination of the native immature HIV-1 particle with BVM and LEN bound inside the VLPs at high resolutions. Our findings offer a more accurate model of BVM engaging the Gag lattice and, importantly, demonstrate that LEN not only binds the mature capsid but also targets the immature lattice in a distinct manner. The binding of LEN induces a conformational change in the capsid protein (CA) region and alters the architecture of the Gag lattice, which may affect the maturation process. These insights expand our understanding of the inhibitory mechanisms of BVM and LEN on HIV-1 and provide valuable clues for the design of future inhibitors.
Collapse
Affiliation(s)
- Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Megan E. Meuser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Hamed Meshkin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Rachel Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Shen K, Miao W, Zhu L, Hu Q, Ren F, Dong X, Tong H. A 3'UTR-derived small RNA represses pneumolysin synthesis and facilitates pneumococcal brain invasion. Commun Biol 2024; 7:1130. [PMID: 39271946 PMCID: PMC11399405 DOI: 10.1038/s42003-024-06845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Pneumolysin (Ply) of Streptococcus pneumoniae (pneumococcus) at relatively high and low levels facilitates pneumococcal invasion into the lung and brain, respectively; however, the regulatory mechanisms of Ply expression are poorly understood. Here, we find that a small RNA plyT, processed from the 3'UTR of the ply operon, is expressed higher in anaerobically- than in statically-cultured pneumococcus D39. Using bioinformatic, biochemical and genetic approaches, we reveal that PlyT inhibits Ply synthesis and hemolytic activities by pairing with an RBS-embedded intergenic region of the ply operon. The RNA-binding protein SPD_1558 facilitates the pairing. Importantly, PlyT inhibition of Ply synthesis is stronger in anaerobic culture and leads to lower Ply abundance. Deletion of plyT decreases the number of pneumococci in the infected mouse brain and reduces the virulence, demonstrating that PlyT-regulated lower Ply in oxygen-void microenvironments, such as the blood, is important for pneumococcus to cross the blood-brain barrier and invade the brain. PlyT-mediated repression of Ply synthesis at anoxic niches is also verified in pneumococcal serotype 4 and 14 strains; moreover, the ply operon with a 3'UTR-embedded plyT, and the pairing sequences of IGR and plyT are highly conserved among pneumococcal strains, implying PlyT-regulated Ply synthesis might be widely employed by pneumococcus.
Collapse
Affiliation(s)
- Kaiqiang Shen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenshuang Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Lin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingqing Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu Ren
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Huichun Tong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Wang Y, Luo J, Guan X, Zhao Y, Sun L. Bacillus cereus cereolysin O induces pyroptosis in an undecapeptide-dependent manner. Cell Death Discov 2024; 10:122. [PMID: 38458999 PMCID: PMC10923922 DOI: 10.1038/s41420-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
Bacillus cereus is a clinically significant foodborne pathogen that causes severe gastrointestinal and non-gastrointestinal disease. Cereolysin O (CLO) is a putative virulence factor of B. cereus, and its function remains to be investigated. In this study, we examined the biological activity of CLO from a deep sea B. cereus isolate. CLO was highly toxic to mammalian cells and triggered pyroptosis through NLRP3 inflammasome-mediated caspase 1 and gasdermin D activation. CLO-induced cell death involved ROS accumulation and K+ efflux, and was blocked by serum lipids. CLO bound specifically to cholesterol, and this binding was essential to CLO cytotoxicity. The structural integrity of the three tryptophan residues in the C-terminal undecapeptide was vital for CLO to interact with membrane lipids and cause membrane perforation. Taken together, these results provided new insights into the molecular mechanism of B. cereus CLO-mediated cytotoxicity.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jingchang Luo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Yan Zhao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
13
|
Hu Y, Zhang RQ, Liu SL, Wang ZG. In-situ quantification of lipids in live cells through imaging approaches. Biosens Bioelectron 2023; 240:115649. [PMID: 37678059 DOI: 10.1016/j.bios.2023.115649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Lipids are important molecules that are widely distributed within the cell, and they play a crucial role in several biological processes such as cell membrane formation, signaling, cell motility and division. Monitoring the spatiotemporal dynamics of cellular lipids in real-time and quantifying their concentrations in situ is crucial since the local concentration of lipids initiates various signaling pathways that regulate cellular processes. In this review, we first introduced the historical background of lipid quantification methods. We then delve into the current state of the art of in situ lipid quantification, including the establishment and utility of fluorescence imaging techniques based on sensors of lipid-binding domains labeled with organic dyes or fluorescent proteins, and Raman and magnetic resonance imaging (MRI) techniques that do not require lipid labeling. Next, we highlighted the biological applications of live-cell lipid quantification techniques in the study of in situ lipid distribution, lipid transformation, and lipid-mediated signaling pathways. Finally, we discussed the technical challenges and prospects for the development of lipid quantification in live cells, with the aim of promoting the development of in situ lipid quantification in live cells, which may have a profound impact on the biological and medical fields.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
Kulshrestha A, Punnathanam SN, Roy R, Ayappa KG. Cholesterol catalyzes unfolding in membrane-inserted motifs of the pore forming protein cytolysin A. Biophys J 2023; 122:4068-4081. [PMID: 37740492 PMCID: PMC10598289 DOI: 10.1016/j.bpj.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Plasma membrane-induced protein folding and conformational transitions play a central role in cellular homeostasis. Several transmembrane proteins are folded in the complex lipid milieu to acquire a specific structure and function. Bacterial pore forming toxins (PFTs) are proteins expressed by a large class of pathogenic bacteria that exploit the plasma membrane environment to efficiently undergo secondary structure changes, oligomerize, and form transmembrane pores. Unregulated pore formation causes ion imbalance, leading to cell death and infection. Determining the free energy landscape of these membrane-driven-driven transitions remains a challenging problem. Although cholesterol recognition is required for lytic activity of several proteins in the PFT family of toxins, the regulatory role of cholesterol for the α-PFT, cytolysin A expressed by Escherichia coli remains unexplained. In a recent free energy computation, we showed that the β tongue, a critical membrane-inserted motif of the ClyA toxin, has an on-pathway partially unfolded intermediate that refolds into the helix-turn-helix motif of the pore state. To understand the molecular role played by cholesterol, we carry out string-method-based computations in membranes devoid of cholesterol, which reveals an increase of ∼30 times in the free energy barrier for the loss of β sheet secondary structure when compared with membranes containing cholesterol. Specifically, the tyrosine-cholesterol interaction was found to be critical to creating the unfolded intermediate. Cholesterol also increases the packing and hydrophobicity of the bilayer, resulting in enhanced interactions of the bound protein before complete membrane insertion. Our study illustrates that cholesterol is critical to catalyzing and stabilizing the membrane-inserted unfolded state of the β tongue motif of ClyA, opening up fresh insights into cholesterol-assisted unfolding of membrane proteins.
Collapse
Affiliation(s)
- Avijeet Kulshrestha
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sudeep N Punnathanam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India; Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
15
|
Klabunde B, Wesener A, Bertrams W, Beinborn I, Paczia N, Surmann K, Blankenburg S, Wilhelm J, Serrania J, Knoops K, Elsayed EM, Laakmann K, Jung AL, Kirschbaum A, Hammerschmidt S, Alshaar B, Gisch N, Abu Mraheil M, Becker A, Völker U, Vollmeister E, Benedikter BJ, Schmeck B. NAD + metabolism is a key modulator of bacterial respiratory epithelial infections. Nat Commun 2023; 14:5818. [PMID: 37783679 PMCID: PMC10545792 DOI: 10.1038/s41467-023-41372-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Lower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD+ salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD+. Knockdown of NAD+ salvage enzymes (NAMPT, NMNAT1) increased bacterial replication. NAD+ treatment of Spn inhibited its growth while growth of other respiratory pathogens improved. Boosting NAD+ production increased NAD+ levels in immortalized and primary cells and decreased bacterial replication upon infection. NAD+ treatment of Spn dysregulated the bacterial metabolism and reduced intrabacterial ATP. Enhancing the bacterial ATP metabolism abolished the antibacterial effect of NAD+. Thus, we identified the NAD+ salvage pathway as an antibacterial pathway in Spn infections, predicting an antibacterial mechanism of NAD+.
Collapse
Affiliation(s)
- Björn Klabunde
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - André Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Blankenburg
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-Universität Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Kèvin Knoops
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Eslam M Elsayed
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Kirschbaum
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Gießen and Marburg (UKGM), Marburg, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Belal Alshaar
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience, Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany.
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-Universität Marburg, Marburg, Germany.
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany.
| |
Collapse
|
16
|
Cao Y, Bai Y, Li H, Ma B, Zhang W. Preparation and evaluation of recombinant pyolysin, fimbriae E and HtaA based protein vaccines against Trueperella pyogenes. Vet Microbiol 2023; 284:109810. [PMID: 37307768 DOI: 10.1016/j.vetmic.2023.109810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Trueperella pyogenes (T. pyogenes) could cause zoonotic disease in various mammals, resulting in significant economic losses. Due to the lack of effective vaccine and the emergence of bacterial resistance, there is a big need for new and improved vaccines. In this study, the non-hemolytic pyolysin mutant (PLOW497F), fimbriae E (FimE) and a truncated cell wall protein (HtaA-2) were selected to generate single or multivalent protein vaccines and their efficacies against lethal T. pyogenes challenge were evaluated in a mouse model. The results showed that the levels of specific antibody were significantly higher than the PBS control group after the booster vaccination. Compared to PBS treated mice, vaccinated mice had upregulated expressions of the inflammatory cytokine genes after the first vaccination. There was a downward trend thereafter, but return to the similar or even higher levels after challenge. Furthermore, co-immunization with rFimE or rHtaA-2 could significantly enhance the anti-hemolysis antibodies induced by rPLOW497F. The supplement of rHtaA-2 induced higher agglutinating antibodies compared with single administration with rPLOW497F or rFimE. Apart from these, the pathological lesions of lung were alleviated in rHtaA-2, rPLOW497F or their combinations immunized mice. Notably, immunization with rPLOW497F, rHtaA-2, combinations of rPLOW497F and rHtaA-2 or rHtaA-2 and rFimE completely protected mice from challenge, whereas the PBS immunized mice could not survive past 1 day post challenge. Thus, PLOW497F and HtaA-2 might be useful in developing efficient vaccines to prevent T. pyogenes infection.
Collapse
Affiliation(s)
- Yongsheng Cao
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China.
| | - Yunlu Bai
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Hanqing Li
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Bo Ma
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Wenlong Zhang
- Laboratory of Veterinary Immunology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China.
| |
Collapse
|
17
|
Shahi I, Dongas SA, Ilmain JK, Torres VJ, Ratner AJ. Characterization of tigurilysin, a novel human CD59-specific cholesterol-dependent cytolysin, reveals a role for host specificity in augmenting toxin activity. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001393. [PMID: 37702594 PMCID: PMC10569062 DOI: 10.1099/mic.0.001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins, produced by numerous Gram-positive pathogens. CDCs depend on host membrane cholesterol for pore formation; some CDCs also require surface-associated human CD59 (hCD59) for binding, conferring specificity for human cells. We purified a recombinant version of a putative CDC encoded in the genome of Streptococcus oralis subsp. tigurinus, tigurilysin (TGY), and used CRISPR/Cas9 to construct hCD59 knockout (KO) HeLa and JEG-3 cell lines. Cell viability assays with TGY on wild-type and hCD59 KO cells showed that TGY is a hCD59-dependent CDC. Two variants of TGY exist among S. oralis subsp. tigurinus genomes, only one of which is functional. We discovered that a single amino acid change between these two TGY variants determines its activity. Flow cytometry and oligomerization Western blots revealed that the single amino acid difference between the two TGY isoforms disrupts host cell binding and oligomerization. Furthermore, experiments with hCD59 KO cells and cholesterol-depleted cells demonstrated that TGY is fully dependent on both hCD59 and cholesterol for activity, unlike other known hCD59-dependent CDCs. Using full-length CDCs and toxin constructs differing only in the binding domain, we determined that having hCD59 dependence leads to increased lysis efficiency, conferring a potential advantage to organisms producing hCD59-dependent CDCs.
Collapse
Affiliation(s)
- Ifrah Shahi
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Sophia A. Dongas
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam J. Ratner
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
18
|
Shahi I, Dongas SA, Ilmain JK, Torres VJ, Ratner AJ. Characterization of Tigurilysin, a Novel Human CD59-Specific Cholesterol-Dependent Cytolysin, Reveals a Role for Host Specificity in Augmenting Toxin Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545930. [PMID: 37546867 PMCID: PMC10401958 DOI: 10.1101/2023.06.21.545930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cholesterol dependent cytolysins (CDCs) are a large family of pore forming toxins, produced by numerous gram-positive pathogens. CDCs depend on host membrane cholesterol for pore formation; some CDCs also require surface associated human CD59 (hCD59) for binding, conferring specificity for human cells. We purified a recombinant version of a putative CDC encoded in the genome of Streptococcus oralis subsp. tigurinus , tigurilysin (TGY), and used CRISPR/Cas9 to construct hCD59 knockout (KO) HeLa and JEG-3 cell lines. Cell viability assays with TGY on WT and hCD59 KO cells showed that TGY is a hCD59-dependent CDC. Two variants of TGY exist among S. oralis subsp. tigurinus genomes, only one of which is functional. We discovered that a single amino acid change between these two TGY variants determines its activity. Flow cytometry and oligomerization western blots revealed that the single amino acid difference between the two TGY isoforms disrupts host cell binding and oligomerization. Furthermore, experiments with hCD59 KO cells and cholesterol depleted cells demonstrated that TGY is fully dependent on both hCD59 and cholesterol for activity, unlike other known hCD59-dependent CDCs. Using full-length CDCs and toxin constructs differing only in the binding domain, we determined that having hCD59-dependence leads to increased lysis efficiency, conferring a potential advantage to organisms producing hCD59-dependent CDCs. IMPORTANCE Cholesterol dependent cytolysins (CDCs) are produced by a variety of disease-causing bacteria, and may play a significant role in pathogenesis. Understanding CDC mechanisms of action provides useful information for developing anti-virulence strategies against bacteria that utilize CDCs and other pore-forming toxins in pathogenesis. This study describes for the first time a novel human-specific CDC with an atypical pore forming mechanism compared to known CDCs. In addition, this study demonstrates that human-specificity potentially confers increased lytic efficiency to CDCs. These data provide a possible explanation for the selective advantage of developing hCD59-dependency in CDCs and the consequent host restriction.
Collapse
Affiliation(s)
- Ifrah Shahi
- New York University Grossman School of Medicine, Department of Pediatrics, New York, NY
| | - Sophia A. Dongas
- New York University Grossman School of Medicine, Department of Pediatrics, New York, NY
| | - Juliana K. Ilmain
- New York University Grossman School of Medicine, Department of Microbiology, New York, NY
| | - Victor J. Torres
- New York University Grossman School of Medicine, Department of Microbiology, New York, NY
| | - Adam J. Ratner
- New York University Grossman School of Medicine, Department of Pediatrics, New York, NY
- New York University Grossman School of Medicine, Department of Microbiology, New York, NY
| |
Collapse
|
19
|
Ghorai SM, Deep A, Magoo D, Gupta C, Gupta N. Cell-Penetrating and Targeted Peptides Delivery Systems as Potential Pharmaceutical Carriers for Enhanced Delivery across the Blood-Brain Barrier (BBB). Pharmaceutics 2023; 15:1999. [PMID: 37514185 PMCID: PMC10384895 DOI: 10.3390/pharmaceutics15071999] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Among the challenges to the 21st-century health care industry, one that demands special mention is the transport of drugs/active pharmaceutical agents across the blood-brain barrier (BBB). The epithelial-like tight junctions within the brain capillary endothelium hinder the uptake of most pharmaceutical agents. With an aim to understand more deeply the intricacies of cell-penetrating and targeted peptides as a powerful tool for desirable biological activity, we provide a critical review of both CPP and homing/targeted peptides as intracellular drug delivery agents, especially across the blood-brain barrier (BBB). Two main peptides have been discussed to understand intracellular drug delivery; first is the cell-penetrating peptides (CPPs) for the targeted delivery of compounds of interest (primarily peptides and nucleic acids) and second is the family of homing peptides, which specifically targets cells/tissues based on their overexpression of tumour-specific markers and are thus at the heart of cancer research. These small, amphipathic molecules demonstrate specific physical and chemical modifications aimed at increased ease of cellular internalisation. Because only a limited number of drug molecules can bypass the blood-brain barrier by free diffusion, it is essential to explore all aspects of CPPs that can be exploited for crossing this barrier. Considering siRNAs that can be designed against any target RNA, marking such molecules with high therapeutic potential, we present a synopsis of the studies on synthetic siRNA-based therapeutics using CPPs and homing peptides drugs that can emerge as potential drug-delivery systems as an upcoming requirement in the world of pharma- and nutraceuticals.
Collapse
Affiliation(s)
- Soma Mondal Ghorai
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Auroni Deep
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Devanshi Magoo
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India
| | - Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI 53705, USA
| |
Collapse
|
20
|
Whiting R, Stanton S, Kucheriava M, Smith AR, Pitts M, Robertson D, Kammer J, Li Z, Fologea D. Hypo-Osmotic Stress and Pore-Forming Toxins Adjust the Lipid Order in Sheep Red Blood Cell Membranes. MEMBRANES 2023; 13:620. [PMID: 37504986 PMCID: PMC10385129 DOI: 10.3390/membranes13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Lipid ordering in cell membranes has been increasingly recognized as an important factor in establishing and regulating a large variety of biological functions. Multiple investigations into lipid organization focused on assessing ordering from temperature-induced phase transitions, which are often well outside the physiological range. However, particular stresses elicited by environmental factors, such as hypo-osmotic stress or protein insertion into membranes, with respect to changes in lipid status and ordering at constant temperature are insufficiently described. To fill these gaps in our knowledge, we exploited the well-established ability of environmentally sensitive membrane probes to detect intramembrane changes at the molecular level. Our steady state fluorescence spectroscopy experiments focused on assessing changes in optical responses of Laurdan and diphenylhexatriene upon exposure of red blood cells to hypo-osmotic stress and pore-forming toxins at room temperature. We verified our utilized experimental systems by a direct comparison of the results with prior reports on artificial membranes and cholesterol-depleted membranes undergoing temperature changes. The significant changes observed in the lipid order after exposure to hypo-osmotic stress or pore-forming toxins resembled phase transitions of lipids in membranes, which we explained by considering the short-range interactions between membrane components and the hydrophobic mismatch between membrane thickness and inserted proteins. Our results suggest that measurements of optical responses from the membrane probes constitute an appropriate method for assessing the status of lipids and phase transitions in target membranes exposed to mechanical stresses or upon the insertion of transmembrane proteins.
Collapse
Affiliation(s)
- Rose Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Sevio Stanton
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Aviana R Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Matt Pitts
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Daniel Robertson
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Jacob Kammer
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Department of Family Medicine, Idaho College of Osteopathic Medicine, Meridian, ID 83642, USA
| | - Zhiyu Li
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
21
|
Tomoyasu T, Matsumoto A, Takao A, Tabata A, Nagamune H. A simple method to differentiate three classes of cholesterol-dependent cytolysins. J Microbiol Methods 2023; 207:106696. [PMID: 36898586 DOI: 10.1016/j.mimet.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Cholesterol-dependent cytolysins (CDCs) are proteinaceous toxins widely distributed in gram-positive pathogenic bacteria. CDCs can be classified into three groups (I-III) based on the mode of receptor recognition. Group I CDCs recognize cholesterol as their receptor. Group II CDC specifically recognizes human CD59 as the primary receptor on the cell membrane. Only intermedilysin from Streptococcus intermedius has been reported as a group II CDC. Group III CDCs recognize both human CD59 and cholesterol as receptors. CD59 contains five disulfide bridges in its tertiary structure. Therefore, we treated human erythrocytes with dithiothreitol (DTT) to inactivate CD59 on membranes. Our data showed that DTT treatment caused a complete loss of recognition of intermedilysin and an anti-human CD59 monoclonal antibody. In contrast, this treatment did not affect the recognition of group I CDCs, judging from the fact that DTT-treated erythrocytes were lysed with the same efficiency as mock-treated human erythrocytes. The recognition of group III CDCs toward DTT-treated erythrocytes was partially reduced, and these results are likely due to the loss of human CD59 recognition. Therefore, the degree of human CD59 and cholesterol requirements of uncharacterized group III CDCs frequently found in Mitis group streptococci can be easily estimated by comparing the amounts of hemolysis between DTT-treated and mock-treated erythrocytes.
Collapse
Affiliation(s)
- Toshifumi Tomoyasu
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Airi Matsumoto
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ayuko Takao
- Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, Japan
| | - Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
22
|
Langshaw EL, Reynolds S, Ozberk V, Dooley J, Calcutt A, Zaman M, Walker MJ, Batzloff MR, Davies MR, Good MF, Pandey M. Streptolysin O Deficiency in Streptococcus pyogenes M1T1 covR/S Mutant Strain Attenuates Virulence in In Vitro and In Vivo Infection Models. mBio 2023; 14:e0348822. [PMID: 36744883 PMCID: PMC9972915 DOI: 10.1128/mbio.03488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Mutation within the Streptococcus pyogenes (Streptococcus group A; Strep A) covR/S regulatory system has been associated with a hypervirulent phenotype resulting from the upregulation of several virulence factors, including the pore-forming toxin, streptolysin O (SLO). In this study, we utilized a range of covR/S mutants, including M1T1 clonal strains (5448 and a covS mutant generated through mouse passage designated 5448AP), to investigate the contribution of SLO to the pathogenesis of covR/S mutant Strep A disease. Up-regulation of slo in 5448AP resulted in increased SLO-mediated hemolysis, decreased dendritic cell (DC) viability post coculture with Strep A, and increased production of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1) by DCs. Mouse passage of an isogenic 5448 slo-deletion mutant resulted in recovery of several covR/S mutants within the 5448Δslo background. Passage also introduced mutations in non-covR/S genes, but these were considered to have no impact on virulence. Although slo-deficient mutants exhibited the characteristic covR/S-controlled virulence factor upregulation, these mutants caused increased DC viability with reduced inflammatory cytokine production by infected DCs. In vivo, slo expression correlated with decreased DC numbers in infected murine skin and significant bacteremia by 3 days postinfection, with severe pathology at the infection site. Conversely, the absence of slo in the infecting strain (covR/S mutant or wild-type) resulted in detection of DCs in the skin and attenuated virulence in a murine model of pyoderma. slo-sufficient and -deficient covR/S mutants were susceptible to immune clearance mediated by a combination vaccine consisting of a conserved M protein peptide and a peptide from the CXC chemokine protease SpyCEP. IMPORTANCE Streptococcus pyogenes is responsible for significant numbers of invasive and noninvasive infections which cause significant morbidity and mortality globally. Strep A isolates with mutations in the covR/S system display greater propensity to cause severe invasive diseases, which are responsible for more than 163,000 deaths each year. This is due to the upregulation of virulence factors, including the pore-forming toxin streptolysin O. Utilizing covR/S and slo-knockout mutants, we investigated the role of SLO in virulence. We found that SLO alters interactions with host cell populations and increases Strep A viability at sterile sites of the host, such as the blood, and that its absence results in significantly less virulence. This work underscores the importance of SLO in Strep A virulence while highlighting the complex nature of Strep A pathogenesis. This improved insight into host-pathogen interactions will enable a better understanding of host immune evasion mechanisms and inform streptococcal vaccine development programs.
Collapse
Affiliation(s)
- Emma L. Langshaw
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Simone Reynolds
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Jessica Dooley
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Queensland, Australia
| |
Collapse
|
23
|
Liu N, Wang X, Shan Q, Li S, Li Y, Chu B, Wang J, Zhu Y. Single Point Mutation and Its Role in Specific Pathogenicity to Reveal the Mechanism of Related Protein Families. Microbiol Spectr 2022; 10:e0092322. [PMID: 36214694 PMCID: PMC9603606 DOI: 10.1128/spectrum.00923-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/21/2022] [Indexed: 12/30/2022] Open
Abstract
Pyolysin (PLO) is secreted by Trueperella pyogenes as a water-soluble monomer after forming transmembrane β-barrel channels in the cell membrane by binding cholesterol. Two significantly conserved residues at domain 1 of PLO are mutated, which provides novel evidence of a relationship between conformational change and interaction with the cell membrane and uncovers the pore formation mechanism of the cholesterol-dependent cytolysin (CDC) family. Moreover, PLO is a special member of the CDCs, which the percentage of sequence identities between PLO and other CDC members is from 31% to 45%, while others are usually from 40% to 70%. It is important to understand that at very low sequence identities, models can be different in the pathogenic mechanisms of these CDC members, which are dedicated to a large number of Gram-positive bacterial pathogens. Our studies, for the first time, located and mutated two different highly conserved structural sites in the primary structure critical for PLO structure and function that proved the importance of these sites. Together, novel and repeatable observations into the pore formation mechanism of CDCs are provided by our findings. IMPORTANCE Postpartum disease of dairy cows caused by persistent bacterial infection is a global disease, which has a serious impact on the development of the dairy industry and brings huge economic losses. As one of the most relevant pathogenic bacteria for postpartum diseases in dairy cows, Trueperella pyogenes can secrete pyolysin (PLO), a member of the cholesterol-dependent cytolysin (CDC) family and recognized as the most important toxin of T. pyogenes. However, the current research work on PLO is still insufficient. The pathogenic mechanism of this toxin can be fully explored by changing the local structure and overall function of the toxin by a previously unidentified single point mutation. These studies lay the groundwork for future studies that will explore the contribution of this large family of CDC proteins to microbial survival and human disease.
Collapse
Affiliation(s)
- Ning Liu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xue Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiang Shan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuxian Li
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Li
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingxin Chu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
McGuinness C, Walsh JC, Bayly-Jones C, Dunstone MA, Christie MP, Morton CJ, Parker MW, Böcking T. Single-molecule analysis of the entire perfringolysin O pore formation pathway. eLife 2022; 11:e74901. [PMID: 36000711 PMCID: PMC9457685 DOI: 10.7554/elife.74901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
The cholesterol-dependent cytolysin perfringolysin O (PFO) is secreted by Clostridium perfringens as a bacterial virulence factor able to form giant ring-shaped pores that perforate and ultimately lyse mammalian cell membranes. To resolve the kinetics of all steps in the assembly pathway, we have used single-molecule fluorescence imaging to follow the dynamics of PFO on dye-loaded liposomes that lead to opening of a pore and release of the encapsulated dye. Formation of a long-lived membrane-bound PFO dimer nucleates the growth of an irreversible oligomer. The growing oligomer can insert into the membrane and open a pore at stoichiometries ranging from tetramers to full rings (~35 mers), whereby the rate of insertion increases linearly with the number of subunits. Oligomers that insert before the ring is complete continue to grow by monomer addition post insertion. Overall, our observations suggest that PFO membrane insertion is kinetically controlled.
Collapse
Affiliation(s)
- Conall McGuinness
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - Charles Bayly-Jones
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityMelbourneAustralia
| | - Michelle A Dunstone
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityMelbourneAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchVictoriaAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| |
Collapse
|
25
|
Sheng Q, Hou X, Wang N, Liu M, Zhu H, Deng X, Liang X, Chi G. Corilagin: A Novel Antivirulence Strategy to Alleviate Streptococcus pneumoniae Infection by Diminishing Pneumolysin Oligomers. Molecules 2022; 27:5063. [PMID: 36014299 PMCID: PMC9416474 DOI: 10.3390/molecules27165063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Pneumolysin (PLY) is a significant virulence factor of Streptococcus pneumoniae (S. pneumoniae), able to break through the defense system of a host and mediate the occurrence of a series of infections. Therefore, PLY as the most ideal target to prevent S. pneumoniae infection has received more and more attention and research. Corilagin is a tannic acid that exhibits excellent inhibition of PLY oligomers without bacteriostatic activity to S. pneumoniae. Herein, hemolytic activity assays, cell viability tests and western blot experiments are executed to evaluate the antivirulence efficacy of corilagin against PLY in vitro. Colony observation, hematoxylin and eosin (H&E) staining and cytokines of bronchoalveolar lavage fluid (BALF) are applied to assess the therapeutic effect of corilagin in mice infected by S. pneumoniae. The results indicate the related genes of corilagin act mainly via enrichment in pathways associated with pneumonia disease. Furthermore, molecular docking and molecular dynamics simulations show that corilagin might bind with domains 3 and 4 of PLY and interfere with its hemolytic activity, which is further confirmed by the site-directed mutagenesis of PLY. Additionally, corilagin limits PLY oligomer production without impacting PLY expression in S. pneumoniae cultures. Moreover, corilagin effectively relieves PLY-mediated cell injury without any cytotoxicity, even then reducing the colony count in the lung and the levels of pro-inflammatory factors in BALF and remarkably improving lung lesions. All the results demonstrate that corilagin may be a novel strategy to cope with S. pneumoniae infection by inhibiting PLY oligomerization.
Collapse
Affiliation(s)
- Qiushuang Sheng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoning Hou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Minda Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haoyu Zhu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoying Liang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Gefu Chi
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010010, China
| |
Collapse
|
26
|
Streptococcus pyogenes NAD+-Glycohydrolase Reduces Skeletal Muscle βNAD+ Levels Independently of Streptolysin O. Microorganisms 2022; 10:microorganisms10071476. [PMID: 35889195 PMCID: PMC9322677 DOI: 10.3390/microorganisms10071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/03/2022] Open
Abstract
Necrotizing soft tissue infections caused by Streptococcus pyogenes (group A streptococcus [GAS]) are characterized by rapid and extensive necrosis of fascia and muscle. Molecular epidemiological studies have demonstrated a positive correlation between GAS isolates that cause invasive infections and the production of S. pyogenes NAD+-glycohydrolase (SPN), an NADase secreted by GAS, but the effect of SPN on muscle cells has not been described. Thus, using standard βNAD+ and ATP quantification assays, we investigated the effects of SPN on cultured human skeletal muscle cell (SkMC) βNAD+ and ATP with and without streptolysin O (SLO)–a secreted cholesterol-dependent cytolysin known to act synergistically with SPN. We found that culture supernatants from GAS strains producing SLO and SPN depleted intracellular βNAD+ and ATP, while exotoxins from a GAS strain producing SLO and an enzymatically-inactive form of SPN had no effect on βNAD+ or ATP. Addition of purified, enzymatically-active SPN to NADase-negative culture supernatants or sterile media reconstituted βNAD+ depletion but had no effect ATP levels. Further, SPN-mediated βNAD+ depletion could be augmented by SLO or the homologous cholesterol-dependent cytolysin, perfringolysin O (PFO). Remarkably, SPN-mediated βNAD+ depletion was SkMC-specific, as purified SPN had minimal effect on epithelial cell βNAD+. Taken together, this study identifies a previously unrecognized role for SPN as a major disruptor of skeletal muscle βNAD+. Such activity could contribute to the rapid and widespread myonecrosis characteristic of severe GAS soft tissue infections.
Collapse
|
27
|
Guo T, Liu P, Wang Z, Zheng Y, Huang W, Kong D, Ding L, Lv Q, Wang Z, Jiang H, Jiang Y, Sun L. Luteolin Binds Streptolysin O Toxin and Inhibits Its Hemolytic Effects and Cytotoxicity. Front Pharmacol 2022; 13:942180. [PMID: 35873567 PMCID: PMC9300923 DOI: 10.3389/fphar.2022.942180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Group A streptococcus (GAS, Streptococcus pyogenes) is a common pathogen that can cause a variety of human diseases. Streptolysin O (SLO) is an exotoxin produced by GAS. It is a pore-forming toxin (PFT) that exhibits high in vivo toxicity. SLO enables GAS to evade phagocytosis and clearance by neutrophils, induces eukaryotic cell lysis, and activates inflammatory bodies. Luteolin is a natural compound that is produced by a wide range of plant species, and recent studies have shown that luteolin can inhibit the growth and alter the morphological of GAS. Here, we reported that luteolin can weaken the cytotoxicity and hemolytic activity of SLO in vitro. Briefly, luteolin bound SLO with high affinity, inhibited its dissolution of erythrocytes, affected its conformational stability and inhibited the formation of oligomers. To further verify the protective effect of luteolin, we used an in vitro SLO-induced human laryngeal carcinoma epithelial type-2 cells (HEp-2) model. Notably, our results showed luteolin protected HEp-2 cells from SLO induced cytotoxicity and changed in cell membrane permeability. In addition, we explored the role of luteolin in protecting mice from GAS-mediated injury using an aerosolized lung delivery model, and our results indicate that luteolin increases murine survival rate following inoculation with a lethal dose of GAS, and that survival was also associated with decreased pathological damage to lung tissue. Our results suggest that luteolin may be a novel drug candidate for the treatment of GAS infection.
Collapse
Affiliation(s)
- Tingting Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zeyu Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lizhong Ding
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- *Correspondence: Hua Jiang, ; Yongqiang Jiang, ; Liping Sun,
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- *Correspondence: Hua Jiang, ; Yongqiang Jiang, ; Liping Sun,
| | - Liping Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Hua Jiang, ; Yongqiang Jiang, ; Liping Sun,
| |
Collapse
|
28
|
Sønder SL, Ebstrup ML, Dias C, Heitmann ASB, Nylandsted J. Plasma Membrane Wounding and Repair Assays for Eukaryotic Cells. Bio Protoc 2022; 12:e4437. [PMID: 35799909 PMCID: PMC9244498 DOI: 10.21769/bioprotoc.4437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
Damage to the plasma membrane and loss of membrane integrity are detrimental to eukaryotic cells. It is, therefore, essential that cells possess an efficient membrane repair system to survive. However, the different cellular and molecular mechanisms behind plasma membrane repair have not been fully elucidated. Here, we present three complementary methods for plasma membrane wounding, and measurement of membrane repair and integrity. The first protocol is based on real time imaging of cell membrane repair kinetics in response to laser-induced injury. The second and third protocols are end point assays that provide a population-based measure of membrane integrity, after either mechanical injury by vortex mixing with glass beads, or by detergent-induced injury by digitonin in sublytic concentrations. The protocols can be applied to most adherent eukaryotic cells in culture, as well as cells in suspension.
Collapse
Affiliation(s)
- Stine Lauritzen Sønder
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Malene Laage Ebstrup
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Catarina Dias
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Anne Sofie Busk Heitmann
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Jesper Nylandsted
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
,
Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
,
*For correspondence:
| |
Collapse
|
29
|
Membrane Cholesterol Content and Lipid Organization Influence Melittin and Pneumolysin Pore-Forming Activity. Toxins (Basel) 2022; 14:toxins14050346. [PMID: 35622592 PMCID: PMC9147762 DOI: 10.3390/toxins14050346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Melittin, the main toxic component in the venom of the European honeybee, interacts with natural and artificial membranes due to its amphiphilic properties. Rather than interacting with a specific receptor, melittin interacts with the lipid components, disrupting the lipid bilayer and inducing ion leakage and osmotic shock. This mechanism of action is shared with pneumolysin and other members of the cholesterol-dependent cytolysin family. In this manuscript, we investigated the inverse correlation for cholesterol dependency of these two toxins. While pneumolysin-induced damage is reduced by pretreatment with the cholesterol-depleting agent methyl-β-cyclodextrin, the toxicity of melittin, after cholesterol depletion, increased. A similar response was also observed after a short incubation with lipophilic simvastatin, which alters membrane lipid organization and structure, clustering lipid rafts. Therefore, changes in toxin sensitivity can be achieved in cells by depleting cholesterol or changing the lipid bilayer organization.
Collapse
|
30
|
Aceil J, Avci FY. Pneumococcal Surface Proteins as Virulence Factors, Immunogens, and Conserved Vaccine Targets. Front Cell Infect Microbiol 2022; 12:832254. [PMID: 35646747 PMCID: PMC9133333 DOI: 10.3389/fcimb.2022.832254] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that causes over 1 million deaths annually despite the availability of several multivalent pneumococcal conjugate vaccines (PCVs). Due to the limitations surrounding PCVs along with an evolutionary rise in antibiotic-resistant and unencapsulated strains, conserved immunogenic proteins as vaccine targets continue to be an important field of study for pneumococcal disease prevention. In this review, we provide an overview of multiple classes of conserved surface proteins that have been studied for their contribution to pneumococcal virulence. Furthermore, we discuss the immune responses observed in response to these proteins and their promise as vaccine targets.
Collapse
|
31
|
O'Brien K, Ughetto S, Mahjoum S, Nair AV, Breakefield XO. Uptake, functionality, and re-release of extracellular vesicle-encapsulated cargo. Cell Rep 2022; 39:110651. [PMID: 35417683 PMCID: PMC9074118 DOI: 10.1016/j.celrep.2022.110651] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/06/2021] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated particles that carry genetically active and protein/lipid cargo that can affect the function of the recipient cell. A number of studies have described the effect of these vesicles on recipient cells and demonstrated their promise as therapeutic delivery vectors. Here we demonstrate functional delivery of EV-encapsulated RNA and protein cargo through use of luminescence and fluorescence reporters by combining organelle-targeted nanoluciferase with fluorescent proteins. We highlight a mechanism by which cells retain internalized cargo in the endosomal compartment for days, usually leading to content degradation. We also identify a mode through which recipient cells re-release internalized EVs intact after uptake. Highlighting these different fates of EVs in recipient cells sheds light on critical factors in steering functional cargo delivery and will ultimately allow more efficient use of EVs for therapeutic purposes.
Collapse
Affiliation(s)
- Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Stefano Ughetto
- Department of Oncology, University of Turin, 10060 Candiolo, TO, Italy
| | - Shadi Mahjoum
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anil V Nair
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Ormsby TJR, Owens SE, Clement L, Mills TJ, Cronin JG, Bromfield JJ, Sheldon IM. Oxysterols Protect Epithelial Cells Against Pore-Forming Toxins. Front Immunol 2022; 13:815775. [PMID: 35154132 PMCID: PMC8825411 DOI: 10.3389/fimmu.2022.815775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022] Open
Abstract
Many species of bacteria produce toxins such as cholesterol-dependent cytolysins that form pores in cell membranes. Membrane pores facilitate infection by releasing nutrients, delivering virulence factors, and causing lytic cell damage - cytolysis. Oxysterols are oxidized forms of cholesterol that regulate cellular cholesterol and alter immune responses to bacteria. Whether oxysterols also influence the protection of cells against pore-forming toxins is unresolved. Here we tested the hypothesis that oxysterols stimulate the intrinsic protection of epithelial cells against damage caused by cholesterol-dependent cytolysins. We treated epithelial cells with oxysterols and then challenged them with the cholesterol-dependent cytolysin, pyolysin. Treating HeLa cells with 27-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, or 7β-hydroxycholesterol reduced pyolysin-induced leakage of lactate dehydrogenase and reduced pyolysin-induced cytolysis. Specifically, treatment with 10 ng/ml 27-hydroxycholesterol for 24 h reduced pyolysin-induced lactate dehydrogenase leakage by 88%, and reduced cytolysis from 74% to 1%. Treating HeLa cells with 27-hydroxycholesterol also reduced pyolysin-induced leakage of potassium ions, prevented mitogen-activated protein kinase cell stress responses, and limited alterations in the cytoskeleton. Furthermore, 27-hydroxycholesterol reduced pyolysin-induced damage in lung and liver epithelial cells, and protected against the cytolysins streptolysin O and Staphylococcus aureus α-hemolysin. Although oxysterols regulate cellular cholesterol by activating liver X receptors, cytoprotection did not depend on liver X receptors or changes in total cellular cholesterol. However, oxysterol cytoprotection was partially dependent on acyl-CoA:cholesterol acyltransferase (ACAT) reducing accessible cholesterol in cell membranes. Collectively, these findings imply that oxysterols stimulate the intrinsic protection of epithelial cells against pore-forming toxins and may help protect tissues against pathogenic bacteria.
Collapse
Affiliation(s)
- Thomas J R Ormsby
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Sian E Owens
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Liam Clement
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Tom J Mills
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Iain Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
33
|
Streptococcus pneumoniae exerts oxidative stress, subverts antioxidant signaling and autophagy in human corneal epithelial cells that is alleviated by tert-Butylhydroquinone. Med Microbiol Immunol 2022; 211:119-132. [PMID: 35325292 DOI: 10.1007/s00430-022-00731-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Streptococcus pneumoniae is one of the leading causes of bacterial keratitis in the developing world and globally. In the current study, we have determined oxidative stress as pathogenesis of S. pneumoniae infection in corneal tissues and human corneal epithelial cells (HCEC) and explored host immune response of HCEC towards S. pneumoniae. We also determined whether treatment with tert-Butylhydroquinone (tBHQ), a Nrf2 inducer, could alleviate oxidative stress and reduce bacterial cytotoxicity in these cells. Oxidative stress was determined in corneal tissues of patients and HCEC by immunohistochemistry and immunofluorescence analysis, respectively. The expression of antioxidant genes, cytokines and antimicrobial peptides was determined by quantitative PCR. Infection of HCEC by S. pneumoniae was determined by colony-forming units. The autophagy and cell death were determined by fluorescence microscopy. The phosphorylation of signaling proteins was evaluated by immunoblot analysis. S. pneumoniae induced oxidative stress during corneal infections and inhibited antioxidant signaling pathways and immune responses like autophagy. tBHQ aided in restoring Nrf2 activation, reduced reactive oxygen species generation and prevented cytotoxicity and cell death in S. pneumoniae-infected HCEC. tBHQ also induced autophagy in a Nrf2-dependent manner and reduced bacterial survival in HCEC. Increased expression of antimicrobial peptides by tBHQ might have contributed to a reduction of bacterial load and cytotoxicity, as exemplified in LL-37 depleted corneal epithelial cells exposed to S. pneumoniae compared to control siRNA-transfected cells. tBHQ mediates alleviation of oxidative stress induced by S. pneumoniae by activating Nrf2-mediated antioxidant signaling in corneal epithelial cells. tBHQ also enhances expression of antimicrobial peptides in corneal cells and aids in inhibition of bacterial survival and cytotoxicity of HCEC.
Collapse
|
34
|
Broad-spectrum and powerful neutralization of bacterial toxins by erythroliposomes with the help of macrophage uptake and degradation. Acta Pharm Sin B 2022; 12:4235-4248. [DOI: 10.1016/j.apsb.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
|
35
|
Zhou J, Duan M, Huang D, Shao H, Zhou Y, Fan Y. Label-free visible colorimetric biosensor for detection of multiple pathogenic bacteria based on engineered polydiacetylene liposomes. J Colloid Interface Sci 2022; 606:1684-1694. [PMID: 34500167 DOI: 10.1016/j.jcis.2021.07.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022]
Abstract
Bacterial infections are considered as a critical healthcare concern worldwide. Timely infection detection is crucial to effective antibiotic administration which can reduce the severity of infection and the occurrence of antibiotic resistance. We have developed label-free polydiacetylene (PDA) liposome-based colorimetric biosensor to detect and identify bacterial cultures at the genus and species level with naked eyes by simple color change. We found that among the various liposomal systems, moderate concentration of PDA, phospholipids and cholesterol in liposome assemblies can greatly influence the sensitivity to different bacteria, exhibiting unique chromatic properties of each bacterial strain. The strikingly different chromatic color change was due to the various mechanisms of interactions between bacterial toxins and biomimetic lipid bilayers. Furthermore, increase of cholesterol in liposome assemblies greatly enhanced the sensitivity of bacterial strains related to membrane destruction mediated by pore-formation mechanism such as S. aureus and E.coli, whereas the detection of the two bacterial strains was believed to rely on the specific recognition elements coupled with PDA moiety. As a proof of concept, a colorimetric finger-print array for distinguishing 6 bacterial species was studied. Particularly, the proposed bacterial detection platform is achieved through the interaction between bacterially secreted toxins and liposome bilayers instead of specific recognition of receptors-ligands. The results of both response time and sensitivity of label-free-liposome-based system show superior to previous reports on chromatic bacterial detection assays. By combing these results, the label-free-liposome-based colorimetric sensing platform shows great importance as a bacterial-sensing and discrimination platform.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China.
| | - Menglong Duan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Diwen Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hui Shao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yue Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China.
| |
Collapse
|
36
|
Besançon H, Larpin Y, Babiychuk VS, Köffel R, Babiychuk EB. Engineered Liposomes Protect Immortalized Immune Cells from Cytolysins Secreted by Group A and Group G Streptococci. Cells 2022; 11:cells11010166. [PMID: 35011729 PMCID: PMC8749993 DOI: 10.3390/cells11010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing antibiotic resistance of bacterial pathogens fosters the development of alternative, non-antibiotic treatments. Antivirulence therapy, which is neither bacteriostatic nor bactericidal, acts by depriving bacterial pathogens of their virulence factors. To establish a successful infection, many bacterial pathogens secrete exotoxins/cytolysins that perforate the host cell plasma membrane. Recently developed liposomal nanotraps, mimicking the outer layer of the targeted cell membranes, serve as decoys for exotoxins, thus diverting them from attacking host cells. In this study, we develop a liposomal nanotrap formulation that is capable of protecting immortalized immune cells from the whole palette of cytolysins secreted by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis—important human pathogens that can cause life-threatening bacteremia. We show that the mixture of cholesterol-containing liposomes with liposomes composed exclusively of phospholipids is protective against the combined action of all streptococcal exotoxins. Our findings pave the way for further development of liposomal antivirulence therapy in order to provide more efficient treatment of bacterial infections, including those caused by antibiotic resistant pathogens.
Collapse
|
37
|
Kinnebrew M, Johnson KA, Radhakrishnan A, Rohatgi R. Measuring and Manipulating Membrane Cholesterol for the Study of Hedgehog Signaling. Methods Mol Biol 2022; 2374:73-87. [PMID: 34562244 PMCID: PMC8819901 DOI: 10.1007/978-1-0716-1701-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is an abundant lipid in mammalian plasma membranes that regulates the reception of the Hedgehog (Hh) signal in target cells. In vertebrates, cell-surface organelles called primary cilia function as compartments for the propagation of Hh signals. Recent structural, biochemical, and cell-biological studies have led to the model that Patched-1 (PTCH1), the receptor for Hh ligands, uses its transporter-like activity to lower cholesterol accessibility in the membrane surrounding primary cilia. Cholesterol restriction at cilia may represent the long-sought-after mechanism by which PTCH1 inhibits Smoothened (SMO), a cholesterol-responsive transmembrane protein of the G protein-coupled receptor superfamily that transmits the Hh signal across the membrane.Protein probes based on microbial cholesterol-binding proteins revealed that PTCH1 controls only a subset of the total cholesterol molecules, a biochemically defined fraction called accessible cholesterol. The accessible cholesterol pool coexists (and exchanges) with a pool of sequestered cholesterol, which is bound to phospholipids like sphingomyelin. In this chapter, we describe how to measure the accessible and sequestered cholesterol pools in live cells with protein-based probes. We discuss how to purify and fluorescently label these probes for use in flow cytometry and microscopy-based measurements of the cholesterol pools. Additionally, we describe how to modulate accessible cholesterol levels to determine if this pool regulates Hh signaling (or any other cellular process of interest).
Collapse
Affiliation(s)
- Maia Kinnebrew
- Department of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen A Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rajat Rohatgi
- Department of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
38
|
Lei XH, Bochner BR. Optimization of cell permeabilization in electron flow based mitochondrial function assays. Free Radic Biol Med 2021; 177:48-57. [PMID: 34656699 DOI: 10.1016/j.freeradbiomed.2021.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Permeable cell models have contributed much to the progress in mitochondrial research. Optimization of permeabilization is required to make the cell's plasma membrane permeable to small molecules while keeping the intracellular organelles and their membranes intact and fully functional. Here we report our assessment and optimization of commonly used permeabilizing agents including different saponin preparations, digitonin, and recombinant perfringolysin O employing a new electron flow based mitochondrial assay technology that utilizes a colorimetric redox dye. The results of this study provide guidance in optimizing the conditions for mitochondrial function assays with permeabilized cells using the novel redox dye-based format.
Collapse
Affiliation(s)
- Xiang-He Lei
- Biolog, Inc., 21124 Cabot Blvd., Hayward, CA, 94545, USA
| | | |
Collapse
|
39
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Tabata A, Nagamune H. Diversity of β-hemolysins produced by the human opportunistic streptococci. Microbiol Immunol 2021; 65:512-529. [PMID: 34591320 DOI: 10.1111/1348-0421.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
The genus Streptococcus infects a broad range of hosts, including humans. Some species, such as S. pyogenes, S. agalactiae, S. pneumoniae, and S. mutans, are recognized as the major human pathogens, and their pathogenicity toward humans has been investigated. However, many of other streptococcal species have been recognized as opportunistic pathogens in humans, and their clinical importance has been underestimated. In our previous study, the Anginosus group streptococci (AGS) and Mitis group streptococci (MGS) showed clear β-hemolysis on blood agar, and the factors responsible for the hemolysis were homologs of two types of β-hemolysins, cholesterol-dependent cytolysin (CDC) and streptolysin S (SLS). In contrast to the regular β-hemolysins produced by streptococci (typical CDCs and SLSs), genetically, structurally, and functionally atypical β-hemolysins have been observed in AGS and MGS. These atypical β-hemolysins are thought to affect and contribute to the pathogenic potential of opportunistic streptococci mainly inhabiting the human oral cavity. In this review, we introduce the diverse characteristics of β-hemolysin produced by opportunistic streptococci, focusing on the species/strains belonging to AGS and MGS, and discuss their pathogenic potential.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
41
|
Ilangumaran Ponmalar I, Sarangi NK, Basu JK, Ayappa KG. Pore Forming Protein Induced Biomembrane Reorganization and Dynamics: A Focused Review. Front Mol Biosci 2021; 8:737561. [PMID: 34568431 PMCID: PMC8459938 DOI: 10.3389/fmolb.2021.737561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pore forming proteins are a broad class of pathogenic proteins secreted by organisms as virulence factors due to their ability to form pores on the target cell membrane. Bacterial pore forming toxins (PFTs) belong to a subclass of pore forming proteins widely implicated in bacterial infections. Although the action of PFTs on target cells have been widely investigated, the underlying membrane response of lipids during membrane binding and pore formation has received less attention. With the advent of superresolution microscopy as well as the ability to carry out molecular dynamics (MD) simulations of the large protein membrane assemblies, novel microscopic insights on the pore forming mechanism have emerged over the last decade. In this review, we focus primarily on results collated in our laboratory which probe dynamic lipid reorganization induced in the plasma membrane during various stages of pore formation by two archetypal bacterial PFTs, cytolysin A (ClyA), an α-toxin and listeriolysin O (LLO), a β-toxin. The extent of lipid perturbation is dependent on both the secondary structure of the membrane inserted motifs of pore complex as well as the topological variations of the pore complex. Using confocal and superresolution stimulated emission depletion (STED) fluorescence correlation spectroscopy (FCS) and MD simulations, lipid diffusion, cholesterol reorganization and deviations from Brownian diffusion are correlated with the oligomeric state of the membrane bound protein as well as the underlying membrane composition. Deviations from free diffusion are typically observed at length scales below ∼130 nm to reveal the presence of local dynamical heterogeneities that emerge at the nanoscale-driven in part by preferential protein binding to cholesterol and domains present in the lipid membrane. Interrogating the lipid dynamics at the nanoscale allows us further differentiate between binding and pore formation of β- and α-PFTs to specific domains in the membrane. The molecular insights gained from the intricate coupling that occurs between proteins and membrane lipids and receptors during pore formation are expected to improve our understanding of the virulent action of PFTs.
Collapse
Affiliation(s)
| | - Nirod K. Sarangi
- School of Chemical Science, Dublin City University, Dublin, Ireland
| | - Jaydeep K. Basu
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
42
|
Pospiech M, Owens SE, Miller DJ, Austin-Muttitt K, Mullins JGL, Cronin JG, Allemann RK, Sheldon IM. Bisphosphonate inhibitors of squalene synthase protect cells against cholesterol-dependent cytolysins. FASEB J 2021; 35:e21640. [PMID: 33991130 DOI: 10.1096/fj.202100164r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023]
Abstract
Certain species of pathogenic bacteria damage tissues by secreting cholesterol-dependent cytolysins, which form pores in the plasma membranes of animal cells. However, reducing cholesterol protects cells against these cytolysins. As the first committed step of cholesterol biosynthesis is catalyzed by squalene synthase, we explored whether inhibiting this enzyme protected cells against cholesterol-dependent cytolysins. We first synthesized 22 different nitrogen-containing bisphosphonate molecules that were designed to inhibit squalene synthase. Squalene synthase inhibition was quantified using a cell-free enzyme assay, and validated by computer modeling of bisphosphonate molecules binding to squalene synthase. The bisphosphonates were then screened for their ability to protect HeLa cells against the damage caused by the cholesterol-dependent cytolysin, pyolysin. The most effective bisphosphonate reduced pyolysin-induced leakage of lactate dehydrogenase into cell supernatants by >80%, and reduced pyolysin-induced cytolysis from >75% to <25%. In addition, this bisphosphonate reduced pyolysin-induced leakage of potassium from cells, limited changes in the cytoskeleton, prevented mitogen-activated protein kinases cell stress responses, and reduced cellular cholesterol. The bisphosphonate also protected cells against another cholesterol-dependent cytolysin, streptolysin O, and protected lung epithelial cells and primary dermal fibroblasts against cytolysis. Our findings imply that treatment with bisphosphonates that inhibit squalene synthase might help protect tissues against pathogenic bacteria that secrete cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Mateusz Pospiech
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Siân E Owens
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | | | | | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | - I Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
43
|
Roussin M, Salcedo SP. NAD+-targeting by bacteria: an emerging weapon in pathogenesis. FEMS Microbiol Rev 2021; 45:6315328. [PMID: 34223888 DOI: 10.1093/femsre/fuab037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a major cofactor in redox reactions in all lifeforms. A stable level of NAD+ is vital to ensure cellular homeostasis. Some pathogens can modulate NAD+ metabolism to their advantage and even utilize or cleave NAD+ from the host using specialized effectors known as ADP-ribosyltransferase toxins and NADases, leading to energy store depletion, immune evasion, or even cell death. This review explores recent advances in the field of bacterial NAD+-targeting toxins, highlighting the relevance of NAD+ modulation as an emerging pathogenesis strategy. In addition, we discuss the role of specific NAD+-targeting toxins in niche colonization and bacterial lifestyle as components of Toxin/Antitoxin systems and key players in inter-bacterial competition. Understanding the mechanisms of toxicity, regulation, and secretion of these toxins will provide interesting leads in the search for new antimicrobial treatments in the fight against infectious diseases.
Collapse
Affiliation(s)
- Morgane Roussin
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| |
Collapse
|
44
|
Draberova L, Tumova M, Draber P. Molecular Mechanisms of Mast Cell Activation by Cholesterol-Dependent Cytolysins. Front Immunol 2021; 12:670205. [PMID: 34248949 PMCID: PMC8260682 DOI: 10.3389/fimmu.2021.670205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Mast cells are potent immune sensors of the tissue microenvironment. Within seconds of activation, they release various preformed biologically active products and initiate the process of de novo synthesis of cytokines, chemokines, and other inflammatory mediators. This process is regulated at multiple levels. Besides the extensively studied IgE and IgG receptors, toll-like receptors, MRGPR, and other protein receptor signaling pathways, there is a critical activation pathway based on cholesterol-dependent, pore-forming cytolytic exotoxins produced by Gram-positive bacterial pathogens. This pathway is initiated by binding the exotoxins to the cholesterol-rich membrane, followed by their dimerization, multimerization, pre-pore formation, and pore formation. At low sublytic concentrations, the exotoxins induce mast cell activation, including degranulation, intracellular calcium concentration changes, and transcriptional activation, resulting in production of cytokines and other inflammatory mediators. Higher toxin concentrations lead to cell death. Similar activation events are observed when mast cells are exposed to sublytic concentrations of saponins or some other compounds interfering with the membrane integrity. We review the molecular mechanisms of mast cell activation by pore-forming bacterial exotoxins, and other compounds inducing cholesterol-dependent plasma membrane perturbations. We discuss the importance of these signaling pathways in innate and acquired immunity.
Collapse
Affiliation(s)
- Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magda Tumova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
45
|
Aikawa C, Kawashima K, Fukuzaki C, Nakakido M, Murase K, Nozawa T, Tsumoto K, Nakagawa I. Single-chain variable fragment (scFv) targeting streptolysin O controls group A Streptococcus infection. Biochem Biophys Res Commun 2021; 566:177-183. [PMID: 34129965 DOI: 10.1016/j.bbrc.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) causes a range of human diseases, including life-threatening and severe invasive GAS infections, such as streptococcal toxic shock syndrome (STSS). Several antibiotics, including penicillin, are effective against GAS. Still, invasive GAS diseases have a high mortality rate (>30%). Clinical isolates from STSS patients show higher expression of pore-forming streptolysin O (SLO). Thus, SLO is an important pathogenic factor for GAS and may be an effective target for treatment of GAS disease. We succeeded in obtaining a single-chain variable fragment (scFv) SLO-I4 capable of recognizing SLO, which significantly inhibited GAS-induced cell lytic activity in erythrocytes, macrophages, and epithelial cells. In epithelial cells, SLO-I4 significantly reduced SLO-mediated endosomal membrane damage, which consequently prevented bacterial escape from the endosome. The effectiveness of anti-SLO scFv in counteracting SLO function suggests that it might be beneficial against GAS infections.
Collapse
Affiliation(s)
- Chihiro Aikawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Kiyosumi Kawashima
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Chihiro Fukuzaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan; Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan.
| |
Collapse
|
46
|
Liposomes Prevent In Vitro Hemolysis Induced by Streptolysin O and Lysenin. MEMBRANES 2021; 11:membranes11050364. [PMID: 34069894 PMCID: PMC8157566 DOI: 10.3390/membranes11050364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
The need for alternatives to antibiotics in the fight against infectious diseases has inspired scientists to focus on antivirulence factors instead of the microorganisms themselves. In this respect, prior work indicates that tiny, enclosed bilayer lipid membranes (liposomes) have the potential to compete with cellular targets for toxin binding, hence preventing their biological attack and aiding with their clearance. The effectiveness of liposomes as decoy targets depends on their availability in the host and how rapidly they are cleared from the circulation. Although liposome PEGylation may improve their circulation time, little is known about how such a modification influences their interactions with antivirulence factors. To fill this gap in knowledge, we investigated regular and long-circulating liposomes for their ability to prevent in vitro red blood cell hemolysis induced by two potent lytic toxins, lysenin and streptolysin O. Our explorations indicate that both regular and long-circulating liposomes are capable of similarly preventing lysis induced by streptolysin O. In contrast, PEGylation reduced the effectiveness against lysenin-induced hemolysis and altered binding dynamics. These results suggest that toxin removal by long-circulating liposomes is feasible, yet dependent on the particular virulence factor under scrutiny.
Collapse
|
47
|
Cole J, Angyal A, Emes RD, Mitchell TJ, Dickman MJ, Dockrell DH. Pneumolysin Is Responsible for Differential Gene Expression and Modifications in the Epigenetic Landscape of Primary Monocyte Derived Macrophages. Front Immunol 2021; 12:573266. [PMID: 34046027 PMCID: PMC8145618 DOI: 10.3389/fimmu.2021.573266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic modifications regulate gene expression in the host response to a diverse range of pathogens. The extent and consequences of epigenetic modification during macrophage responses to Streptococcus pneumoniae, and the role of pneumolysin, a key Streptococcus pneumoniae virulence factor, in influencing these responses, are currently unknown. To investigate this, we infected human monocyte derived macrophages (MDMs) with Streptococcus pneumoniae and addressed whether pneumolysin altered the epigenetic landscape and the associated acute macrophage transcriptional response using a combined transcriptomic and proteomic approach. Transcriptomic analysis identified 503 genes that were differentially expressed in a pneumolysin-dependent manner in these samples. Pathway analysis highlighted the involvement of transcriptional responses to core innate responses to pneumococci including modules associated with metabolic pathways activated in response to infection, oxidative stress responses and NFκB, NOD-like receptor and TNF signalling pathways. Quantitative proteomic analysis confirmed pneumolysin-regulated protein expression, early after bacterial challenge, in representative transcriptional modules associated with innate immune responses. In parallel, quantitative mass spectrometry identified global changes in the relative abundance of histone post translational modifications (PTMs) upon pneumococcal challenge. We identified an increase in the relative abundance of H3K4me1, H4K16ac and a decrease in H3K9me2 and H3K79me2 in a PLY-dependent fashion. We confirmed that pneumolysin blunted early transcriptional responses involving TNF-α and IL-6 expression. Vorinostat, a histone deacetylase inhibitor, similarly downregulated TNF-α production, reprising the pattern observed with pneumolysin. In conclusion, widespread changes in the macrophage transcriptional response are regulated by pneumolysin and are associated with global changes in histone PTMs. Modulating histone PTMs can reverse pneumolysin-associated transcriptional changes influencing innate immune responses, suggesting that epigenetic modification by pneumolysin plays a role in dampening the innate responses to pneumococci.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, United Kingdom
- Sheffield Teaching Hospitals NHS FT, Sheffield, United Kingdom
- The Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Adrienn Angyal
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, United Kingdom
| | - Richard D. Emes
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, United Kingdom
- School of Veterinary Medicine and Science University of Nottingham, Nottingham, United Kingdom
| | - Tim John Mitchell
- Institute of Microbiology and Infection, University of Birmingham, Edinburgh, United Kingdom
| | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David H. Dockrell
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
48
|
Mayeux G, Gayet L, Liguori L, Odier M, Martin DK, Cortès S, Schaack B, Lenormand JL. Cell-free expression of the outer membrane protein OprF of Pseudomonas aeruginosa for vaccine purposes. Life Sci Alliance 2021; 4:4/6/e202000958. [PMID: 33972378 PMCID: PMC8127326 DOI: 10.26508/lsa.202000958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Production of recombinant proteoliposomes containing OprF from P. aeruginosa promotes the active open conformation of the porin exposing native epitopes. These OprF proteoliposomes were used as vaccines to protect mice against a P. aeruginosa acute pulmonary infection model. Pseudomonas aeruginosa is the second-leading cause of nosocomial infections and pneumonia in hospitals. Because of its extraordinary capacity for developing resistance to antibiotics, treating infections by Pseudomonas is becoming a challenge, lengthening hospital stays, and increasing medical costs and mortality. The outer membrane protein OprF is a well-conserved and immunogenic porin playing an important role in quorum sensing and in biofilm formation. Here, we used a bacterial cell-free expression system to reconstitute OprF under its native forms in liposomes and we demonstrated that the resulting OprF proteoliposomes can be used as a fully functional recombinant vaccine against P. aeruginosa. Remarkably, we showed that our system promotes the folding of OprF into its active open oligomerized state as well as the formation of mega-pores. Our approach thus represents an easy and efficient way for producing bacterial membrane antigens exposing native epitopes for vaccine purposes.
Collapse
Affiliation(s)
- Géraldine Mayeux
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| | - Landry Gayet
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| | - Lavinia Liguori
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France.,Maison Familiale Rurale Moirans, Moirans, France
| | - Marine Odier
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France.,Catalent Pharma Solutions, Eberbach, Germany
| | - Donald K Martin
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| | | | - Béatrice Schaack
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France.,University Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jean-Luc Lenormand
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| |
Collapse
|
49
|
Higuchi R, Goto T, Hirotsu Y, Otake S, Oyama T, Amemiya K, Mochizuki H, Omata M. Streptococcus australis and Ralstonia pickettii as Major Microbiota in Mesotheliomas. J Pers Med 2021; 11:jpm11040297. [PMID: 33919754 PMCID: PMC8070724 DOI: 10.3390/jpm11040297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
The microbiota has been reported to be correlated with carcinogenesis and cancer progression. However, its involvement in the pathology of mesothelioma remains unknown. In this study, we aimed to identify mesothelioma-specific microbiota using resected or biopsied mesothelioma samples. Eight mesothelioma tissue samples were analyzed via polymerase chain reaction (PCR) amplification and 16S rRNA gene sequencing. The operational taxonomic units (OTUs) of the effective tags were analyzed in order to determine the taxon composition of each sample. For the three patients who underwent extra pleural pneumonectomy, normal peripheral lung tissues adjacent to the tumor were also included, and the same analysis was performed. In total, 61 OTUs were identified in the tumor and lung tissues, which were classified into 36 species. Streptococcus australis and Ralstonia pickettii were identified as abundant species in almost all tumor and lung samples. Streptococcus australis and Ralstonia pickettii were found to comprise mesothelioma-specific microbiota involved in tumor progression; thus, they could serve as targets for the prevention of mesothelioma.
Collapse
Affiliation(s)
- Rumi Higuchi
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (R.H.); (S.O.)
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (R.H.); (S.O.)
- Correspondence: ; Tel.: +81-55-253-7111
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (K.A.); (H.M.); (M.O.)
| | - Sotaro Otake
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (R.H.); (S.O.)
| | - Toshio Oyama
- Department of Pathology, Yamanashi Central Hospital, Yamanashi 400-8506, Japan;
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (K.A.); (H.M.); (M.O.)
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (K.A.); (H.M.); (M.O.)
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (K.A.); (H.M.); (M.O.)
- Department of Gastroenterology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| |
Collapse
|
50
|
Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021; 89:IAI.00641-20. [PMID: 33526568 DOI: 10.1128/iai.00641-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host colonization by a pathogen requires proper sensing and response to local environmental cues, to ensure adaptation and continued survival within the host. The ionic milieu represents a critical potential source of environmental cues, and indeed, there has been extensive study of the interplay between host and pathogen in the context of metals such as iron, zinc, and manganese, vital ions that are actively sequestered by the host. The inherent non-uniformity of the ionic milieu also extends, however, to "abundant" ions such as chloride and potassium, whose concentrations vary greatly between tissue and cellular locations, and with the immune response. Despite this, the concept of abundant ions as environmental cues and key players in host-pathogen interactions is only just emerging. Focusing on chloride and potassium, this review brings together studies across multiple bacterial and parasitic species that have begun to define both how these abundant ions are exploited as cues during host infection, and how they can be actively manipulated by pathogens during host colonization. The close links between ion homeostasis and sensing/response to different ionic signals, and the importance of studying pathogen response to cues in combination, are also discussed, while considering the fundamental insight still to be uncovered from further studies in this nascent area of inquiry.
Collapse
|