1
|
Collar AL, Jamus AN, Flanagan J, Core SB, Geisler WM, Wheeler CM, Frietze KM. Immunization Against Chlamydia trachomatis Polymorphic Membrane Protein D Tetrapeptide Motifs Limits Early Female Reproductive Tract Infection in a Mouse Model. Vaccines (Basel) 2025; 13:234. [PMID: 40266062 PMCID: PMC11946637 DOI: 10.3390/vaccines13030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: Chlamydia trachomatis (Ct) is a common pathogen causing urogenital, anal, oral, and ocular infections. Although extensive vaccine efforts have been underway for decades, there is no licensed vaccine available to prevent human Ct infection. Polymorphic membrane protein D (PmpD) is a highly conserved protein present on the surface of Ct elementary bodies, suggesting an important role Ct biology. Repetitive tetrapeptide motifs GGA(I,L,V) and FxxN are conserved across Pmps and are important for adhesion in the related Chlamydia pneumoniae Pmp21. Methods: Using bioinformatics approaches, we identified amino acids 270 to 294 of PmpD that included two GGA(I,L,V) motifs and an FxxN motif as vaccine targets. Synthetic peptides corresponding to these regions were chemically conjugated separately via the carboxy (C)- or amino (N)-terminus (FxxN 1.1 and FxxN 1.2) to the surface of Qβ virus-like particles (VLPs) and were tested for immunogenicity and protective capacity in mice. Results: Female mice immunized three times with a mixture of Qβ-FxxN 1.1 and Qβ-FxxN 1.2 vaccines without exogenous adjuvant elicited geometric-mean endpoint dilution titers near 104. Further, mice showed decreased infection at early time points when challenged vaginally with luciferase-expressing Chlamydia muridarum over 9 days and a faster time to undetectable infection compared to controls. Immunization with individual vaccines (Qβ-FxxN 1.1 or Qβ-FxxN 1.2) did not show the same degree of reduction. Conclusions: Vaccination against PmpD tetrapeptide motifs is a novel and promising approach for limiting initial Chlamydia infection and warrants further investigation to characterize the mechanism of protection.
Collapse
Affiliation(s)
- Amanda L. Collar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| | - Andzoa N. Jamus
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| | - Julian Flanagan
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| | - Susan B. Core
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| | - William M. Geisler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cosette M. Wheeler
- Center for HPV Prevention, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Ghasemian E, Faal N, Pickering H, Sillah A, Breuer J, Bailey RL, Mabey D, Holland MJ. Genomic insights into local-scale evolution of ocular Chlamydia trachomatis strains within and between individuals in Gambian trachoma-endemic villages. Microb Genom 2024; 10:001210. [PMID: 38445851 PMCID: PMC10999739 DOI: 10.1099/mgen.0.001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Trachoma, a neglected tropical disease caused by Chlamydia trachomatis (Ct) serovars A-C, is the leading infectious cause of blindness worldwide. Africa bears the highest burden, accounting for over 86 % of global trachoma cases. We investigated Ct serovar A (SvA) and B (SvB) whole genome sequences prior to the induction of mass antibiotic drug administration in The Gambia. Here, we explore the factors contributing to Ct strain diversification and the implications for Ct evolution within the context of ocular infection. A cohort study in 2002-2003 collected ocular swabs across nine Gambian villages during a 6 month follow-up study. To explore the genetic diversity of Ct within and between individuals, we conducted whole-genome sequencing (WGS) on a limited number (n=43) of Ct-positive samples with an omcB load ≥10 from four villages. WGS was performed using target enrichment with SureSelect and Illumina paired-end sequencing. Out of 43 WGS samples, 41 provided sufficient quality for further analysis. ompA analysis revealed that 11 samples had highest identity to ompA from strain A/HAR13 (NC_007429) and 30 had highest identity to ompA from strain B/Jali20 (NC_012686). While SvB genome sequences formed two distinct village-driven subclades, the heterogeneity of SvA sequences led to the formation of many individual branches within the Gambian SvA subclade. Comparing the Gambian SvA and SvB sequences with their reference strains, Ct A/HAR13 and Ct B/Jali20, indicated an single nucleotide polymorphism accumulation rate of 2.4×10-5 per site per year for the Gambian SvA and 1.3×10-5 per site per year for SvB variants (P<0.0001). Variant calling resulted in a total of 1371 single nucleotide variants (SNVs) with a frequency >25 % in SvA sequences, and 438 SNVs in SvB sequences. Of note, in SvA variants, highest evolutionary pressure was recorded on genes responsible for host cell modulation and intracellular survival mechanisms, whereas in SvB variants this pressure was mainly on genes essential for DNA replication/repair mechanisms and protein synthesis. A comparison of the sequences between observed separate infection events (4-20 weeks between infections) suggested that the majority of the variations accumulated in genes responsible for host-pathogen interaction such as CTA_0166 (phospholipase D-like protein), CTA_0498 (TarP) and CTA_0948 (deubiquitinase). This comparison of Ct SvA and SvB variants within a trachoma endemic population focused on their local evolutionary adaptation. We found a different variation accumulation pattern in the Gambian SvA chromosomal genes compared with SvB, hinting at the potential of Ct serovar-specific variation in diversification and evolutionary fitness. These findings may have implications for optimizing trachoma control and prevention strategies.
Collapse
Affiliation(s)
- Ehsan Ghasemian
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Nkoyo Faal
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Harry Pickering
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Ansumana Sillah
- National Eye Health Programme, Ministry of Health, Kanifing, Gambia
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - Robin L. Bailey
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - David Mabey
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Martin J. Holland
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Gomes LGR, Dutra JCF, Profeta R, Dias MV, García GJY, Rodrigues DLN, Goés Neto A, Aburjaile FF, Tiwari S, Soares SC, Azevedo V, Jaiswal AK. Systematic review of reverse vaccinology and immunoinformatics data for non-viral sexually transmitted infections. AN ACAD BRAS CIENC 2023; 95:e20230617. [PMID: 38055447 DOI: 10.1590/0001-3765202320230617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/27/2023] [Indexed: 12/08/2023] Open
Abstract
Sexually Transmitted Infections (STIs) are a public health burden rising in developed and developing nations. The World Health Organization estimates nearly 374 million new cases of curable STIs yearly. Global efforts to control their spread have been insufficient in fulfilling their objective. As there is no vaccine for many of these infections, these efforts are focused on education and condom distribution. The development of vaccines for STIs is vital for successfully halting their spread. The field of immunoinformatics is a powerful new tool for vaccine development, allowing for the identification of vaccine candidates within a bacterium's genome and allowing for the design of new genome-based vaccine peptides. The goal of this review was to evaluate the usage of immunoinformatics in research focused on non-viral STIs, identifying fields where research efforts are concentrated. Here we describe gaps in applying these techniques, as in the case of Treponema pallidum and Trichomonas vaginalis.
Collapse
Affiliation(s)
- Lucas Gabriel R Gomes
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Joyce C F Dutra
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Microbiologia, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Rodrigo Profeta
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Mariana V Dias
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Glen J Y García
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Bioinformática, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Diego Lucas N Rodrigues
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade Federal de Minas Gerais (UFMG), Escola de Veterinária, Departamento de Medicina Veterinária, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Aristóteles Goés Neto
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Biologia Molecular e Computacional de Fungos, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Flávia F Aburjaile
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade Federal de Minas Gerais (UFMG), Escola de Veterinária, Departamento de Medicina Veterinária, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade Federal da Bahia, Instituto de Biologia, Rua Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, BA, Brazil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n, Vale do Canela, 40110-902 Salvador, BA, Brazil
| | - Siomar C Soares
- Universidade Federal do Triângulo Mineiro (UFTM), Instituto de Ciências Biológicas e Naturais, Departamento de Microbiologia, Imunologia, e Parasitologia, Rua Vigário Carlos, 100, Abadia, 38025-180 Uberaba, MG, Brazil
| | - Vasco Azevedo
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Arun K Jaiswal
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Piñeiro L, Villa L, Salmerón P, Maciá MD, Otero L, Vall-Mayans M, Milagro A, Bernal S, Manzanal A, Ansa I, Cilla G. Genetic Characterization of Non- Lymphogranuloma venereum Chlamydia trachomatis Indicates Distinct Infection Transmission Networks in Spain. Int J Mol Sci 2023; 24:ijms24086941. [PMID: 37108105 PMCID: PMC10138622 DOI: 10.3390/ijms24086941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Chlamydia trachomatis infection is an important public health problem. Our objective was to assess the dynamics of the transmission of this infection, analysing the distribution of circulating ompA genotypes and multilocus sequence types of C. trachomatis in Spain as a function of clinical and epidemiological variables. During 2018 and 2019, we genetically characterized C. trachomatis in tertiary hospitals in six areas in Spain (Asturias, Barcelona, Gipuzkoa, Mallorca, Seville and Zaragoza), with a catchment population of 3.050 million people. Genotypes and sequence types were obtained using polymerase chain reaction techniques that amplify a fragment of the ompA gene, and five highly variable genes (hctB, CT058, CT144, CT172 and pbpB), respectively. Amplicons were sequenced and phylogenetic analysis was conducted. We obtained genotypes in 636/698 cases (91.1%). Overall and by area, genotype E was the most common (35%). Stratifying by sex, genotypes D and G were more common among men, and genotypes F and I among women (p < 0.05). Genotypes D, G and J were more common in men who have sex with men (MSM) than in men who have sex with women (MSW), in whom the most common genotypes were E and F. The diversity index was higher in sequence typing (0.981) than in genotyping (0.791), and the most common sequence types were ST52 and ST108 in MSM, and ST30, ST148, ST276 and ST327 in MSW. Differences in genotype distribution between geographical areas were attributable to differences in population characteristics. The transmission dynamics varied with sexual behaviour: the predominant genotypes and most frequent sequence types found in MSM were different to those detected in MSW and women.
Collapse
Affiliation(s)
- Luis Piñeiro
- Microbiology Department, Donostia University Hospital-Biodonostia Health Research Institute, 20014 San Sebastian, Spain
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
| | - Laura Villa
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Paula Salmerón
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Vall d'Hebrón University Hospital, 08035 Barcelona, Spain
| | - Maria Dolores Maciá
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Luis Otero
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Cabueñes University Hospital, 33394 Gijón, Spain
| | - Martí Vall-Mayans
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Vall'Hebron-Drassanes STI Unit, Infectious Diseases Department, Vall d'Hebrón University Hospital, 08035 Barcelona, Spain
| | - Ana Milagro
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Samuel Bernal
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Infectious Diseases and Microbiology Unit, Valme University Hospital, 41014 Seville, Spain
| | - Ayla Manzanal
- Microbiology Department, Donostia University Hospital-Biodonostia Health Research Institute, 20014 San Sebastian, Spain
| | - Iñigo Ansa
- Microbiology Department, Donostia University Hospital-Biodonostia Health Research Institute, 20014 San Sebastian, Spain
| | - Gustavo Cilla
- Microbiology Department, Donostia University Hospital-Biodonostia Health Research Institute, 20014 San Sebastian, Spain
| |
Collapse
|
5
|
Caven LT, Brinkworth AJ, Carabeo RA. Chlamydia trachomatis induces the transcriptional activity of host YAP in a Hippo-independent fashion. Front Cell Infect Microbiol 2023; 13:1098420. [PMID: 36923592 PMCID: PMC10008951 DOI: 10.3389/fcimb.2023.1098420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction The obligate intracellular pathogen Chlamydia trachomatis is the causative agent of the most common bacterial sexually transmitted disease worldwide. While the host response to infection by this pathogen has been well characterized, it remains unclear to what extent host gene expression during infection is the product of Chlamydia-directed modulation of host transcription factors. Methods To identify transcription factors potentially modulated by Chlamydia during infection, we infected immortalized endocervical epithelial cells (End1/E6E7) with the anogenital C. trachomatis serovar L2, harvesting polyadenylated RNA for bulk RNA-sequencing. Subsequent experiments elucidating the mechanism of infection-mediated YAP activation assayed YAP target gene expression via qRT-PCR, YAP nuclear translocation via quantitative immunofluorescence, and YAP phosphorylation via Western blotting. Results RNA sequencing of Chlamydia-infected endocervical epithelial cells revealed gene expression consistent with activity of YAP, a transcriptional coactivator implicated in cell proliferation, wound healing, and fibrosis. After confirming induction of YAP target genes during infection, we observed an infection-dependent increase in YAP nuclear translocation sensitive to inhibition of bacterial protein synthesis. While Hippo-mediated phosphoinhibition of YAP at S127 was unaffected by C. trachomatis infection, Hippo-independent phosphorylation at Y357 was increased. Infection did not enhance nuclear translocation of Y357F mutant YAP, illustrating a requirement for phosphorylation at this residue. Pharmacological inhibition of host Src-family kinase activity attenuated YAP Y357 phosphorylation, but not nuclear translocation - which was instead sensitive to inhibition of Abl. Discussion Our results define a transcriptome-altering mechanism of pathogen-directed YAP activation that bypasses canonical inhibition by the Hippo kinase cascade, with a potential link to chlamydial fibrosis and other advanced disease sequelae. Additional study is required to determine the specific role of infection-associated Y357 phosphorylation and Abl activity in chlamydial induction of YAP.
Collapse
Affiliation(s)
- Liam T. Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Amanda J. Brinkworth
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
6
|
Wang L, Hou Y, Yuan H, Chen H. The role of tryptophan in Chlamydia trachomatis persistence. Front Cell Infect Microbiol 2022; 12:931653. [PMID: 35982780 PMCID: PMC9378776 DOI: 10.3389/fcimb.2022.931653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) and a worldwide public health issue. The natural course with C. trachomatis infection varies widely between individuals. Some infections clear spontaneously, others can last for several months or some individuals can become reinfected, leading to severe pathological damage. Importantly, the underlying mechanisms of C. trachomatis infection are not fully understood. C. trachomatis has the ability to adapt to immune response and persist within host epithelial cells. Indoleamine-2,3-dioxygenase (IDO) induced by interferon-gamma (IFN-γ) degrades the intracellular tryptophan pool, to which C. trachomatis can respond by converting to a non-replicating but viable state. C. trachomatis expresses and encodes for the tryptophan synthase (TS) genes (trpA and trpB) and tryptophan repressor gene (trpR). Multiple genes interact to regulate tryptophan synthesis from exogenous indole, and persistent C. trachomatis can recover its infectivity by converting indole into tryptophan. In this review, we discuss the characteristics of chlamydial infections, biosynthesis and regulation of tryptophan, the relationship between tryptophan and C. trachomatis, and finally, the links between the tryptophan/IFN-γ axis and C. trachomatis persistence.
Collapse
Affiliation(s)
- Li Wang
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - YingLan Hou
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - HongXia Yuan
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - Hongliang Chen
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
- *Correspondence: Hongliang Chen,
| |
Collapse
|
7
|
Favaroni A, Hegemann JH. Chlamydia trachomatis Polymorphic Membrane Proteins (Pmps) Form Functional Homomeric and Heteromeric Oligomers. Front Microbiol 2021; 12:709724. [PMID: 34349750 PMCID: PMC8326573 DOI: 10.3389/fmicb.2021.709724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Chlamydiae are Gram-negative, obligate intracellular bacteria, which infect animals and humans. Adhesion to host cells, the first step in the infection process, is mediated by polymorphic membrane proteins (Pmps). Pmps constitute the largest chlamydial protein family, with 9 members (subdivided into six subtypes) in C. trachomatis and 21 in C. pneumoniae, and are characterized by the presence of multiple copies of GGA(I,L,V) and FxxN motifs. Motif-rich fragments of all nine C. trachomatis Pmps act as adhesins and are essential for infection. As autotransporters, most Pmp proteins are secreted through their β-barrel domain and localize on the surface of the chlamydial cell, where most of them are proteolytically processed. Classical autotransporters are monomeric proteins, which can function as toxins, proteases, lipases and monoadhesive adhesins. Here we show that selected recombinant C. trachomatis Pmp fragments form functional adhesion-competent multimers. They assemble into homomeric and heteromeric filaments, as revealed by non-denaturing gel electrophoresis, size-exclusion chromatography and electron microscopy. Heteromeric filaments reach 2 μm in length, significantly longer than homomeric structures. Filament formation was independent of the number of motifs present in the fragment(s) concerned and their relative affinity for host cells. Our functional studies demonstrated that only adhesion-competent oligomers were able to block a subsequent infection. Pre-loading of infectious chlamydial cells with adhesion-competent Pmp oligomers maintained the subsequent infection, while adhesion-incompetent structures reduced infectivity, presumably by blocking the function of endogenous Pmps. The very large number of possible heteromeric and homomeric Pmp complexes represents a novel mechanism to ensure stable adhesion and possibly host cell immune escape.
Collapse
Affiliation(s)
- Alison Favaroni
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Duesseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
8
|
Banerjee A, Nelson DE. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis. Pathog Dis 2021; 79:ftab025. [PMID: 33930127 PMCID: PMC8112481 DOI: 10.1093/femspd/ftab025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple species of obligate intracellular bacteria in the genus Chlamydia are important veterinary and/or human pathogens. These pathogens all share similar biphasic developmental cycles and transition between intracellular vegetative reticulate bodies and infectious elementary forms, but vary substantially in their host preferences and pathogenic potential. A lack of tools for genetic engineering of these organisms has long been an impediment to the study of their biology and pathogenesis. However, the refinement of approaches developed in C. trachomatis over the last 10 years, and adaptation of some of these approaches to other Chlamydia spp. in just the last few years, has opened exciting new possibilities for studying this ubiquitous group of important pathogens.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
A 2-pyridone amide inhibitor of transcriptional activity in Chlamydia trachomatis. Antimicrob Agents Chemother 2021; 95:AAC.01826-20. [PMID: 33593835 PMCID: PMC8092867 DOI: 10.1128/aac.01826-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a strict intracellular bacterium that causes sexually transmitted infections and eye infections that can lead to life-long sequelae. Treatment options are limited to broad-spectrum antibiotics that disturb the commensal flora and contribute to selection of antibiotic-resistant bacteria. Hence, development of novel drugs that specifically target C. trachomatis would be beneficial. 2-pyridone amides are potent and specific inhibitors of Chlamydia infectivity. The first generation compound KSK120, inhibits the developmental cycle of Chlamydia resulting in reduced infectivity of progeny bacteria. Here, we show that the improved, highly potent second-generation 2-pyridone amide KSK213 allowed normal growth and development of C. trachomatis and the effect was only observable upon re-infection of new cells. Progeny elementary bodies (EBs) produced in the presence of KSK213 were unable to activate transcription of essential genes in early development and did not differentiate into the replicative form, the reticulate body (RB). The effect was specific to C. trachomatis since KSK213 was inactive in the closely related animal pathogen C. muridarum and in C. caviae The molecular target of KSK213 may thus be different in C. trachomatis or non-essential in C. muridarum and C. caviae Resistance to KSK213 was mediated by a combination of amino acid substitutions in both DEAD/DEAH RNA helicase and RNAse III, which may indicate inhibition of the transcriptional machinery as the mode of action. 2-pyridone amides provide a novel antibacterial strategy and starting points for development of highly specific drugs for C. trachomatis infections.
Collapse
|
10
|
Andersen SE, Bulman LM, Steiert B, Faris R, Weber MM. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Pathog Dis 2021; 79:ftaa078. [PMID: 33512479 PMCID: PMC7862739 DOI: 10.1093/femspd/ftaa078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of infectious blindness and a sexually transmitted infection. All chlamydiae are obligate intracellular bacteria that replicate within a membrane-bound vacuole termed the inclusion. From the confines of the inclusion, the bacteria must interact with many host organelles to acquire key nutrients necessary for replication, all while promoting host cell viability and subverting host defense mechanisms. To achieve these feats, C. trachomatis delivers an arsenal of virulence factors into the eukaryotic cell via a type 3 secretion system (T3SS) that facilitates invasion, manipulation of host vesicular trafficking, subversion of host defense mechanisms and promotes bacteria egress at the conclusion of the developmental cycle. A subset of these proteins intercalate into the inclusion and are thus referred to as inclusion membrane proteins. Whereas others, referred to as conventional T3SS effectors, are released into the host cell where they localize to various eukaryotic organelles or remain in the cytosol. Here, we discuss the functions of T3SS effector proteins with a focus on how advances in chlamydial genetics have facilitated the identification and molecular characterization of these important factors.
Collapse
Affiliation(s)
- Shelby E Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lanci M Bulman
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mary M Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Fol M, Włodarczyk M, Druszczyńska M. Host Epigenetics in Intracellular Pathogen Infections. Int J Mol Sci 2020; 21:ijms21134573. [PMID: 32605029 PMCID: PMC7369821 DOI: 10.3390/ijms21134573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Some intracellular pathogens are able to avoid the defense mechanisms contributing to host epigenetic modifications. These changes trigger alterations tothe chromatin structure and on the transcriptional level of genes involved in the pathogenesis of many bacterial diseases. In this way, pathogens manipulate the host cell for their own survival. The better understanding of epigenetic consequences in bacterial infection may open the door for designing new vaccine approaches and therapeutic implications. This article characterizes selected intracellular bacterial pathogens, including Mycobacterium spp., Listeria spp., Chlamydia spp., Mycoplasma spp., Rickettsia spp., Legionella spp. and Yersinia spp., which can modulate and reprogram of defense genes in host innate immune cells.
Collapse
Affiliation(s)
- Marek Fol
- Correspondence: ; Tel.: +48-42-635-44-72
| | | | | |
Collapse
|
12
|
Caven L, Carabeo RA. Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by Chlamydia trachomatis. Int J Mol Sci 2019; 21:ijms21010090. [PMID: 31877733 PMCID: PMC6981773 DOI: 10.3390/ijms21010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
The actin cytoskeleton is crucially important to maintenance of the cellular structure, cell motility, and endocytosis. Accordingly, bacterial pathogens often co-opt the actin-restructuring machinery of host cells to access or create a favorable environment for their own replication. The obligate intracellular organism Chlamydia trachomatis and related species exemplify this dynamic: by inducing actin polymerization at the site of pathogen-host attachment, Chlamydiae induce their own uptake by the typically non-phagocytic epithelium they infect. The interaction of chlamydial adhesins with host surface receptors has been implicated in this effect, as has the activity of the chlamydial effector TarP (translocated actin recruitment protein). Following invasion, C. trachomatis dynamically assembles and maintains an actin-rich cage around the pathogen’s membrane-bound replicative niche, known as the chlamydial inclusion. Through further induction of actin polymerization and modulation of the actin-crosslinking protein myosin II, C. trachomatis promotes egress from the host via extrusion of the inclusion. In this review, we present the experimental findings that can inform our understanding of actin-dependent chlamydial pathogenesis, discuss lingering questions, and identify potential avenues of future study.
Collapse
Affiliation(s)
- Liam Caven
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Correspondence: ; Tel.: +1-402-836-9778
| |
Collapse
|
13
|
Alkhidir AAI, Holland MJ, Elhag WI, Williams CA, Breuer J, Elemam AE, El Hussain KMK, Ournasseir MEH, Pickering H. Whole-genome sequencing of ocular Chlamydia trachomatis isolates from Gadarif State, Sudan. Parasit Vectors 2019; 12:518. [PMID: 31685017 PMCID: PMC6829945 DOI: 10.1186/s13071-019-3770-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trachoma, caused by ocular Chlamydia trachomatis, is the leading infectious cause of blindness worldwide. Sudan first reported trachoma in the 1930s and has since been consistently endemic. Ocular C. trachomatis previously isolated from trachoma patients in Sudan in 1963 was antigenically identical to an isolate from Saudi Arabia (A/SA1). No contemporary ocular C. trachomatis whole genome sequences have been reported from Sudan. METHODS This study sequenced twenty ocular C. trachomatis isolates to improve understanding of pathogen diversity in North-East Africa and examine for genomic variation specific to Sudan, possibly related to the persistence of trachoma in surveyed communities. High quality, whole genome sequences were obtained from 12/20 isolates. RESULTS All isolates were serovar A and had tarP and trpA sequences typical of classical, ocular C. trachomatis isolates. The Sudanese isolates formed a closely related subclade within the T2-trachoma clade of C. trachomatis phylogeny distinct from geographically disparate ocular isolates, with little intra-population diversity. We found 333 SNPs that were conserved in Sudanese ocular isolates but rare compared to other ocular C. trachomatis populations, which were focused in two genomic loci (CTA0172-CTA0173 and CTA0482). CONCLUSIONS Limited intra-population diversity and geographical clustering of ocular C. trachomatis suggests minimal transmission between and slow diversification within trachoma-endemic communities. However, diversity may have been higher pre-treatment in these communities. Over-representation of Sudan-specific SNPs in three genes suggests they may have an impact on C. trachomatis growth and transmission in this population.
Collapse
Affiliation(s)
| | - Martin J Holland
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Wafa Ibrahim Elhag
- Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | | | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK.,Microbiology, Virology, and Infection Control, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | | | | | | | - Harry Pickering
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
14
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Martinelli M, Musumeci R, Rizzo A, Muresu N, Piana A, Sotgiu G, Landoni F, Cocuzza C. Prevalence of Chlamydia trachomatis Infection, Serovar Distribution and Co-Infections with Seven High-Risk HPV Types among Italian Women with a Recent History of Abnormal Cervical Cytology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183354. [PMID: 31514378 PMCID: PMC6765777 DOI: 10.3390/ijerph16183354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/28/2023]
Abstract
Chlamydia trachomatis (Ct) and human papillomavirus (HPV) are the most prevalent sexually transmitted infections throughout the world. Despite the serious complications associated with chronic Ct infections in sexually active women, a screening program is not yet available in Italy. Moreover, HPV/Ct co-infections are also known to occur frequently, increasing the risk of HPV-induced carcinogenesis. The aim of this study was to evaluate the prevalence of Ct infections, the distribution of Ct serovars, and the incidences of Ct/HPV co-infections among women with a recent history of abnormal cervical cytology. Cervical samples were collected from 199 women referred for a gynecological visit following an abnormal Pap test results. All samples were tested for the presence of Ct and HPV DNA using real-time PCR assays; Ct typing of positive samples was performed by PCR–RFLP (restriction fragment length polymorphism) targeting the ompA gene. A high percentage of these women (12.8% and 21.7% with or without abnormal cytology on “retesting”, respectively) were found to be Ct positive. Serovar F was the most prevalent type in Ct positive women, followed by E and K. Ct/HPV co-infections were detected in 7% (14/199) of enrolled women, with HPV-16, HPV-51, and HPV-52 being most frequently identified in co-infections. This study provides new epidemiological data on the prevalence of Ct and associated HPV infection in women with a recent history of abnormal cervical cytology in Italy, where notification of cases is not mandatory.
Collapse
Affiliation(s)
- Marianna Martinelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Rosario Musumeci
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Alberto Rizzo
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Narcisa Muresu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Andrea Piana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Fabio Landoni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
- ASST Monza, San Gerardo Hospital, 20900 Monza, Italy.
| | - Clementina Cocuzza
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| |
Collapse
|
16
|
How Chlamydia trachomatis conquered gut microbiome-derived antimicrobial compounds and found a new home in the eye. Proc Natl Acad Sci U S A 2019; 116:12136-12138. [PMID: 31164418 DOI: 10.1073/pnas.1907647116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
17
|
Hadfield J, Bénard A, Domman D, Thomson N. The Hidden Genomics of Chlamydia trachomatis. Curr Top Microbiol Immunol 2019; 412:107-131. [PMID: 29071471 DOI: 10.1007/82_2017_39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of whole-genome sequencing has moved us on from sequencing single genomes to defining unravelling population structures in different niches, and at the -species, -serotype or even -genus level, and in local, national and global settings. This has been instrumental in cataloguing and revealing a huge a range of diversity in this bacterium, when at first we thought there was little. Genomics has challenged assumptions, added insight, as well as confusion and glimpses of truths. What is clear is that at a time when we start to realise the extent and nature of the diversity contained within a genus or a species like this, the huge depth of knowledge communities have developed, through cell biology, as well as the new found molecular approaches will be more precious than ever to link genotype to phenotype. Here we detail the technological developments and insights we have seen during the relatively short time since we began to see the hidden genome of Chlamydia trachomatis.
Collapse
Affiliation(s)
- James Hadfield
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Angèle Bénard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
18
|
Ammonia generation by tryptophan synthase drives a key genetic difference between genital and ocular Chlamydia trachomatis isolates. Proc Natl Acad Sci U S A 2019; 116:12468-12477. [PMID: 31097582 DOI: 10.1073/pnas.1821652116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A striking difference between genital and ocular clinical isolates of Chlamydia trachomatis is that only the former express a functional tryptophan synthase and therefore can synthesize tryptophan by indole salvage. Ocular isolates uniformly cannot use indole due to inactivating mutations within tryptophan synthase, indicating a selection against maintaining this enzyme in the ocular environment. Here, we demonstrate that this selection occurs in two steps. First, specific indole derivatives, produced by the human gut microbiome and present in serum, rapidly induce expression of C. trachomatis tryptophan synthase, even under conditions of tryptophan sufficiency. We demonstrate that these indole derivatives function by acting as de-repressors of C. trachomatis TrpR. Second, trp operon de-repression is profoundly deleterious when infected cells are in an indole-deficient environment, because in the absence of indole, tryptophan synthase deaminates serine to pyruvate and ammonia. We have used biochemical and genetic approaches to demonstrate that expression of wild-type tryptophan synthase is required for the bactericidal production of ammonia. Pertinently, although these indole derivatives de-repress the trpRBA operon of C. trachomatis strains with trpA or trpB mutations, no ammonia is produced, and no deleterious effects are observed. Our studies demonstrate that tryptophan synthase can catalyze the ammonia-generating β-elimination reaction within any live bacterium. Our results also likely explain previous observations demonstrating that the same indole derivatives inhibit the growth of other pathogenic bacterial species, and why high serum levels of these indole derivatives are favorable for the prognosis of diseased conditions associated with bacterial dysbiosis.
Collapse
|
19
|
Pokorzynski ND, Brinkworth AJ, Carabeo R. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in Chlamydia trachomatis. eLife 2019; 8:e42295. [PMID: 30938288 PMCID: PMC6504234 DOI: 10.7554/elife.42295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
During infection, pathogens are starved of essential nutrients such as iron and tryptophan by host immune effectors. Without conserved global stress response regulators, how the obligate intracellular bacterium Chlamydia trachomatis arrives at a physiologically similar 'persistent' state in response to starvation of either nutrient remains unclear. Here, we report on the iron-dependent regulation of the trpRBA tryptophan salvage pathway in C. trachomatis. Iron starvation specifically induces trpBA expression from a novel promoter element within an intergenic region flanked by trpR and trpB. YtgR, the only known iron-dependent regulator in Chlamydia, can bind to the trpRBA intergenic region upstream of the alternative trpBA promoter to repress transcription. Simultaneously, YtgR binding promotes the termination of transcripts from the primary promoter upstream of trpR. This is the first description of an iron-dependent mechanism regulating prokaryotic tryptophan biosynthesis that may indicate the existence of novel approaches to gene regulation and stress response in Chlamydia.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Amanda J Brinkworth
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Rey Carabeo
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| |
Collapse
|
20
|
Eder T, Kobus S, Stallmann S, Stepanow S, Köhrer K, Hegemann JH, Rattei T. Genome sequencing of Chlamydia trachomatis serovars E and F reveals substantial genetic variation. Pathog Dis 2018; 75:4657175. [PMID: 29186396 PMCID: PMC5827700 DOI: 10.1093/femspd/ftx120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Chlamydia trachomatis (Ctr) is a bacterial pathogen that causes ocular, urogenital and lymph system infections in humans. It is highly abundant and among its serovars, E, F and D are most prevalent in sexually transmitted disease. However, the number of publicly available genome sequences of the serovars E and F, and thereby our knowledge about the molecular architecture of these serovars, is low. Here we sequenced the genomes of six E and F clinical isolates and one E lab strain, in order to study the genetic variance in these serovars. As observed before, the genomic variation inside the Ctr genomes is very low and the phylogenetic placement in comparison to publicly available genomes is as expected by ompA gene serotyping. However, we observed a large InDel carrying four to five open reading frames in one clinical E sample and in the E lab strain. We have also observed substantial variation on nucleotide and amino acid levels, especially in membrane proteins and secreted proteins. Furthermore, these two groups of proteins are also target for recombination events. One clinical F isolate was genetically heterogeneous and revealed the highest differences on nucleotide level in the pmpE gene.
Collapse
Affiliation(s)
- Thomas Eder
- Ludwig Boltzmann Institute for Cancer Research, Währinger Straße 13A, 1090 Vienna, Austria.,CUBE Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Stefanie Kobus
- Institute of Functional Microbial Genomics, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sonja Stallmann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stefanie Stepanow
- Biological-Medical Research Center, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Karl Köhrer
- Biological-Medical Research Center, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thomas Rattei
- CUBE Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
21
|
The Chlamydia trachomatis PmpD adhesin forms higher order structures through disulphide-mediated covalent interactions. PLoS One 2018; 13:e0198662. [PMID: 29912892 PMCID: PMC6005502 DOI: 10.1371/journal.pone.0198662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen, and the leading cause of infectious blindness worldwide. We have recently shown that immunization with the highly conserved antigenic passenger domain of recombinant Ct polymorphic membrane protein D (rPmpD) is protective in the mouse model of Ct genital tract infection, and previously, that ocular anti-rPmpD antibodies are elicited following vaccination. However, the mechanisms governing the assembly and structure-function relationship of PmpD are unknown. Here, we provide a biophysical analysis of this immunogenic 65 kDa passenger domain fragment of PmpD. Using differential cysteine labeling coupled with LC-MS/MS analysis, we show that widespread intra- and intermolecular disulphide interactions play important roles in the preservation of native monomeric secondary structure and the formation of higher-order oligomers. While it has been proposed that FxxN and GGA(I, L,V) repeat motifs in the Pmp21 ortholog in Chlamydia pneumoniae mediate self-interaction, no such role has previously been identified for cysteine residues in chlamydial Pmps. Further characterisation reveals that oligomeric proteoforms and rPmpD monomers adopt β-sheet folds, consistent with previously described Gram-negative bacterial type V secretion systems (T5SSs). We also highlight adhesin-like properties of rPmpD, showing that both soluble rPmpD and anti-rPmpD serum from immunized mice abrogate binding of rPmpD-coated beads to mammalian cells in a dose-dependent fashion. Hence, our study provides further evidence that chlamydial Pmps may function as adhesins, while elucidating yet another important mechanism of self-association of bacterial T5SS virulence factors that may be unique to the Chlamydiaceae.
Collapse
|
22
|
Patton DL, Sweeney YC, Baldessari AE, Cles L, Kari L, Sturdevant GL, Yang C, Caldwell HD. The Chlamydia trachomatis Plasmid and CT135 Virulence Factors Are Not Essential for Genital Tract Infection or Pathology in Female Pig-Tailed Macaques. Infect Immun 2018; 86:e00121-18. [PMID: 29463617 PMCID: PMC5913843 DOI: 10.1128/iai.00121-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/11/2018] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia trachomatis plasmid and inclusion membrane protein CT135 are virulence factors in the pathogenesis of murine female genital tract infection. To determine if these virulence factors play a similar role in female nonhuman primates, we infected pig-tailed macaques with the same C. trachomatis strains shown to be important in the murine model. Wild-type C. trachomatis and its isogenic mutant strain deficient in both plasmid and CT135 were used to infect macaques. Macaques were given primary and repeated cervicovaginal challenges with the wild-type and mutant strains. The infection rate, infection duration, and antibody response were similar among macaques infected with both strains. Unexpectedly, colposcopy, laparoscopy, and histologic analysis revealed no substantial genital tract pathology following either primary or repeated cervicovaginal challenges. Cytokine analysis of cervicovaginal secretions from both challenged groups revealed low concentrations of interleukin 1β (IL-1β) and elevated levels of the interleukin 1 receptor agonist (IL-1RA). We propose that an imbalance of IL-1β and IL-1RA in macaques is the reason for the mild inflammatory responses observed in infected urogenital tissues. Thus, understanding the pathobiology of chlamydial infection requires a better understanding of host epigenetic and chlamydial genetic factors. Our findings also have implications for understanding the high frequency of asymptomatic infections in humans.
Collapse
Affiliation(s)
- Dorothy L Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Yvonne C Sweeney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Audrey E Baldessari
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Linda Cles
- Chlamydia Reference Laboratory, University of Washington, Seattle, Washington, USA
| | - Laszlo Kari
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Gail L Sturdevant
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Chunfu Yang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Harlan D Caldwell
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Last AR, Pickering H, Roberts CH, Coll F, Phelan J, Burr SE, Cassama E, Nabicassa M, Seth-Smith HMB, Hadfield J, Cutcliffe LT, Clarke IN, Mabey DCW, Bailey RL, Clark TG, Thomson NR, Holland MJ. Population-based analysis of ocular Chlamydia trachomatis in trachoma-endemic West African communities identifies genomic markers of disease severity. Genome Med 2018; 10:15. [PMID: 29482619 PMCID: PMC5828069 DOI: 10.1186/s13073-018-0521-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis (Ct) is the most common infectious cause of blindness and bacterial sexually transmitted infection worldwide. Ct strain-specific differences in clinical trachoma suggest that genetic polymorphisms in Ct may contribute to the observed variability in severity of clinical disease. METHODS Using Ct whole genome sequences obtained directly from conjunctival swabs, we studied Ct genomic diversity and associations between Ct genetic polymorphisms with ocular localization and disease severity in a treatment-naïve trachoma-endemic population in Guinea-Bissau, West Africa. RESULTS All Ct sequences fall within the T2 ocular clade phylogenetically. This is consistent with the presence of the characteristic deletion in trpA resulting in a truncated non-functional protein and the ocular tyrosine repeat regions present in tarP associated with ocular tissue localization. We have identified 21 Ct non-synonymous single nucleotide polymorphisms (SNPs) associated with ocular localization, including SNPs within pmpD (odds ratio, OR = 4.07, p* = 0.001) and tarP (OR = 0.34, p* = 0.009). Eight synonymous SNPs associated with disease severity were found in yjfH (rlmB) (OR = 0.13, p* = 0.037), CTA0273 (OR = 0.12, p* = 0.027), trmD (OR = 0.12, p* = 0.032), CTA0744 (OR = 0.12, p* = 0.041), glgA (OR = 0.10, p* = 0.026), alaS (OR = 0.10, p* = 0.032), pmpE (OR = 0.08, p* = 0.001) and the intergenic region CTA0744-CTA0745 (OR = 0.13, p* = 0.043). CONCLUSIONS This study demonstrates the extent of genomic diversity within a naturally circulating population of ocular Ct and is the first to describe novel genomic associations with disease severity. These findings direct investigation of host-pathogen interactions that may be important in ocular Ct pathogenesis and disease transmission.
Collapse
Affiliation(s)
- A. R. Last
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - H. Pickering
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - C. h. Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - F. Coll
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - J. Phelan
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - S. E. Burr
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia, Fajara, Gambia
| | - E. Cassama
- Programa Nacional de Saúde de Visão, Ministério de Saúde Publica, Bissau, Guinea-Bissau
| | - M. Nabicassa
- Programa Nacional de Saúde de Visão, Ministério de Saúde Publica, Bissau, Guinea-Bissau
| | - H. M. B. Seth-Smith
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Clinical Microbiology, Universitätsspital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - J. Hadfield
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - L. T. Cutcliffe
- Molecular Microbiology Group, University of Southampton Medical School, Southampton, UK
| | - I. N. Clarke
- Molecular Microbiology Group, University of Southampton Medical School, Southampton, UK
| | - D. C. W. Mabey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - R. L. Bailey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - T. G. Clark
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - N. R. Thomson
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - M. J. Holland
- Clinical Research Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| |
Collapse
|
24
|
Piñeiro L, Isaksson J, Zapico M, Cilla G, Herrmann B. Chlamydia trachomatis genotypes A and B from urogenital specimens of patients in Spain: molecular characterization. Clin Microbiol Infect 2018; 24:910.e5-910.e8. [PMID: 29427803 DOI: 10.1016/j.cmi.2018.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/11/2018] [Accepted: 01/23/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Chlamydia trachomatis ompA genotypes A and B, primarily associated with trachoma, were unexpectedly detected in urogenital samples of patients in Spain, a trachoma-free country. In this study, we aimed to explain this finding using analysis of organotropism-related genes and a multilocus sequence typing (MLST) technique. METHODS C. trachomatis genotypes A or B were detected in 8/930 (0.9%) infection episodes between 2006 and 2012. In these strains, organotropism-related genes (polymorphic membrane protein gene H, tryptophan synthase gene A, CTA0934, and cytotoxin) were studied. Further, the strains were analysed by MLST, using a polymerase chain reaction that amplifies five highly variable genomic loci (hctB, CT058, CT144, CT172, and pbpB). Amplicons were sequenced and phylogenetic analysis was conducted. RESULTS Seven strains were detected in the eight infection episodes (in one patient, an identical strain being found in two episodes). Analysis of organotropism-related genes showed that these strains shared genetic features characteristic of genitotropic genotypes but not of trachoma strains. Three strains of genotype A showed a unique and new MLST-sequence type (ST551, allele profile 8-8-2-27-69). The four strains of genotype B belonged to ST138. CONCLUSIONS C. trachomatis ompA genotypes A and B associated with trachoma, but detected sporadically in urogenital samples in trachoma-free countries, may be the result of recombination between strains adapted to trachoma and strains adapted to sexual transmission.
Collapse
Affiliation(s)
- L Piñeiro
- Microbiology Department, Hospital Universitario Donostia-Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Spain.
| | - J Isaksson
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M Zapico
- Microbiology Department, Hospital Universitario Donostia-Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Spain
| | - G Cilla
- Microbiology Department, Hospital Universitario Donostia-Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Spain; Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain
| | - B Herrmann
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Guo W, Jelocnik M, Li J, Sachse K, Polkinghorne A, Pannekoek Y, Kaltenboeck B, Gong J, You J, Wang C. From genomes to genotypes: molecular epidemiological analysis of Chlamydia gallinacea reveals a high level of genetic diversity for this newly emerging chlamydial pathogen. BMC Genomics 2017; 18:949. [PMID: 29212448 PMCID: PMC5717833 DOI: 10.1186/s12864-017-4343-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia (C.) gallinacea is a recently identified bacterium that mainly infects domestic chickens. Demonstration of C. gallinacea in human atypical pneumonia suggests its zoonotic potential. Its prevalence in chickens exceeds that of C. psittaci, but genetic and genomic research on C. gallinacea is still at the beginning. In this study, we conducted whole-genome sequencing of C. gallinacea strain JX-1 isolated from an asymptomatic chicken, and comparative genomic analysis between C. gallinacea strains and related chlamydial species. RESULTS The genome of C. gallinacea JX-1 was sequenced by single-molecule, real-time technology and is comprised of a 1,059,522-bp circular chromosome with an overall G + C content of 37.93% and sequence similarity of 99.4% to type strain 08-1274/3. In addition, a plasmid designated pJX-1, almost identical to p1274 of the type strain, except for two point mutations, was only found in field strains from chicken, but not in other hosts. In contrast to chlamydial species with notably variable polymorphic membrane protein (pmp) genes and plasticity zone (PZ), these regions were conserved in both C. gallinacea strains. There were 15 predicted pmp genes, but only B, A, E1, H, G1 and G2 were apparently intact in both strains. In comparison to chlamydial species where the PZ may be up to 50 kbp, C. gallinacea strains displayed gene content reduction in the PZ (14 kbp), with strain JX-1 having a premature STOP codon in the cytotoxin (tox) gene, while tox gene is intact in the type strain. In multilocus sequence typing (MLST), 15 C. gallinacea STs were identified among 25 strains based on cognate MLST allelic profiles of the concatenated sequences. The type strain and all Chinese strains belong to two distinct phylogenetic clades. Clade of the Chinese strains separated into 14 genetically distinct lineages, thus revealing considerable genetic diversity of C. gallinacea strains in China. CONCLUSIONS In this first detailed comparative genomic analysis of C. gallinacea, we have provided evidence for substantial genetic diversity among C. gallinacea strains. How these genetic polymorphisms affect C. gallinacea biology and pathogenicity should be addressed in future studies that focus on phylogenetics and host adaption of this enigmatic bacterial agent.
Collapse
Affiliation(s)
- Weina Guo
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
- College of Animal Science, Anhui Science and Technology University, Maanshan, Anhui China
| | - Martina Jelocnik
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD Australia
| | - Jing Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
| | - Konrad Sachse
- Institute of Bioinformatics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD Australia
| | - Yvonne Pannekoek
- Department of Microbiology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu China
| | - Jinfeng You
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
| | - Chengming Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu 225009 People’s Republic of China
- College of Veterinary Medicine, Auburn University, Auburn, AL USA
| |
Collapse
|
26
|
Al-Zeer MA, Xavier A, Abu Lubad M, Sigulla J, Kessler M, Hurwitz R, Meyer TF. Chlamydia trachomatis Prevents Apoptosis Via Activation of PDPK1-MYC and Enhanced Mitochondrial Binding of Hexokinase II. EBioMedicine 2017; 23:100-110. [PMID: 28803120 PMCID: PMC5605330 DOI: 10.1016/j.ebiom.2017.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
The intracellular human bacterial pathogen Chlamydia trachomatis pursues effective strategies to protect infected cells against death-inducing stimuli. Here, we show that Chlamydia trachomatis infection evokes 3-phosphoinositide-dependent protein kinase-1 (PDPK1) signaling to ensure the completion of its developmental cycle, further leading to the phosphorylation and stabilization of MYC. Using biochemical approaches and imaging we demonstrate that Chlamydia-induced PDPK1-MYC signaling induces host hexokinase II (HKII), which becomes enriched and translocated to the mitochondria. Strikingly, preventing the HKII interaction with mitochondria using exogenous peptides triggers apoptosis of infected cells as does inhibiting either PDPK1 or MYC, which also disrupts intracellular development of Chlamydia trachomatis. These findings identify a previously unknown pathway activated by Chlamydia infection, which exhibits pro-carcinogenic features. Targeting the PDPK1-MYC-HKII-axis may provide a strategy to overcome therapeutic resistance of infection.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Audrey Xavier
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; The Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mohammad Abu Lubad
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Mu'tah University, Faculty of Medicine, Al-Karak, Jordan
| | - Janine Sigulla
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mirjana Kessler
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robert Hurwitz
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
27
|
Abstract
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710; .,Centre de Recherche des Cordeliers, INSERM U1138, Paris 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.,Université Pierre et Marie Curie, Paris 75005, France
| | - Raphael H Valdivia
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
28
|
Sadhasivam A, Vetrivel U. Genome-wide codon usage profiling of ocular infective Chlamydia trachomatis serovars and drug target identification. J Biomol Struct Dyn 2017. [PMID: 28627970 DOI: 10.1080/07391102.2017.1343685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis (C.t) is a Gram-negative obligate intracellular bacteria and is a major causative of infectious blindness and sexually transmitted diseases. Among the varied serovars of this organism, A, B and C are reported as prominent ocular pathogens. Genomic studies of these strains shall aid in deciphering potential drug targets and genomic influence on pathogenesis. Hence, in this study we performed deep statistical profiling of codon usage in these serovars. The overall base composition analysis reveals that these serovars are over biased to AU than GC. Similarly, relative synonymous codon usage also showed preference towards A/U ending codons. Parity Rule 2 analysis inferred unequal distribution of AT and GC, indicative of other unknown factors acting along with mutational pressure to influence codon usage bias (CUB). Moreover, absolute quantification of CUB also revealed lower bias across these serovars. The effect of natural selection on CUB was also confirmed by neutrality plot, reinforcing natural selection under mutational pressure turned to be a pivotal role in shaping the CUB in the strains studied. Correspondence analysis (COA) clarified that, C.t C/TW-3 to show a unique trend in codon usage variation. Host influence analysis on shaping the codon usage pattern also inferred some speculative relativity. In a nutshell, our finding suggests that mutational pressure is the dominating factor in shaping CUB in the strains studied, followed by natural selection. We also propose potential drug targets based on cumulative analysis of strand bias, CUB and human non-homologue screening.
Collapse
Affiliation(s)
- Anupriya Sadhasivam
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya , Chennai 600 006 , Tamil Nadu , India
| | - Umashankar Vetrivel
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya , Chennai 600 006 , Tamil Nadu , India
| |
Collapse
|
29
|
Turingan RS, Kaplun L, Krautz-Peterson G, Norsworthy S, Zolotova A, Joseph SJ, Read TD, Dean D, Tan E, Selden RF. Rapid detection and strain typing of Chlamydia trachomatis using a highly multiplexed microfluidic PCR assay. PLoS One 2017; 12:e0178653. [PMID: 28562672 PMCID: PMC5451082 DOI: 10.1371/journal.pone.0178653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/16/2017] [Indexed: 11/19/2022] Open
Abstract
Nucleic acid amplification tests (NAATs) are recommended by the CDC for detection of Chlamydia trachomatis (Ct) urogenital infections. Current commercial NAATs require technical expertise and sophisticated laboratory infrastructure, are time-consuming and expensive, and do not differentiate the lymphogranuloma venereum (LGV) strains that require a longer duration of treatment than non-LGV strains. The multiplexed microfluidic PCR-based assay presented in this work simultaneously interrogates 13 loci to detect Ct and identify LGV and non-LGV strain-types. Based on amplified fragment length polymorphisms, the assay differentiates LGV, ocular, urogenital, and proctocolitis clades, and also serovars L1, L2, and L3 within the LGV group. The assay was evaluated in a blinded fashion using 95 clinical swabs, with 76 previously reported as urogenital Ct-positive samples and typed by ompA genotyping and/or Multi-Locus Sequence Typing. Results of the 13-plex assay showed that 51 samples fell within urogenital clade 2 or 4, 24 samples showed both clade 2 and 4 signatures, indicating possible mixed infection, gene rearrangement, or inter-clade recombination, and one sample was a noninvasive trachoma biovar (either a clade 3 or 4). The remaining 19 blinded samples were correctly identified as LGV clade 1 (3), ocular clade 3 (4), or as negatives (12). To date, no NAAT assay can provide a point-of-care applicable turnaround time for Ct detection while identifying clinically significant Ct strain types to inform appropriate treatment. Coupled with rapid DNA processing of clinical swabs (approximately 60 minutes from swab-in to result-out), the assay has significant potential as a rapid POC diagnostic for Ct infections.
Collapse
Affiliation(s)
| | - Ludmila Kaplun
- NetBio, Waltham, Massachusetts, United States of America
| | | | | | - Anna Zolotova
- NetBio, Waltham, Massachusetts, United States of America
| | - Sandeep J. Joseph
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Timothy D. Read
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- University of California at San Francisco School of Medicine, San Francisco, California, United States of America
- University of California at Berkeley and University of California at San Francisco Joint Graduate Program in Bioengineering, Berkeley, California, United States of America
| | - Eugene Tan
- NetBio, Waltham, Massachusetts, United States of America
| | | |
Collapse
|
30
|
Feng L, Lu X, Yu Y, Wang T, Luo S, Sun Z, Duan Q, Wang N, Song L. Survey, Culture, and Genome Analysis of Ocular Chlamydia trachomatis in Tibetan Boarding Primary Schools in Qinghai Province, China. Front Cell Infect Microbiol 2017; 6:207. [PMID: 28119858 PMCID: PMC5220689 DOI: 10.3389/fcimb.2016.00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/23/2016] [Indexed: 11/13/2022] Open
Abstract
Trachoma, the leading infectious cause of blindness worldwide, is an ancient human disease. Its existence in China can be traced back to as early as the twenty-seventh century BC. In modern China, the overall prevalence of trachoma has dramatically reduced, but trachoma is still endemic in many areas of the country. Here, we report that 26 (8%) of 322 students from two rural boarding schools of Qinghai province, west China, were identified as having ocular C. trachomatis infection; and 15 ocular C. trachomatis strains were isolated from these trachoma patients. Chlamydiae in 37 clinical samples were genotyped as type B based on ompA gene analyses. Three ompA variants with one or two in-between SNP differences in the second or fourth variable domain were found. C. trachomatis strains QH111L and QH111R were from the same patient's left and right conjunctival swabs, respectively, but their ompA genes have a non-synonymous base difference in the second variable domain. Moreover, this SNP only exists in this single sample, suggesting QH111L is a newly emerged ompA variant. Interestingly, chromosomal phylogeny analysis found QH111L clusters between a branch of two type B strains and a branch of both A and C strains, but is significantly divergent from both branches. Comparative chromosome analysis found that compared to sequences of reference B/TZ1A828/OT strain, 12 of 22 QH111L's chromosomal genes exhibiting more than nine SNPs have the best homology with reciprocal genes of UGT strains while 9 of 22 genes are closest to those of type C strains. Consistent with findings of UGT-type genetic features in the chromosome, the QH111L plasmid appears to be intermediate between UGT and classical ocular plasmids due to the existence of UGT-type SNPs in the QH111L plasmid. Moreover, the QH111L strain has a unique evolutionarily older cytotoxin region compared to cytotoxin regions of other C. trachomatis strains. The genome analyses suggest that the QH111L strain is derived from recombinations between UGT and classical ocular ancestors. This is the first study of culture and characterization of ocular C. trachomatis in Qinghai Tibetan areas.
Collapse
Affiliation(s)
- Le Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Xinxin Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Shengdong Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Zhihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Qing Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University Beijing, China
| | - Lihua Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
31
|
Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence. Curr Top Microbiol Immunol 2017; 412:133-158. [PMID: 29090367 DOI: 10.1007/82_2017_76] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obligate intracellular pathogens in the family Chlamydiaceae infect taxonomically diverse eukaryotes ranging from amoebae to mammals. However, many fundamental aspects of chlamydial cell biology and pathogenesis remain poorly understood. Genetic dissection of chlamydial biology has historically been hampered by a lack of genetic tools. Exploitation of the ability of chlamydia to recombine genomic material by lateral gene transfer (LGT) ushered in a new era in chlamydia research. With methods to map mutations in place, genetic screens were able to assign functions and phenotypes to specific chlamydial genes. Development of an approach for stable transformation of chlamydia also provided a mechanism for gene delivery and platforms for disrupting chromosomal genes. Here, we explore how these and other tools have been used to test hypotheses concerning the functions of known chlamydial virulence factors and discover the functions of completely uncharacterized genes. Refinement and extension of the existing genetic tools to additional Chlamydia spp. will substantially advance understanding of the biology and pathogenesis of this important group of pathogens.
Collapse
|
32
|
Zhong G. Chlamydial Plasmid-Dependent Pathogenicity. Trends Microbiol 2016; 25:141-152. [PMID: 27712952 DOI: 10.1016/j.tim.2016.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Most Chlamydia species carry a 7.5kb plasmid encoding eight open reading frames conventionally called plasmid glycoproteins 1-8 or pGP1-8. Although the plasmid is not critical for chlamydial growth in vitro, its role in chlamydial pathogenesis is clearly demonstrated in the genital tracts of mice infected with Chlamydia muridarum, a model for investigating the human pathogen Chlamydia trachomatis. Plasmid-free C. trachomatis is also attenuated in both the mouse genital tract and nonhuman primate ocular tissue. Deficiency in pGP3 alone, which is regulated by pGP4, largely reproduced the in vivo but not in vitro phenotypes of the plasmid-free organisms, suggesting that pGP3 is a key in vivo virulence factor. The positive and negative regulations of some chromosomal genes by pGP4 and pGP5, respectively, may allow the plasmid to promote chlamydial adaptation to varied animal tissue environments. The focus of this review is to summarize the progress on the pathogenic functions of the plasmid-encoded open reading frames, which may motivate further investigation of the molecular mechanisms of chlamydial pathogenicity and development of medical utility of the chlamydial plasmid system.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
33
|
Beyond Tryptophan Synthase: Identification of Genes That Contribute to Chlamydia trachomatis Survival during Gamma Interferon-Induced Persistence and Reactivation. Infect Immun 2016; 84:2791-801. [PMID: 27430273 DOI: 10.1128/iai.00356-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells.
Collapse
|
34
|
Van Lent S, De Vos WH, Huot Creasy H, Marques PX, Ravel J, Vanrompay D, Bavoil P, Hsia RC. Analysis of Polymorphic Membrane Protein Expression in Cultured Cells Identifies PmpA and PmpH of Chlamydia psittaci as Candidate Factors in Pathogenesis and Immunity to Infection. PLoS One 2016; 11:e0162392. [PMID: 27631978 PMCID: PMC5025070 DOI: 10.1371/journal.pone.0162392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
The polymorphic membrane protein (Pmp) paralogous families of Chlamydia trachomatis, Chlamydia pneumoniae and Chlamydia abortus are putative targets for Chlamydia vaccine development. To determine whether this is also the case for Pmp family members of C. psittaci, we analyzed transcription levels, protein production and localization of several Pmps of C. psittaci. Pmp expression profiles were characterized using quantitative real-time PCR (RT-qPCR), immunofluorescence (IF) and immuno-electron microscopy (IEM) under normal and stress conditions. We found that PmpA was highly produced in all inclusions as early as 12 hpi in all biological replicates. In addition, PmpA and PmpH appeared to be unusually accessible to antibody as determined by both immunofluorescence and immuno-electron microscopy. Our results suggest an important role for these Pmps in the pathogenesis of C. psittaci, and make them promising candidates in vaccine development.
Collapse
Affiliation(s)
- Sarah Van Lent
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- * E-mail:
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Heather Huot Creasy
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Unites States of America
| | - Patricia X. Marques
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, Unites States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Unites States of America
| | - Daisy Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Patrik Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, Unites States of America
| | - Ru-ching Hsia
- University of Maryland, Baltimore, Electron Microscopy Core Imaging Facility, Maryland, Unites States of America
| |
Collapse
|
35
|
Abstract
Etiology, transmission and protection: Chlamydia
trachomatis is the leading cause of bacterial sexually transmitted
infection (STI) globally. However, C. trachomatis also causes
trachoma in endemic areas, mostly Africa and the Middle East, and is a leading
cause of preventable blindness worldwide. Epidemiology, incidence and
prevalence: The World Health Organization estimates 131 million
new cases of C. trachomatis genital infection occur annually.
Globally, infection is most prevalent in young women and men (14-25 years),
likely driven by asymptomatic infection, inadequate partner treatment and
delayed development of protective immunity.
Pathology/Symptomatology: C.
trachomatis infects susceptible squamocolumnar or transitional
epithelial cells, leading to cervicitis in women and urethritis in men. Symptoms
are often mild or absent but ascending infection in some women may lead to
Pelvic Inflammatory Disease (PID), resulting in reproductive sequelae such as
ectopic pregnancy, infertility and chronic pelvic pain. Complications of
infection in men include epididymitis and reactive arthritis.
Molecular mechanisms of infection: Chlamydiae
manipulate an array of host processes to support their obligate intracellular
developmental cycle. This leads to activation of signaling pathways resulting in
disproportionate influx of innate cells and the release of tissue damaging
proteins and pro-inflammatory cytokines. Treatment and
curability: Uncomplicated urogenital infection is treated with
azithromycin (1 g, single dose) or doxycycline (100 mg twice daily x 7 days).
However, antimicrobial treatment does not ameliorate established disease. Drug
resistance is rare but treatment failures have been described. Development of an
effective vaccine that protects against upper tract disease or that limits
transmission remains an important goal.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Morgan E Ferone
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
36
|
Draft Genome Sequence of Francisella tularensis Strain 410108 from Tibet, China. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01489-15. [PMID: 26679594 PMCID: PMC4683239 DOI: 10.1128/genomea.01489-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Francisella tularensis is the etiological agent of the potentially fatal disease tularemia. Here, we report the draft genome sequence of a virulent human isolate from Tibet, China in 1962, F. tularensis strain 410108, an intermediate-genotype strain of F. tularensis subsp. holarctica between biovar japonica and non-japonica strains in the world.
Collapse
|
37
|
Comparative genomic analysis of human Chlamydia pneumoniae isolates from respiratory, brain and cardiac tissues. Genomics 2015; 106:373-83. [DOI: 10.1016/j.ygeno.2015.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/14/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022]
|
38
|
Vasilevsky S, Stojanov M, Greub G, Baud D. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Virulence 2015; 7:11-22. [PMID: 26580416 DOI: 10.1080/21505594.2015.1111509] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pmps (Polymorphic Membrane Proteins) are a group of membrane bound surface exposed chlamydial proteins that have been characterized as autotransporter adhesins and are important in the initial phase of chlamydial infection. These proteins all contain conserved GGA (I, L, V) and FxxN tetrapeptide motifs in the N-terminal portion of each protein. All chlamydial species express Pmps. Even in the chlamydia-related bacteria Waddlia chondrophila, a Pmp-like adhesin has been identified, demonstrating the importance of Pmps in Chlamydiales biology. Chlamydial species vary in the number of pmp genes and their differentially regulated expression during the infectious cycle or in response to stress. Studies have also demonstrated that Pmps are able to induce innate immune functional responses in infected cells, including production of IL-8, IL-6 and MCP-1, by activating the transcription factor NF-κB. Human serum studies have indicated that although anti-Pmp specific antibodies are produced in response to a chlamydial infection, the response is variable depending on the Pmp protein. In C. trachomatis, PmpB, PmpC, PmpD and PmpI were the proteins eliciting the strongest immune response among adolescents with and without pelvic inflammatory disease (PID). In contrast, PmpA and PmpE elicited the weakest antibody response. Interestingly, there seems to be a gender bias for Pmp recognition with a stronger anti-Pmp reactivity in male patients. Furthermore, anti-PmpA antibodies might contribute to adverse pregnancy outcomes, at least among women with PID. In vitro studies indicated that dendritic cells infected with C. muridarum were able to present PmpG and PmpF on their MHC class II receptors and T cells were able to recognize the MHC class-II bound peptides. In addition, vaccination with PmpEFGH and Major Outer Membrane Protein (MOMP) significantly protected mice against a genital tract C. muridarum infection, suggesting that Pmps may be an important component of a multi-subunit chlamydial vaccine. Thus, Pmps might be important not only for the pathogenesis of chlamydial infection, but also as potential candidate vaccine proteins.
Collapse
Affiliation(s)
- Sam Vasilevsky
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Milos Stojanov
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| | - Gilbert Greub
- b Center for Research on Intracellular Bacteria; Institute of Microbiology; Faculty of Biology and Medicine; University of Lausanne and University Hospital ; Lausanne , Switzerland
| | - David Baud
- a Materno-fetal and Obstetrics Research Unit ; Department of Obstetrics and Gynecology; Maternity; University Hospital ; Lausanne , Switzerland
| |
Collapse
|
39
|
Draft Genome Sequence of Burkholderia pseudomallei Strain 350105, Isolated in Hainan, China, in 1976. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01162-15. [PMID: 26472827 PMCID: PMC4611679 DOI: 10.1128/genomea.01162-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Burkholderia pseudomallei is the etiological agent of the potentially fatal disease melioidosis. Here, we report the draft genome sequence of a virulent water isolate obtained from the Hainan Province of China in 1976, B. pseudomallei strain 350105.
Collapse
|
40
|
Resolution of Chlamydia trachomatis Infection Is Associated with a Distinct T Cell Response Profile. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1206-18. [PMID: 26446421 DOI: 10.1128/cvi.00247-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/11/2015] [Indexed: 12/26/2022]
Abstract
Chlamydia trachomatis is the causative agent of the most frequently reported bacterial sexually transmitted infection, the total burden of which is underestimated due to the asymptomatic nature of the infection. Untreated C. trachomatis infections can cause significant morbidities, including pelvic inflammatory disease and tubal factor infertility (TFI). The human immune response against C. trachomatis, an obligate intracellular bacterium, is poorly characterized but is thought to rely on cell-mediated immunity, with CD4(+) and CD8(+) T cells implicated in protection. In this report, we present immune profiling data of subjects enrolled in a multicenter study of C. trachomatis genital infection. CD4(+) and CD8(+) T cells from subjects grouped into disease-specific cohorts were screened using a C. trachomatis proteomic library to identify the antigen specificities of recall T cell responses after natural exposure by measuring interferon gamma (IFN-γ) levels. We identified specific T cell responses associated with the resolution of infection, including unique antigens identified in subjects who spontaneously cleared infection and different antigens associated with C. trachomatis-related sequelae, such as TFI. These data suggest that novel and unique C. trachomatis T cell antigens identified in individuals with effective immune responses can be considered as targets for vaccine development, and by excluding antigens associated with deleterious sequelae, immune-mediated pathologies may be circumvented.
Collapse
|
41
|
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors. PLoS One 2015. [PMID: 26207372 PMCID: PMC4514472 DOI: 10.1371/journal.pone.0133420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict culture propagation to minimal passages and check the status of the CT135 genotype in order to avoid the selection of CT135-negative mutants, likely originating less virulent strains.
Collapse
|
42
|
Nunes A, Gomes JP, Karunakaran KP, Brunham RC. Bioinformatic Analysis of Chlamydia trachomatis Polymorphic Membrane Proteins PmpE, PmpF, PmpG and PmpH as Potential Vaccine Antigens. PLoS One 2015; 10:e0131695. [PMID: 26131720 PMCID: PMC4488443 DOI: 10.1371/journal.pone.0131695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis is the most important infectious cause of infertility in women with important implications in public health and for which a vaccine is urgently needed. Recent immunoproteomic vaccine studies found that four polymorphic membrane proteins (PmpE, PmpF, PmpG and PmpH) are immunodominant, recognized by various MHC class II haplotypes and protective in mouse models. In the present study, we aimed to evaluate genetic and protein features of Pmps (focusing on the N-terminal 600 amino acids where MHC class II epitopes were mapped) in order to understand antigen variation that may emerge following vaccine induced immune selection. We used several bioinformatics platforms to study: i) Pmps' phylogeny and genetic polymorphism; ii) the location and distribution of protein features (GGA(I, L)/FxxN motifs and cysteine residues) that may impact pathogen-host interactions and protein conformation; and iii) the existence of phase variation mechanisms that may impact Pmps' expression. We used a well-characterized collection of 53 fully-sequenced strains that represent the C. trachomatis serovars associated with the three disease groups: ocular (N=8), epithelial-genital (N=25) and lymphogranuloma venereum (LGV) (N=20). We observed that PmpF and PmpE are highly polymorphic between LGV and epithelial-genital strains, and also within populations of the latter. We also found heterogeneous representation among strains for GGA(I, L)/FxxN motifs and cysteine residues, suggesting possible alterations in adhesion properties, tissue specificity and immunogenicity. PmpG and, to a lesser extent, PmpH revealed low polymorphism and high conservation of protein features among the genital strains (including the LGV group). Uniquely among the four Pmps, pmpG has regulatory sequences suggestive of phase variation. In aggregate, the results suggest that PmpG may be the lead vaccine candidate because of sequence conservation but may need to be paired with another protective antigen (like PmpH) in order to prevent immune selection of phase variants.
Collapse
Affiliation(s)
- Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P. Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Karuna P. Karunakaran
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, Canada
| | - Robert C. Brunham
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, Canada
- * E-mail:
| |
Collapse
|
43
|
Mutational Analysis of the Chlamydia muridarum Plasticity Zone. Infect Immun 2015; 83:2870-81. [PMID: 25939505 DOI: 10.1128/iai.00106-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/22/2015] [Indexed: 01/23/2023] Open
Abstract
Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause trachoma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the murine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothesized that PZ genes might mediate the greater virulence and gamma interferon (IFN-γ) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog developed normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cytotoxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-γ sensitivity in cell culture or were profoundly attenuated in a murine genital tract infection model. Our results suggest that C. muridarum PZ genes are transcribed--and some may produce functional proteins--but are dispensable for infection of the murine genital tract.
Collapse
|
44
|
Kokes M, Dunn JD, Granek JA, Nguyen BD, Barker JR, Valdivia RH, Bastidas RJ. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 2015; 17:716-25. [PMID: 25920978 DOI: 10.1016/j.chom.2015.03.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/11/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022]
Abstract
Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole-genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins and modulates F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community.
Collapse
Affiliation(s)
- Marcela Kokes
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Joe Dan Dunn
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Joshua A Granek
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, 2424 Erwin Road, Suite 1102 Hock Plaza, Box 2721, Durham, NC 27710, USA
| | - Bidong D Nguyen
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Jeffrey R Barker
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA.
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Culture-independent genome sequencing of clinical samples reveals an unexpected heterogeneity of infections by Chlamydia pecorum. J Clin Microbiol 2015; 53:1573-81. [PMID: 25740768 DOI: 10.1128/jcm.03534-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
Chlamydia pecorum is an important global pathogen of livestock, and it is also a significant threat to the long-term survival of Australia's koala populations. This study employed a culture-independent DNA capture approach to sequence C. pecorum genomes directly from clinical swab samples collected from koalas with chlamydial disease as well as from sheep with arthritis and conjunctivitis. Investigations into single-nucleotide polymorphisms within each of the swab samples revealed that a portion of the reads in each sample belonged to separate C. pecorum strains, suggesting that all of the clinical samples analyzed contained mixed populations of genetically distinct C. pecorum isolates. This observation was independent of the anatomical site sampled and the host species. Using the genomes of strains identified in each of these samples, whole-genome phylogenetic analysis revealed that a clade containing a bovine and a koala isolate is distinct from other clades comprised of livestock or koala C. pecorum strains. Providing additional evidence to support exposure of koalas to Australian livestock strains, two minor strains assembled from the koala swab samples clustered with livestock strains rather than koala strains. Culture-independent probe-based genome capture and sequencing of clinical samples provides the strongest evidence yet to suggest that naturally occurring chlamydial infections are comprised of multiple genetically distinct strains.
Collapse
|
46
|
Borges V, Gomes JP. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation. INFECTION GENETICS AND EVOLUTION 2015; 32:74-88. [PMID: 25745888 DOI: 10.1016/j.meegid.2015.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
Lymphogranuloma venereum (LGV) is a human sexually transmitted disease caused by the obligate intracellular bacterium Chlamydia trachomatis (serovars L1-L3). LGV clinical manifestations range from severe ulcerative proctitis (anorectal syndrome), primarily caused by the epidemic L2b strains, to painful inguinal lymphadenopathy (the typical LGV bubonic form). Besides potential host-related factors, the differential disease severity and tissue tropism among LGV strains is likely a function of the genetic backbone of the strains. We aimed to characterize the genetic variability among LGV strains as strain- or serovar-specific mutations may underlie phenotypic signatures, and to investigate the mutational events that occurred throughout the pathoadaptation of the epidemic L2b lineage. By analyzing 20 previously published genomes from L1, L2, L2b and L3 strains and two new genomes from L2b strains, we detected 1497 variant sites and about 100 indels, affecting 453 genes and 144 intergenic regions, with 34 genes displaying a clear overrepresentation of nonsynonymous mutations. Effectors and/or type III secretion substrates (almost all of those described in the literature) and inclusion membrane proteins showed amino acid changes that were about fivefold more frequent than silent changes. More than 120 variant sites occurred in plasmid-regulated virulence genes, and 66% yielded amino acid changes. The identified serovar-specific variant sites revealed that the L2b-specific mutations are likely associated with higher fitness and pointed out potential targets for future highly discriminatory diagnostic/typing tests. By evaluating the evolutionary pathway beyond the L2b clonal radiation, we observed that 90.2% of the intra-L2b variant sites occurring in coding regions involve nonsynonymous mutations, where CT456/tarp has been the main target. Considering the progress on C. trachomatis genetic manipulation, this study may constitute an important contribution for prioritizing study targets for functional genomics aiming to dissect the impact of the identified intra-LGV polymorphisms on virulence or tropism dissimilarities among LGV strains.
Collapse
Affiliation(s)
- Vítor Borges
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
47
|
Abstract
Trachoma is the most common infectious cause of blindness. Repeated episodes of infection with Chlamydia trachomatis in childhood lead to severe conjunctival inflammation, scarring, and potentially blinding inturned eyelashes (trichiasis or entropion) in later life. Trachoma occurs in resource-poor areas with inadequate hygiene, where children with unclean faces share infected ocular secretions. Much has been learnt about the epidemiology and pathophysiology of trachoma. Integrated control programmes are implementing the SAFE Strategy: surgery for trichiasis, mass distribution of antibiotics, promotion of facial cleanliness, and environmental improvement. This strategy has successfully eliminated trachoma in several countries and global efforts are underway to eliminate blinding trachoma worldwide by 2020.
Collapse
Affiliation(s)
- Hugh R Taylor
- Melbourne School of Population and Global Health, University of Melbourne, Carlton, VIC, Australia.
| | - Matthew J Burton
- International Centre for Eye Health, Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Danny Haddad
- Global Vision Initiative, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Sheila West
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Heathcote Wright
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, VIC, Australia
| |
Collapse
|
48
|
Fournier PE, Dubourg G, Raoult D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med 2014; 6:114. [PMID: 25593594 PMCID: PMC4295418 DOI: 10.1186/s13073-014-0114-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The availability of genome sequences obtained using next-generation sequencing (NGS) has revolutionized the field of infectious diseases. Indeed, more than 38,000 bacterial and 5,000 viral genomes have been sequenced to date, including representatives of all significant human pathogens. These tremendous amounts of data have not only enabled advances in fundamental biology, helping to understand the pathogenesis of microorganisms and their genomic evolution, but have also had implications for clinical microbiology. Here, we first review the current achievements of genomics in the development of improved diagnostic tools, including those that are now available in the clinic, such as the design of PCR assays for the detection of microbial pathogens, virulence factors or antibiotic-resistance determinants, or the design of optimized culture media for 'unculturable' pathogens. We then review the applications of genomics to the investigation of outbreaks, either through the design of genotyping assays or the direct sequencing of the causative strains. Finally, we discuss how genomics might change clinical microbiology in the future.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| | - Gregory Dubourg
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, InsermU1095, Institut hospitalo-universitaire Méditerranée-Infection, Aix-Marseille University, Faculté de Medecine, 27 Blvd Jean Moulin, Marseille, 13385, cedex 5 France
| |
Collapse
|
49
|
Datta B, Njau F, Thalmann J, Haller H, Wagner AD. Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells. BMC Microbiol 2014; 14:209. [PMID: 25123797 PMCID: PMC4236547 DOI: 10.1186/s12866-014-0209-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background Chlamydia trachomatis is an intracellular bacteria which consist of three biovariants; trachoma (serovars A-C), urogenital (serovars D-K) and lymphogranuloma venereum (L1-L3), causing a wide spectrum of disease in humans. Monocytes are considered to disseminate this pathogen throughout the body while dendritic cells (DCs) play an important role in mediating immune response against bacterial infection. To determine the fate of C. trachomatis within human peripheral blood monocytes and monocyte-derived DCs, these two sets of immune cells were infected with serovars Ba, D and L2, representative of the three biovariants of C. trachomatis. Results Our study revealed that the different serovars primarily infect monocytes and DCs in a comparable fashion, however undergo differential infection outcome, serovar L2 being the only candidate to inflict active infection. Moreover, the C. trachomatis serovars Ba and D become persistent in monocytes while the serovars predominantly suffer degradation within DCs. Effects of persistence gene Indoleamine 2, 3-dioxygenase (IDO) was not clearly evident in the differential infection outcome. The heightened levels of inflammatory cytokines secreted by the chlamydial infection in DCs compared to monocytes seemed to be instrumental for this consequence. The immune genes induced in monocytes and DCs against chlamydial infection involves a different set of Toll-like receptors, indicating that distinct intracellular signalling pathways are adopted for immune response. Conclusion Our results demonstrate that the host pathogen interaction in chlamydia infection is not only serovar specific but manifests cell specific features, inducing separate immune response cascade in monocytes and DCs.
Collapse
|
50
|
Bachmann NL, Polkinghorne A, Timms P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol 2014; 22:464-72. [PMID: 24882432 DOI: 10.1016/j.tim.2014.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
Chlamydiaceae are obligate intracellular pathogens that have successfully evolved to colonize a diverse range of hosts. There are currently 11 described species of Chlamydia, most of which have a significant impact on the health of humans or animals. Expanding chlamydial genome sequence information has revolutionized our understanding of chlamydial biology, including aspects of their unique lifecycle, host-pathogen interactions, and genetic differences between Chlamydia strains associated with different host and tissue tropisms. This review summarizes the major highlights of chlamydial genomics and reflects on the considerable impact these have had on understanding the biology of chlamydial pathogens and the changing nature of genomics tools in the 'post-genomics' era.
Collapse
Affiliation(s)
- Nathan L Bachmann
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| |
Collapse
|