1
|
Kanipe C, Putz EJ, Palmer MV. Differential expression of vascular endothelial growth factor A (VEGFA) and M1 macrophage marker nitric oxide synthase 2 (NOS2) in lymph node granulomas of BCG-vaccinated and non-vaccinated cattle infected with Mycobacterium bovis. Tuberculosis (Edinb) 2025; 151:102609. [PMID: 39862443 DOI: 10.1016/j.tube.2025.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Bovine tuberculosis is mainly caused by Mycobacterium bovis. Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis which provides variable disease protection. Lesions have been characterized in infected cattle, but little comparison has been done with lesions which form in BCG-vaccinates. Here, in situ hybridization examined differences in expression of M. bovis RNA, inducible nitric oxide synthase 2, and vascular endothelial growth factor A in relation to vaccination status and granuloma grade, using two different groups of cattle. Data found no differences between vaccination groups or granuloma grade in average copies of M. bovis mRNA per μm2 of total granuloma area or per μm2 of necrotic areas. Within a vaccination group high-grade granulomas had more NOS2 per cell, per μm2 and a higher percentage of cells expressing NOS2 than low-grade granulomas. Non-vaccinates had a higher percentage of cells producing NOS2 than vaccinates. Differences in NOS2 expression varied by group. Vaccination status and granuloma grade did not affect the average copies of VEGFA per cell or the percent of cells expressing RNA, however VEGFA copies per μm2 varied between groups. These findings suggest NOS2 and VEGFA are likely not mechanisms of BCG vaccination protection but may impact disease severity.
Collapse
Affiliation(s)
- C Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA; Immunobiology Program, Iowa State University, Ames, IA, 50010, USA.
| | - E J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - M V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
2
|
Ackermann MR, Bannantine JP. Progress and persistence of diseases of high consequence to livestock in the United States. One Health 2024; 19:100865. [PMID: 39185352 PMCID: PMC11344017 DOI: 10.1016/j.onehlt.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The USDA/ARS-National Disease Center (NADC) will celebrate its 65th anniversary of existence in November 2026. NADC continues as one of the world's premier animal health research centers conducting basic and applied research on endemic diseases with economic impact on U.S. livestock and wildlife. This research center also supports a program studying important food safety pathogens such as Salmonella, E. coli and Campylobacter. NADC has contributed significantly to the elimination of a few diseases, notably hog cholera and milk fever, and made progress in reducing the impact of many other animal diseases through vaccines, therapies and managerial recommendations. Despite nearly 65 years of targeted research on these diseases and much progress, some of these continue to persist. The reasons for such persistence varies for each disease condition and they are often multifactorial involving host susceptibility, virulence and even environmental conditions. Individually and in aggregate, these disease conditions have a massive economic impact and can be devasting to animal producers, owners and individuals that become infected through zoonotic disease agents such as tuberculosis, leptospirosis and avian influenza. They also diminish the health, well-being and welfare of affected animals, which directly affects the food supply. The NADC is using all available technologies including genomic, biochemical, reverse genetics, and vaccine trials in the target host to combat these significant diseases. We review the progress and reasons for persistence of selected diseases and food safety pathogens as well as the progress and potential outcomes should research and programmatic plans to eliminate these disease conditions cease.
Collapse
Affiliation(s)
- Mark R. Ackermann
- US Department of Agriculture-Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - John P. Bannantine
- US Department of Agriculture-Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
3
|
Vosooghi K, Larypoor M, Sakhaee F, Ghazanfari Jajin M, Moghaddam S, Samieefar N, Rahbari Keramat R, Amiri Sabotki M, Fateh A. Distribution of nontuberculous mycobacteria in dental unit waterlines: A potential health hazard in the dental office. Microb Pathog 2024; 196:106963. [PMID: 39306050 DOI: 10.1016/j.micpath.2024.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND It is essential to control the microbiology of dental unit water lines (DUWs) to prevent the spread of nontuberculous mycobacteria (NTM) and associated oral diseases. Therefore, the objective of this study was to quantify the presence of NTM in the water of 112 DUWs from dental centers and 57 DUWs from individual dental offices in Tehran, Iran. METHODS A total of 169 water samples were collected from DUWs. After filtration through a 0.45 μm membrane, the samples were decontaminated with 0.005 % cetylpyridinium chloride and then cultured on two Lowenstein-Jensen media, incubated at 25 °C and 37 °C for 8 weeks. Positive cultures for mycobacteria were analyzed using phenotypic tests, and the NTM species were identified through 16S rDNA, rpoB, and hsp65 genes analysis. Drug resistance was also assessed. RESULTS Of the total isolates, 38 (34.5 %) were classified as slow-growing mycobacteria (SGM), while 72 (65.5 %) were categorized as rapid-growing mycobacteria (RGM). NTM isolates were identified using molecular tests, including M. chelonae, M. abscessus, M. lentiflavum, M. mucogenicum, M. fortuitum, M. kansasii, M. simiae, M. gordonae, M. conceptionense, M. phocaicum, M. porcinum, and M. aurum. The NTM counts ranged from 50 to >500 CFU/500 mL across these 188 samples, with a median of 350 CFU/500 mL. Additionally, we reported two cases of intraoral infection caused by M. abscessus and M. chelonae, where the source of infection was traced to NTM-contaminated DUWs. CONCLUSIONS The study found that most DUWs contained water contaminated with NTM, posing a potential health risk to humans. This research underscores the necessity of stringent quality control and certification of DUW water, with particular emphasis on ensuring the absence of NTM.
Collapse
Affiliation(s)
- Kimia Vosooghi
- Biology Department, Faculty of BioSciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohaddeseh Larypoor
- Department of Biotechnology, Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Sina Moghaddam
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Noosha Samieefar
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Mohsen Amiri Sabotki
- Imam Khomeini Hospital Complex, Tehran University of Medical Science, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Liebler-Tenorio EM, Wedlich N, Figl J, Köhler H, Ulrich R, Schröder C, Rissmann M, Grode L, Kaufmann SHE, Menge C. Challenge Dose Titration in a Mycobacterium bovis Infection Model in Goats. Int J Mol Sci 2024; 25:9799. [PMID: 39337287 PMCID: PMC11431947 DOI: 10.3390/ijms25189799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Goats are natural hosts of Mycobacterium (M.) bovis, and affected herds can be the cause of significant economic losses. Similarites in disease course and lesions of M. bovis infections in goats and M. tuberculosis in humans make goats good models for human tuberculosis. The aim of this investigation was to characterize M. bovis challenge models in goats. For this, goats were endobronchially inoculated with three doses of M. bovis or culture medium. Clinical signs, shedding, and immune responses were monitored until 146 days post inoculation (dpi). At necropsy, lesions were examined by computed tomography, histology, and bacteriological culture. Infected goats did not develop clinical signs. M. bovis was cultured from feces, but never from nasal swabs. IGRAs were positive from 28 dpi onwards, antibodies at 140 dpi, and SICCT at 146 dpi. The increase in CD25+, IFN-γ+, and IFN-γ-releasing T-cell subpopulations was time-related, but not dose-dependent. All infected goats developed paucibacillary granulomas in the lungs and regional lymph nodes. M. bovis was regularly cultured. Dose-dependent effects included the size of pulmonary lesions, caverns, intestinal lesions, and early generalization in the high-dose group. In summary, reproducible challenge models with dose-dependent differences in lesions were established, which may serve for testing vaccines for veterinary or medical use.
Collapse
Affiliation(s)
- Elisabeth M. Liebler-Tenorio
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| | - Nadine Wedlich
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| | - Julia Figl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (R.U.); (C.S.); (M.R.)
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (R.U.); (C.S.); (M.R.)
| | - Melanie Rissmann
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (R.U.); (C.S.); (M.R.)
| | - Leander Grode
- Serum Life Science Europe GmbH, 30659 Hannover, Germany;
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany;
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| |
Collapse
|
5
|
Wood AJ, Benton CH, Delahay RJ, Marion G, Palkopoulou E, Pooley CM, Smith GC, Kao RR. The utility of whole-genome sequencing to identify likely transmission pairs for pathogens with slow and variable evolution. Epidemics 2024; 48:100787. [PMID: 39197305 DOI: 10.1016/j.epidem.2024.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Pathogen whole-genome sequencing (WGS) has been used to track the transmission of infectious diseases in extraordinary detail, especially for pathogens that undergo fast and steady evolution, as is the case with many RNA viruses. However, for other pathogens evolution is less predictable, making interpretation of these data to inform our understanding of their epidemiology more challenging and the value of densely collected pathogen genome data uncertain. Here, we assess the utility of WGS for one such pathogen, in the "who-infected-whom" identification problem. We study samples from hosts (130 cattle, 111 badgers) with confirmed infection of M. bovis (causing bovine Tuberculosis), which has an estimated clock rate as slow as ∼0.1-1 variations per year. For each potential pathway between hosts, we calculate the relative likelihood that such a transmission event occurred. This is informed by an epidemiological model of transmission, and host life history data. By including WGS data, we shrink the number of plausible pathways significantly, relative to those deemed likely on the basis of life history data alone. Despite our uncertainty relating to the evolution of M. bovis, the WGS data are therefore a valuable adjunct to epidemiological investigations, especially for wildlife species whose life history data are sparse.
Collapse
Affiliation(s)
- A J Wood
- Roslin Institute, University of Edinburgh, United Kingdom
| | - C H Benton
- Animal & Plant Health Agency, United Kingdom
| | - R J Delahay
- Animal & Plant Health Agency, United Kingdom
| | - G Marion
- Biomathematics and Statistics Scotland, United Kingdom
| | | | - C M Pooley
- Biomathematics and Statistics Scotland, United Kingdom
| | - G C Smith
- Animal & Plant Health Agency, United Kingdom
| | - R R Kao
- Roslin Institute, University of Edinburgh, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom.
| |
Collapse
|
6
|
Guan J, Chan M, Rohonczy E. Evaluation of Pressurized Steam Disinfection of Surfaces Contaminated by Mycobacterium terrae: A Surrogate for Mycobacterium bovis. APPLIED BIOSAFETY 2023; 28:192-198. [PMID: 37746242 PMCID: PMC10517315 DOI: 10.1089/apb.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Introduction Decontamination of farms affected by bovine tuberculosis could be very challenging during outbreaks occurring in the winter with freezing temperatures. Steam treatment has been of practical interest, but information is needed on whether such treatment is able to inactivate the causative agent, Mycobacterium bovis. This study was to evaluate the use of pressurized steam for inactivation of Mycobacterium terrae, a surrogate for M. bovis on various surfaces. Methods Carrier disks made of steel, wood, or rubber were inoculated with 6.32 ± 0.38 log10 M. terrae. While being held at background temperatures of -20°C, 4°C, or 21°C, these carrier disks were treated with pressurized steam (120°C ± 5°C) for 5, 10, 15, or 20 s. Reduction in colony forming units of M. terrae and temperatures on the top and bottom surfaces of the disks were determined. Results Complete inactivation of 6 log10 M. terrae on steel and wood disks was achieved by 10 s of steam treatment at all three background temperatures. In comparison, 20 s of steam treatment was needed for the complete inactivation of mycobacteria on rubber disks. Corresponding to the longer treatment time required for mycobacterial inactivation, temperatures on the bottom surface of the rubber disks rose substantially slower than those of the steel and wood disks at all three background temperatures. Conclusion The results suggested that treatment with pressurized steam has potential for efficient and effective disinfection of surfaces contaminated by mycobacteria at or below freezing temperatures in winter.
Collapse
Affiliation(s)
- Jiewen Guan
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Canada
| | - Maria Chan
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Canada
| | - Elizabeth Rohonczy
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Canada
| |
Collapse
|
7
|
Moens C, Saegerman C, Fretin D, Marché S. Field evaluation of two commercial serological assays for detecting bovine tuberculosis. Res Vet Sci 2023; 159:125-132. [PMID: 37126914 DOI: 10.1016/j.rvsc.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Diagnosis of bovine tuberculosis in cattle is challenging due to complex immune host response to infection that limit the performance of available diagnostic tests. In this study, performance of two commercial serological assays developed to detect bovine tuberculosis were evaluated: Enferplex Bovine TB antibody kit including 11 antigens (EnferGroup, Ireland) and IDEXX M. bovis Ab kit (IDEXX, USA). The specificity value obtained with the ELISA IDEXX M. bovis Ab test was 97.1%, whereas it was 97.1% and 95.1% for the high specificity and sensitivity settings, respectively, with the Enferplex Bovine TB antibody kit. The sensitivity of the multiplexed Enferplex Bovine TB antibody test for SICCT-positive animals was higher (N = 172; 51.7% and 58.7% with high specificity and sensitivity settings, respectively) compared to the ELISA IDEXX M. bovis Ab test (sensitivity of 36.6%). "Antigen profiles" generated by the multiplexed Enferplex method showed that five out of 11 antigens present in the test were mostly identified as positive sera in cattle originating from bTB-outbreaks. In comparison, unique profiles appeared to be correlated with false positive results. However additional studies are needed to confirm the observed antigen profiles, and their potential use as an additional diagnostic tool. Serial interpretation of the two serological tests produced higher diagnostic specificity (>99%), reducing false positive results, which is essential for a screening test when the prevalence of bovine tuberculosis is low.
Collapse
Affiliation(s)
- Charlotte Moens
- Veterinary Bacteriology Service, Sciensano, Brussels B-1050, Belgium; Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège B-4000, Belgium
| | - David Fretin
- Veterinary Bacteriology Service, Sciensano, Brussels B-1050, Belgium
| | - Sylvie Marché
- Veterinary Bacteriology Service, Sciensano, Brussels B-1050, Belgium.
| |
Collapse
|
8
|
Soler-Camargo NC, Silva-Pereira TT, Zimpel CK, Camacho MF, Zelanis A, Aono AH, Patané JS, Dos Santos AP, Guimarães AMS. The rate and role of pseudogenes of the Mycobacterium tuberculosis complex. Microb Genom 2022; 8. [PMID: 36250787 DOI: 10.1099/mgen.0.000876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole-genome sequence analyses have significantly contributed to the understanding of virulence and evolution of the Mycobacterium tuberculosis complex (MTBC), the causative pathogens of tuberculosis. Most MTBC evolutionary studies are focused on single nucleotide polymorphisms and deletions, but rare studies have evaluated gene content, whereas none has comprehensively evaluated pseudogenes. Accordingly, we describe an extensive study focused on quantifying and predicting possible functions of MTBC and Mycobacterium canettii pseudogenes. Using NCBI's PGAP-detected pseudogenes, we analysed 25 837 pseudogenes from 158 MTBC and M. canetii strains and combined transcriptomics and proteomics of M. tuberculosis H37Rv to gain insights about pseudogenes' expression. Our results indicate significant variability concerning rate and conservancy of in silico predicted pseudogenes among different ecotypes and lineages of tuberculous mycobacteria and pseudogenization of important virulence factors and genes of the metabolism and antimicrobial resistance/tolerance. We show that in silico predicted pseudogenes contribute considerably to MTBC genetic diversity at the population level. Moreover, the transcription machinery of M. tuberculosis can fully transcribe most pseudogenes, indicating intact promoters and recent pseudogene evolutionary emergence. Proteomics of M. tuberculosis and close evaluation of mutational lesions driving pseudogenization suggest that few in silico predicted pseudogenes are likely capable of neofunctionalization, nonsense mutation reversal, or phase variation, contradicting the classical definition of pseudogenes. Such findings indicate that genome annotation should be accompanied by proteomics and protein function assays to improve its accuracy. While indels and insertion sequences are the main drivers of the observed mutational lesions in these species, population bottlenecks and genetic drift are likely the evolutionary processes acting on pseudogenes' emergence over time. Our findings unveil a new perspective on MTBC's evolution and genetic diversity.
Collapse
Affiliation(s)
- Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Maurício F Camacho
- Functional Proteomics Laboratory, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Alexandre H Aono
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil.,Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | | | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University
| |
Collapse
|
9
|
Byrne AW, Barrett D, Breslin P, Fanning J, Casey M, Madden JM, Lesellier S, Gormley E. Bovine tuberculosis in youngstock cattle: A narrative review. Front Vet Sci 2022; 9:1000124. [PMID: 36213413 PMCID: PMC9540495 DOI: 10.3389/fvets.2022.1000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a high-priority global pathogen of concern. The role of youngstock animals in the epidemiology of bTB has not been a focus of contemporary research. Here we have aimed to collate and summarize what is known about the susceptibility, diagnosis, transmission (infectiousness), and epidemiology to M. bovis in youngstock (up to 1-year of age). Youngstock are susceptible to M. bovis infection when exposed, with the capacity to develop typical bTB lesions. Calves can be exposed through similar routes as adults, via residual infection, contiguous neighborhood spread, wildlife spillback infection, and the buying-in of infected but undetected cattle. Dairy systems may lead to greater exposure risk to calves relative to other production systems, for example, via pooled milk. Given their young age, calves tend to have shorter bTB at-risk exposure periods than older cohorts. The detection of bTB varies with age when using a wide range of ante-mortem diagnostics, also with post-mortem examination and confirmation (histological and bacteriological) of infection. When recorded as positive by ante-mortem test, youngstock appear to have the highest probabilities of any age cohort for confirmation of infection post-mortem. They also appear to have the lowest false negative bTB detection risk. In some countries, many calves are moved to other herds for rearing, potentially increasing inter-herd transmission risk. Mathematical models suggest that calves may also experience lower force of infection (the rate that susceptible animals become infected). There are few modeling studies investigating the role of calves in the spread and maintenance of infection across herd networks. One study found that calves, without operating testing and control measures, can help to maintain infection and lengthen the time to outbreak eradication. Policies to reduce testing for youngstock could lead to infected calves remaining undetected and increasing onwards transmission. Further studies are required to assess the risk associated with changes to testing policy for youngstock in terms of the impact for within-herd disease control, and how this may affect the transmission and persistence of infection across a network of linked herds.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- *Correspondence: Andrew W. Byrne ;
| | - Damien Barrett
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Philip Breslin
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - June Fanning
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Miriam Casey
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Jamie M. Madden
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife (LRFSN), ANSES, Technopole Agricole et Vétérinaire, Malzéville, France
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
10
|
Khalid H, van Hooij A, Connelley TK, Geluk A, Hope JC. Protein Levels of Pro-Inflammatory Cytokines and Chemokines as Biomarkers of Mycobacterium bovis Infection and BCG Vaccination in Cattle. Pathogens 2022; 11:pathogens11070738. [PMID: 35889984 PMCID: PMC9320177 DOI: 10.3390/pathogens11070738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a globally prevalent infectious disease with significant animal welfare and economic impact. Difficulties in implementing test-and-slaughter measures in low- and middle-income countries (LMICs) and the underperformance of the current diagnostics establish a clear need to develop improved diagnostics. Adaptive immunity biomarkers other than IFNγ could be useful as suggested by various gene expression studies; however, a comprehensive assessment at the protein level is lacking. Here, we screened a range of chemokines and cytokines for their potential as biomarkers in samples from M. bovis experimentally challenged or naive animals. Although serum concentrations for most proteins were low, the pro-inflammatory markers, IL-2, CXCL-9, IP-10 and CCL4, in addition to IFNγ, were found to be significantly elevated in bovine tuberculin (PPDb)-stimulated whole blood supernatants. Further assessment of these molecules in BCG-vaccinated with or without subsequent M. bovis challenge or naive animals revealed that PPDb-specific IL-2 and IP-10, in addition to IFNγ, could discriminate naive and BCG-vaccinated from M. bovis challenged animals. Moreover, these proteins, along with CCL4, showed DIVA potential, i.e., enabling differentiation of M. bovis-infected animals from BCG-vaccinated animals. Combined analysis of cytokines and chemokines could also accurately identify M. bovis infection with strong correlations observed between PPDb-specific IFNγ, IL-2 and IP-10 levels. This provides proof of concept for utilizing multiple biomarker signatures for discrimination of animals with respect to M. bovis infection or BCG vaccination status.
Collapse
Affiliation(s)
- Hamza Khalid
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Center for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Correspondence: (H.K.); (J.C.H.)
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Timothy K. Connelley
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Jayne C. Hope
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Correspondence: (H.K.); (J.C.H.)
| |
Collapse
|
11
|
Mazorra-Carrillo JL, Alcaraz-López OA, López-Rincón G, Villarreal-Ramos B, Gutiérrez-Pabello JA, Esquivel-Solís H. Host Serum Proteins as Potential Biomarkers of Bovine Tuberculosis Resistance Phenotype. Front Vet Sci 2021; 8:734087. [PMID: 34869715 PMCID: PMC8637331 DOI: 10.3389/fvets.2021.734087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Eradication of bovine tuberculosis (bTB) continues to be a worldwide challenge. The lack of reliable vaccines dampens the control and eradication programs of Mycobacterium bovis infection and spread. Selection and breeding of cattle resistant to M. bovis infection would greatly enhance the effectiveness of bTB eradication programs. Here, we have evaluated the potential of serum proteins as biomarkers of cattle resistance to bTB in Holstein-Friesian cows, 6-8-year-old, born and raised in similar conditions in herds with bTB prevalence >30%. Serum proteins obtained from uninfected cows (bTB-resistant; R) were compared to those from infected cows (bTB-susceptible; S), defined by a negative or positive bTB diagnosis, respectively. bTB diagnosis included: (i) single intradermal (caudal fold) tuberculin test, (ii) whole blood IFN-gamma test, (iii) gross visible lesions in lymph nodes and lungs by inspection at the abattoir, and (iv) a bacteriological culture for M. bovis. Using 2D-GE and LC-ESI-MS/MS, we found higher expression levels of primary amine oxidase (AO), complement component 5 (C5), and serotransferrin (TF) in R cattle than S cattle. In-house developed and standardized ELISAs for these novel biomarkers showed the best sensitivities of 72, 77, 77%, and specificities of 94, 94, 83%, for AO, C5, and TF, respectively. AUC-ROC (95% CI) values of 0.8935 (0.7906-0.9964), 0.9290 (0.8484-1.010), and 0.8580 (0.7291-0.9869) were obtained at cut-off points of 192.0, 176.5 ng/ml, and 2.1 mg/ml for AO, C5, and TF, respectively. These proteins are involved in inflammatory/immunomodulatory responses to infections and may provide a novel avenue of research to determine the mechanisms of protection against bTB. Overall, our results indicate that these proteins could be novel biomarkers to help identify cattle resistant to bTB, which in turn could be used to strengthen the effectiveness of existing eradication programs against bTB.
Collapse
Affiliation(s)
- Jorge Luis Mazorra-Carrillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Omar Antonio Alcaraz-López
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.,Laboratorio de Investigación en Tuberculosis Bovina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gonzalo López-Rincón
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom.,Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - José A Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis Bovina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Esquivel-Solís
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
12
|
TREATMENT OF MYCOBACTERIOSIS CAUSED BY MYCOBACTERIUM AVIUM SSP. HOMINISSUIS IN A GROUP OF CAPTIVE LOWLAND TAPIRS ( TAPIRUS TERRESTRIS). J Zoo Wildl Med 2021; 52:939-948. [PMID: 34687510 DOI: 10.1638/2020-0198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
Tapirs are a taxonomic group with a high susceptibility to mycobacterial diseases. However, successful therapy has only been documented sporadically. Here treatment of mycobacteriosis diagnosed in three, one male and two female, lowland tapirs (Tapirus terrestris) in a zoo in Germany is reported. Two of the animals showed chronic mild respiratory signs, and conventional therapy did not improve the condition. Culture of broncho-alveolar lavage (BAL) samples was positive for Mycobacterium avium ssp. hominissuis. Upon airway endoscopy, bronchial edema and increased mucus production were visible. Initially, all three infected tapirs received oral antimycobacterial therapy consisting of 5 mg/kg body weight isoniazid, 10 mg/kg rifampicin, and 10 mg/kg clarithromycin q24h. Based on therapeutic drug level monitoring, the doses of rifampicin were adjusted to 12 and 15 mg/kg in the females and the male, respectively. The treatment with all three drugs was continued for 11 mon. Six months into treatment, the clinical condition resolved, and repeated BAL samples of all three tapirs tested negative for mycobacteria by culture. Here the approach for a treatment protocol with minimal side effects suitable to control infections with nontuberculous mycobacteria in lowland tapirs is reported.
Collapse
|
13
|
Evaluation of the Presence and Viability of Mycobacterium bovis in Wild Boar Meat and Meat-Based Preparations. Foods 2021; 10:foods10102410. [PMID: 34681459 PMCID: PMC8535965 DOI: 10.3390/foods10102410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
The aim of the present study is to provide information about the ability of Mycobacterium bovis to survive within wild boar (Sus scrofae) meat and meat-based preparations and the duration of this survival, and to consider the preservation of its infectious potential toward humans and animals. Meat samples were artificially contaminated with an M. bovis field strain and then stored at −20 °C, while two sausages batches were contaminated with the same field strain at two different concentrations, 105 CFU/g and 103 CFU/g, before storing them in proper conditions to allow for their ripening. A third sausage batch was contaminated by adding 2 g of wild boar lymph nodal tissue with active tuberculous lesions to the meat mixture. Bacteriological and biomolecular (PCR) methods were used to test the meat and sausage samples every 60 days and every 7–10 days, respectively. M. bovis was detected as still alive and viable on the frozen meat for the last test on the 342nd day, while from the sausage samples, M. bovis was isolated until 23 days after contamination. Our results indicate that M. bovis can stay alive and be viable for 23 days within sausages prepared with contaminated meat from infected wild boars. These products are usually eaten as fresh food after grilling, often cooking at a temperature that does not ensure complete inactivation of the pathogenic microorganisms present, which can pose a risk for humans to develop zoonotic tuberculosis.
Collapse
|
14
|
Palmer MV, Thacker TC, Kanipe C, Boggiatto PM. Heterogeneity of Pulmonary Granulomas in Cattle Experimentally Infected With Mycobacterium bovis. Front Vet Sci 2021; 8:671460. [PMID: 34026898 PMCID: PMC8138452 DOI: 10.3389/fvets.2021.671460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
Mycobacterium bovis is the cause of tuberculosis in most animals, most notably cattle. The stereotypical lesion of bovine tuberculosis is the granuloma; a distinct morphological lesion where host and pathogen interact and disease outcome (i.e., dissemination, confinement, or resolution) is determined. Accordingly, it is critical to understand host-pathogen interactions at the granuloma level. Host-pathogen interactions within individual granulomas at different stages of disease have not been examined in cattle. We examined bacterial burden and cytokine expression in individual pulmonary granulomas from steers at 30, 90, 180, and 270 days after experimental aerosol infection with M. bovis. Bacterial burdens within individual granulomas examined 30 days after infection were greater and more heterogenous (variable) than those examined 90 to 270 days after infection. Bacterial burdens did not correlate with expression of IFN-γ, TNF-α, TGF-β, granuloma stage, or lung lesion score, although there was a modest positive correlation with IL-10 expression. Granuloma stage did have modest positive and negative correlations with TNF-α and IL-10, respectively. Heterogeneity and mean expression of IFN-γ, IL-10 and TNF-α did not differ significantly over time, however, expression of TGF-β at 90 days was significantly greater than that seen at 30 days after infection.
Collapse
Affiliation(s)
- Mitchell V Palmer
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Tyler C Thacker
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Ames, IA, United States
| | - Carly Kanipe
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.,Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Paola M Boggiatto
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
15
|
Wiarda JE, Boggiatto PM, Bayles DO, Waters WR, Thacker TC, Palmer MV. Severity of bovine tuberculosis is associated with innate immune-biased transcriptional signatures of whole blood in early weeks after experimental Mycobacterium bovis infection. PLoS One 2020; 15:e0239938. [PMID: 33166313 PMCID: PMC7652326 DOI: 10.1371/journal.pone.0239938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis, is a pathogen that impacts both animal and human health. Consequently, there is a need to improve understanding of disease dynamics, identification of infected animals, and characterization of the basis of immune protection. This study assessed the transcriptional changes occurring in cattle during the early weeks following a M. bovis infection. RNA-seq analysis of whole blood-cell transcriptomes revealed two distinct transcriptional clusters of infected cattle at both 4- and 10-weeks post-infection that correlated with disease severity. Cattle exhibiting more severe disease were transcriptionally divergent from uninfected animals. At 4-weeks post-infection, 25 genes had commonly increased expression in infected cattle compared to uninfected cattle regardless of disease severity. Ten weeks post-infection, differential gene expression was only observed when severely-affected cattle were compared to uninfected cattle. This indicates a transcriptional divergence based on clinical status following infection. In cattle with more severe disease, biological processes and cell type enrichment analyses revealed overrepresentation of innate immune-related processes and cell types in infected animals. Collectively, our findings demonstrate two distinct transcriptional profiles occur in cattle following M. bovis infection, which correlate to clinical status.
Collapse
Affiliation(s)
- Jayne E. Wiarda
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
- Immunobiology Graduate Program, Iowa State University, Ames, IA, United States of America
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States of America
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Darrell O. Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - W. Ray Waters
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Tyler C. Thacker
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Mitchell V. Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| |
Collapse
|
16
|
Morales-Arce AY, Sabin SJ, Stone AC, Jensen JD. The population genomics of within-host Mycobacterium tuberculosis. Heredity (Edinb) 2020; 126:1-9. [PMID: 33060846 DOI: 10.1038/s41437-020-00377-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/09/2022] Open
Abstract
Recent progress in genomic sequencing from patient samples has allowed for the first detailed insight into the within-host genetic diversity of Mycobacterium tuberculosis (M.TB), revealing remarkably low levels of variation. While this has often been attributed to low mutation rates, other factors have been described, including resistance evolution (i.e., selective sweeps), widespread purifying and background selection, and, more recently, progeny skew. Here we review recent findings pertaining to the processes governing the evolutionary dynamics of M.TB, discuss their implications for improving our understanding of this important human pathogen, and make recommendations for future work. Significantly, this emerging evolutionary framework involving the joint estimation of demographic, selective, and reproductive processes is forming a new paradigm for the study of within-host pathogen evolution that will be widely applicable across organisms.
Collapse
Affiliation(s)
- Ana Y Morales-Arce
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| | - Susanna J Sabin
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
17
|
Review on Epidemiology and Public Health Importance of Goat Tuberculosis in Ethiopia. Vet Med Int 2020; 2020:8898874. [PMID: 33062246 PMCID: PMC7533027 DOI: 10.1155/2020/8898874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
Small ruminant is an important and integral part of livestock in Ethiopia. Especially, goats are attractive to people of Ethiopia because of the ability to resist challenges, easily adapt to different ecological regions, and need small land to rearing and small initial capital in which poor people can engaged in the production system. In spite of the presence of large number of goat population in Ethiopia, it fails to utilize expected productivity due to many factors. Among the factors, which limit the economic returns of goats, diseases stand frontline. Tuberculosis is one the diseases that affect goats' health and production in Ethiopia. Goat tuberculosis is a chronic disease, which is characterized by the development of granulomas, essentially in the respiratory tract and related lymph nodes, from which the mycobacteria are discharged and contaminate other susceptible animals. Goat tuberculosis has a public health implication in Ethiopia because of the farmers' habit of consuming raw goat milk and its products, and they do have consistent or day-to-day contact with their goats. The etiological agents also transmitted to humans through the aerogenous route from those animals with active cases in the herd. The infection has been reported from several parts of different areas of the country dependent on the abattoir inspections. Therefore, attention should be given towards the control of tuberculosis in livestock; public health education on zoonotic importance of the disease or awareness creation and the national tuberculosis control needs to consider the one health approach, and further epidemiological studies should be undertaken.
Collapse
|
18
|
Morales-Arce AY, Harris RB, Stone AC, Jensen JD. Evaluating the contributions of purifying selection and progeny-skew in dictating within-host Mycobacterium tuberculosis evolution. Evolution 2020; 74:992-1001. [PMID: 32233086 DOI: 10.1111/evo.13954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/08/2020] [Indexed: 12/28/2022]
Abstract
The within-host evolutionary dynamics of tuberculosis (TB) remain unclear, and underlying biological characteristics render standard population genetic approaches based upon the Wright-Fisher model largely inappropriate. In addition, the compact genome combined with an absence of recombination is expected to result in strong purifying selection effects. Thus, it is imperative to establish a biologically relevant evolutionary framework incorporating these factors in order to enable an accurate study of this important human pathogen. Further, such a model is critical for inferring fundamental evolutionary parameters related to patient treatment, including mutation rates and the severity of infection bottlenecks. We here implement such a model and infer the underlying evolutionary parameters governing within-patient evolutionary dynamics. Results demonstrate that the progeny skew associated with the clonal nature of TB severely reduces genetic diversity and that the neglect of this parameter in previous studies has led to significant mis-inference of mutation rates. As such, our results suggest an underlying de novo mutation rate that is considerably faster than previously inferred, and a progeny distribution differing significantly from Wright-Fisher assumptions. This inference represents a more appropriate evolutionary null model, against which the periodic effects of positive selection, associated with drug-resistance for example, may be better assessed.
Collapse
Affiliation(s)
- Ana Y Morales-Arce
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Rebecca B Harris
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA.,School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
19
|
Castellano Realpe OJ, Gutiérrez JC, Sierra DA, Pazmiño Martínez LA, Prado Palacios YY, Echeverría G, de Waard JH. Dental Unit Waterlines in Quito and Caracas Contaminated with Nontuberculous Mycobacteria: A Potential Health Risk in Dental Practice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2348. [PMID: 32244267 PMCID: PMC7177417 DOI: 10.3390/ijerph17072348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022]
Abstract
Three cases of severe odontogenic infections due to nontuberculous mycobacteria (NTM) in Venezuela that were directly associated with dental procedures and the finding of dental unit waterlines (DUWLs) in dental offices that were colonized with mycobacteria species was the reason for assessing the water quality of DUWLs in dental offices in two capital cities in South America, namely, Quito and Caracas. The main water supplies and the water from 143 DUWLs in both cities were sampled and especially checked for contamination with NTM. To measure the overall bacteriological quality of the water also the presence of heterotrophic bacteria, coliform bacteria, and Pseudomonas was determined. Results showed that respectively 3% and 56% of the DUWLs in Quito and Caracas yielded NTM species (up to 1000 colony-forming units (CFU)/mL). Furthermore, high and unacceptable total viable counts of heterotrophic bacteria and/or coliform bacteria and Pseudomonas were detected in 73% of the samples. We conclude that, in both cities, the water in the majority of DUWLs was contaminated with NTM and other potential pathogens, presenting a risk to human health. The detection of NTM in DUWL water with acceptable heterotrophic bacteria counts shows the need to include NTM in water quality testing. Mycobacteria are more resistant to disinfection procedures than other types of vegetative bacteria, and most testing protocols for DUWLs do not assess mycobacteria and thus do not guarantee risk-free water.
Collapse
Affiliation(s)
| | - Johanna C. Gutiérrez
- Facultad de Medicina. Escuela de Bioanálisis, Universidad Central de Venezuela, 1053 Caracas, Venezuela
- Instituto de Biomedicina “Dr. Jacinto Convit”, Universidad Central de Venezuela, 1010 Caracas, Venezuela
| | - Deisy A. Sierra
- Facultad de Medicina. Escuela de Bioanálisis, Universidad Central de Venezuela, 1053 Caracas, Venezuela
- Instituto de Biomedicina “Dr. Jacinto Convit”, Universidad Central de Venezuela, 1010 Caracas, Venezuela
| | | | - Yrneh Y. Prado Palacios
- Instituto de Biomedicina “Dr. Jacinto Convit”, Universidad Central de Venezuela, 1010 Caracas, Venezuela
| | - Gustavo Echeverría
- Instituto de Investigación en Salud Pública y Zoonosis CIZ, Universidad Central del Ecuador, 170521 Quito, Ecuador
| | - Jacobus H. de Waard
- Instituto de Biomedicina “Dr. Jacinto Convit”, Universidad Central de Venezuela, 1010 Caracas, Venezuela
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad De Las Américas, 170504 Quito, Ecuador
| |
Collapse
|
20
|
Ozturk-Gurgen H, Rieseberg B, Leipig-Rudolph M, Straubinger RK, Hermanns W. Morphology of Naturally-Occurring Tuberculosis in Cattle Caused by Mycobacterium caprae. J Comp Pathol 2020; 174:120-139. [PMID: 31955797 DOI: 10.1016/j.jcpa.2019.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/15/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
This study describes the pathomorphological alterations of bovine tuberculosis through gross and histopathological examinations, assessment of the distribution of lesions and the demonstration of mycobacteria. Samples from lungs, liver, small intestine, their regional lymph nodes and retropharyngeal lymph nodes were collected from 84 cattle with tuberculosis from the Allgäu, Germany. Organs were evaluated grossly, histopathologically and by transmission electron microscopy. Mycobacteria and mycobacterial antigens were demonstrated using acid-fast staining and immunohistochemistry (IHC). Bacteriological tests revealed Mycobacterium caprae in all animals. Gross alterations were classified into five patterns (I to V) with an additional pattern of acute exudative pulmonary inflammation (pattern VI). Histological lesions were classified into four types (1-4) with additional lesions occurring in lungs only. Acid-fast staining revealed a low number of bacteria in all tissues, while IHC showed comparatively more mycobacterial antigens within the lesions and also at their periphery. The alimentary tract (68%) was the main portal of entry followed by an aerosol infection (19%). It was assumed that the observed lesions reflect a continuous primary period of infection; there were no lesions typical of a secondary (post-primary) period, as reported in man and also described in the older literature on bovine tuberculosis. The broad spectrum of changes described formerly was not observed in the present cases and the route of infection and nature of acid fast staining showed differences when compared with previous studies of naturally-occurring bovine tuberculosis.
Collapse
Affiliation(s)
- H Ozturk-Gurgen
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany.
| | - B Rieseberg
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany
| | - M Leipig-Rudolph
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany
| | - R K Straubinger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Muenchen, Munich, Germany
| | - W Hermanns
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany
| |
Collapse
|
21
|
Howell AK, McCann CM, Wickstead F, Williams DJL. Co-infection of cattle with Fasciola hepatica or F. gigantica and Mycobacterium bovis: A systematic review. PLoS One 2019; 14:e0226300. [PMID: 31887151 PMCID: PMC6936813 DOI: 10.1371/journal.pone.0226300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/23/2019] [Indexed: 01/29/2023] Open
Abstract
The liver flukes, Fasciola hepatica and F. gigantica, are common trematode parasites of livestock. F. hepatica is known to modulate the immune response, including altering the response to co-infecting pathogens. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease which is difficult to control and is of both animal welfare and public health concern. Previous research has suggested that infection with liver fluke may affect the accuracy of the bTB skin test, but direction of the effect differs between studies. In a systematic review of the literature, all experimental and observational studies concerning co-infection with these two pathogens were sought. Data were extracted on the association between fluke infection and four measures of bTB diagnosis or pathology, namely, the bTB skin test, interferon γ test, lesion detection and culture/bacterial recovery. Of a large body of literature dating from 1950 to 2019, only thirteen studies met the inclusion criteria. These included studies of experimentally infected calves, case control studies on adult cows, cross sectional abattoir studies and a herd level study. All the studies had a medium or high risk of bias. The balance of evidence from the 13 studies included in the review suggests that liver fluke exposure was associated with either no effect or a decreased response to all of the four aspects of bTB diagnosis assessed: skin test, IFN γ, lesion detection and mycobacteria cultured or recovered. Most studies showed a small and/or non-significant effect so the clinical and practical importance of the observed effect is likely to be modest, although it could be more significant in particular groups of animals, such as dairy cattle.
Collapse
Affiliation(s)
- Alison K. Howell
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | - Catherine M. McCann
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Francesca Wickstead
- School of Veterinary Science, University of Liverpool, Leahurst, Neston, United Kingdom
| | - Diana J. L. Williams
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
Downs SH, Prosser A, Ashton A, Ashfield S, Brunton LA, Brouwer A, Upton P, Robertson A, Donnelly CA, Parry JE. Assessing effects from four years of industry-led badger culling in England on the incidence of bovine tuberculosis in cattle, 2013-2017. Sci Rep 2019; 9:14666. [PMID: 31604960 PMCID: PMC6789095 DOI: 10.1038/s41598-019-49957-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/30/2019] [Indexed: 11/09/2022] Open
Abstract
The objective was to measure the association between badger culling and bovine tuberculosis (TB) incidents in cattle herds in three areas of England between 2013-2017 (Gloucestershire and Somerset) and 2015-2017 (Dorset). Farming industry-selected licensed culling areas were matched to comparison areas. A TB incident was detection of new Mycobacterium bovis infection (post-mortem confirmed) in at least one animal in a herd. Intervention and comparison area incidence rates were compared in central zones where culling was conducted and surrounding buffer zones, through multivariable Poisson regression analyses. Central zone incidence rates in Gloucestershire (Incidence rate ratio (IRR) 0.34 (95% CI 0.29 to 0.39, p < 0.001) and Somerset (IRR 0.63 (95% CI 0.58 to 0.69, p < 0.001) were lower and no different in Dorset (IRR 1.10, 95% CI 0.96 to 1.27, p = 0.168) than comparison central zone rates. The buffer zone incidence rate was lower for Gloucestershire (IRR 0.64, 95% CI 0.58 to 0.70, p < 0.001), no different for Somerset (IRR 0.97, 95% CI 0.80 to 1.16, p = 0.767) and lower for Dorset (IRR 0.45, 95% CI 0.37 to 0.54, p < 0.001) than comparison buffer zone rates. Industry-led culling was associated with reductions in cattle TB incidence rates after four years but there were variations in effects between areas.
Collapse
Affiliation(s)
- Sara H Downs
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey, KT15 3NB, UK.
| | - Alison Prosser
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey, KT15 3NB, UK
| | - Adam Ashton
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey, KT15 3NB, UK
| | - Stuart Ashfield
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey, KT15 3NB, UK
| | - Lucy A Brunton
- Veterinary Epidemiology, Economics and Public Health Group, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Adam Brouwer
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey, KT15 3NB, UK
| | - Paul Upton
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey, KT15 3NB, UK
| | - Andrew Robertson
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- National Wildlife Management Centre, Animal and Plant Health Agency, Woodchester Park, Nympsfield, Gloucestershire, GL10 3UJ, UK
| | - Christl A Donnelly
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, St Mary's campus, Norfolk Place, London, W2 1PG, UK
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Jessica E Parry
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey, KT15 3NB, UK
| |
Collapse
|
23
|
Robertson A, Judge J, Wilson GJ, Vernon IJ, Delahay RJ, McDonald RA. Predicting badger visits to farm yards and making predictions available to farmers. PLoS One 2019; 14:e0216953. [PMID: 31125349 PMCID: PMC6534311 DOI: 10.1371/journal.pone.0216953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
The use of agricultural resources or environments by wildlife may result in opportunities for transmission of infections amongst wild animals, livestock and humans. Targeted use of biosecurity measures may therefore reduce disease risks, although this requires practical knowledge of where such measures would be most effective, and effective means of communicating risks so that stakeholders can make informed decisions about such investment. In parts of Europe, the European badger Meles meles may act as a wildlife reservoir for Mycobacterium bovis, the causative agent of bovine tuberculosis, and badger visits to farmyards may provide potential opportunities for transmission of M. bovis to cattle. Biosecurity measures are effective in reducing badger activity in farmyards, although it is unclear which farms should be targeted with such measures. We used cameras to monitor badger activity in 155 farmyards in south west England and Wales, and related variations in the presence and frequency of badger visits to farm characteristics. Badgers were recorded on camera in 40% of farmyards monitored. However, the frequency of visits was highly variable, with badgers recorded on >50% of nights in only 10% of farms. The presence of badgers in farmyards was positively associated with the density of badger setts, the number of feed stores and the number of cattle sheds, and negatively associated with the distance to the nearest active badger sett, the presence of a house/dwelling and the number of cattle housed on the farm. The frequency of visits was negatively associated with the distance to the nearest active badger sett and the number of cattle housed. Models predicted the presence/absence of badgers in farmyards with 73% accuracy (62% sensitivity, 81% specificity, using a cut off value of 0.265). Models could not distinguish between farms with low/high frequency of visits, although farms predicted as having badgers present typically had a higher frequency of visits than those that were not. We developed and present an interactive web based application: the Badger Farm Assessment Tool (BFAT), to allow users to enter the characteristics of a farm and generate a relative risk score describing the likelihood of badger visits.
Collapse
Affiliation(s)
- Andrew Robertson
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn United Kingdom
- National Wildlife Management Centre, Animal and Plant Health Agency, Woodchester Park, Nympsfield, United Kingdom
- * E-mail:
| | - Joanna Judge
- National Wildlife Management Centre, Animal and Plant Health Agency, Woodchester Park, Nympsfield, United Kingdom
- National Biodiversity Network, Nottingham, United Kingdom
| | - G. J. Wilson
- National Wildlife Management Centre, Animal and Plant Health Agency, Woodchester Park, Nympsfield, United Kingdom
- Biocensus Limited, Bath, United Kingdom
| | - Ian J. Vernon
- National Wildlife Management Centre, Animal and Plant Health Agency, Woodchester Park, Nympsfield, United Kingdom
| | - Richard J. Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Woodchester Park, Nympsfield, United Kingdom
| | - Robbie A. McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn United Kingdom
| |
Collapse
|
24
|
Palmer MV, Wiarda J, Kanipe C, Thacker TC. Early Pulmonary Lesions in Cattle Infected via Aerosolized Mycobacterium bovis. Vet Pathol 2019; 56:544-554. [PMID: 30895908 DOI: 10.1177/0300985819833454] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mycobacterium bovis is a serious zoonotic pathogen and the cause of tuberculosis in many mammalian species, most notably, cattle. The hallmark lesion of tuberculosis is the granuloma. It is within the developing granuloma where host and pathogen interact; therefore, it is critical to understand host-pathogen interactions at the granuloma level. Cytokines and chemokines drive cell recruitment, activity, and function and ultimately determine the success or failure of the host to control infection. In calves, early lesions (ie, 15 and 30 days) after experimental aerosol infection were examined microscopically using in situ hybridization and immunohistochemistry to demonstrate early infiltrates of CD68+ macrophages within alveoli and alveolar interstitium, as well as the presence of CD4, CD8, and γδ T cells. Unlike lesions at 15 days, lesions at 30 days after infection contained small foci of necrosis among infiltrates of macrophages, lymphocytes, neutrophils, and multinucleated giant cells and extracellular acid-fast bacilli within necrotic areas. At both time points, there was abundant expression of the chemokines CXCL9, MCP-1/CCL2, and the cytokine transforming growth factor (TGF)-β. The proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β, as well as the anti-inflammatory cytokine IL-10, were expressed at moderate levels at both time points, while expression of IFN-γ was limited. These findings document the early pulmonary lesions after M. bovis infection in calves and are in general agreement with the proposed pathogenesis of tuberculosis described in laboratory animal and nonhuman primate models of tuberculosis.
Collapse
Affiliation(s)
- Mitchell V Palmer
- 1 Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA
| | - Jayne Wiarda
- 1 Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA.,2 Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Carly Kanipe
- 1 Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA.,2 Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
25
|
Praud A, Bourély C, Boschiroli ML, Dufour B. Assessment of the specificity of a gamma-interferon test performed with specific antigens to detect bovine tuberculosis, after non-negative results to intradermal tuberculin testing. Vet Rec Open 2019; 6:e000335. [PMID: 30997114 PMCID: PMC6446210 DOI: 10.1136/vetreco-2019-000335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/30/2022] Open
Abstract
In cattle herds in France, cervical skin tests (STs) using simple intradermal tuberculin (SIT) are performed to detect bovine tuberculosis (bTB). When positive results are found on ST screening, the herd is considered to be ‘under suspicion’ and confined, raising economic issues. The suspicion can be lifted by carrying out a single intradermal cervical comparative test (SICCT) at least six weeks later.The authors conducted an experimental study in France between 2013 and 2015 to assess the accuracy of the gamma-interferon test (IFN-γ), used in series after a non-negative result to ST screening, and to study the possibility of replacing the SICCT performed six weeks later by an IFN performed within a few days. Data were collected concerning 40 infected and 1825 bTB-free animals from herds with non-negative results to ST screening. This study showed that the IFN-γ test based on specific antigens and performed within a few days of a non-negative result to the ST has higher sensitivity than the SICCT performed six weeks later and equal specificity. The IFN test is more convenient to perform; however, it is more expensive. The IFN-γ test based on MIX antigens may be a useful alternative to the SICCT, to shorten the confinement period of suspect herds without underdetecting bTB.
Collapse
Affiliation(s)
- Anne Praud
- Epidemiology of Animal Infectious Diseases Unit, Ecole Nationale Veterinaire d\'Alfort, Maisons-Alfort, France
| | - Clémence Bourély
- Unité Épidémiologie, Université de Lyon, Anses, Laboratoire de Lyon, Lyon, France
| | | | - Barbara Dufour
- Epidemiology of Animal Infectious Diseases Unit, Ecole Nationale Veterinaire d\'Alfort, Maisons-Alfort, France
| |
Collapse
|
26
|
de la Cruz ML, Branscum AJ, Nacar J, Pages E, Pozo P, Perez A, Grau A, Saez JL, de Juan L, Diaz R, Minguez O, Alvarez J. Evaluation of the Performance of the IDvet IFN-Gamma Test for Diagnosis of Bovine Tuberculosis in Spain. Front Vet Sci 2018; 5:229. [PMID: 30320129 PMCID: PMC6171474 DOI: 10.3389/fvets.2018.00229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023] Open
Abstract
In Spain, the national bovine tuberculosis (bTB) eradication program is based on yearly skin testing of every ≥6 weeks old animal using the single or comparative tuberculin test and parallel use of the interferon-gamma (IFN-γ) assay as an ancillary diagnostic test in infected herds. There are several versions of the latter. Recently, a new commercial IDvet IFN-γ assay has been authorized for use in the program, but there is limited scientific evidence about its performance in different epidemiological settings. Therefore, two studies to evaluate the performance of the IDvet assay were conducted. In study 1, a concordance analysis between the new IDvet and the Bovigam IFN-γ assay in use in Spain for over 10 years was conducted. In study 2, results from the IDvet assay when applied in tandem with a single intradermal tuberculin (SIT) test were used to evaluate the concordance between both tests and to estimate their sensitivity (Se) and specificity (Sp) using a Bayesian latent-class model. Field data from cattle herds located in Madrid and Castilla y Leon (Spain) were collected. For study 1, herd selection was based on a high expected prevalence of reactors to the IFN-γ assay, while herds were selected at random to estimate Se and Sp of the new IDvet assay in study 2. Agreement between the results obtained with both kits for IFN-γ assay was poor (Kappa = 0.20), and a receiver operating characteristic (ROC) analysis indicated a low Se of the new IDvet relative to the Bovigam in a heavily bTB infected population. The Bayesian latent-class analysis estimated the Se of the IDvet assay to be 36.7% [95% probability posterior interval (PPI) 14.7-78.8%] with estimated Sp close to 100% when the cut-off recommended by the manufacturer (35) was applied. At the alternative cut-off values of 16 and 4, the estimated Se of the IDvet assay increased to 49.0% (PPI: 24.8-94.1%) and 56.0% (PPI: 30.8-96.3%), respectively, while maintaining a high specificity. The results suggest that the new IDvet assay may have lower sensitivity than the Bovigam for diagnosis of bTB in cattle herds in Spain, and that adjusting its cut-off might be considered.
Collapse
Affiliation(s)
| | - Adam J. Branscum
- Biostatistics Program, Oregon State University, Corvallis, OR, United States
| | - Jesus Nacar
- Dirección General de Producción Agropecuaria e Infraestructuras Agrarias, Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Valladolid, Spain
| | - Enrique Pages
- Área de Ganadería, Dirección General de Medio Ambiente, Consejería de Medio Ambiente, Vivienda y Ordenación del Territorio de la Comunidad de Madrid, Madrid, Spain
| | - Pilar Pozo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- MAEVA SERVET, S.L., Madrid, Spain
| | - Andres Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Anna Grau
- Dirección General de Producción Agropecuaria e Infraestructuras Agrarias, Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Valladolid, Spain
| | - Jose Luis Saez
- Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Madrid, Spain
| | - Lucia de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa Diaz
- Área de Ganadería, Dirección General de Medio Ambiente, Consejería de Medio Ambiente, Vivienda y Ordenación del Territorio de la Comunidad de Madrid, Madrid, Spain
| | - Olga Minguez
- Dirección General de Producción Agropecuaria e Infraestructuras Agrarias, Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Valladolid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Performativity and a microbe: Exploring Mycobacterium bovis and the political ecologies of bovine tuberculosis. BIOSOCIETIES 2018; 14:179-204. [PMID: 32226469 PMCID: PMC7100403 DOI: 10.1057/s41292-018-0124-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mycobacterium bovis, the bacterium responsible for causing bovine tuberculosis (bTB) in cattle, displays what I call ‘microbial performativity’. Like many other lively disease-causing microorganisms, it has an agency which is difficult to contain, and there is a need for fresh thinking on the challenges of dealing with this slippery and indeterminate microbe. As a practising veterinary scientist who side-stepped mid-career into a parallel training in the social sciences to view bTB from an alternative perspective, I create an interdisciplinary coming-together where veterinary science converges with a political ecology of (animal) health influenced by science and technology studies (STS) and social science and humanities scholarship on performativity. This suitably hybridized nexus creates a place to consider the ecologies of a pathogen which could be considered as life out of control. I consider what this means for efforts to eradicate this disease through combining understandings from the published scientific literature with qualitative interview-based fieldwork with farmers, veterinarians and others involved in the statutory bTB eradication programme in a high incidence region of the UK. This study demonstrates the value of life scientists turning to the social sciences to re-view their familiar professional habitus—challenging assumptions, and offering alternative perspectives on complex problems.
Collapse
|
28
|
Keck N, Boschiroli ML, Smyej F, Vogler V, Moyen JL, Desvaux S. Successful Application of the Gamma-Interferon Assay in a Bovine Tuberculosis Eradication Program: The French Bullfighting Herd Experience. Front Vet Sci 2018. [PMID: 29536019 PMCID: PMC5835129 DOI: 10.3389/fvets.2018.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the French Camargue region, where bovine tuberculosis had been enzootic for several years in bullfighting cattle herds, the gamma-interferon (IFN) assay was used since 2003 in parallel with the intradermal test in order to increase overall disease detection sensitivity in infected herds. This study presents the results of a field-evaluation of the assay during a 10-year period (2004–2014) of disease control and surveillance program and explores the particular pattern of IFN assay results in bullfight herds in comparison to cattle from other regions of France. The low sensitivity [59.2% (50.6; 67.3)] of IFN assay using the tuberculin stimulation could be related to the poor gamma-IFN production from bullfight cattle blood cells which is significantly lower than in animals of conventional breeds. The characteristics of the assay were progressively adapted to the epidemiological situation and the desired strategic applications. Data analysis with a receiver operating characteristic curve based on a simple S/P value algorithm allowed for the determination of a new cutoff adapted for a global screening, giving a high specificity of 99.9% results and a high accuracy of the assay. Having regularly risen to above 5% since 2005, with a peak around 10% in 2010, the annual incidence dropped to under 1% in 2014. The positive predictive value relative to the bacteriological confirmation evolved during the years, from 33% in 2009 to 12% during the last screening period, a normal trend in a context of decreasing prevalence. The estimated rate of false-positive reactions during screening campaigns was 0.67%, confirming the high specificity of the test, measured in bTB negative herds, in this epidemiological context. The proportion of false-positive reactions decreased with the age and was higher in males than in females. Although these results indicate that the IFN assay is accurate in the field, it also emphasizes great differences between interferon quantities produced by bullfight cattle blood samples compared to those of classical bovine breeds, which underlines the necessity to adapt the algorithms and combinations of the assay according to local epidemiological contexts.
Collapse
Affiliation(s)
- Nicolas Keck
- Laboratoire Départemental Vétérinaire de l'Hérault, Montpellier, France
| | - Maria-Laura Boschiroli
- University Paris-Est, French Reference Laboratory for Tuberculosis, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Maisons-Alfort, France
| | - Florence Smyej
- Direction Départementale de la Protection des Populations, Nîmes, France
| | - Valérie Vogler
- Service Régional de l'Alimentation, Direction Régionale de l'Alimentation, de l'Agriculture et de l'Occitanie, Montpellier, France
| | - Jean-Louis Moyen
- Laboratoire d'Analyses et de Recherche de Dordogne, Coulounieix-Chamiers, France
| | - Stéphanie Desvaux
- Unité Sanitaire de la Faune, Office National de la Chasse et de la Faune Sauvage (ONCFS), Birieux, France
| |
Collapse
|
29
|
|
30
|
Ciaravino G, García-Saenz A, Cabras S, Allepuz A, Casal J, García-Bocanegra I, De Koeijer A, Gubbins S, Sáez JL, Cano-Terriza D, Napp S. Assessing the variability in transmission of bovine tuberculosis within Spanish cattle herds. Epidemics 2018; 23:110-120. [PMID: 29415865 DOI: 10.1016/j.epidem.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 11/30/2022] Open
Abstract
In Spain, despite years of efforts to eradicate bovine tuberculosis (bTB), the disease is still endemic, with some areas of high prevalence. In this context, the surveillance and control plans may need to be re-evaluated, and understanding the dynamics of bTB spread within Spanish herds may help to develop new strategies for reducing the time for detection of infected herds and for the elimination of bTB from the herds already infected. Here, we developed a compartmental stochastic model to simulate bTB within-herd transmission, fed it with epidemiological data from 22 herds (obtained from a previous work) and carried out parameter inference using Approximate Bayesian Computing methods We also estimated the "Within-herd transmission potential Number" (Rh), i.e. the average number of secondary cases generated by a single animal infected introduced into a totally susceptible herd, considering different scenarios depending on the frequency of controls. The median global values obtained for the transmission parameters were: for the transmission coefficient (β), 0.014 newly infected animals per infectious individual per day (i.e. 5.2 per year), for the rate at which infected individuals become infectious (α), 0.01 per day (equivalent to a latent period of 97 days), and for the rate at which infected individuals become reactive to the skin test (α1), 0.08 per day (equivalent to a period of 12 days for an infected animal to become reactive). However, the results also evidenced a great variability in the estimates of those parameters (in particular β and α) among the 22 herds. Considering a 6-month interval between tests, the mean Rh was 0.23, increasing to 0.82 with an interval of 1 year, and to 2.01 and 3.47 with testing intervals of 2 and 4 years, respectively.
Collapse
Affiliation(s)
- G Ciaravino
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain.
| | - A García-Saenz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; ISGlobal (Barcelona Institute for Global Health - Epidemiology of Cancer), Campus MAR, Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - S Cabras
- Department of Statistics, Universidad Carlos III de Madrid, 28903 Getafe, Madrid, Spain; Department of Mathematics and Informatics, Università degli Studi di Cagliari, 09124 Cagliari, Italy
| | - A Allepuz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - J Casal
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - I García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitarios de Rabanales, 14014 Córdoba, Spain
| | - A De Koeijer
- Central Veterinary Institute (CVI), Wageningen UR, Lelystad, The Netherlands
| | - S Gubbins
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - J L Sáez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Madrid, Spain
| | - D Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitarios de Rabanales, 14014 Córdoba, Spain
| | - S Napp
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
31
|
Reuschl AK, Edwards MR, Parker R, Connell DW, Hoang L, Halliday A, Jarvis H, Siddiqui N, Wright C, Bremang S, Newton SM, Beverley P, Shattock RJ, Kon OM, Lalvani A. Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathog 2017; 13:e1006577. [PMID: 28863187 PMCID: PMC5605092 DOI: 10.1371/journal.ppat.1006577] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/19/2017] [Accepted: 08/11/2017] [Indexed: 01/17/2023] Open
Abstract
Early events in the human airways determining whether exposure to Mycobacterium tuberculosis (Mtb) results in acquisition of infection are poorly understood. Epithelial cells are the dominant cell type in the lungs, but little is known about their role in tuberculosis. We hypothesised that human primary airway epithelial cells are part of the first line of defense against Mtb-infection and contribute to the protective host response in the human respiratory tract. We modelled these early airway-interactions with human primary bronchial epithelial cells (PBECs) and alveolar macrophages. By combining in vitro infection and transwell co-culture models with a global transcriptomic approach, we identified PBECs to be inert to direct Mtb-infection, yet to be potent responders within an Mtb-activated immune network, mediated by IL1β and type I interferon (IFN). Activation of PBECs by Mtb-infected alveolar macrophages and monocytes increased expression of known and novel antimycobacterial peptides, defensins and S100-family members and epithelial-myeloid interactions further shaped the immunological environment during Mtb-infection by promoting neutrophil influx. This is the first in depth analysis of the primary epithelial response to infection and offers new insights into their emerging role in tuberculosis through complementing and amplifying responses to Mtb. Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which remains a major public health burden today. In the majority of cases, infection is acquired by inhalation of aerosolised bacteria. Mtb is thought to target alveolar macrophages in the lower airways to establish infection. However, the cells predominantly lining the respiratory tract are epithelial cells and thus are likely crucial during the early host-pathogen interactions. We recovered primary human bronchial epithelial cells from healthy volunteers to assess their global transcriptomic response to direct Mtb-exposure and exposure to Mtb-infected myeloid cells. Our analysis revealed that, while being inert to direct Mtb-infection, epithelial cells were highly responsive to soluble mediators released by infected macrophages. The epithelial response induced by this cellular cross-talk, promoted neutrophil influx in vitro as well as the increase of antimycobaterial host responses. Our data provide novel and unexpected insights into the role of the primary human airway epithelium and define a non-redundant role for epithelial cells in shaping the local immunological environment at the site of initial Mtb infection.
Collapse
Affiliation(s)
- Ann-Kathrin Reuschl
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Michael R. Edwards
- Department of Cytopathology, Imperial College London, St Mary’s Hospital, Imperial College NHS Trust, London, United Kingdom
| | - Robert Parker
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - David W. Connell
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Long Hoang
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Alice Halliday
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Hannah Jarvis
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Nazneen Siddiqui
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Corrina Wright
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, Norfolk Place, London, United Kingdom
| | - Samuel Bremang
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Sandra M. Newton
- Section of Paediatrics, Department of Medicine, St Mary’s Campus, Imperial College, London, United Kingdom
| | - Peter Beverley
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Robin J. Shattock
- Department of Medicine, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Onn Min Kon
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Ajit Lalvani
- Tuberculosis Research Centre, National Heart and Lung Institute, Imperial College London, St Mary’s Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Beltrán-Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): bovine tuberculosis. EFSA J 2017; 15:e04959. [PMID: 32625624 PMCID: PMC7009898 DOI: 10.2903/j.efsa.2017.4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of bovine tuberculosis to be listed, Article 9 for the categorisation of bovine tuberculosis according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to bovine tuberculosis. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, bovine tuberculosis can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 2, 3, 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b), (c), (d) and (e) of Article 9(1). The main animal species to be listed for bovine tuberculosis according to Article 8(3) criteria are several mammal species, as indicated in the present opinion.
Collapse
|
33
|
Antibody detection tests improve the sensitivity of tuberculosis diagnosis in cattle. Res Vet Sci 2017; 112:214-221. [DOI: 10.1016/j.rvsc.2017.05.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/23/2022]
|
34
|
Digitally Barcoding Mycobacterium tuberculosis Reveals In Vivo Infection Dynamics in the Macaque Model of Tuberculosis. mBio 2017; 8:mBio.00312-17. [PMID: 28487426 PMCID: PMC5424202 DOI: 10.1128/mbio.00312-17] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection with Mycobacterium tuberculosis causes a spectrum of outcomes; the majority of individuals contain but do not eliminate the infection, while a small subset present with primary active tuberculosis (TB) disease. This variability in infection outcomes is recapitulated at the granuloma level within each host, such that some sites of infection can be fully cleared while others progress. Understanding the spectrum of TB outcomes requires new tools to deconstruct the mechanisms underlying differences in granuloma fate. Here, we use novel genome-encoded barcodes to uniquely tag individual M. tuberculosis bacilli, enabling us to quantitatively track the trajectory of each infecting bacterium in a macaque model of TB. We also introduce a robust bioinformatics pipeline capable of identifying and counting barcode sequences within complex mixtures and at various read depths. By coupling this tagging strategy with serial positron emission tomography coregistered with computed tomography (PET/CT) imaging of lung pathology in macaques, we define a lesional map of M. tuberculosis infection dynamics. We find that there is no significant infection bottleneck, but there are significant constraints on productive bacterial trafficking out of primary granulomas. Our findings validate our barcoding approach and demonstrate its utility in probing lesion-specific biology and dissemination. This novel technology has the potential to greatly enhance our understanding of local dynamics in tuberculosis. Classically, M. tuberculosis infection was thought to result in either latent infection or active disease. More recently, the field has recognized that there is a spectrum of M. tuberculosis infection clinical outcomes. Within a single host, this spectrum is recapitulated at the granuloma level, where there can simultaneously be lesional sterilization and poorly contained disease. To better understand the lesional biology of TB infection, we digitally barcoded M. tuberculosis to quantitatively track the fate of each infecting bacterium. By combining this technology with serial PET-CT imaging, we can dynamically track both bacterial populations and granuloma trajectories. We demonstrate that there is little constraint on the bacterial population at the time of infection. However, the granuloma imposes a strong bottleneck on dissemination, and the subset of granulomas at risk of dissemination can be distinguished by physical features.
Collapse
|
35
|
Low Dose BCG Infection as a Model for Macrophage Activation Maintaining Cell Viability. J Immunol Res 2016; 2016:4048235. [PMID: 27833923 PMCID: PMC5090099 DOI: 10.1155/2016/4048235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/26/2016] [Accepted: 09/15/2016] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium bovis BCG, the current vaccine against tuberculosis, is ingested by macrophages promoting the development of effector functions including cell death and microbicidal mechanisms. Despite accumulating reports on M. tuberculosis, mechanisms of BCG/macrophage interaction remain relatively undefined. In vivo, few bacilli are sufficient to establish a mycobacterial infection; however, in vitro studies systematically use high mycobacterium doses. In this study, we analyze macrophage/BCG interactions and microenvironment upon infection with low BCG doses and propose an in vitro model to study cell activation without affecting viability. We show that RAW macrophages infected with BCG at MOI 1 activated higher and sustained levels of proinflammatory cytokines and transcription factors while MOI 0.1 was more efficient for early stimulation of IL-1β, MCP-1, and KC. Both BCG infection doses induced iNOS and NO in a dose-dependent manner and maintained nuclear and mitochondrial structures. Microenvironment generated by MOI 1 induced macrophage proliferation but not MOI 0.1 infection. In conclusion, BCG infection at low dose is an efficient in vitro model to study macrophage/BCG interactions that maintains macrophage viability and mitochondrial structures. This represents a novel model that can be applied to BCG research fields including mycobacterial infections, cancer immunotherapy, and prevention of autoimmunity and allergies.
Collapse
|
36
|
Barbier E, Boschiroli ML, Gueneau E, Rochelet M, Payne A, de Cruz K, Blieux AL, Fossot C, Hartmann A. First molecular detection of Mycobacterium bovis in environmental samples from a French region with endemic bovine tuberculosis. J Appl Microbiol 2016; 120:1193-207. [PMID: 26855378 DOI: 10.1111/jam.13090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/11/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
AIMS The aim of the study was to determine the prevalence of Mycobacterium bovis (the causative agent of bovine tuberculosis, bTB) in environmental matrices within a French region (Côte d'Or) affected by this zoonotic disease. METHODS AND RESULTS We report here the development and the use of molecular detection assays based on qPCR (double fluorescent dye-labelled probe) to monitor the occurrence of Mycobacterium tuberculosis complex (MTBC) or Myco. bovis in environmental samples collected in pastures where infected cattle and wildlife had been reported. Three qPCR assays targeting members of the MTBC (IS1561' and Rv3866 loci) or Myco. bovis (RD4 locus) were developed or refined from existing assays. These tools were validated using Myco. bovis spiked soil, water and faeces samples. Environmental samples were detected positive for the presence of MTBC strains and Myco. bovis in the environment of bTB-infected farms in the Côte d'Or region. CONCLUSIONS The development of molecular assays permitted testing of several types of environmental samples including spring water, sediment samples and soils from badger setts entrance located in the vicinity of these farms, which were repeatedly contaminated with Myco. bovis (up to 8·7 × 10(3) gene copies per gram of badger sett soil). For the first time, direct spoligotyping of soil DNA enabled identification of Myco. bovis genotypes from environmental matrices. SIGNIFICANCE AND IMPACT OF THE STUDY All together, these results suggest that Myco. bovis occurs at low levels in environmental matrices in Côte d'Or within the bTB-infected area. Drinking contaminated water or inhaling contaminated bioaerosols might explain cattle infection in some cases.
Collapse
Affiliation(s)
- E Barbier
- UMR 1347 Agroécologie, INRA, Dijon Cedex, France.,UMR 1347 Agroécologie, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - M L Boschiroli
- Unité de Zoonoses Bactériennes, Laboratoire National de Référence de la Tuberculose, Laboratoire de Santé Animale, ANSES, Université Paris-Est, Maisons-Alfort Cedex, France
| | - E Gueneau
- Laboratoire Départemental de la Côte d'Or, Dijon Cedex, France
| | - M Rochelet
- UMR 1347 Agroécologie, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - A Payne
- UMR 1347 Agroécologie, INRA, Dijon Cedex, France
| | - K de Cruz
- Unité de Zoonoses Bactériennes, Laboratoire National de Référence de la Tuberculose, Laboratoire de Santé Animale, ANSES, Université Paris-Est, Maisons-Alfort Cedex, France
| | - A L Blieux
- Welience, AgrOnov, SATT Grand-Est, Bretenière Cedex, France
| | - C Fossot
- Phytocontrol Paris, Rungis Cedex, France
| | - A Hartmann
- UMR 1347 Agroécologie, INRA, Dijon Cedex, France
| |
Collapse
|
37
|
Rapid dissemination of Mycobacterium bovis from cattle dung to soil by the earthworm Lumbricus terrestris. Vet Microbiol 2016; 186:1-7. [PMID: 27016750 DOI: 10.1016/j.vetmic.2016.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 11/20/2022]
Abstract
Indirect transmission of Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB), between wildlife and livestock is thought to occur by inhalation or ingestion of environmental substrates contaminated through animal shedding. The role of the soil fauna, such as earthworms, in the circulation of M. bovis from contaminated animal feces is of interest in the epidemiology of bTB. The objective of this study was to assess the impact of earthworm activity on M. bovis transfer from animal dung to castings and the surrounding soil. For this purpose, microcosms of soil containing the anecic earthworms Lumbricus terrestris were prepared and covered with cattle feces spiked with the M. bovis BCG strain Pasteur to carry out two separate experiments. The dissemination, the gut carriage and the excretion of M. bovis were all monitored using a specific qPCR-based assay. Our results showed that the earthworm L. terrestris was able to rapidly disseminate M. bovis from the contaminated cattle feces to the surrounding soil through casting egestion. Moreover, contaminated earthworms were shown to shed the bacteria for 4 days when transferred to a M. bovis-free soil. This study highlights for the first time the possible role of earthworms in the dissemination and the persistence of M. bovis in soils within bTB endemic areas.
Collapse
|
38
|
Thacker TC, Palmer MV, Robbe-Austerman S, Stuber TP, Waters WR. Anatomical distribution of Mycobacterium bovis genotypes in experimentally infected white-tailed deer. Vet Microbiol 2015; 180:75-81. [PMID: 26243696 DOI: 10.1016/j.vetmic.2015.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022]
Abstract
Mycobacterium bovis (M. bovis) causes tuberculosis in white-tailed deer (WTD). Natural infection of WTD with M. bovis is most closely mimicked by instilling inoculum into palatine tonsillar crypts. One hundred fifty days after intratonsillar inoculation, M. bovis was cultured from 30 tissues originating from 14 deer. Whole-genome sequencing (WGS) was performed on the original inoculum, single colonies subcultured from the original inoculum, and M. bovis isolated from each culture positive tissue. Single nucleotide polymorphisms (SNP) were identified by comparing the derived sequences to the reference strain AF2122/97. Results indicate that the majority of the SNPs that were identified were homogeneous between the inoculum and the isolates from the tissues. The majority of individual tissues had different WGS genotypes from each other, suggesting that dissemination of M. bovis beyond the initial site of infection may require few mycobacteria representing a bottleneck.
Collapse
Affiliation(s)
- Tyler C Thacker
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 1920 Dayton Ave, Ames, IA 50010, USA.
| | - Mitchell V Palmer
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 1920 Dayton Ave, Ames, IA 50010, USA.
| | - Suelee Robbe-Austerman
- United States Department of Agriculture, Animal and Plant Inspection Service, National Veterinary Services Laboratories, 1920 Dayton Ave, Ames, IA 50010, USA.
| | - Tod P Stuber
- United States Department of Agriculture, Animal and Plant Inspection Service, National Veterinary Services Laboratories, 1920 Dayton Ave, Ames, IA 50010, USA.
| | - W Ray Waters
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 1920 Dayton Ave, Ames, IA 50010, USA.
| |
Collapse
|
39
|
Alvarez J, Bezos J, de la Cruz ML, Casal C, Romero B, Domínguez L, de Juan L, Pérez A. Bovine tuberculosis: within-herd transmission models to support and direct the decision-making process. Res Vet Sci 2014; 97 Suppl:S61-8. [PMID: 24875061 DOI: 10.1016/j.rvsc.2014.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Use of mathematical models to study the transmission dynamics of infectious diseases is becoming increasingly common in veterinary sciences. However, modeling chronic infectious diseases such as bovine tuberculosis (bTB) is particularly challenging due to the substantial uncertainty associated with the epidemiology of the disease. Here, the methodological approaches used to model bTB and published in the peer-reviewed literature in the last decades were reviewed with a focus on the impact that the models' assumptions may have had on their results, such as the assumption of density vs. frequency-dependent transmission, the existence of non-infectious and non-detectable stages, and the effect of extrinsic sources of infection (usually associated with wildlife reservoirs). Although all studies suggested a relatively low rate of within-herd transmission of bTB when test-and-cull programs are in place, differences in the estimated length of the infection stages, sensitivity and specificity of the tests used and probable type of transmission (density or frequency dependent) were observed. Additional improvements, such as exploring the usefulness of contact-networks instead of assuming homogeneous mixing of animals, may help to build better models that can help to design, evaluate and monitor control and eradication strategies against bTB.
Collapse
Affiliation(s)
- Julio Alvarez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Javier Bezos
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
| | - Maria Luisa de la Cruz
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
| | - Carmen Casal
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
| | - Beatriz Romero
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
| | - Lucas Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
| | - Lucía de Juan
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
| | - Andrés Pérez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
40
|
Domingo M, Vidal E, Marco A. Pathology of bovine tuberculosis. Res Vet Sci 2014; 97 Suppl:S20-9. [PMID: 24731532 DOI: 10.1016/j.rvsc.2014.03.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/27/2014] [Accepted: 03/28/2014] [Indexed: 11/16/2022]
Abstract
Bovine tuberculosis (bTB) is a chronic granulomatous caseous-necrotising inflammatory process that mainly affects the lungs and their draining lymph nodes (Ln.). The pathological changes associated with bTB infection reflect the interplay between the host defence mechanisms and the mycobacterial virulence factors and the balance between the immunologic protective responses and the damaging inflammatory processes. Inhalation is the most common infection route and causes lesions of the nasopharynx and lower respiratory tract, including its associated lymph nodes. The initial infection (primary complex) may be followed by chronic (post-primary) tuberculosis or may be generalised. Goat tuberculosis often produces liquefactive necrosis and caverns, similarly to human TB. The assessment of the severity of TB lesions is crucial for vaccine trials. Semi-quantitative gross lesion scoring systems have been developed for cattle, but imaging technology has allowed the development of more standardised, objective, and quantitative methods, such as multi-detector computed tomography (MDCT), which provides quantitative measures of lesion volume.
Collapse
Affiliation(s)
- M Domingo
- Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra (Barcelona), Catalonia, Spain; Departament de Anatomia I Sanitat Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra (Barcelona), Catalonia, Spain.
| | - E Vidal
- Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra (Barcelona), Catalonia, Spain
| | - A Marco
- Departament de Anatomia I Sanitat Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra (Barcelona), Catalonia, Spain
| |
Collapse
|
41
|
Assessment of the sensitivity of the gamma-interferon test and the single intradermal comparative cervical test for the diagnosis of bovine tuberculosis under field conditions. Epidemiol Infect 2014; 143:157-66. [PMID: 24576504 DOI: 10.1017/s0950268814000338] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In some French départements, the eradication of bovine tuberculosis is incomplete and usual skin tests [single intradermal tuberculin test (SIT) and single intradermal comparative cervical test (SICCT)] have poor specificity due to cross-reactions with non-pathogenic mycobacteria, causing economic losses. In Côte d'Or (Burgundy, France), an experimental serial testing scheme based on the combination of SICCT and gamma-interferon (IFN-γ) tests has been initiated in order to shorten the interval between suspicion and its invalidation in herds with false-positive results to skin tests. Our aim was to assess the scheme's sensitivity and to compare it to the sensitivity of the screening scheme recommended by the European Commission. Our study included 1768 animals from Côte d'Or. The sensitivities of both schemes were estimated using a Bayesian approach. The individual sensitivity of the IFN-γ test [88·1%, 95% credibility interval (CrI) 72·8-97·5] was not significantly different from individual SICCT sensitivity (80·3%, 95% CrI 61·6-98·0) and individual SIT sensitivity (84·2%, 95% CrI 59·0-98·2). The individual specificity of the IFN-γ test was 62·3% (95% CrI 60·2-64·5). No significant difference could be demonstrated between the sensitivities of the serial testing scheme used in Côte d'Or (73·1%, 95% CrI 41·1-100) and the European Union serial testing scheme (70·1%, 95% CrI 31·5-100·0).
Collapse
|
42
|
|
43
|
Bezos J, Casal C, Alvarez J, Díez-Guerrier A, Rodríguez-Bertos A, Romero B, Rueda P, López L, Domínguez L, de Juan L. Evaluation of the performance of cellular and serological diagnostic tests for the diagnosis of tuberculosis in an alpaca (Vicugna pacos) herd naturally infected with Mycobacterium bovis. Prev Vet Med 2013; 111:304-13. [PMID: 23809774 DOI: 10.1016/j.prevetmed.2013.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/09/2013] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
Abstract
Tuberculosis (TB) in llamas and alpacas has gained importance in recent years since they are imported into the European Union mainly for serving as pets and for production of natural fibre. The intradermal tuberculin test has been widely used for diagnosis of TB in these species showing lack of sensitivity (Se) although little information has been previously reported evaluating the effect on its performance of different PPD inoculation sites and time of readings. Moreover, different cost-effective serological assays have been developed in the recent years for TB diagnosis in camelids obtaining a variety of results and, for this reason, new assays still being developed. The main objectives of this study were: (1) to evaluate the performance of the intradermal tuberculin test using different inoculation sites (axillary, prescapular and cervical) and times of reading (72 and 120 h) and (2) to test a novel serological assay based on MPB83 antigen in a Mycobacterium bovis naturally infected alpaca herd in Spain. In regards to skin test, single intradermal tuberculin (SIT) test at the prescapular site and reading at 72 h showed the highest proportion of test-positive-culture positive animals among all culture positive animals (T+/C+), ranging from 53.8% (95% CI, 37.2-69.9) to 80% (95% CI, 44.4-97.5) using a more stringent interpretation than typically prescribed although, in general, low T+/C+ was achieved using both SIT and single comparative intradermal tuberculin (SCIT) tests alone. T+/C+ of the serological assay increased using samples collected 15-30 days after PPD injection [76.9% (95% CI, 60.7-88.9) - 100% (95% CI, 69.2-100)]. The best results of T+/C+ were obtained applying in parallel the most sensitive SIT test and serology using samples collected 15-30 days after PPD inoculation [90% (95% CI, 55.5-99.7)-100% (95% CI, 69.2-100)]. Therefore implementation of serology in parallel with the most sensitive skin test could maximize the detection of infected animals.
Collapse
Affiliation(s)
- Javier Bezos
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Menin Á, Fleith R, Reck C, Marlow M, Fernandes P, Pilati C, Báfica A. Asymptomatic cattle naturally infected with Mycobacterium bovis present exacerbated tissue pathology and bacterial dissemination. PLoS One 2013; 8:e53884. [PMID: 23326525 PMCID: PMC3541226 DOI: 10.1371/journal.pone.0053884] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/04/2012] [Indexed: 02/02/2023] Open
Abstract
Rational discovery of novel immunodiagnostic and vaccine candidate antigens to control bovine tuberculosis (bTB) requires knowledge of disease immunopathogenesis. However, there remains a paucity of information on the Mycobacterium bovis-host immune interactions during the natural infection. Analysis of 247 naturally PPD+ M. bovis-infected cattle revealed that 92% (n = 228) of these animals were found to display no clinical signs, but presented severe as well as disseminated bTB-lesions at post-mortem examination. Moreover, dissemination of bTB-lesions positively correlated with both pathology severity score (Spearman r = 0.48; p<0.0001) and viable tissue bacterial loads (Spearman r = 0.58; p = 0.0001). Additionally, granuloma encapsulation negatively correlated with M. bovis growth as well as pathology severity, suggesting that encapsulation is an effective mechanism to control bacterial proliferation during natural infection. Moreover, multinucleated giant cell numbers were found to negatively correlate with bacterial counts (Spearman r = 0.25; p = 0.03) in lung granulomas. In contrast, neutrophil numbers in the granuloma were associated with increased M. bovis proliferation (Spearman r = 0.27; p = 0.021). Together, our findings suggest that encapsulation and multinucleated giant cells control M. bovis viability, whereas neutrophils may serve as a cellular biomarker of bacterial proliferation during natural infection. These data integrate host granuloma responses with mycobacterial dissemination and could provide useful immunopathological-based biomarkers of disease severity in natural infection with M. bovis, an important cattle pathogen.
Collapse
Affiliation(s)
- Álvaro Menin
- Laboratory of Immunobiology, Universidade Federal de Santa Catarina, Florianóspolis, Santa Catarina, Brazil
- * E-mail: (AB); (ÁM)
| | - Renata Fleith
- Laboratory of Immunobiology, Universidade Federal de Santa Catarina, Florianóspolis, Santa Catarina, Brazil
| | - Carolina Reck
- Laboratory of Histology and Immunohistochemistry, Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brazil
| | - Mariel Marlow
- Laboratory of Protozoology, Universidade Federal de Santa Catarina, Florianóspolis, Santa Catarina, Brazil
| | - Paula Fernandes
- Laboratory of Immunobiology, Universidade Federal de Santa Catarina, Florianóspolis, Santa Catarina, Brazil
| | - Célso Pilati
- Laboratory of Histology and Immunohistochemistry, Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brazil
| | - André Báfica
- Laboratory of Immunobiology, Universidade Federal de Santa Catarina, Florianóspolis, Santa Catarina, Brazil
- * E-mail: (AB); (ÁM)
| |
Collapse
|
45
|
Conlan AJK, McKinley TJ, Karolemeas K, Pollock EB, Goodchild AV, Mitchell AP, Birch CPD, Clifton-Hadley RS, Wood JLN. Estimating the hidden burden of bovine tuberculosis in Great Britain. PLoS Comput Biol 2012; 8:e1002730. [PMID: 23093923 PMCID: PMC3475695 DOI: 10.1371/journal.pcbi.1002730] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
The number of cattle herds placed under movement restrictions in Great Britain (GB) due to the suspected presence of bovine tuberculosis (bTB) has progressively increased over the past 25 years despite an intensive and costly test-and-slaughter control program. Around 38% of herds that clear movement restrictions experience a recurrent incident (breakdown) within 24 months, suggesting that infection may be persisting within herds. Reactivity to tuberculin, the basis of diagnostic testing, is dependent on the time from infection. Thus, testing efficiency varies between outbreaks, depending on weight of transmission and cannot be directly estimated. In this paper, we use Approximate Bayesian Computation (ABC) to parameterize two within-herd transmission models within a rigorous inferential framework. Previous within-herd models of bTB have relied on ad-hoc methods of parameterization and used a single model structure (SORI) where animals are assumed to become detectable by testing before they become infectious. We study such a conventional within-herd model of bTB and an alternative model, motivated by recent animal challenge studies, where there is no period of epidemiological latency before animals become infectious (SOR). Under both models we estimate that cattle-to-cattle transmission rates are non-linearly density dependent. The basic reproductive ratio for our conventional within-herd model, estimated for scenarios with no statutory controls, increases from 1.5 (0.26-4.9; 95% CI) in a herd of 30 cattle up to 4.9 (0.99-14.0) in a herd of 400. Under this model we estimate that 50% (33-67) of recurrent breakdowns in Britain can be attributed to infection missed by tuberculin testing. However this figure falls to 24% (11-42) of recurrent breakdowns under our alternative model. Under both models the estimated extrinsic force of infection increases with the burden of missed infection. Hence, improved herd-level testing is unlikely to reduce recurrence unless this extrinsic infectious pressure is simultaneously addressed.
Collapse
Affiliation(s)
- Andrew J K Conlan
- Disease Dynamics Unit (DDU), Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vordermeier M, Ameni G, Berg S, Bishop R, Robertson BD, Aseffa A, Hewinson RG, Young DB. The influence of cattle breed on susceptibility to bovine tuberculosis in Ethiopia. Comp Immunol Microbiol Infect Dis 2012; 35:227-32. [PMID: 22304898 PMCID: PMC3339321 DOI: 10.1016/j.cimid.2012.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/12/2011] [Accepted: 01/05/2012] [Indexed: 12/05/2022]
Abstract
Bovine tuberculosis in domestic livestock such as cattle is an economically important disease with zoonotic potential, particularly in countries with emerging economies. We discuss the findings of recent epidemiological and immunological studies conducted in Ethiopia on host susceptibility differences between native zebu and the exotic Holstein-Friesian cattle that are increasingly part of the Ethiopian National herd, due to the drive to increase milk yields. These findings support the hypothesis that native Zebu cattle are more resistant to bovine tuberculosis. We also summarise the results of experimental infections that support the epidemiological data, and of laboratory experiments that suggest a role for the innate immune response, and in particular interleukin-6, in the outcome of bovine tuberculosis infection.
Collapse
Affiliation(s)
- Martin Vordermeier
- Animal Health and Veterinary Laboratories Agency, TB Research Group, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Saini D, Hopkins GW, Seay SA, Chen CJ, Perley CC, Click EM, Frothingham R. Ultra-low dose of Mycobacterium tuberculosis aerosol creates partial infection in mice. Tuberculosis (Edinb) 2012; 92:160-5. [PMID: 22197183 PMCID: PMC3288716 DOI: 10.1016/j.tube.2011.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/12/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
Abstract
A murine low dose (LD) aerosol model is commonly used to test tuberculosis vaccines. Doses of 50-400 CFU (24h lung CFU) infect 100% of exposed mice. The LD model measures progression from infection to disease based on organ CFU at defined time points. To mimic natural exposure, we exposed mice to an ultra-low dose (ULD) aerosol. We estimated the presented dose by sampling the aerosol. Female C57BL/6 mice were exposed to Mycobacterium tuberculosis H37Rv aerosol at 1.0, 1.1, 1.6, 5.4, and 11 CFU presented dose, infecting 27%, 36%, 36%, 100%, and 95% of mice, respectively. These data are compatible with a stochastic infection event (Poisson distribution, weighted R(2)=0.97) or with a dose-response relationship (sigmoid distribution, weighted R(2)=0.97). Based on the later assumption, the ID50 was 1.6CFU presented dose (95% confidence interval, 1.2-2.1). We compared organ CFU after ULD and LD aerosols (5.4 vs. 395CFU presented dose). Lung burden was 30-fold lower in the ULD model at 4 weeks (3.4 vs. 4.8 logs, p<0.001) and 18 weeks (≤3.6 vs. 5.0 logs, p=0.01). Mice exposed to ULD aerosols as compared to LD aerosols had greater within-group CFU variability. Exposure to ULD aerosols leads to infection in a subset of mice, and to persistently low organ CFU. The ULD aerosol model may resemble human pulmonary tuberculosis more closely than the standard LD model, and may be used to identify host or bacterial factors that modulate the initial infection event.
Collapse
Affiliation(s)
- Divey Saini
- Duke Human Vaccine Institute, PO Box 103020, Duke University Medical Center, 909 S. LaSalle Street, GHRB, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Namouchi A, Didelot X, Schöck U, Gicquel B, Rocha EPC. After the bottleneck: Genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res 2012; 22:721-34. [PMID: 22377718 DOI: 10.1101/gr.129544.111] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many of the most virulent bacterial pathogens show low genetic diversity and sexual isolation. Accordingly, Mycobacterium tuberculosis, the deadliest human pathogen, is thought to be clonal and evolve by genetic drift. Yet, its genome shows few of the concomitant signs of genome degradation. We analyzed 24 genomes and found an excess of genetic diversity in regions encoding key adaptive functions including the type VII secretion system and the ancient horizontally transferred virulence-related regions. Four different approaches showed evident signs of recombination in M. tuberculosis. Recombination tracts add a high density of polymorphisms, and many are thus predicted to arise from outside the clade. Some of these tracts match Mycobacterium canettii sequences. Recombination introduced an excess of non-synonymous diversity in general and even more in genes expected to be under positive or diversifying selection, e.g., cell wall component genes. Mutations leading to non-synonymous SNPs are effectively purged in MTBC, which shows dominance of purifying selection. MTBC mutation bias toward AT nucleotides is not compensated by biased gene conversion, suggesting the action of natural selection also on synonymous changes. Together, all of these observations point to a strong imprint of recombination and selection in the genome affecting both non-synonymous and synonymous positions. Hence, contrary to some other pathogens and previous proposals concerning M. tuberculosis, this lineage may have come out of its ancestral bottleneck as a very successful pathogen that is rapidly diversifying by the action of mutation, recombination, and natural selection.
Collapse
Affiliation(s)
- Amine Namouchi
- Unité de Génétique Mycobactérienne, Institut Pasteur, 75015 Paris, France.
| | | | | | | | | |
Collapse
|
49
|
Experimental model of tuberculosis in the domestic goat after endobronchial infection with Mycobacterium caprae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1872-81. [PMID: 21880849 DOI: 10.1128/cvi.05323-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caprine tuberculosis (TB) has increased in recent years, highlighting the need to address the problem the infection poses in goats. Moreover, goats may represent a cheaper alternative for testing of prototype vaccines in large ruminants and humans. With this aim, a Mycobacterium caprae infection model has been developed in goats. Eleven 6-month-old goats were infected by the endobronchial route with 1.5 × 10(3) CFU, and two other goats were kept as noninfected controls. The animals were monitored for clinical and immunological parameters throughout the experiment. After 14 weeks, the goats were euthanized, and detailed postmortem analysis of lung lesions was performed by multidetector computed tomography (MDCT) and direct observation. The respiratory lymph nodes were also evaluated and cultured for bacteriological analysis. All infected animals were positive in a single intradermal comparative cervical tuberculin (SICCT) test at 12 weeks postinfection (p.i.). Gamma interferon (IFN-γ) antigen-specific responses were detected from 4 weeks p.i. until the end of the experiment. The humoral response to MPB83 was especially strong at 14 weeks p.i. (13 days after SICCT boost). All infected animals presented severe TB lesions in the lungs and associated lymph nodes. M. caprae was recovered from pulmonary lymph nodes in all inoculated goats. MDCT allowed a precise quantitative measure of TB lesions. Lesions in goats induced by M. caprae appeared to be more severe than those induced in cattle by M. bovis over a similar period of time. The present work proposes a reliable new experimental animal model for a better understanding of caprine tuberculosis and future development of vaccine trials in this and other species.
Collapse
|
50
|
Whelan AO, Coad M, Upadhyay BL, Clifford DJ, Hewinson RG, Vordermeier HM. Lack of correlation between BCG-induced tuberculin skin test sensitisation and protective immunity in cattle. Vaccine 2011; 29:5453-8. [PMID: 21640776 DOI: 10.1016/j.vaccine.2011.05.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 11/28/2022]
Abstract
Vaccination of cattle with Mycobacterium bovis Bacille Calmette-Guérin (BCG) can provide significant protection against bovine tuberculosis (TB). However, BCG vaccination sensitises animals to respond to the tuberculin skin-test. This provides a potential operational impediment to the use of BCG as a cattle vaccine since the tuberculin skin-test is the primary surveillance tool used by many countries with 'test and slaughter' control strategies. Currently, it is also unclear what BCG-induced skin-test conversion means in respects to BCG's protective immunity. In the current study we first investigated the duration of tuberculin skin-test sensitisation in calves neonatally vaccinated with BCG. BCG vaccination induced strong skin-test responses in calves during their first 6 months. However, a rapid decay in skin-test sensitivity was observed after this time. Between 6 and 9 months this represented a reduction from 80% to 8% of calves providing a positive response in the single intradermal comparative cervical tuberculin test at standard interpretation. We next investigated the relationship between BCG induced skin-test sensitivity and retention of protective immunity. Calves were neonatally vaccinated with BCG and subsequently divided into 2 groups based on retention or loss of tuberculin skin-test responses after 6 months. In contrast to their skin-test responsiveness, these vaccinates maintained their tuberculin specific IFN-γ blood responses. Moreover, irrespective of their pre-challenge skin-test responses, following M. bovis challenge both groups of BCG vaccinated calves demonstrated comparable levels of protection, as evidenced by reduced TB-associated pathology. Therefore, we have demonstrated that following neonatal BCG vaccination of cattle, tuberculin skin-test responder frequencies waned rapidly after 6 months but importantly, loss of skin-test sensitivity did not correlate with loss of protective immunity. These findings could have implications for the practical application of BCG based cattle vaccines.
Collapse
Affiliation(s)
- A O Whelan
- TB Research Group, Animal Health Veterinary Laboratory Agency-Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | | | | | |
Collapse
|