1
|
Sá-Pessoa J, Calderón-González R, Lee A, Bengoechea JA. Klebsiella pneumoniae emerging anti-immunology paradigms: from stealth to evasion. Trends Microbiol 2025; 33:533-545. [PMID: 39884872 DOI: 10.1016/j.tim.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Klebsiella pneumoniae (KP) is a global threat to human health due to the isolation of multidrug-resistant strains. Despite advancements in understanding KP's population structure, antibiotic resistance mechanisms, and transmission patterns, a gap remains in how KP evades defenses, allowing the pathogen to flourish in tissues despite an activated immune system. KP infection biology has been shaped by the notion that the pathogen has evolved to shield from defenses more than actively suppress them. This review describes new paradigms of how KP exploits the coevolution with the innate immune system to hijack immune effectors and receptors to ablate signaling pathways and to counteract cell-intrinsic immunity, making apparent that KP can no longer be considered only as a stealth pathogen.
Collapse
Affiliation(s)
- Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alix Lee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK.
| |
Collapse
|
2
|
Pagnon A, Carre C, Aguirre M, Chautard E, Gimenez S, Raynal F, Feroldi E, Scott P, Modjarrad K, Vangelisti M, Mantel N. Next generation yellow fever vaccine induces an equivalent immune and transcriptomic profile to the current vaccine: observations from a phase I randomised clinical trial. EBioMedicine 2024; 108:105332. [PMID: 39293214 PMCID: PMC11424963 DOI: 10.1016/j.ebiom.2024.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Yellow fever (YF), a mosquito-borne acute viral haemorrhagic illness, is endemic to many tropical and subtropical areas of Africa and Central and South America. Vaccination remains the most effective prevention strategy; however, as repeated outbreaks have exhausted vaccine stockpiles, there is a need for improved YF vaccines to meet global demand. A live-attenuated YF vaccine candidate (referred to as vYF) cloned from a YF-17D vaccine (YF-VAX®) sub-strain, adapted for growth in Vero cells cultured in serum-free media, is in clinical development. We report the innate and adaptive immune responses and the transcriptome profile of selected genes induced by vYF. METHODS Healthy adults aged 18-60 years were randomised at a 1:1:1:1 ratio to receive one dose of vYF at 4, 5 or 6 Log CCID50 or YF-VAX (reference vaccine), administered subcutaneously in the upper arm (ClinicalTrials.gov identifier: NCT04142086). Blood/serum samples were obtained at scheduled time points through 180 days (D180) post-vaccination. The surrogate endpoints assessed were: serum cytokine/chemokine concentrations, measured by bead-based Multiplex assay; peripheral blood vYF-specific IgG and IgM memory B cell frequencies, measured by FluoroSpot assay; and expression of genes involved in the immune response to YF-17D vaccination by RT-qPCR. FINDINGS There was no increase in any of the cytokine/chemokine concentrations assessed through D14 following vaccination with vYF or YF-VAX, except for a slight increase in IP-10 (CXCL10) levels. The gene expression profiles and kinetics following vaccination with vYF and YF-VAX were similar, inclusive of innate (antiviral responses [type-1 interferon, IFN signal transduction; interferon-stimulated genes], activated dendritic cells, viral sensing pattern recognition receptors) and adaptive (cell division in stimulated CD4+ T cells, B cell and antibody) immune signatures, which peaked at D7 and D14, respectively. Increases in vYF-specific IgG and IgM memory B cell frequencies at D28 and D180 were similar across the study groups. INTERPRETATION vYF-induced strong innate and adaptive immune responses comparable to those induced by YF-VAX, with similar transcriptomic and kinetic profiles observed. FUNDING Sanofi.
Collapse
Affiliation(s)
- Anke Pagnon
- Vaccine Research and Development, Sanofi, Marcy l'Etoile, France
| | - Christophe Carre
- Vaccine Research and Development, Sanofi, Marcy l'Etoile, France
| | - Marion Aguirre
- Vaccine Research and Development, Sanofi, Marcy l'Etoile, France
| | - Emilie Chautard
- Vaccine Research and Development, Sanofi, Marcy l'Etoile, France
| | - Sophie Gimenez
- Vaccine Research and Development, Sanofi, Marcy l'Etoile, France
| | - Franck Raynal
- Vaccine Research and Development, Sanofi, Marcy l'Etoile, France
| | - Emmanuel Feroldi
- Vaccine Research and Development, Sanofi, Marcy l'Etoile, France
| | - Paul Scott
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Nathalie Mantel
- Vaccine Research and Development, Sanofi, Marcy l'Etoile, France.
| |
Collapse
|
3
|
Assoni L, Couto AJM, Vieira B, Milani B, Lima AS, Converso TR, Darrieux M. Animal models of Klebsiella pneumoniae mucosal infections. Front Microbiol 2024; 15:1367422. [PMID: 38559342 PMCID: PMC10978692 DOI: 10.3389/fmicb.2024.1367422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Klebsiella pneumoniae is among the most relevant pathogens worldwide, causing high morbidity and mortality, which is worsened by the increasing rates of antibiotic resistance. It is a constituent of the host microbiota of different mucosa, that can invade and cause infections in many different sites. The development of new treatments and prophylaxis against this pathogen rely on animal models to identify potential targets and evaluate the efficacy and possible side effects of therapeutic agents or vaccines. However, the validity of data generated is highly dependable on choosing models that can adequately reproduce the hallmarks of human diseases. The present review summarizes the current knowledge on animal models used to investigate K. pneumoniae infections, with a focus on mucosal sites. The advantages and limitations of each model are discussed and compared; the applications, extrapolations to human subjects and future modifications that can improve the current techniques are also presented. While mice are the most widely used species in K. pneumoniae animal studies, they present limitations such as the natural resistance to the pathogen and difficulties in reproducing the main steps of human mucosal infections. Other models, such as Drosophila melanogaster (fruit fly), Caenorhabditis elegans, Galleria mellonella and Danio rerio (zebrafish), contribute to understanding specific aspects of the infection process, such as bacterial lethality and colonization and innate immune system response, however, they but do not present the immunological complexity of mammals. In conclusion, the choice of the animal model of K. pneumoniae infection will depend mainly on the questions being addressed by the study, while a better understanding of the interplay between bacterial virulence factors and animal host responses will provide a deeper comprehension of the disease process and aid in the development of effective preventive/therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michelle Darrieux
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
4
|
Bissell BD, Sturgill JL, Bruno MEC, Lewis ED, Starr ME. Assessment of Opioid-Induced Immunomodulation in Experimental and Clinical Sepsis. Crit Care Explor 2023; 5:e0849. [PMID: 36699245 PMCID: PMC9848529 DOI: 10.1097/cce.0000000000000849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Opioids remain a standard supportive therapy in patients admitted to the ICU with sepsis. However, as preclinical models indicate an association between opioid exposure and immunosuppression, the use of this class of drugs warrants investigation. The objective of this study was to investigate whether opioid exposure causes immunosuppression in patients with sepsis, and to use a murine sepsis model to determine the effects of opioid exposure on secondary infection. HYPOTHESIS We hypothesized opioid exposure would be associated with immunosuppression in patients with sepsis and secondary infection in a murine sepsis model. METHODS AND MODELS This was a two-phase preclinical and clinical study. The clinical phase included a subgroup of patients with sepsis from an existing randomized controlled trial while the preclinical phase used a murine model of sepsis with C57BL/6 mice. In the clinical phase, a post hoc analysis was performed in subjects receiving fentanyl versus no opioid receipt. In the preclinical phase, a murine cecal slurry-induced sepsis model followed by secondary infection was used. Mice were randomized to fentanyl versus no fentanyl concomitantly. RESULTS In clinical sepsis, a significant decrease in interleukin-23 (IL-23) level in patients with fentanyl exposure was observed and lower IL-23 was associated with mortality (p < 0.001). Other measured cytokines showed no significant differences. Concomitant fentanyl exposure during murine sepsis was associated with a significantly higher bacterial burden (p < 0.001) after secondary infection; however, immune cell counts and plasma cytokine levels were largely unaffected by fentanyl. INTERPRETATION AND CONCLUSIONS Minimal alterations in cytokines were seen with opioid exposure during clinical sepsis. In a preclinical model, opioid exposure during sepsis was associated with ineffective bacterial clearance upon secondary infection. Further studies are warranted to evaluate the immunomodulatory role of opioids and their implications, especially in the post-sepsis period.
Collapse
Affiliation(s)
- Brittany D Bissell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY
| | - Jamie L Sturgill
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY
| | - Maria E C Bruno
- Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY
| | - Erick D Lewis
- Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY
| | - Marlene E Starr
- Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
5
|
Luo J, Chen Y, Tang G, Li Z, Yang X, Shang X, Huang T, Huang G, Wang L, Han Y, Zhou Y, Wang C, Wu B, Guo Q, Gong B, Li M, Wang R, Yang J, Cui W, Zhong J, Zhong LL, Guo J. Gut microbiota composition reflects disease progression, severity and outcome, and dysfunctional immune responses in patients with hypertensive intracerebral hemorrhage. Front Immunol 2022; 13:869846. [PMID: 36439158 PMCID: PMC9699794 DOI: 10.3389/fimmu.2022.869846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/08/2022] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE In this study, we aimed to explore the alterations in gut microbiota composition and cytokine responses related to disease progression, severity, and outcomes in patients with hypertensive intracerebral hemorrhage (ICH). METHODS Fecal microbiota communities of 64 patients with ICH, 46 coronary heart disease controls, and 23 healthy controls were measured by sequencing the V3-V4 region of the 16S ribosomal RNA (16S rRNA) gene. Serum concentrations of a broad spectrum of cytokines were examined by liquid chips and ELISA. Relationships between clinical phenotypes, microbiotas, and cytokine responses were analyzed in the group with ICH and stroke-associated pneumonia (SAP), the major complication of ICH. RESULTS In comparison with the control groups, the gut microbiota of the patients with ICH had increased microbial richness and diversity, an expanded spectrum of facultative anaerobes and opportunistic pathogens, and depletion of anaerobes. Enterococcus enrichment and Prevotella depletion were more significant in the ICH group and were associated with the severity and functional outcome of ICH. Furthermore, Enterococcus enrichment and Prevotella depletion were also noted in the SAP group in contrast to the non-SAP group. Enterococci were also promising factors in the prognosis of ICH. The onset of ICH induced massive, rapid activation of the peripheral immune system. There were 12 cytokines (Eotaxin, GM-CSF, IL-8, IL-9, IL-10, IL-12p70, IL-15, IL-23, IL-1RA, IP-10, RANTES, and TNF-α) changed significantly with prolongation of ICH, and the Th2 responses correlated with the 90-day outcomes. Cytokines TNF-α, IP-10, IL-1RA, IL-8, IL-18, and MIP-1β in SAP group significantly differed from non-SAP group. Among these cytokines, only IP-10 levels decreased in the SAP group. Enterococcus was positively associated with IL-1RA and negatively associated with IP-10, while Prevotella was inversely associated in both the ICH and SAP groups. CONCLUSION This study revealed that gut dysbiosis with enriched Enterococcus and depleted Prevotella increased the risk of ICH and subsequently SAP. The altered gut microbiota composition and serum cytokine profiles are potential biomarkers that reflect the inciting physiologic insult/stress involved with ICH.
Collapse
Affiliation(s)
- Jielian Luo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghai Tang
- Department of Neurology, Shenyang Second Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Zhuo Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobo Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Xiaoxiao Shang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gan Huang
- Department of Neurology, Yangjiang Hospital of Traditional Chinese Medicine, Yangjiang, China
| | - Lixin Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Han
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuexiang Zhou
- Department of Community Healthcare Service, Shenzhen FuYong People’s Hospital, Shenzhen, China
| | - Chuyang Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qihua Guo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Baoying Gong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mengzhen Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ruihua Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Fourth Affiliated Hospital of Guangzhou Medical University Research Team of Traditional Chinese Medicine for the Prevention and Treatment of Cerebral Hemorrhage, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiecong Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wanzhen Cui
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jianbin Zhong
- Department of Neurology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linda Ld Zhong
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jianwen Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Verma AK, McKelvey M, Uddin MB, Palani S, Niu M, Bauer C, Shao S, Sun K. IFN-γ transforms the transcriptomic landscape and triggers myeloid cell hyperresponsiveness to cause lethal lung injury. Front Immunol 2022; 13:1011132. [PMID: 36203588 PMCID: PMC9530332 DOI: 10.3389/fimmu.2022.1011132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is an inflammatory disease that is associated with high mortality but no specific treatment. Our understanding of initial events that trigger ARDS pathogenesis is limited. We have developed a mouse model of inflammatory lung injury by influenza and methicillin-resistant Staphylococcus aureus (MRSA) coinfection plus daily antibiotic therapy. Using this pneumonic ARDS model, here we show that IFN-γ receptor signaling drives inflammatory cytokine storm and lung tissue damage. By single-cell RNA sequencing (scRNA-seq) analysis, we demonstrate that IFN-γ signaling induces a transcriptional shift in airway immune cells, particularly by upregulating macrophage and monocyte expression of genes associated with inflammatory diseases. Further evidence from conditional knockout mouse models reveals that IFN-γ receptor signaling in myeloid cells, particularly CD11c+ mononuclear phagocytes, directly promotes TNF-α hyperproduction and inflammatory lung damage. Collectively, the findings from this study, ranging from cell-intrinsic gene expression to overall disease outcome, demonstrate that influenza-induced IFN-γ triggers myeloid cell hyperresponsiveness to MRSA, thereby leading to excessive inflammatory response and lethal lung damage during coinfection.
Collapse
Affiliation(s)
- Atul K. Verma
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michael McKelvey
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Md Bashir Uddin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunil Palani
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Meng Niu
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Christopher Bauer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shengjun Shao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Keer Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Keer Sun,
| |
Collapse
|
7
|
Suresh A, Rao TC, Solanki S, Suresh MV, Menon B, Raghavendran K. The holy basil administration diminishes the NF-kB expression and protects alveolar epithelial cells from pneumonia infection through interferon gamma. Phytother Res 2022; 36:1822-1835. [PMID: 35233841 PMCID: PMC9018535 DOI: 10.1002/ptr.7428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/07/2022]
Abstract
Bacterial pneumonia is one of the most important causes of mortality in the United States. The bacteria Klebsiella pneumoniae (KP) accounts for a significant proportion of community and hospital-acquired infections. Here, we determine that the holy basil (Ocimum sanctum) extract improves cell viability and dampens the proinflammatory cytokine response in an in vitro model of pneumonia. For this, A549, a human alveolar basal epithelial cell line, was subjected to a lethal KP model following a 24-hr pretreatment with basil extract. Bacteremia, cell viability, apoptosis, MTT assay, phagocytic capacity, cytokines, and Khe gene expression were assessed in these cells following pneumonia. Cell morphology analysis showed that holy basil protected A549 cells from KP infection-mediated effects by inhibiting cell death due to apoptosis. Additionally, in the presence of basil, A549 cells demonstrated significantly higher bactericidal capacity and phagocytosis. Administration of holy basil led to reduced expression of hypoxia-inducible factor-1/2a, nuclear factor kappa B, and Khe in the KP-infected cells while increasing interferon (IFN)-γ expression. Our results suggest that basil significantly reduced cell death in the setting of KP infection, likely via attenuation of cytokine and IFN-γ mediated signaling pathways. Holy basil is a promising therapeutic agent for managing and treating bacterial pneumonia based on its potency.
Collapse
Affiliation(s)
| | - Tejeshwar C. Rao
- Department of Cell, Developmental, and Integrative Biology, the University of Alabama at Birmingham, Birmingham AL 35294
| | - Sumeet Solanki
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Bindu Menon
- Department of Medical Education & Physiology/Pharmacology, University of Toledo, OH
| | | |
Collapse
|
8
|
Lee GR, Gallo D, Alves de Souza RW, Tiwari-Heckler S, Csizmadia E, Harbison JD, Shankar S, Banner-Goodspeed V, Yaffe MB, Longhi MS, Hauser CJ, Otterbein LE. Trauma-induced heme release increases susceptibility to bacterial infection. JCI Insight 2021; 6:e150813. [PMID: 34520397 PMCID: PMC8564912 DOI: 10.1172/jci.insight.150813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022] Open
Abstract
Infection is a common complication of major trauma that causes significantly increased morbidity and mortality. The mechanisms, however, linking tissue injury to increased susceptibility to infection remain poorly understood. To study this relationship, we present a potentially novel murine model in which a major liver crush injury is followed by bacterial inoculation into the lung. We find that such tissue trauma both impaired bacterial clearance and was associated with significant elevations in plasma heme levels. While neutrophil (PMN) recruitment to the lung in response to Staphylococcus aureus was unchanged after trauma, PMN cleared bacteria poorly. Moreover, PMN show > 50% less expression of TLR2, which is responsible, in part, for bacterial recognition. Administration of heme effectively substituted for trauma. Finally, day 1 trauma patients (n = 9) showed similar elevations in free heme compared with that seen after murine liver injury, and circulating PMN showed similar TLR2 reduction compared with volunteers (n = 6). These findings correlate to high infection rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valerie Banner-Goodspeed
- Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael B Yaffe
- Department of Surgery and.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maria Serena Longhi
- Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
9
|
Kovach MA, Che K, Brundin B, Andersson A, Asgeirsdottir H, Padra M, Lindén SK, Qvarfordt I, Newstead MW, Standiford TJ, Lindén A. IL-36 Cytokines Promote Inflammation in the Lungs of Long-Term Smokers. Am J Respir Cell Mol Biol 2021; 64:173-182. [PMID: 33105081 PMCID: PMC7874394 DOI: 10.1165/rcmb.2020-0035oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease with high morbidity and mortality. The IL-36 family are proinflammatory cytokines that are known to shape innate immune responses, including those critical to bacterial pneumonia. The objective of this study was to determine whether IL-36 cytokines promote a proinflammatory milieu in the lungs of long-term smokers with and without COPD. Concentrations of IL-36 cytokines were measured in plasma and BAL fluid from subjects in a pilot study (n = 23) of long-term smokers with and without COPD in vivo and from a variety of lung cells (from 3-5 donors) stimulated with bacteria or cigarette smoke components in vitro. Pulmonary macrophages were stimulated with IL-36 cytokines in vitro, and chemokine and cytokine production was assessed. IL-36α and IL-36γ are produced to varying degrees in murine and human lung cells in response to bacterial stimuli and cigarette smoke components in vitro. Moreover, whereas IL-36γ production is upregulated early after cigarette smoke stimulation and wanes over time, IL-36α production requires a longer duration of exposure. IL-36α and IL-36γ are enhanced systemically and locally in long-term smokers with and without COPD, and local IL-36α concentrations display a positive correlation with declining ventilatory lung function and increasing proinflammatory cytokine concentrations. In vitro, IL-36α and IL-36γ induce proinflammatory chemokines and cytokines in a concentration-dependent fashion that requires IL-36R and MyD88. IL-36 cytokine production is altered in long-term smokers with and without COPD and contributes to shaping a proinflammatory milieu in the lungs.
Collapse
Affiliation(s)
- Melissa A. Kovach
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karlhans Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Brundin
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Andersson
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helga Asgeirsdottir
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Médea Padra
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara K. Lindén
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Qvarfordt
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael W. Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Investigating the potential of endolysin loaded chitosan nanoparticles in the treatment of pneumococcal pneumonia. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Cai F, Fu W, Tang L, Tang J, Sun J, Fu G, Ye G. Hsa_circ_0000515 is a novel circular RNA implicated in the development of breast cancer through its regulation of the microRNA-296-5p/CXCL10 axis. FEBS J 2021; 288:861-883. [PMID: 32446265 DOI: 10.1111/febs.15373] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/06/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Cancer metastasis is a major cause of death among women afflicted with breast cancer (BC) and understanding the molecular processes involved is a major focus in BC research. Circular RNAs (circRNAs) have emerged as genomic regulatory molecules in carcinogenesis and metastasis; however, their role in BC is unclear. We characterized a novel circRNA, hsa_circ_0000515, in context of BC. We collected 340 cancerous tissues surgically resected from BC patients and found hsa_circ_0000515 was upregulated in BC tissues and associated with poor prognosis of BC. Silencing of hsa_circ_0000515 impaired cell cycle progression, cell proliferation, and invasion, attenuated inflammatory response, and reduced the proangiogenetic potential of BC cells. RNA pull-down and dual-luciferase reporter gene assays showed that hsa_circ_0000515 binds miR-296-5p, preventing it from repressing CXCL10 expression. We also observed that miR-296-5p inhibition or CXCL10 overexpression promoted cell cycle progression, restored proliferative, invasive and proangiogenetic abilities, and increased inflammatory response in MCF-7 cells in the absence of hsa_circ_0000515. In vivo analyses showed that partial loss of hsa_circ_0000515 reduced the tumor growth of MCF-7 cells in nude mice. The key findings from this study revealed that targeting hsa_circ_0000515 might be an effective strategy to combat BC.
Collapse
Affiliation(s)
- Fenglin Cai
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou, China
| | - Wenjie Fu
- Department of General Surgery, Jiangsu Provincial Corps Hospital of Chinese People's Armed Police Forces, Yangzhou, China
| | - Lei Tang
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jinming Sun
- Department of General Surgery, Jiangdu People's Hospital of Yangzhou, Yangzhou, China
| | - Guangshun Fu
- Department of General Surgery, Jiangdu People's Hospital of Yangzhou, Yangzhou, China
| | - Gang Ye
- Department of General Surgery, Jiangdu People's Hospital of Yangzhou, Yangzhou, China
| |
Collapse
|
12
|
Gradek-Kwinta E, Czyzycki M, Weglarczyk K, Slowik A, Siedlar M, Dziedzic T. Ex vivo synthesized cytokines as a biomarker of stroke-associated pneumonia. Clin Chim Acta 2020; 510:260-263. [DOI: 10.1016/j.cca.2020.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
|
13
|
Kamata K, Watanabe T, Minaga K, Hara A, Sekai I, Otsuka Y, Yoshikawa T, Park AM, Kudo M. Gut microbiome alterations in type 1 autoimmune pancreatitis after induction of remission by prednisolone. Clin Exp Immunol 2020; 202:308-320. [PMID: 32880930 DOI: 10.1111/cei.13509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Although increasing evidence demonstrates the association between intestinal dysbiosis and pancreatic diseases such as chronic pancreatitis and pancreatic cancer, it remains largely unknown whether intestinal dysbiosis is involved in the immunopathogenesis of autoimmune pancreatitis (AIP). Recently, we found that intestinal dysbiosis mediates experimental AIP via the activation of plasmacytoid dendritic cells (pDCs), which can produce interferon (IFN)-α and interleukin (IL)-33. However, candidate intestinal bacteria, which promote the development of AIP, have not been identified. Fecal samples were obtained from type 1 AIP patients before and after prednisolone (PSL) treatment and subjected to 16S ribosomal RNA sequencing to evaluate the composition of intestinal bacteria. Induction of remission by PSL was associated with the complete disappearance of Klebsiella species from feces in two of the three analyzed patients with type 1 AIP. To assess the pathogenicity of Klebsiella species, mild experimental AIP was induced in MRL/MpJ mice by repeated injections of 10 μg of polyinosinic-polycytidylic acid [poly(I:C)], in combination with oral administration of heat-killed Klebsiella pneumoniae. The AIP pathology score was significantly higher in MRL/MpJ mice that received both oral administration of heat-killed K. pneumoniae and intraperitoneal injections of poly(I:C) than in those administered either agent alone. Pancreatic accumulation of pDCs capable of producing large amounts of IFN-α and IL-33 was also significantly higher in mice that received both treatments. These data suggest that intestinal colonization by K. pneumoniae may play an intensifying role in the development of type 1 AIP.
Collapse
Affiliation(s)
- K Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - T Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - K Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - A Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - I Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Y Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - T Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - A-M Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - M Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
14
|
Abstract
The implementation of infection models that approximate human disease is essential to understand infections and for testing new therapies before they enter into clinical stages. Rodents are used in most preclinical studies, although the differences between mice and humans have fueled the conclusion that murine studies are unreliable predictors of human outcomes. In this study, we have developed a whole-lung porcine model of infection using the ex vivo lung perfusion (EVLP) system established to recondition human lungs for transplant. As a proof of principle, we provide evidence demonstrating that infection of the porcine EVLP with the human pathogen Klebsiella pneumoniae recapitulates the known features of Klebsiella-triggered pneumonia. Moreover, our data revealed that the porcine EVLP model is useful to reveal features of the virulence of K. pneumoniae, including the manipulation of immune cells. Together, the findings of this study support the utility of the EVLP model using pig lungs as a surrogate host for assessing respiratory infections. The use of animal infection models is essential to understand microbial pathogenesis and to develop and test treatments. Insects and two-dimensional (2D) and 3D tissue models are increasingly being used as surrogates for mammalian models. However, there are concerns about whether these models recapitulate the complexity of host-pathogen interactions. In this study, we developed the ex vivo lung perfusion (EVLP) model of infection using porcine lungs to investigate Klebsiella pneumoniae-triggered pneumonia as a model of respiratory infections. The porcine EVLP model recapitulates features of K. pneumoniae-induced pneumonia lung injury. This model is also useful to assess the pathogenic potential of K. pneumoniae, as we observed that the attenuated Klebsiella capsule mutant strain caused less pathological tissue damage with a concomitant decrease in the bacterial burden compared to that in lungs infected with the wild type. The porcine EVLP model allows assessment of inflammatory responses following infection; similar to the case with the mouse pneumonia model, we observed an increase of il-10 in the lungs infected with the wild type and an increase of ifn-γ in lungs infected with the capsule mutant. This model also allows monitoring of phenotypes at the single-cell level. Wild-type K. pneumoniae skews macrophages toward an M2-like state. In vitro experiments probing pig bone marrow-derived macrophages uncovered the role for the M2 transcriptional factor STAT6 and that Klebsiella-induced il-10 expression is controlled by p38 and extracellular signal-regulated kinase (ERK). Klebsiella-induced macrophage polarization is dependent on the capsule. Together, the findings of this study support the utility of the EVLP model using pig lungs as a platform to investigate the infection biology of respiratory pathogens.
Collapse
|
15
|
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43:123-144. [PMID: 30452654 PMCID: PMC6435446 DOI: 10.1093/femsre/fuy043] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Collapse
Affiliation(s)
- José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Joana Sa Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
16
|
Sorensen EW, Lian J, Ozga AJ, Miyabe Y, Ji SW, Bromley SK, Mempel TR, Luster AD. CXCL10 stabilizes T cell-brain endothelial cell adhesion leading to the induction of cerebral malaria. JCI Insight 2018; 3:98911. [PMID: 29669942 PMCID: PMC5931132 DOI: 10.1172/jci.insight.98911] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 01/12/2023] Open
Abstract
Malaria remains one of the world's most significant human infectious diseases and cerebral malaria (CM) is its most deadly complication. CM pathogenesis remains incompletely understood, hindering the development of therapeutics to prevent this lethal complication. Elevated levels of the chemokine CXCL10 are a biomarker for CM, and CXCL10 and its receptor CXCR3 are required for experimental CM (ECM) in mice, but their role has remained unclear. Using multiphoton intravital microscopy, CXCR3 receptor- and ligand-deficient mice and bone marrow chimeric mice, we demonstrate a key role for endothelial cell-produced CXCL10 in inducing the firm adhesion of T cells and preventing their cell detachment from the brain vasculature. Using a CXCL9 and CXCL10 dual-CXCR3-ligand reporter mouse, we found that CXCL10 was strongly induced in the brain endothelium as early as 4 days after infection, while CXCL9 and CXCL10 expression was found in inflammatory monocytes and monocyte-derived DCs within the blood vasculature on day 8. The induction of both CXCL9 and CXCL10 was completely dependent on IFN-γ receptor signaling. These data demonstrate that IFN-γ-induced, endothelium-derived CXCL10 plays a critical role in mediating the T cell-endothelial cell adhesive events that initiate the inflammatory cascade that injures the endothelium and induces the development of ECM.
Collapse
|
17
|
Ouyang MZ, Zhou D, Zhu Y, Zhang M, Li L. The inhibition of MyD88 and TRIF signaling serve equivalent roles in attenuating myocardial deterioration due to acute severe inflammation. Int J Mol Med 2017; 41:399-408. [PMID: 29115392 DOI: 10.3892/ijmm.2017.3239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Myeloid differentiation factor 88 (MyD88) and Toll or interleukin-1 receptor-domain-containing adaptor-inducing interferon-β (IFN-β) (TRIF) are two pivotal downstream adaptors of Toll-like receptors. Activation of MyD88 or TRIF signaling in cardiac immune pathology of severe inflammation negatively influences heart function. In the present study, severe septic cardiac injury was induced in C57BL/6 mice by cecum ligation and puncture (CLP). A total of 64 mice were divided randomly into the following four groups (n=16/group; 8 for observation of survival rate, 8 for heart sample analysis): Sham, CLP, anti-MyD88-CLP and anti-TRIF-CLP. Anti-MyD88 and anti-TRIF antibodies were administered to the respective mice through the tail veins 2 h before CLP. Measurements of cardiac function, including M-modes, velocity vector imaging and cardiac troponin I, were performed. Myocardial inflammatory cytokines were examined by reverse transcription-polymerase chain reaction (RT-PCR), myocardial neutrophil infiltration was measured by a myeloperoxidase activity assay, intracellular adhesion molecule and vascular cell adhesion molecule mRNA expression levels were investigated, and histopathological characteristics were evaluated. Levels of mRNA transcripts encoding genes for apoptosis production and MyD88, TRIF, nuclear factor-κB and IFN regulatory factor 3 were investigated by RT-PCR. Mice challenged with CLP demonstrated deleterious cardiac function, increased levels of interleukin-1β (IL-1β), IL-6β, and tumor necrosis factor-α mRNA, increased neutrophil infiltration, and increased apoptosis. In contrast, mice in the anti-MyD88 CLP and anti-TRIF CLP groups retained cardiac function with reduced cytokine release, decreased neutrophil infiltration, and reduced apoptosis. In addition, there was no significant difference between the anti-MyD88 CLP and anti-TRIF CLP groups. Thus, the present study indicated that MyD88 and TRIF blockades serve notable and equivalent roles in protecting cardiac deterioration from severe sepsis by attenuating cytokine release, reducing neutrophil infiltration and alleviating apoptosis.
Collapse
Affiliation(s)
- Min-Zhi Ouyang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Dan Zhou
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun Zhu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Zhang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling Li
- Medical Basic Teaching Experiment Center, College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
18
|
Ivin M, Dumigan A, de Vasconcelos FN, Ebner F, Borroni M, Kavirayani A, Przybyszewska KN, Ingram RJ, Lienenklaus S, Kalinke U, Stoiber D, Bengoechea JA, Kovarik P. Natural killer cell-intrinsic type I IFN signaling controls Klebsiella pneumoniae growth during lung infection. PLoS Pathog 2017; 13:e1006696. [PMID: 29112952 PMCID: PMC5675380 DOI: 10.1371/journal.ppat.1006696] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Klebsiella pneumoniae is a significant cause of nosocomial pneumonia and an alarming pathogen owing to the recent isolation of multidrug resistant strains. Understanding of immune responses orchestrating K. pneumoniae clearance by the host is of utmost importance. Here we show that type I interferon (IFN) signaling protects against lung infection with K. pneumoniae by launching bacterial growth-controlling interactions between alveolar macrophages and natural killer (NK) cells. Type I IFNs are important but disparate and incompletely understood regulators of defense against bacterial infections. Type I IFN receptor 1 (Ifnar1)-deficient mice infected with K. pneumoniae failed to activate NK cell-derived IFN-γ production. IFN-γ was required for bactericidal action and the production of the NK cell response-amplifying IL-12 and CXCL10 by alveolar macrophages. Bacterial clearance and NK cell IFN-γ were rescued in Ifnar1-deficient hosts by Ifnar1-proficient NK cells. Consistently, type I IFN signaling in myeloid cells including alveolar macrophages, monocytes and neutrophils was dispensable for host defense and IFN-γ activation. The failure of Ifnar1-deficient hosts to initiate a defense-promoting crosstalk between alveolar macrophages and NK cell was circumvented by administration of exogenous IFN-γ which restored endogenous IFN-γ production and restricted bacterial growth. These data identify NK cell-intrinsic type I IFN signaling as essential driver of K. pneumoniae clearance, and reveal specific targets for future therapeutic exploitations.
Collapse
Affiliation(s)
- Masa Ivin
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Filipe N. de Vasconcelos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Florian Ebner
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Martina Borroni
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Anoop Kavirayani
- Vienna Biocenter Core Facilities, Histopathology Facility, Dr. Bohr-Gasse 3, Vienna, Austria
| | - Kornelia N. Przybyszewska
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Stefan Lienenklaus
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Dagmar Stoiber
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Jose A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
19
|
Lee IR, Sng E, Lee KO, Molton JS, Chan M, Kalimuddin S, Izharuddin E, Lye DC, Archuleta S, Gan YH. Comparison of Diabetic and Non-diabetic Human Leukocytic Responses to Different Capsule Types of Klebsiella pneumoniae Responsible for Causing Pyogenic Liver Abscess. Front Cell Infect Microbiol 2017; 7:401. [PMID: 28936426 PMCID: PMC5594087 DOI: 10.3389/fcimb.2017.00401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
The major risk factor for Klebsiella liver abscess (KLA) is type 2 diabetes mellitus (DM), but the immunological mechanisms involved in the increased susceptibility are poorly defined. We investigated the responses of neutrophils and peripheral blood mononuclear cells (PBMCs) to hypervirulent Klebsiella pneumoniae (hvKP), the causative agent of KLA. DNA and myeloperoxidase levels were elevated in the plasma of KLA patients compared to uninfected individuals indicating neutrophil activation, but diabetic status had no effect on these neutrophil extracellular trap (NET) biomarkers in both subject groups. Clinical hvKP isolates universally stimulated KLA patient neutrophils to produce NETs ex vivo, regardless of host diabetic status. Ability of representative capsule types (K1, K2, and non-K1/K2 strains) to survive intra- and extra-cellular killing by type 2 DM and healthy neutrophils was subsequently examined. Key findings were: (1) type 2 DM and healthy neutrophils exhibited comparable total, phagocytic, and NETs killing against hvKP, (2) phagocytic and NETs killing were equally effective against hvKP, and (3) hypermucoviscous K1 and K2 strains were more resistant to total, phagocytic, and NETs killing compared to the non-mucoviscous, non-K1/K2 strain. The cytokine response and intracellular killing ability of type 2 DM as well as healthy PBMCs upon encounter with the different capsule types was also examined. Notably, the IL-12–IFNγ axis and its downstream chemokines MIG, IP-10, and RANTES were produced at slightly lower levels by type 2 DM PBMCs than healthy PBMCs in response to representative K1 and non-K1/K2 strains. Furthermore, type 2 DM PBMCs have a mild defect in its ability to control hvKP replication relative to healthy PBMCs. In summary, our work demonstrates that type 2 DM does not overtly impact neutrophil intra- and extra-cellular killing of hvKP, but may influence cytokine/chemokine production and intracellular killing by PBMCs.
Collapse
Affiliation(s)
- I Russel Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Ethel Sng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Kok-Onn Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - James S Molton
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Division of Infectious Diseases, University Medicine Cluster, National University Health SystemSingapore, Singapore
| | - Monica Chan
- Communicable Disease Center, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng HospitalSingapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General HospitalSingapore, Singapore
| | - Ezlyn Izharuddin
- Communicable Disease Center, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng HospitalSingapore, Singapore
| | - David C Lye
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Communicable Disease Center, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng HospitalSingapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore, Singapore
| | - Sophia Archuleta
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Division of Infectious Diseases, University Medicine Cluster, National University Health SystemSingapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| |
Collapse
|
20
|
IL-36γ is a crucial proximal component of protective type-1-mediated lung mucosal immunity in Gram-positive and -negative bacterial pneumonia. Mucosal Immunol 2017; 10:1320-1334. [PMID: 28176791 PMCID: PMC5548659 DOI: 10.1038/mi.2016.130] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/01/2016] [Indexed: 02/04/2023]
Abstract
Interleukin-36γ (IL-36γ) is a member of novel IL-1-like proinflammatory cytokine family that are highly expressed in epithelial tissues and several myeloid-derived cell types. Little is known about the role of the IL-36 family in mucosal immunity, including lung anti-bacterial responses. We used murine models of IL-36γ deficiency to assess the contribution of IL-36γ in the lung during experimental pneumonia. Induction of IL-36γ was observed in the lung in response to Streptococcus pneumoniae (Sp) infection, and mature IL-36γ protein was secreted primarily in microparticles. IL-36γ-deficient mice challenged with Sp demonstrated increased mortality, decreased lung bacterial clearance and increased bacterial dissemination, in association with reduced local expression of type-1 cytokines, and impaired lung macrophage M1 polarization. IL-36γ directly stimulated type-1 cytokine induction from dendritic cells in vitro in a MyD88-dependent manner. Similar protective effects of IL-36γ were observed in a Gram-negative pneumonia model (Klebsiella pneumoniae). Intrapulmonary delivery of IL-36γ-containing microparticles reconstituted immunity in IL-36γ-/- mice. Enhanced expression of IL-36γ was also observed in plasma and bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome because of pneumonia. These studies indicate that IL-36γ assumes a vital proximal role in the lung innate mucosal immunity during bacterial pneumonia by driving protective type-1 responses and classical macrophage activation.
Collapse
|
21
|
Jeyanathan M, Afkhami S, Khera A, Mandur T, Damjanovic D, Yao Y, Lai R, Haddadi S, Dvorkin-Gheva A, Jordana M, Kunkel SL, Xing Z. CXCR3 Signaling Is Required for Restricted Homing of Parenteral Tuberculosis Vaccine-Induced T Cells to Both the Lung Parenchyma and Airway. THE JOURNAL OF IMMUNOLOGY 2017; 199:2555-2569. [PMID: 28827285 DOI: 10.4049/jimmunol.1700382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023]
Abstract
Although most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Sam Afkhami
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Amandeep Khera
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Talveer Mandur
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Daniela Damjanovic
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Yushi Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Rocky Lai
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Siamak Haddadi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Manel Jordana
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zhou Xing
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada; .,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| |
Collapse
|
22
|
Gao R, Wang L, Bai T, Zhang Y, Bo H, Shu Y. C-Reactive Protein Mediating Immunopathological Lesions: A Potential Treatment Option for Severe Influenza A Diseases. EBioMedicine 2017; 22:133-142. [PMID: 28734805 PMCID: PMC5552218 DOI: 10.1016/j.ebiom.2017.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 01/14/2023] Open
Abstract
Severe influenza diseases with high mortality have been frequently reported, especially in those patients infected with avian influenza A (H5N1, H7N9 or H10N8) or during a pandemic. Respiratory distress, which is attributed to alveolar damage associated with immunopathological lesions, is the most common cause of death. There is a wealth of information on pathogenesis or treatment options. In this study, we showed that high levels of C-reactive protein (CRP) were induced and correlated with complement activation in patients infected with severe influenza A (H5N1, H7N9 or H10N8), and higher levels were induced in fatal patients than in survivors. CRP treatment enhanced the phagocytosis of monocytes THP-1 to H5N1 virus as well as the expression of proinflammatory cytokines or apoptosis-associated genes in THP-1 cells or pneumocytes A-549 respectively. CRP may link to proinflammatory mediators contributing to activation of complement and boosting inflammatory response in severe influenza infections. Compound 1,6-bis(phosphocholine)-hexane improved the severity and mortality of mice infected with lethal influenza virus significantly. These observations showed that CRP is involved in deterioration of severe influenza diseases, and indicated a substantial candidate molecule for immunotherapy of severe influenza diseases. CRP induces exacerbated immunoresponse toward overt pulmonary inflammation in severe influenza infections. CRP may link to proinflammatory mediators contributing to activation of complement and boosting inflammatory response. CRP stabilizer can alleviate the immunopathological lesions and mortality in mice infected with lethal influenza virus.
Severe influenza diseases with high mortality have been frequently reported, especially in those patients infected with avian influenza A (H5N1, H7N9, or H10N8) or during a pandemic. Respiratory distress associated with immunopathological lesions is the most common cause of death in patients infected by these viruses. In this study, we found that CRP may be linked to exacerbated immunoresponse toward overt pulmonary inflammation, which led to alveolar damage and respiratory failure in severe influenza infection. Our data identified that CRP stabilizer can be used to alleviate the immunopathological lesions and mortality in mice infected with lethal influenza virus.
Collapse
Affiliation(s)
- Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China.
| | - Lijie Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China; School of Public Health(Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
23
|
Gomez-Simmonds A, Uhlemann AC. Clinical Implications of Genomic Adaptation and Evolution of Carbapenem-Resistant Klebsiella pneumoniae. J Infect Dis 2017; 215:S18-S27. [PMID: 28375514 DOI: 10.1093/infdis/jiw378] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Klebsiella pneumoniae poses a major challenge to healthcare worldwide as an important cause of multidrug-resistant infections. Nosocomial clones, including epidemic sequence type 258 (ST258), have shown an affinity for acquiring and disseminating resistance plasmids, particularly variants of the K. pneumoniae carbapenemase. By comparison, the resurgence of severe community-associated K. pneumoniae infections has led to increased recognition of hypervirulent strains belonging to the K1 and K2 capsular serotypes, predominantly in eastern Asia. Genomic and functional studies suggest that a variety of virulence and immune evasive factors contribute to the success of nosocomial and community-associated clonal lineages, aided by mechanisms of genetic plasticity that contribute to uptake of genes associated with antimicrobial resistance and pathogenicity. While there currently appears to be limited overlap between resistant and hypervirulent lineages, specific bacterial and host factors contributing to the emergence of dominant clones remain incompletely understood. This review summarizes recent advances in our understanding of the molecular epidemiology, virulence potential, and host-pathogen interactions of K. pneumoniae.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York
| |
Collapse
|
24
|
Baranek T, Morello E, Valayer A, Aimar RF, Bréa D, Henry C, Besnard AG, Dalloneau E, Guillon A, Dequin PF, Narni-Mancinelli E, Vivier E, Laurent F, Wei Y, Paget C, Si-Tahar M. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol 2017; 8:123. [PMID: 28243234 PMCID: PMC5303898 DOI: 10.3389/fimmu.2017.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expression and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is expressed in both mouse and human NK cells. Using FHL2−/− mice, we found that FHL2 controls NK cell development in the bone marrow and maturation in peripheral organs. To evaluate the importance of FHL2 in NK cell activation, FHL2−/− mice were infected with Streptococcus pneumoniae. FHL2−/− mice are highly susceptible to this infection. The activation of lung NK cells is altered in FHL2−/− mice, leading to decreased IFNγ production and a loss of control of bacterial burden. Collectively, our data reveal that FHL2 is a new transcription cofactor implicated in NK cell development and activation during pulmonary bacterial infection.
Collapse
Affiliation(s)
- Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Eric Morello
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Alexandre Valayer
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Rose-France Aimar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Déborah Bréa
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Clemence Henry
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Anne-Gaelle Besnard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Emilie Dalloneau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Pierre-François Dequin
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Emilie Narni-Mancinelli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS , Marseille , France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France; Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | - Yu Wei
- Hépacivirus et immunité innée, Institut Pasteur , Paris , France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| |
Collapse
|
25
|
Gamma Interferon-Regulated Chemokines in Leishmania donovani Infection in the Liver. Infect Immun 2016; 85:IAI.00824-16. [PMID: 27795366 DOI: 10.1128/iai.00824-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/25/2022] Open
Abstract
In the livers of C57BL/6 mice, gamma interferon (IFN-γ) controls intracellular Leishmania donovani infection and the efficacy of antimony (Sb) chemotherapy. Since both responses usually correlate with granulomatous inflammation, we tested six prominently expressed, IFN-γ-regulated chemokines-CXCL9, CXCL10, CXCL13, CXCL16, CCL2, and CCL5-for their roles in (i) mononuclear cell recruitment and granuloma assembly and maturation, (ii) initial control of infection and self-cure, and (iii) responsiveness to Sb treatment. Together, the results for the L. donovani-infected livers of chemokine-deficient mice (CXCR6-/- mice were used as CXCL16-deficient surrogates) indicated that individual IFN-γ-induced chemokines have diverse affects and (i) may be entirely dispensable (CXCL13, CXCL16), (ii) may promote (CXCL10, CCL2, CCL5) or downregulate (CXCL9) initial granuloma assembly, (iii) may enhance (CCL2, CCL5) or hinder (CXCL10) early parasite control, (iv) may promote granuloma maturation (CCL2, CCL5), (v) may exert a granuloma-independent action that enables self-cure (CCL5), and (vi) may have no role in responsiveness to chemotherapy. Despite the near absence of tissue inflammation in early-stage infection, parasite replication could be controlled (in CXCL10-/- mice) and Sb was fully active (in CXCL10-/-, CCL2-/-, and CCL5-/- mice). These results characterize chemokine action in the response to L. donovani and also reemphasize that (i) recruited mononuclear cells and granulomas are not required to control infection or respond to Sb chemotherapy, (ii) granuloma assembly, control of infection, and Sb's efficacy are not invariably linked expressions of the same T cell-dependent, cytokine-mediated antileishmanial mechanism, and (iii) granulomas are not necessarily hallmarks of protective antileishmanial immunity.
Collapse
|
26
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
27
|
Jayaraman A, Jackson DJ, Message SD, Pearson RM, Aniscenko J, Caramori G, Mallia P, Papi A, Shamji B, Edwards M, Westwick J, Hansel T, Stanciu LA, Johnston SL, Bartlett NW. IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunol 2014; 7:1151-64. [PMID: 24472849 PMCID: PMC4284198 DOI: 10.1038/mi.2014.2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/23/2013] [Indexed: 02/04/2023]
Abstract
Rhinoviruses are among the most common viruses to infect man, causing a range of serious respiratory diseases including exacerbations of asthma and COPD. Type I IFN and IL-15 are thought to be required for antiviral immunity; however, their function during rhinovirus infection in vivo is undefined. In RV-infected human volunteers, IL-15 protein expression in fluid from the nasal mucosa and in bronchial biopsies was increased. In mice, RV induced type I IFN-dependent expressions of IL-15 and IL-15Rα, which in turn were required for NK- and CD8(+) T-cell responses. Treatment with IL-15-IL-15Rα complexes (IL-15c) boosted RV-induced expression of IL-15, IL-15Rα, IFN-γ, CXCL9, and CXCL10 followed by recruitment of activated, IFN-γ-expressing NK, CD8(+), and CD4(+) T cells. Treating infected IFNAR1(-/-) mice with IL-15c similarly increased IL-15, IL-15Rα, IFN-γ, and CXCL9 (but not CXCL10) expression also followed by NK-, CD8(+)-, and CD4(+)-T-cell recruitment and activation. We have demonstrated that type I IFN-induced IFN-γ and cellular immunity to RV was mediated by IL-15 and IL-15Rα. Importantly, we also show that IL-15 could be induced via a type I IFN-independent mechanism by IL-15 complex treatment, which in turn was sufficient to drive IFN-γ expression and lymphocyte responses.
Collapse
Affiliation(s)
- Annabelle Jayaraman
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
| | - David J. Jackson
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Imperial College Healthcare National Health Service Trust, London, UK
| | - Simon D. Message
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca M. Pearson
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
| | - Julia Aniscenko
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
| | - Gaetano Caramori
- Sezione di Malattie dell’Apparato Respiratorio, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell’Apparato Respiratorio (CEMICEF), University of Ferrara, Ferrara, Italy
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Imperial College Healthcare National Health Service Trust, London, UK
| | - Alberto Papi
- Sezione di Malattie dell’Apparato Respiratorio, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell’Apparato Respiratorio (CEMICEF), University of Ferrara, Ferrara, Italy
| | | | | | | | - Trevor Hansel
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Imperial College Healthcare National Health Service Trust, London, UK
| | - Luminita A. Stanciu
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
| | - Sebastian L. Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Imperial College Healthcare National Health Service Trust, London, UK
| | - Nathan W. Bartlett
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Contact: Dr Nathan Bartlett BSc(Hons)PhD, Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG. UK. tel: +44-207-594-3775. fax: +44-207-262-8913
| |
Collapse
|
28
|
Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun 2013; 81:3552-65. [PMID: 23836821 DOI: 10.1128/iai.00391-13] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The implementation of infection models that approximate human disease is essential for understanding pathogenesis at the molecular level and for testing new therapies before they are entered into clinical stages. Insects are increasingly being used as surrogate hosts because they share, with mammals, essential aspects of the innate immune response to infections. We examined whether the larva of the wax moth Galleria mellonella could be used as a host model to conceptually approximate Klebsiella pneumoniae-triggered pneumonia. We report that the G. mellonella model is capable of distinguishing between pathogenic and nonpathogenic Klebsiella strains. Moreover, K. pneumoniae infection of G. mellonella models some of the known features of Klebsiella-induced pneumonia, i.e., cell death associated with bacterial replication, avoidance of phagocytosis by phagocytes, and the attenuation of host defense responses, chiefly the production of antimicrobial factors. Similar to the case for the mouse pneumonia model, activation of innate responses improved G. mellonella survival against subsequent Klebsiella challenge. Virulence factors necessary in the mouse pneumonia model were also implicated in the Galleria model. We found that mutants lacking capsule polysaccharide, lipid A decorations, or the outer membrane proteins OmpA and OmpK36 were attenuated in Galleria. All mutants activated G. mellonella defensive responses. The Galleria model also allowed us to monitor Klebsiella gene expression. The expression levels of cps and the loci implicated in lipid A remodeling peaked during the first hours postinfection, in a PhoPQ- and PmrAB-governed process. Taken together, these results support the utility of G. mellonella as a surrogate host for assessing infections with K. pneumoniae.
Collapse
|
29
|
Saini A, Harjai K, Chhibber S. Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by Streptococcus pneumoniae in alveolar macrophages. Indian J Med Res 2013; 137:1193-8. [PMID: 23852301 PMCID: PMC3734725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND & OBJECTIVES Apoptosis is considered as a major defense mechanism of the body. Multiple pathogens induce macrophage apoptosis as a mode of immune evasion. In earlier studies, n-3 polyunsaturated fatty acids (PUFA) have been reported to be protective against neuronal apoptosis and neuronal degeneration, seen after spinal cord injury. In this study, we tried to evaluate the role of n-3 polyunsaturated fatty acids on the process of macrophage phagocytic activity and apoptosis in mice. METHODS Mice were divided into three groups (n=60); Group I was fed on sea cod oil; Group II on flaxseed oil supplementation for 9 wk along with standard laboratory chow diet. Group III was fed on standard diet and served as control. After supplementation, phagocytic and apoptotic (morphological staining: acridine orange plus ethidium bromide; H-33342 plus propidium iodide staining and DNA ladder formation) activities of mouse alveolar macrophages were assessed. RESULTS Alveolar macrophages (obtained from sea cod oil and flaxseed oil fed group mice) showed significant increase in bacterial uptake as well as intracellular killing (P 0.05) of Streptococcus pneumoniae. Significant decrease (P<0.05) in apoptotic cells was observed among alveolar macrophages from sea cod and flaxseed oil fed mice whereas maximum apoptosis was observed in control alveolar macrophages on interaction with bacteria in vitro which was confirmed by DNA laddering. INTERPRETATION & CONCLUSIONS These findings suggest that dietary supplementation with n-3 polyunsaturated fatty acids to mice led to enhanced phagocytic capability of their alveolar macrophages as well as provided protection against apoptosis upon challenge with S. pneumoniae.
Collapse
Affiliation(s)
- Archana Saini
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India,Reprint requests: Prof. Sanjay Chhibber, Department of Microbiology, Panjab University, Chandigarh 160 014, India e-mail:
| |
Collapse
|
30
|
Lança T, Costa MF, Gonçalves-Sousa N, Rei M, Grosso AR, Penido C, Silva-Santos B. Protective Role of the Inflammatory CCR2/CCL2 Chemokine Pathway through Recruitment of Type 1 Cytotoxic γδ T Lymphocytes to Tumor Beds. THE JOURNAL OF IMMUNOLOGY 2013; 190:6673-80. [DOI: 10.4049/jimmunol.1300434] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Mohit E, Rafati S. Chemokine-based immunotherapy: delivery systems and combination therapies. Immunotherapy 2013; 4:807-40. [PMID: 22947009 DOI: 10.2217/imt.12.72] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major role of chemokines is to mediate leukocyte migration through interaction with G-protein-coupled receptors. Various delivery systems have been developed to utilize the chemokine properties for combating disease. Viral and mutant viral vectors expressing chemokines, genetically modified dendritic cells with chemokine or chemokine receptors, engineered chemokine-expressing tumor cells and pDNA encoding chemokines are among these methods. Another approach for inducing a targeted immune response is fusion of a targeting antibody or antibody fragment to a chemokine. In addition, chemokines induce more effective antitumor immunity when used as adjuvants. In this regard, chemokines are codelivered along with antigens or fused as a targeting unit with antigenic moieties. In this review, several chemokines with their role in inducing immune response against different diseases are discussed, with a major emphasis on cancer.
Collapse
Affiliation(s)
- Elham Mohit
- Molecular Immunology & Vaccine Research Lab, Pasteur Institute of Iran, Tehran 13164, Iran
| | | |
Collapse
|
32
|
Uittenbogaard AM, Chelvarajan RL, Myers-Morales T, Gorman AA, Brickey WJ, Ye Z, Kaplan AM, Cohen DA, Ting JPY, Straley SC. Toward a molecular pathogenic pathway for Yersinia pestis YopM. Front Cell Infect Microbiol 2012; 2:155. [PMID: 23248776 PMCID: PMC3518861 DOI: 10.3389/fcimb.2012.00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/22/2012] [Indexed: 11/13/2022] Open
Abstract
YopM is one of the six "effector Yops" of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2. However, in infected mice, effects of Y. pestis YopM have been seen only after 24-48 h post-infection (p.i.). To identify potential direct effects of YopM in-vivo we tested for effects of YopM at 1 h and 16-18 h p.i. in mice infected systemically with 10(6) bacteria. At 16 h p.i., there was a robust host response to both parent and ΔyopM-1 Y. pestis KIM5. Compared to cells from non-infected mice, CD11b(+) cells from spleens of infected mice produced more than 100-fold greater IFNγ. In the corresponding sera there were more than 100-fold greater amounts of IFNγ, G-CSF, and CXCL9, as well as more than 10-fold greater amounts of IL-6, CXCL10, and CXCL1. The only YopM-related differences were slightly lower CXCL10 and IL-6 in sera from mice infected 16 h with parent compared to ΔyopM-1 Y. pestis. Microarray analysis of the CD11b(+) cells did not identify consistent transcriptional differences of ≥4-fold at 18 h p.i. However, at 1 h p.i. mRNA for early growth response transcription factor 1 (Egr1) was decreased when YopM was present. Bone marrow-derived macrophages infected for 1 h also expressed lower Egr1 message when YopM was present. Infected J774A.1 cells showed greater expression of Egr1 at 1 h p.i. when YopM was present, but this pattern reversed at 3 h. At 6 h p.i., Cxcl10 mRNA was lower in parent-strain infected cells. We conclude that decreased Egr1 expression is a very early transcriptional effect of YopM and speculate that a pathway may exist from RSK1 through Egr1. These studies revealed novel early transcriptional effects of YopM but point to a time after 18 h of infection when critical transitional events lead to later major effects on cytokine gene transcription.
Collapse
Affiliation(s)
- Annette M Uittenbogaard
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky Lexington, KY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Blockade of the CXC chemokine receptor 3 (CXCR3) attenuates inflammation and improves survival in a murine model of near lethal polymicrobial sepsis. However, given the multitude of cellular responses and inflammatory mediators that orchestrate sepsis syndrome, more detailed investigations will be required before a complete understanding of the mechanism(s) of CXCR3 blockade and its therapeutic potential are revealed.
Collapse
|
34
|
Effect of different interferonα2 preparations on IP10 and ET-1 release from human lung cells. PLoS One 2012; 7:e46779. [PMID: 23056449 PMCID: PMC3466308 DOI: 10.1371/journal.pone.0046779] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/05/2012] [Indexed: 01/24/2023] Open
Abstract
Background Alfa-interferons (IFNα2a, IFNα2b, 40KDa-PEGIFNα2a and 12KDa-PEGIFNα2b) are effective treatments for chronic hepatitis C infection. However, their usage has been associated with a variety of adverse events, including interstitial pneumonitis and pulmonary arterial hypertension. Although rare, these adverse events can be severe and potentially life-threatening, emphasizing the need for simple biomarkers of IFN-induced lung toxicity. Methods Human lung microvascular endothelial cells (HLMVEC), human pulmonary artery smooth muscle (HPASM) cells and A549 cells were grown under standard conditions and plated into 96- or 6-well plates. Cells were stimulated with various concentrations of different IFNs in hydrocortisone-free medium. After 24 and 48 hours, IP10 and ET-1 were measured by ELISA in conditioned medium. In a second set of experiments, cells were pre-treated with tumour necrosis factor-α (TNF-α) (10 ng/mL). Results IFNα2a, IFNα2b, 40KDa-PEGIFNα2a and 12KDa-PEGIFNα2b, but not IFNλ, induced IP10 (CXCL10) release and increased IP10 gene induction in HLMVEC. In addition, all four IFNα preparations induced IP10 release from HPASM cells and A549 cells pre-treated with TNFα. In each of these cell types, 40KDa-PEGIFNα2a was significantly less active than the native forms of IFNα2a, IFNα2b or 12KDa-PEGIFNα2b. Similarly, IFNα2a, IFNα2b and 12KDa-PEGIFNα2b, but not 40KDa-PEGIFNα2a, induced endothelin (ET)-1 release from HPASM cells. Conclusions Consistent with other interstitial pulmonary diseases, both IP10 and ET1 may serve as markers to monitor IFN-induced lung toxicity in patients. In addition, both markers may also serve to help characterize the risk associated with IFNα preparations to induce lung toxicity.
Collapse
|
35
|
Sotolongo J, España C, Echeverry A, Siefker D, Altman N, Zaias J, Santaolalla R, Ruiz J, Schesser K, Adkins B, Fukata M. Host innate recognition of an intestinal bacterial pathogen induces TRIF-dependent protective immunity. ACTA ACUST UNITED AC 2011; 208:2705-16. [PMID: 22124111 PMCID: PMC3244044 DOI: 10.1084/jem.20110547] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
TRIF signaling triggers the amplification of macrophage bactericidal activity sufficient to eliminate invading intestinal pathogens through the sequential induction of IFN-β and IFN-γ from macrophages and NK cells, respectively. Toll-like receptor 4 (TLR4), which signals through the adapter molecules myeloid differentiation factor 88 (MyD88) and toll/interleukin 1 receptor domain-containing adapter inducing IFN-β (TRIF), is required for protection against Gram-negative bacteria. TRIF is known to be important in TLR3-mediated antiviral signaling, but the role of TRIF signaling against Gram-negative enteropathogens is currently unknown. We show that TRIF signaling is indispensable for establishing innate protective immunity against Gram-negative Yersinia enterocolitica. Infection of wild-type mice rapidly induced both IFN-β and IFN-γ in the mesenteric lymph nodes. In contrast, TRIF-deficient mice were defective in these IFN responses and showed impaired phagocytosis in regional macrophages, resulting in greater bacterial dissemination and mortality. TRIF signaling may be universally important for protection against Gram-negative pathogens, as TRIF-deficient macrophages were also impaired in killing both Salmonella and Escherichia coli in vitro. The mechanism of TRIF-mediated protective immunity appears to be orchestrated by macrophage-induced IFN-β and NK cell production of IFN-γ. Sequential induction of IFN-β and IFN-γ leads to amplification of macrophage bactericidal activity sufficient to eliminate the invading pathogens at the intestinal interface. Our results demonstrate a previously unknown role of TRIF in host resistance to Gram-negative enteropathogens, which may lead to effective strategies for combating enteric infections.
Collapse
Affiliation(s)
- John Sotolongo
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Luo H, Wang D, Che HL, Zhao Y, Jin H. Pathological observations of lung inflammation after administration of IP-10 in influenza virus- and respiratory syncytial virus-infected mice. Exp Ther Med 2011; 3:76-79. [PMID: 22969848 DOI: 10.3892/etm.2011.350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/12/2011] [Indexed: 11/05/2022] Open
Abstract
Pneumonia is a common complication of influenza virus infection and a common cause of death of patients. The aim of this study was to test the hypothesis that interferon-γ-inducible protein-10 (IP-10) is an important chemokine in the development of airway inflammation caused by certain viruses. Mice were infected with influenza virus after administration of murine IP-10 and the severity of pneumonia was compared with the group which was infected with influenza virus alone. Another mice group was infected with respiratory syncytial virus (RSV) after injection of IP-10 and also the severity of pneumonia was compared to the group which was infected with RSV alone. The mice infected with influenza virus or RSV after administration of IP-10 presented with more fulminant and necrotizing diffuse alveolar and bronchiole damage with lymphocyte infiltration. Our results indicate that IP-10 is an important chemokine and is associated with the severity of pneumonia caused by certain viruses.
Collapse
Affiliation(s)
- Hong Luo
- Department of Microbiology and Parasitology, China Medical University, Shenyang 110001
| | | | | | | | | |
Collapse
|
37
|
Mutwiri G. TLR9 agonists: immune mechanisms and therapeutic potential in domestic animals. Vet Immunol Immunopathol 2011; 148:85-9. [PMID: 21700345 DOI: 10.1016/j.vetimm.2011.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 05/06/2011] [Accepted: 05/30/2011] [Indexed: 12/15/2022]
Abstract
Toll like receptors (TLRs) are transmembrane glycoproteins that recognize conserved microbial molecules. Engagement of TLRs activates innate and adaptive immunity. TLR-mediated activation of immune cells results in upregulation of cytokines, chemokines and costimulatory molecules. These early innate responses control pathogen spread and initiates adaptive immune responses. Synthetic CpG oligodeoxynucleotides (ODN), agonists for TLR9, had shown great promise as immunotherapeutic agents and vaccine adjuvants in laboratory animal models of infectious disease, allergy and cancer. However, it has become apparent that CpG ODN are less potent immune activators in domestic animals and humans. The disparity in immune responses between rodents and mammals has been mainly attributed to differences in cellular expression of TLR9 in the various species. In this article, our current understanding of the immune mechanisms, as well as the potential applications of CpG ODN will be reviewed, with particular emphasis on domestic animals.
Collapse
Affiliation(s)
- George Mutwiri
- VIDO/International Vaccine Center & School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
38
|
Abstract
CXCR3 is a chemokine receptor that is highly expressed on effector T cells and plays an important role in T cell trafficking and function. CXCR3 is rapidly induced on naïve cells following activation and preferentially remains highly expressed on Th1-type CD4(+) T cells and effector CD8(+) T cells. CXCR3 is activated by three interferon-inducible ligands CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-TAC). Early studies demonstrated a role for CXCR3 in the trafficking of Th1 and CD8 T cells to peripheral sites of Th1-type inflammation and the establishment of a Th1 amplification loop mediated by IFNγ and the IFNγ-inducible CXCR3 ligands. More recent studies have also suggested that CXCR3 plays a role in the migration of T cells in the microenvironment of the peripheral tissue and lymphoid compartment, facilitating the interaction of T cells with antigen presenting cells leading to the generation of effector and memory cells.
Collapse
Affiliation(s)
- Joanna R Groom
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
39
|
Abstract
CXCR3 is a chemokine receptor that is highly expressed on effector T cells and plays an important role in T cell trafficking and function. CXCR3 is rapidly induced on naïve cells following activation and preferentially remains highly expressed on Th1-type CD4(+) T cells and effector CD8(+) T cells. CXCR3 is activated by three interferon-inducible ligands CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-TAC). Early studies demonstrated a role for CXCR3 in the trafficking of Th1 and CD8 T cells to peripheral sites of Th1-type inflammation and the establishment of a Th1 amplification loop mediated by IFNγ and the IFNγ-inducible CXCR3 ligands. More recent studies have also suggested that CXCR3 plays a role in the migration of T cells in the microenvironment of the peripheral tissue and lymphoid compartment, facilitating the interaction of T cells with antigen presenting cells leading to the generation of effector and memory cells.
Collapse
Affiliation(s)
- Joanna R Groom
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
40
|
Sea-cod oil supplementation alters the course of Streptococcus pneumoniae infection in BALB/c mice. Eur J Clin Microbiol Infect Dis 2010; 30:393-400. [DOI: 10.1007/s10096-010-1099-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 10/10/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023]
|
41
|
Van Elssen CHMJ, Vanderlocht J, Frings PWH, Senden-Gijsbers BLMG, Schnijderberg MCA, van Gelder M, Meek B, Libon C, Ferlazzo G, Germeraad WTV, Bos GMJ. Klebsiella pneumoniae-triggered DC recruit human NK cells in a CCR5-dependent manner leading to increased CCL19-responsiveness and activation of NK cells. Eur J Immunol 2010; 40:3138-49. [PMID: 20865789 DOI: 10.1002/eji.201040496] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/20/2010] [Accepted: 08/17/2010] [Indexed: 01/09/2023]
Abstract
Besides their role in destruction of altered self-cells, NK cells have been shown to potentiate T-cell responses by interacting with DC. To take advantage of NK-DC crosstalk in therapeutic DC-based vaccination for infectious diseases and cancer, it is essential to understand the biology of this crosstalk. We aimed to elucidate the in vitro mechanisms responsible for NK-cell recruitment and activation by DC during infection. To mimic bacterial infection, DC were exposed to a membrane fraction of Klebsiella pneumoniae, which triggers TLR2/4. DC matured with these bacterial fragments can actively recruit NK cells in a CCR5-dependent manner. An additional mechanism of DC-induced NK-cell recruitment is characterized by the induction of CCR7 expression on CD56(dim) CD16(+) NK cells after physical contact with membrane fraction of K. pneumoniae-matured DC, resulting in an enhanced migratory responsiveness to the lymph node-associated chemokine CCL19. Bacterial fragment-matured DC do not only mediate NK-cell migration but also meet the prerequisites needed for augmentation of NK-cell cytotoxicity and IFN-γ production, the latter of which contributes to Th1 polarization.
Collapse
Affiliation(s)
- Catharina H M J Van Elssen
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ellis SL, Gysbers V, Manders PM, Li W, Hofer MJ, Müller M, Campbell IL. The cell-specific induction of CXC chemokine ligand 9 mediated by IFN-gamma in microglia of the central nervous system is determined by the myeloid transcription factor PU.1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1864-77. [PMID: 20585034 PMCID: PMC2925661 DOI: 10.4049/jimmunol.1000900] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IFN-gamma-inducible chemokines CXCL9 and CXCL10 are implicated in the pathogenesis of T cell-mediated immunity in the CNS. However, in various CNS immune pathologies the cellular localization of these chemokines differs, with CXCL9 produced by macrophage/microglia whereas CXCL10 is produced by both macrophage/microglia and astrocytes. In this study, we determined the mechanism for the microglial cell-restricted expression of the Cxcl9 gene induced by IFN-gamma. In cultured glial cells, the induction of the CXCL9 (in microglia) and CXCL10 (in microglia and astrocytes) mRNAs by IFN-gamma was not inhibited by cycloheximide. Of various transcription factors involved with IFN-gamma-mediated gene regulation, PU.1 was identified as a constitutively expressed NF in microglia but not in astrocytes. STAT1 and PU.1 bound constitutively to the Cxcl9 gene promoter in microglia, and this increased significantly following IFN-gamma treatment with IFN regulatory factor-8 identified as an additional late binding factor. However, in astrocytes, STAT1 alone bound to the Cxcl9 gene promoter. STAT1 was critical for IFN-gamma induction of both the Cxcl9 and Cxcl10 genes in microglia and in microglia and astrocytes, respectively. The small interfering RNA-mediated knockdown of PU.1 in microglia markedly impaired IFN-gamma-induced CXCL9 but not STAT1 or IFN regulatory factor-8. Cells of the D1A astrocyte line showed partial reprogramming to a myeloid-like phenotype posttransduction with PU.1 and, in addition to the expression of CD11b, acquired the ability to produce CXCL9 in response to IFN-gamma. Thus, PU.1 not only is crucial for the induction of CXCL9 by IFN-gamma in microglia but also is a key determinant factor for the cell-specific expression of this chemokine by these myeloid cells.
Collapse
Affiliation(s)
| | - Vanessa Gysbers
- School of Molecular Bioscience and The Bosch Institute, The University of Sydney, NSW, Australia
| | - Peter M. Manders
- School of Molecular Bioscience and The Bosch Institute, The University of Sydney, NSW, Australia
| | - Wen Li
- School of Molecular Bioscience and The Bosch Institute, The University of Sydney, NSW, Australia
| | | | | | - Iain L. Campbell
- School of Molecular Bioscience and The Bosch Institute, The University of Sydney, NSW, Australia
| |
Collapse
|
43
|
Eliasson M, Mörgelin M, Farber JM, Egesten A, Albiger B. Streptococcus pneumoniae induces expression of the antibacterial CXC chemokine MIG/CXCL9 via MyD88-dependent signaling in a murine model of airway infection. Microbes Infect 2010; 12:565-73. [PMID: 20381636 DOI: 10.1016/j.micinf.2010.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/23/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
MIG/CXCL9 belongs to the CXC family of chemokines and participates in the regulation of leukocyte-trafficking and angiogenesis. Certain chemokines, including human MIG/CXCL9, exert strong antibacterial activity in vitro, although the importance of this property in vivo is unknown. In the present study, we investigated the expression and a possible role for MIG/CXCL9 in host defense during mucosal airway infection caused by Streptococcus pneumoniae in vivo. We found that intranasal challenge of C57BL/6 wild-type mice with pneumococci elicited production of high levels of MIG/CXCL9 in the lungs via the MyD88-dependent signaling pathway. Whereas both human and murine MIG/CXCL9 showed efficient killing of S. pneumoniae in vitro, MIG/CXCL9 knock-out mice were not more susceptible to pneumococcal infection. Our data demonstrate that, in vivo this chemokine probably has a redundant role, acting together with other antibacterial peptides and chemokines, in innate and adaptive host defense mechanisms against pneumococcal infections.
Collapse
Affiliation(s)
- Mette Eliasson
- Lund University and Lund University Hospital, Department of Clinical Sciences, Section for Respiratory Medicine, and Allergology, Lund, Sweden
| | | | | | | | | |
Collapse
|
44
|
Long-term flaxseed oil supplementation diet protects BALB/c mice against Streptococcus pneumoniae infection. Med Microbiol Immunol 2009; 199:27-34. [DOI: 10.1007/s00430-009-0132-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Indexed: 10/20/2022]
|
45
|
Deletion of nonstructural proteins NS1 and NS2 from pneumonia virus of mice attenuates viral replication and reduces pulmonary cytokine expression and disease. J Virol 2008; 83:1969-80. [PMID: 19052095 DOI: 10.1128/jvi.02041-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pneumonia virus of mice (PVM) strain 15 causes fatal pneumonia in mice and provides a convenient model for human respiratory syncytial virus pathogenesis and immunobiology. We prepared PVM mutants lacking the genes for nonstructural proteins NS1 and/or NS2. In Vero cells, which lack type I interferon (IFN), deletion of these proteins had no effect on the efficiency of virus growth. In IFN-competent mouse embryo fibroblasts, wild-type (wt) PVM and the DeltaNS1 virus grew efficiently and strongly inhibited the IFN response, whereas virus lacking NS2 was highly attenuated and induced high levels of IFN and IFN-inducible genes. In BALB/c mice, intranasal infection with wt PVM caused overt disease that began on day 6 and was lethal by day 9 postinoculation. In comparison, DeltaNS1 induced transient, reduced disease, and DeltaNS2 and DeltaNS12 caused no disease. Thus, NS1 and NS2 are virulence factors, with NS2 being a major antagonist of the type I IFN system. The pulmonary titers of wt PVM and DeltaNS1 were high on day 3 and increased further by day 6; in addition, expression of IFN and representative proinflammatory cytokines/chemokines and T lymphocyte-related cytokines was undetectable on day 3 but increased dramatically by day 6 coincident with the onset of disease. The titers of DeltaNS2 and DeltaNS12 were somewhat lower on day 3 and decreased further by day 6; in addition, these viruses induced a more circumscribed set of cytokines/chemokines (IFN, interleukin-6 [IL-6], and CXCL10) that were detected on day 3 and had largely subsided by day 6. Lung immunohistology revealed abundant PVM-positive pneumocytes and bronchial and bronchiolar epithelial cells in wt PVM- and DeltaNS1-infected mice on day 6 compared to few PVM-positive foci with DeltaNS2 and DeltaNS12. These results indicate that severe PVM disease is associated with high, poorly controlled virus replication driving the expression of high levels of pulmonary IFN and a broad array of cytokines/chemokines. In contrast, in the absence of NS2, there was an early, transient innate response involving moderate levels of IFN, IL-6, and CXCL10 that restricted virus replication and prevented disease.
Collapse
|
46
|
Nagarajan UM, Prantner D, Sikes JD, Andrews CW, Goodwin AM, Nagarajan S, Darville T. Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect Immun 2008; 76:4642-8. [PMID: 18663004 PMCID: PMC2546839 DOI: 10.1128/iai.00629-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/26/2008] [Accepted: 07/18/2008] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFNs) induced during in vitro chlamydial infection exert bactericidal and immunomodulatory functions. To determine the precise role of type I IFNs during in vivo chlamydial genital infection, we examined the course and outcome of Chlamydia muridarum genital infection in mice genetically deficient in the receptor for type I IFNs (IFNAR(-/-) mice). A significant reduction in chlamydial shedding and duration of lower genital tract infection was observed in IFNAR(-/-) mice in comparison to the level of chlamydial shedding and duration of infection in wild-type (WT) mice. Furthermore, IFNAR(-/-) mice developed less chronic oviduct pathology in comparison to that in WT mice. Compared to the WT, IFNAR(-/-) mice had a greater number of chlamydial-specific T cells in their iliac lymph nodes 21 days postinfection. IFNAR(-/-) mice also exhibited earlier and enhanced CD4 T-cell recruitment to the cervical tissues, which was associated with increased expression of CXCL9 in the genital secretions of IFNAR(-/-) mice, but not with expression of CXCL10, which was reduced in the genital secretions of IFNAR(-/-) mice. These data suggest that type I IFNs exacerbate C. muridarum genital infection through an inhibition of the chlamydial-specific CD4 T-cell response.
Collapse
Affiliation(s)
- Uma M Nagarajan
- Division of Pediatric Infectious Diseases, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas 72202, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Villatoro-Hernandez J, Loera-Arias MJ, Gamez-Escobedo A, Franco-Molina M, Gomez-Gutierrez JG, Rodriguez-Rocha H, Gutierrez-Puente Y, Saucedo-Cardenas O, Valdes-Flores J, Montes-de-Oca-Luna R. Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis. Microb Cell Fact 2008; 7:22. [PMID: 18662403 PMCID: PMC2503953 DOI: 10.1186/1475-2859-7-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 07/28/2008] [Indexed: 11/19/2022] Open
Abstract
Background Chemokines are a large group of chemotactic cytokines that regulate and direct migration of leukocytes, activate inflammatory responses, and are involved in many other functions including regulation of tumor development. Interferon-gamma inducible-protein-10 (IP-10) is a member of the C-X-C subfamily of the chemokine family of cytokines. IP-10 specifically chemoattracts activated T lymphocytes, monocytes, and NK cells. IP-10 has been described also as a modulator of other antitumor cytokines. These properties make IP-10 a novel therapeutic molecule for the treatment of chronic and infectious diseases. Currently there are no suitable live biological systems to produce and secrete IP-10. Lactococcus lactis has been well-characterized over the years as a safe microorganism to produce heterologous proteins and to be used as a safe, live vaccine to deliver antigens and cytokines of interest. Here we report a recombinant strain of L. lactis genetically modified to produce and secrete biologically active IP-10. Results The IP-10 coding region was isolated from human cDNA and cloned into an L. lactis expression plasmid under the regulation of the pNis promoter. By fusion to the usp45 secretion signal, IP-10 was addressed out of the cell. Western blot analysis demonstrated that recombinant strains of L. lactis secrete IP-10 into the culture medium. Neither degradation nor incomplete forms of IP-10 were detected in the cell or supernatant fractions of L. lactis. In addition, we demonstrated that the NICE (nisin-controlled gene expression) system was able to express IP-10 "de novo" even two hours after nisin removal. This human IP-10 protein secreted by L. lactis was biological active as demonstrated by Chemotaxis assay over human CD3+T lymphocytes. Conclusion Expression and secretion of mature IP-10 was efficiently achieved by L. lactis forming an effective system to produce IP-10. This recombinant IP-10 is biologically active as demonstrated by its ability to chemoattract human CD3+ T lymphocytes. This strain of recombinant L. lactis represents a potentially useful tool to be used as a live vaccine in vivo.
Collapse
Affiliation(s)
- Julio Villatoro-Hernandez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey, N,L,, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wissinger EL, Saldana J, Didierlaurent A, Hussell T. Manipulation of acute inflammatory lung disease. Mucosal Immunol 2008; 1:265-78. [PMID: 19079188 PMCID: PMC7100270 DOI: 10.1038/mi.2008.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/26/2008] [Indexed: 02/04/2023]
Abstract
Inflammatory lung disease to innocuous antigens or infectious pathogens is a common occurrence and in some cases, life threatening. Often, the inflammatory infiltrate that accompanies these events contributes to pathology by deleterious effects on otherwise healthy tissue and by compromising lung function by consolidating (blocking) the airspaces. A fine balance, therefore, exists between a lung immune response and immune-mediated damage, and in some the "threshold of ignorance" may be set too low. In most cases, the contributing, potentially offending, cell population or immune pathway is known, as are factors that regulate them. Why then are targeted therapeutic strategies to manipulate them not more commonplace in clinical medicine? This review highlights immune homeostasis in the lung, how and why this is lost during acute lung infection, and strategies showing promise as future immune therapeutics.
Collapse
Affiliation(s)
- E L Wissinger
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
| | - J Saldana
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
| | - A Didierlaurent
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
- Present Address: Present address: GlaxoSmithKline Biologicals, Rue de l'Institut 89, Rixensart B-1330, Belgium,
| | - T Hussell
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
| |
Collapse
|
49
|
Yam KK, Pouliot P, N’diaye MM, Fournier S, Olivier M, Cousineau B. Innate inflammatory responses to the Gram-positive bacterium Lactococcus lactis. Vaccine 2008; 26:2689-99. [DOI: 10.1016/j.vaccine.2008.03.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/13/2008] [Accepted: 03/13/2008] [Indexed: 12/24/2022]
|
50
|
Activation of innate immunity in healthy Macaca mulatta macaques by a single subcutaneous dose of GMP CpG 7909: safety data and interferon-inducible protein-10 kinetics for humans and macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:221-6. [PMID: 18077623 DOI: 10.1128/cvi.00420-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following a demonstration that mouse-optimized cytosine-guanosine dinucleotide (CpG) oligodeoxynucleotides stimulated innate immune protection against intracellular pathogens, we tested the ability of CpG 7909, a primate-optimized Toll-like receptor 9 (TLR9) agonist, to stimulate rhesus macaques to produce interferon-inducible protein-10 (IP-10), a biomarker of immune activation. This study was performed prior to a similar trial with humans in order to facilitate the development of CpG 7909 as an immunomodulator for biodefense. A single subcutaneous dose of clinical-grade CpG 7909 was given to four groups of healthy adult rhesus macaques (0-mg dose [n = 5], 0.75-mg dose [n = 9], 1.5-mg dose [n = 9], and 3.0-mg dose [n = 9]). Directed physical examination findings, clinical laboratory values, and serum IP-10 concentrations were collected at scheduled intervals for 28 days. All three dose levels of CpG 7909 were safe and not associated with significant clinical or laboratory abnormality. The time to peak serum IP-10 concentration was 1.0 days at the 0.75-mg dose and 0.5 days at the 1.5- and 3.0-mg doses. A dose-dependent response was observed for the magnitude and duration of IP-10 concentrations, which remained significantly above baseline for 3 days for the 3.0-mg and 1.5-mg dose groups but above baseline for only 2 days for the 0.75-mg dose group. There were no nonresponders to CpG 7909. These rhesus macaque safety and IP-10 response data closely parallel a subsequent phase 1 human study of subcutaneously administered CpG 7909. A single dose of clinical-grade CpG 7909 induced a rapid, sustained IP-10 response, a biomarker for activation of the innate immune system. Given the similar susceptibilities of humans and rhesus macaques to infectious diseases, the rhesus macaque appears to be a suitable model to evaluate the potential of CpG 7909-mediated innate immune activation to protect humans against pathogens.
Collapse
|