1
|
Faber BW, Yeoh LM, Kurtovic L, Mol WEM, Poelert M, Smits E, Rodriguez Garcia R, Mandalawi-Van der Eijk M, van der Werff N, Voorberg-van der Wel A, Remarque EJ, Beeson JG, Kocken CHM. A Diversity Covering (DiCo) Plasmodium vivax apical membrane antigen-1 vaccine adjuvanted with RFASE/RSL10 yields high levels of growth-inhibitory antibodies. Vaccine 2024; 42:1785-1792. [PMID: 38365484 DOI: 10.1016/j.vaccine.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Plasmodium vivax malaria is increasingly recognized as a major global health problem and the socio-economic impact of P.vivax-induced burden is huge. Vaccine development against P. vivax malaria has been hampered by the lack of an in vitro culture system and poor access to P. vivax sporozoites. The recent generation of Plasmodium falciparum parasites that express a functional P. vivax AMA1 molecule has provided a platform for in vitro evaluation of PvAMA1 as a potential blood stage vaccine. Three so-called PvAMA1 Diversity Covering (DiCo) proteins were designed to assess their potential to induce a functional and broad humoral immune response to the polymorphic PvAMA1 molecule. Rabbits were immunized with the mixture of three, Pichia-produced, PvAMA1 DiCo proteins, as well as with 2 naturally occurring PvAMA1 alleles. For these three groups, the experimental adjuvant raffinose fatty acid sulfate ester (RFASE) was used, while in a fourth group the purified main mono-esterified constituent (RSL10) of this adjuvant was used. Animals immunized with the mixture of the three PvAMA1 DiCo proteins in RFASE showed high anti-PvAMA1 antibody titers against three naturally occurring PvAMA1variants while also high growth-inhibitory capacity was observed against P. falciparum parasites expressing PvAMA1. This supports further clinical development of the PvAMA1 DiCo mixture as a potential malaria vaccine. However, as the single allele PvAMA1 SalI-group showed similar characteristics in antibody titer and inhibition levels as the PvAMA1 DiCo mixture-group, this raises the question whether a mixture is really necessary to overcome the polymorphism in the vaccine candidate. RFASE induced strong humoral responses, as did the animals immunized with the purified component, RSL10. This suggests that RSL10 is the active ingredient. However, one of the RSL10-immunized animal showed a delayed response, necessitating further research into the clinical development of RSL10.
Collapse
Affiliation(s)
- Bart W Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.
| | - Lee M Yeoh
- Burnet Institute, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Victoria, Australia; Central Clinical School and Department of Microbiology, Monash University, Victoria, Australia
| | | | | | | | | | | | - Nicole van der Werff
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | | | - Edmond J Remarque
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia; Central Clinical School and Department of Microbiology, Monash University, Victoria, Australia; Department of Infectious Diseases, University of Melbourne, Victoria, Australia
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| |
Collapse
|
2
|
Waghela IN, Mallory KL, Taylor JA, Schneider CG, Savransky T, Janse CJ, Lin PJC, Tam YK, Weissman D, Angov E. Exploring in vitro expression and immune potency in mice using mRNA encoding the Plasmodium falciparum malaria antigen, CelTOS. Front Immunol 2022; 13:1026052. [PMID: 36591298 PMCID: PMC9798330 DOI: 10.3389/fimmu.2022.1026052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
The secreted malarial protein, Cell-Traversal protein for Ookinetes and Sporozoites (CelTOS), is highly conserved among Plasmodium species, and plays a role in the invasion of mosquito midgut cells and hepatocytes in the vertebrate host. CelTOS was identified as a potential protective antigen based on a proteomic analysis, which showed that CelTOS stimulated significant effector T cells producing IFN-γ in peripheral blood mononuclear cells (PBMCs) from radiation attenuated sporozoite-immunized, malaria-naïve human subjects. In a rodent malaria model, recombinant full-length CelTOS protein/adjuvant combinations induced sterile protection, and in several studies, functional antibodies were produced that had hepatocyte invasion inhibition and transmission-blocking activities. Despite some encouraging results, vaccine approaches using CelTOS will require improvement before it can be considered as an effective vaccine candidate. Here, we report on the use of mRNA vaccine technology to induce humoral and cell-mediated immune responses using this antigen. Several pfceltos encoding mRNA transcripts were assessed for the impact on protein translation levels in vitro. Protein coding sequences included those to evaluate the effects of signal sequence, N-glycosylation on translation, and of nucleoside substitutions. Using in vitro transfection experiments as a pre-screen, we assessed the quality of the expressed CelTOS target relative to the homogeneity, cellular localization, and durability of expression levels. Optimized mRNA transcripts, which demonstrated highest protein expression levels in vitro were selected for encapsulation in lipid nanoparticles (LNP) and used to immunize mice to assess for both humoral and cellular cytokine responses. Our findings indicate that mRNA transcripts encoding pfceltos while potent for inducing antigen-specific cellular cytokine responses in mice, were less able to mount PfCelTOS-specific antibody responses using a two-dose regimen. An additional booster dose was needed to overcome low seroconversion rates in mice. With respect to antibody fine specificities, N-glycosylation site mutated immunogens yielded lower immune responses, particularly to the N-terminus of the molecule. While it remains unclear the impact on CelTOS antigen as immunogen, this study highlights the need to optimize antigen design for vaccine development.
Collapse
Affiliation(s)
- Ishita N. Waghela
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Parsons Corporation, Centreville, VA, United States
| | - Katherine L. Mallory
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Parsons Corporation, Centreville, VA, United States
| | - Justin A. Taylor
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,The Geneva Foundation, Tacoma, WA, United States
| | - Cosette G. Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Tatyana Savransky
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,General Dynamics Information Technology, Falls Church, VA, United States
| | - Chris J. Janse
- Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Ying K. Tam
- Acuitas Therapeutics Inc., Vancouver, BC, Canada
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,*Correspondence: Evelina Angov,
| |
Collapse
|
3
|
Rashidi S, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Shafiei R, Ghani E, Karimazar M, Nguewa P, Manzano-Román R. The main post-translational modifications and related regulatory pathways in the malaria parasite Plasmodium falciparum: An update. J Proteomics 2021; 245:104279. [PMID: 34089893 DOI: 10.1016/j.jprot.2021.104279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
There are important challenges when investigating individual post-translational modifications (PTMs) or protein interaction network and delineating if PTMs or their changes and cross-talks are involved during infection, disease initiation or as a result of disease progression. Proteomics and in silico approaches now offer the possibility to complement each other to further understand the regulatory involvement of these modifications in parasites and infection biology. Accordingly, the current review highlights key expressed or altered proteins and PTMs are invisible switches that turn on and off the function of most of the proteins. PTMs include phosphorylation, glycosylation, ubiquitylation, palmitoylation, myristoylation, prenylation, acetylation, methylation, and epigenetic PTMs in P. falciparum which have been recently identified. But also other low-abundant or overlooked PTMs that might be important for the parasite's survival, infectivity, antigenicity, immunomodulation and pathogenesis. We here emphasize the PTMs as regulatory pathways playing major roles in the biology, pathogenicity, metabolic pathways, survival, host-parasite interactions and the life cycle of P. falciparum. Further validations and functional characterizations of such proteins might confirm the discovery of therapeutic targets and might most likely provide valuable data for the treatment of P. falciparum, the main cause of severe malaria in human.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
4
|
Singh K, Burkhardt M, Nakuchima S, Herrera R, Muratova O, Gittis AG, Kelnhofer E, Reiter K, Smelkinson M, Veltri D, Swihart BJ, Shimp R, Nguyen V, Zhang B, MacDonald NJ, Duffy PE, Garboczi DN, Narum DL. Structure and function of a malaria transmission blocking vaccine targeting Pfs230 and Pfs230-Pfs48/45 proteins. Commun Biol 2020; 3:395. [PMID: 32709983 PMCID: PMC7381611 DOI: 10.1038/s42003-020-01123-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins Pfs230 and Pfs48/45 are Plasmodium falciparum transmission-blocking (TB) vaccine candidates that form a membrane-bound protein complex on gametes. The biological role of Pfs230 or the Pfs230-Pfs48/45 complex remains poorly understood. Here, we present the crystal structure of recombinant Pfs230 domain 1 (Pfs230D1M), a 6-cysteine domain, in complex with the Fab fragment of a TB monoclonal antibody (mAb) 4F12. We observed the arrangement of Pfs230 on the surface of macrogametes differed from that on microgametes, and that Pfs230, with no known membrane anchor, may exist on the membrane surface in the absence of Pfs48/45. 4F12 appears to sterically interfere with Pfs230 function. Combining mAbs against different epitopes of Pfs230D1 or of Pfs230D1 and Pfs48/45, significantly increased TB activity. These studies elucidate a mechanism of action of the Pfs230D1 vaccine, model the functional activity induced by a polyclonal antibody response and support the development of TB vaccines targeting Pfs230D1 and Pfs230D1-Pfs48/45. With the aim to advance the development of a P. falciparum transmission blocking vaccine, Singh et al. determine the crystal structure of Pfs230D1 in complex with the Fab fragment of TB mAb 4F12. They further study the cellular localization of Pfs230 on the surface of sexual stages of parasites and the effect of combining TB mAbs against Pfs230 and Pfs48/45.
Collapse
Affiliation(s)
- Kavita Singh
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Sofia Nakuchima
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Olga Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Emily Kelnhofer
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Drive, Bethesda, MD, 20814, USA
| | - Daniel Veltri
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Rockville, MD, 20852, USA
| | - Bruce J Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Rockville, MD, 20852, USA
| | - Richard Shimp
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Vu Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Gunasekaran B, Gothandam KM. A review on edible vaccines and their prospects. ACTA ACUST UNITED AC 2020; 53:e8749. [PMID: 31994600 PMCID: PMC6984374 DOI: 10.1590/1414-431x20198749] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
For a long time, vaccines have been the main mode of defense and protection against several bacterial, viral, and parasitic diseases. However, the process of production and purification makes them expensive and unaffordable to many developing nations. An edible vaccine is when the antigen is expressed in the edible part of the plant. This reduces the cost of production of the vaccine because of ease of culturing. In this article, various types of edible vaccines that include algal and probiotics in addition to plants are discussed. Various diseases against which research has been carried out are also reviewed. This article focused on the conception of edible vaccines highlighting the various ways by which vaccines can be delivered.
Collapse
Affiliation(s)
- B Gunasekaran
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - K M Gothandam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Datta D, Bansal GP, Gerloff DL, Ellefsen B, Hannaman D, Kumar N. Immunogenicity and malaria transmission reducing potency of Pfs48/45 and Pfs25 encoded by DNA vaccines administered by intramuscular electroporation. Vaccine 2017; 35:264-272. [PMID: 27912985 PMCID: PMC5192010 DOI: 10.1016/j.vaccine.2016.11.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
Abstract
Pfs48/45 and Pfs25 are leading candidates for the development of Plasmodium falciparum transmission blocking vaccines (TBV). Expression of Pfs48/45 in the erythrocytic sexual stages and presentation to the immune system during infection in the human host also makes it ideal for natural boosting. However, it has been challenging to produce a fully folded, functionally active Pfs48/45, using various protein expression platforms. In this study, we demonstrate that full-length Pfs48/45 encoded by DNA plasmids is able to induce significant transmission reducing immune responses. DNA plasmids encoding Pfs48/45 based on native (WT), codon optimized (SYN), or codon optimized and mutated (MUT1 and MUT2), to prevent any asparagine (N)-linked glycosylation were compared with or without intramuscular electroporation (EP). EP significantly enhanced antibody titers and transmission blocking activity elicited by immunization with SYN Pfs48/45 DNA vaccine. Mosquito membrane feeding assays also revealed improved functional immunogenicity of SYN Pfs48/45 (N-glycosylation sites intact) as compared to MUT1 or MUT2 Pfs48/45 DNA plasmids (all N-glycosylation sites mutated). Boosting with recombinant Pfs48/45 protein after immunization with each of the different DNA vaccines resulted in significant boosting of antibody response and improved transmission reducing capabilities of all four DNA vaccines. Finally, immunization with a combination of DNA plasmids (SYN Pfs48/45 and SYN Pfs25) also provides support for the possibility of combining antigens targeting different life cycle stages in the parasite during transmission through mosquitoes.
Collapse
Affiliation(s)
- Dibyadyuti Datta
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, United States
| | - Geetha P Bansal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, United States
| | | | - Barry Ellefsen
- ICHOR Medical Systems Inc., San Diego, CA, United States
| | - Drew Hannaman
- ICHOR Medical Systems Inc., San Diego, CA, United States
| | - Nirbhay Kumar
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, United States.
| |
Collapse
|
7
|
Thera MA, Coulibaly D, Kone AK, Guindo AB, Traore K, Sall AH, Diarra I, Daou M, Traore IM, Tolo Y, Sissoko M, Niangaly A, Arama C, Baby M, Kouriba B, Sissoko MS, Sagara I, Toure OB, Dolo A, Diallo DA, Remarque E, Chilengi R, Noor R, Sesay S, Thomas A, Kocken CH, Faber BW, Imoukhuede EB, Leroy O, Doumbo OK. Phase 1 randomized controlled trial to evaluate the safety and immunogenicity of recombinant Pichia pastoris-expressed Plasmodium falciparum apical membrane antigen 1 (PfAMA1-FVO [25-545]) in healthy Malian adults in Bandiagara. Malar J 2016; 15:442. [PMID: 27577237 PMCID: PMC5006270 DOI: 10.1186/s12936-016-1466-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The safety and immunogenicity of PfAMA1, adjuvanted with Alhydrogel(®) was assessed in malaria-experienced Malian adults. The malaria vaccine, PfAMA1-FVO [25-545] is a recombinant protein Pichia pastoris-expressed AMA-1 from Plasmodium falciparum FVO clone adsorbed to Alhydrogel(®), the control vaccine was tetanus toxoid produced from formaldehyde detoxified and purified tetanus toxin. METHODS A double blind randomized controlled phase 1 study enrolled and followed 40 healthy adults aged 18-55 years in Bandiagara, Mali, West Africa, a rural setting with intense seasonal transmission of P. falciparum malaria. Volunteers were randomized to receive either 50 µg of malaria vaccine or the control vaccine. Three doses of vaccine were given on Days 0, 28 and 56, and participants were followed for 1 year. Solicited symptoms were assessed for seven days and unsolicited symptoms for 28 days after each vaccination. Serious adverse events were assessed throughout the study. The titres of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed. RESULTS Commonest local solicited adverse events were the injection site pain and swelling more frequent in the PfAMA1 group. No vaccine related serious adverse events were reported. A significant 3.5-fold increase of anti-AMA-1 IgG antibodies was observed in malaria vaccine recipients four weeks after the third immunization compared to the control group. CONCLUSION The PfAMA1 showed a good safety profile. Most adverse events reported were of mild to moderate intensity. In addition, the vaccine induced a significant though short-lived increase in the anti-AMA1 IgG titres. Registered on www.clinicaltrials.gov with the number NCT00431808.
Collapse
Affiliation(s)
- Mahamadou A Thera
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali.
| | - Drissa Coulibaly
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Kone
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ando B Guindo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdourhamane H Sall
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Issa Diarra
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Modibo Daou
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Idrissa M Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mady Sissoko
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Charles Arama
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mounirou Baby
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mahamadou S Sissoko
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ousmane B Toure
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Dapa A Diallo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Edmond Remarque
- Biomedical Primate Research Center (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Roma Chilengi
- Center for Infectious Diseases Research in Zambia (CIDRZ), P.O. Box 34681, Lusaka, 10101, Zambia
| | - Ramadhani Noor
- African Malaria Network Trust (AMANET), P.O. Box 33207, Dar Es Salaam, Tanzania
| | - Sanie Sesay
- Medical Research Council, P.O. Box 273, Banjul, The Gambia
| | - Alan Thomas
- Biomedical Primate Research Center (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Clemens H Kocken
- Biomedical Primate Research Center (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Bart W Faber
- Biomedical Primate Research Center (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | | | - Odile Leroy
- European Vaccine Initiative, European Vaccine Initiative, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| |
Collapse
|
8
|
Hjerrild KA, Jin J, Wright KE, Brown RE, Marshall JM, Labbé GM, Silk SE, Cherry CJ, Clemmensen SB, Jørgensen T, Illingworth JJ, Alanine DGW, Milne KH, Ashfield R, de Jongh WA, Douglas AD, Higgins MK, Draper SJ. Production of full-length soluble Plasmodium falciparum RH5 protein vaccine using a Drosophila melanogaster Schneider 2 stable cell line system. Sci Rep 2016; 6:30357. [PMID: 27457156 PMCID: PMC4960544 DOI: 10.1038/srep30357] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/04/2016] [Indexed: 01/27/2023] Open
Abstract
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has recently emerged as a leading candidate antigen against the blood-stage human malaria parasite. However it has proved challenging to identify a heterologous expression platform that can produce a soluble protein-based vaccine in a manner compliant with current Good Manufacturing Practice (cGMP). Here we report the production of full-length PfRH5 protein using a cGMP-compliant platform called ExpreS(2), based on a Drosophila melanogaster Schneider 2 (S2) stable cell line system. Five sequence variants of PfRH5 were expressed that differed in terms of mutagenesis strategies to remove potential N-linked glycans. All variants bound the PfRH5 receptor basigin and were recognized by a panel of monoclonal antibodies. Analysis following immunization of rabbits identified quantitative and qualitative differences in terms of the functional IgG antibody response against the P. falciparum parasite. The antibodies induced by one protein variant were shown to be qualitatively similar to responses induced by other vaccine platforms. This work identifies Drosophila S2 cells as a clinically-relevant platform suited for the production of 'difficult-to-make' proteins from Plasmodium parasites, and identifies a PfRH5 sequence variant that can be used for clinical production of a non-glycosylated, soluble full-length protein vaccine immunogen.
Collapse
Affiliation(s)
- Kathryn A Hjerrild
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Katherine E Wright
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Rebecca E Brown
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jennifer M Marshall
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Geneviève M Labbé
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sarah E Silk
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Catherine J Cherry
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Stine B Clemmensen
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm DK-2970, Denmark
| | - Thomas Jørgensen
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm DK-2970, Denmark
| | - Joseph J Illingworth
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Daniel G W Alanine
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Kathryn H Milne
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Rebecca Ashfield
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Willem A de Jongh
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm DK-2970, Denmark
| | - Alexander D Douglas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| |
Collapse
|
9
|
Doritchamou JYA, Herrera R, Aebig JA, Morrison R, Nguyen V, Reiter K, Shimp RL, MacDonald NJ, Narum DL, Fried M, Duffy PE. VAR2CSA Domain-Specific Analysis of Naturally Acquired Functional Antibodies to Plasmodium falciparum Placental Malaria. J Infect Dis 2016; 214:577-86. [PMID: 27190180 DOI: 10.1093/infdis/jiw197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/05/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Placental malaria is caused by Plasmodium falciparum-infected erythrocytes (IEs) that surface-express VAR2CSA and bind chondroitin sulfate A. The inflammatory response to placenta-sequestered parasites is associated with poor pregnancy outcomes, and protection may be mediated in part by VAR2CSA antibodies that block placental IE adhesion. METHODS In this study, we used a new approach to assess VAR2CSA domains for functional epitopes recognized by naturally acquired antibodies. Antigen-specific immunoglobulin (Ig) G targeting Duffy binding-like (DBL) domains from different alleles were sequentially purified from plasma pooled from multigravid women and then characterized using enzyme-linked immunosorbent assay, flow cytometry, and antiadhesion assays. RESULTS Different DBL domain-specific IgGs could react to homologous as well as heterologous antigens and parasites, suggesting that conserved epitopes are shared between allelic variants. Homologous blocking of IE binding was observed with ID1-DBL2-ID2a-, DBL4-, and DBL5-specific IgG (range, 42%-75%), whereas partial cross-inhibition activity was observed with purified IgG specific to ID1-DBL2-ID2a and DBL4 antigens. Plasma retained broadly neutralizing activity after complete depletion of these VAR2CSA specificities. CONCLUSIONS Broadly neutralizing antibodies of multigravidae are not depleted on VAR2CSA recombinant antigens, and hence development of VAR2CSA vaccines based on a single construct and variant might induce antibodies with limited broadly neutralizing activity.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Raul Herrera
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Joan A Aebig
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Robert Morrison
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland MOMS Project, Seattle Biomedical Research Institute, Washington
| | - Vu Nguyen
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Karine Reiter
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Richard L Shimp
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - David L Narum
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Michal Fried
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Patrick E Duffy
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| |
Collapse
|
10
|
Evaluation of the Impact of Codon Optimization and N-Linked Glycosylation on Functional Immunogenicity of Pfs25 DNA Vaccines Delivered by In Vivo Electroporation in Preclinical Studies in Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1013-9. [PMID: 26135972 DOI: 10.1128/cvi.00185-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Plasmodium falciparum sexual stage surface antigen Pfs25 is a well-established candidate for malaria transmission-blocking vaccine development. Immunization with DNA vaccines encoding Pfs25 has been shown to elicit potent antibody responses in mice and nonhuman primates. Studies aimed at further optimization have revealed improved immunogenicity through the application of in vivo electroporation and by using a heterologous prime-boost approach. The goal of the studies reported here was to systematically evaluate the impact of codon optimization, in vivo electroporation, and N-linked glycosylation on the immunogenicity of Pfs25 encoded by DNA vaccines. The results from this study demonstrate that while codon optimization and in vivo electroporation greatly improved functional immunogenicity of Pfs25 DNA vaccines, the presence or absence of N-linked glycosylation did not significantly impact vaccine efficacy. These findings suggest that N-glycosylation of Pfs25 encoded by DNA vaccines is not detrimental to overall transmission-blocking efficacy.
Collapse
|
11
|
Pedro AQ, Oppolzer D, Bonifácio MJ, Maia CJ, Queiroz JA, Passarinha LA. Evaluation of Mut(S) and Mut⁺ Pichia pastoris strains for membrane-bound catechol-O-methyltransferase biosynthesis. Appl Biochem Biotechnol 2015; 175:3840-55. [PMID: 25712908 DOI: 10.1007/s12010-015-1551-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 02/15/2015] [Indexed: 12/01/2022]
Abstract
Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is an enzyme that catalyzes the methylation of catechol substrates, and while structural and functional studies of its membrane-bound isoform (MBCOMT) are still hampered by low recombinant production, Pichia pastoris has been described as an attractive host for the production of correctly folded and inserted membrane proteins. Hence, in this work, MBCOMT biosynthesis was developed using P. pastoris X33 and KM71H cells in shake flasks containing a semidefined medium with different methanol concentrations. Moreover, after P. pastoris glass beads lysis, biologically and immunologically active hMBCOMT was found mainly in the solubilized membrane fraction whose kinetic parameters were identical to its correspondent native enzyme. In addition, mixed feeds of methanol and glycerol or sorbitol were also employed, and its levels quantified using liquid chromatography coupled to refractive index detection. Overall, for the first time, two P. pastoris strains with opposite phenotypes were applied for MBCOMT biosynthesis under the control of the strongly methanol-inducible alcohol oxidase (AOX) promoter. Moreover, this eukaryotic system seems to be a promising approach to deliver MBCOMT in high quantities from fermentor cultures with a lower cost-benefit due to the cheaper cultivation media coupled with the higher titers tipically achieved in biorreactors, when compared with previously reported mammallian cell cultures.
Collapse
Affiliation(s)
- A Q Pedro
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-001, Covilhã, Portugal
| | | | | | | | | | | |
Collapse
|
12
|
Boes A, Spiegel H, Edgue G, Kapelski S, Scheuermayer M, Fendel R, Remarque E, Altmann F, Maresch D, Reimann A, Pradel G, Schillberg S, Fischer R. Detailed functional characterization of glycosylated and nonglycosylated variants of malaria vaccine candidate PfAMA1 produced in Nicotiana benthamiana and analysis of growth inhibitory responses in rabbits. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:222-34. [PMID: 25236489 DOI: 10.1111/pbi.12255] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
One of the most promising malaria vaccine candidate antigens is the Plasmodium falciparum apical membrane antigen 1 (PfAMA1). Several studies have shown that this blood-stage antigen can induce strong parasite growth inhibitory antibody responses. PfAMA1 contains up to six recognition sites for N-linked glycosylation, a post-translational modification that is absent in P. falciparum. To prevent any potential negative impact of N-glycosylation, the recognition sites have been knocked out in most PfAMA1 variants expressed in eukaryotic hosts. However, N-linked glycosylation may increase efficacy by improving immunogenicity and/or focusing the response towards relevant epitopes by glycan masking. We describe the production of glycosylated and nonglycosylated PfAMA1 in Nicotiana benthamiana and its detailed characterization in terms of yield, integrity and protective efficacy. Both PfAMA1 variants accumulated to high levels (>510 μg/g fresh leaf weight) after transient expression, and high-mannose-type N-glycans were confirmed for the glycosylated variant. No significant differences between the N. benthamiana and Pichia pastoris PfAMA1 variants were detected in conformation-sensitive ligand-binding studies. Specific titres of >2 × 10(6) were induced in rabbits, and strong reactivity with P. falciparum schizonts was observed in immunofluorescence assays, as well as up to 100% parasite growth inhibition for both variants, with IC₅₀ values of ~35 μg/mL. Competition assays indicated that a number of epitopes were shielded from immune recognition by N-glycans, warranting further studies to determine how glycosylation can be used for the directed targeting of immune responses. These results highlight the potential of plant transient expression systems as a production platform for vaccine candidates.
Collapse
Affiliation(s)
- Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Antigen reversal identifies targets of opsonizing IgGs against pregnancy-associated malaria. Infect Immun 2014; 82:4842-53. [PMID: 25156731 DOI: 10.1128/iai.02097-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Clinical immunity to pregnancy associated-malaria (PAM) in multigravida women has been attributed to antibodies that recognize VAR2CSA on the infected erythrocyte (IE) surface. The size and complexity of VAR2CSA have focused efforts on selecting one or more of its six Duffy binding-like (DBL) domains for vaccine development. Presently, however, there is no consensus as to which DBL domain(s) would be most effective in eliciting immunity. This is because antibodies to a number of the DBL domains have been found to block the adhesion of VAR2CSA-expressing erythrocytes to chondroitin sulfate A (CSA)-a major criterion for evaluating vaccine candidacy. Opsonization of IEs by cytophilic antibodies that recognize VAR2CSA represents an important yet understudied effector mechanism in acquired immunity to PAM. To date, no studies have sought to determine the targets of those antibodies. In this study, we found that IgGs from multigravida Malian women showed (i) higher reactivity to recombinant DBL domains by enzyme-linked immunosorbent assay (ELISA), (ii) more binding to VAR2CSA-expressing IEs, and (iii) greater opsonization of these IEs by human monocytic cells than IgGs from malaria-exposed Malian men and malaria-naive American adults. Preincubation of IgGs from multigravida women with recombinant DBL2χ, DBL3χ, or DBL5ε domains significantly diminished opsonization of VAR2CSA-expressing IEs by human monocytes. These data identify the DBL2χ, DBL3χ, and DBL5ε domains as the primary targets of opsonizing IgGs for the first time. Our study introduces a new approach to determining the antigenic targets of opsonizing IgGs in phagocytosis assays.
Collapse
|
14
|
Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model. Int J Parasitol 2014; 44:637-46. [PMID: 24907553 DOI: 10.1016/j.ijpara.2014.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/21/2023]
Abstract
Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunisation protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans.
Collapse
|
15
|
Overcoming allelic specificity by immunization with five allelic forms of Plasmodium falciparum apical membrane antigen 1. Infect Immun 2013; 81:1491-501. [PMID: 23429537 DOI: 10.1128/iai.01414-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is a leading vaccine candidate, but the allelic polymorphism is a stumbling block for vaccine development. We previously showed that a global set of AMA1 haplotypes could be grouped into six genetic populations. Using this information, six recombinant AMA1 proteins representing each population were produced. Rabbits were immunized with either a single recombinant AMA1 protein or mixtures of recombinant AMA1 proteins (mixtures of 4, 5, or 6 AMA1 proteins). Antibody levels were measured by enzyme-linked immunosorbent assay (ELISA), and purified IgG from each rabbit was used for growth inhibition assay (GIA) with 12 different clones of parasites (a total of 108 immunogen-parasite combinations). Levels of antibodies to all six AMA1 proteins were similar when the antibodies were tested against homologous antigens. When the percent inhibitions in GIA were plotted against the number of ELISA units measured with homologous AMA1, all data points followed a sigmoid curve, regardless of the immunogen. In homologous combinations, there were no differences in the percent inhibition between the single-allele and allele mixture groups. However, all allele mixture groups showed significantly higher percent inhibition than the single-allele groups in heterologous combinations. The 5-allele-mixture group showed significantly higher inhibition to heterologous parasites than the 4-allele-mixture group. On the other hand, there was no difference between the 5- and 6-allele-mixture groups. These data indicate that mixtures with a limited number of alleles may cover a majority of the parasite population. In addition, using the data from 72 immunogen-parasite combinations, we mathematically identified 13 amino acid polymorphic sites which significantly impact GIA activities. These results could be a foundation for the rational design of a future AMA1 vaccine.
Collapse
|
16
|
Ellis RD, Wu Y, Martin LB, Shaffer D, Miura K, Aebig J, Orcutt A, Rausch K, Zhu D, Mogensen A, Fay MP, Narum DL, Long C, Miller L, Durbin AP. Phase 1 study in malaria naïve adults of BSAM2/Alhydrogel®+CPG 7909, a blood stage vaccine against P. falciparum malaria. PLoS One 2012; 7:e46094. [PMID: 23056238 PMCID: PMC3464250 DOI: 10.1371/journal.pone.0046094] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/27/2012] [Indexed: 11/25/2022] Open
Abstract
A Phase 1 dose escalating study was conducted in malaria naïve adults to assess the safety, reactogenicity, and immunogenicity of the blood stage malaria vaccine BSAM2/Alhydrogel®+ CPG 7909. BSAM2 is a combination of the FVO and 3D7 alleles of recombinant AMA1 and MSP142, with equal amounts by weight of each of the four proteins mixed, bound to Alhydrogel®, and administered with the adjuvant CPG 7909. Thirty (30) volunteers were enrolled in two dose groups, with 15 volunteers receiving up to three doses of 40 µg total protein at Days 0, 56, and 180, and 15 volunteers receiving up to three doses of 160 µg protein on the same schedule. Most related adverse events were mild or moderate, but 4 volunteers experienced severe systemic reactions and two were withdrawn from vaccinations due to adverse events. Geometric mean antibody levels after two vaccinations with the high dose formulation were 136 µg/ml for AMA1 and 78 µg/ml for MSP142. Antibody responses were not significantly different in the high dose versus low dose groups and did not further increase after third vaccination. In vitro growth inhibition was demonstrated and was closely correlated with anti-AMA1 antibody responses. A Phase 1b trial in malaria-exposed adults is being conducted.
Collapse
Affiliation(s)
- Ruth D. Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
- * E-mail:
| | - Laura B. Martin
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Donna Shaffer
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kazutoyo Miura
- Biostatistics Research Branch, NIAID/NIH, Rockville, Maryland, United States of America
| | - Joan Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Andrew Orcutt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Kelly Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Anders Mogensen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Michael P. Fay
- Biostatistics Research Branch, NIAID/NIH, Rockville, Maryland, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Carole Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, United States of America
| | - Louis Miller
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Anna P. Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
17
|
Cheung KLY, Bates M, Ananthanarayanan VS. Effect of FKBP65, a putative elastin chaperone, on the coacervation of tropoelastin in vitro. Biochem Cell Biol 2011; 88:917-25. [PMID: 21102654 DOI: 10.1139/o10-137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
FKBP65 is a protein of the endoplasmic reticulum that is relatively abundant in elastin-producing cells and is associated with tropoelastin in the secretory pathway. To test an earlier suggestion by Davis and co-workers that FKBP65 could act as an intracellular chaperone for elastin, we obtained recombinant FKBP65 (rFKBP65) by expressing it in E. coli and examined its effect on the coacervation characteristics of chicken aorta tropoelastin (TE) using an in vitro turbidimetric assay. Our results reveal that rFKBP65 markedly promotes the initiation of coacervation of TE without significantly affecting the temperature of onset of coacervation. This effect shows saturation at a 1:2 molar ratio of TE to rFKBP65. By contrast, FKBP12, a peptidyl prolyl isomerase, has a negligible effect on TE coacervation. Moreover, the effect of rFKBP65 on TE coacervation is unaffected by the addition of rapamycin, an inhibitor of peptidyl prolyl isomerase (PPIase) activity. These observations rule out the involvement of the PPIase activity of rFKBP65 in modulating the coacervation of TE. Additional experiments using a polypeptide model of TE showed that rFKBP65, while promoting coacervation, may retard the maturation of this model polypeptide into larger aggregates. Based on these results, we suggest that FKBP65 may act as an elastin chaperone in vivo by controlling both the coacervation and the maturation stages of its self-assembly into fibrils.
Collapse
Affiliation(s)
- Kevin L Y Cheung
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
18
|
Adenovectors induce functional antibodies capable of potent inhibition of blood stage malaria parasite growth. Vaccine 2010; 28:3201-10. [PMID: 20188680 DOI: 10.1016/j.vaccine.2010.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/01/2010] [Accepted: 02/10/2010] [Indexed: 11/21/2022]
Abstract
An effective malaria vaccine remains a global health priority. Recombinant adenoviruses are a promising vaccine platform, and Plasmodium falciparum apical membrane antigen 1 (AMA1) and merozoite surface protein 1-42 (MSP1(42)) are leading blood stage vaccine candidates. We evaluated the importance of surface antigen localization and glycosylation on the immunogenicity of adenovector delivered AMA1 and MSP1(42) and assessed the ability of these vaccines to induce functional antibody responses capable of inhibiting parasite growth in vitro. Adenovector delivery induced unprecedented levels of biologically active antibodies in rabbits as indicated by the parasite growth inhibition assay. These responses were as potent as published results using any other vaccine system, including recombinant protein in adjuvant. The cell surface associated and glycosylated forms of AMA1 and MSP1(42) elicited 99% and 60% inhibition of parasite growth, respectively. Antigens that were expressed at the cell surface and glycosylated were much better than intracellular antigens at inducing antibody responses. Good T cell responses were observed for all forms of AMA1 and MSP1(42). Antigen-specific antibody responses, but typically not T cell responses, were boosted by a second administration of adenovector. These data highlight the importance of rational vaccine design and support the advancement of adenovector delivery technology for a malaria vaccine.
Collapse
|
19
|
Thomas S, Thirumalapura N, Crossley EC, Ismail N, Walker DH. Antigenic protein modifications in Ehrlichia. Parasite Immunol 2009; 31:296-303. [PMID: 19493209 PMCID: PMC2731653 DOI: 10.1111/j.1365-3024.2009.01099.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/09/2009] [Indexed: 12/02/2022]
Abstract
To develop effective vaccination strategies against Ehrlichia, we have previously reported developing an animal model of cross-protection in which C57BL/6 mice primed with E. muris were resistant to lethal infection with Ixodes ovatus ehrlichia (IOE). Polyclonal antibody produced in mice after priming with E. muris and later injected with IOE-detected antigenic proteins in E. muris and IOE cell lysates. Cross-reaction of antigenic proteins was observed when we probed both the E. muris and IOE cell lysates with IOE and E. muris-specific polyclonal antibody. Analysis of the total proteins of E. muris and IOE by two dimensional electrophoresis showed that both E. muris and IOE have the same antigenic proteins. Finally, studies on post-translational protein modifications using a novel technique, Eastern blotting, showed that E. muris proteins are more lipoylated and glycosylated than those of IOE.
Collapse
Affiliation(s)
- S Thomas
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | |
Collapse
|
20
|
Miura K, Zhou H, Moretz SE, Diouf A, Thera MA, Dolo A, Doumbo O, Malkin E, Diemert D, Miller LH, Mullen GE, Long CA. Comparison of biological activity of human anti-apical membrane antigen-1 antibodies induced by natural infection and vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8776-83. [PMID: 19050299 PMCID: PMC2788747 DOI: 10.4049/jimmunol.181.12.8776] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the United States with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active Abs judged by an in vitro parasite growth inhibition assay (GIA). However, the same vaccine in Malian adults did not increase biological activity, although it elevated ELISA titers. Because GIA has been used to evaluate the biological activity of Abs induced by blood stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific Abs from both U.S. vaccinees and nonvaccinated individuals living in a malaria-endemic area of Mali and performed ELISA and GIA. Both AMA1-specifc Abs induced by vaccination (U.S.) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians' IgG that did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 Abs from U.S. vaccinees; in contrast, U.S.-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both U.S.- and Mali-AMA1-specific Abs showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific Ab by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of Abs induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood stage malaria vaccine.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Hong Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, Department of Hematology and Parasitology, Univ. of Bamako, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, Department of Hematology and Parasitology, Univ. of Bamako, Bamako, Mali
| | - Ogobara Doumbo
- Malaria Research and Training Center, Department of Hematology and Parasitology, Univ. of Bamako, Bamako, Mali
| | - Elissa Malkin
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - David Diemert
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Louis H. Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gregory E.D. Mullen
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
21
|
Narum DL, Nguyen V, Zhang Y, Glen J, Shimp RL, Lambert L, Ling IT, Reiter K, Ogun SA, Long C, Holder AA, Herrera R. Identification and characterization of the Plasmodium yoelii PyP140/RON4 protein, an orthologue of Toxoplasma gondii RON4, whose cysteine-rich domain does not protect against lethal parasite challenge infection. Infect Immun 2008; 76:4876-82. [PMID: 18710865 PMCID: PMC2573347 DOI: 10.1128/iai.01717-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 08/03/2008] [Indexed: 11/20/2022] Open
Abstract
Previously, we identified a Plasmodium yoelii YM 140-kDa merozoite protein, designated PyP140, which formed a complex with apical membrane antigen 1 (AMA1). Furthermore, we produced a nonprotective monoclonal antibody (MAb), 48F8, that immunoprecipitated metabolically labeled PyP140 and localized the protein to the merozoite's apical end and, less frequently, to the merozoite surface, as observed by immunofluorescence assay (IFA). Here, using MAb 48F8, we have identified the pyp140 gene by screening a P. yoelii lambda-Zap cDNA expression library. The pyp140 cDNA covers approximately 90% of the putative open reading frame (ORF) of PY02159 from the P. yoelii NL genome sequencing project. Analysis of the complete gene identified the presence of two introns. The ORF encodes a 102,407-Da protein with an amino-terminal signal sequence, a series of three unique types of repeats, and a cysteine-rich region. The binding site of MAb 48F8 was also identified. A BLAST search with the deduced amino acid sequence shows significant similarity with the Toxoplasma gondii RON4 protein and the Plasmodium falciparum RON4 protein, and the sequence is highly conserved in other Plasmodium species. We produced the cysteine-rich domain of PyP140/RON4 by using the Pichia pastoris expression system and characterized the recombinant protein biochemically and biophysically. BALB/c mice immunized with the protein formulated in oil-in-water adjuvants produced antibodies that recognize parasitized erythrocytes by IFA and native PyP140/RON4 by immunoblotting but failed to protect against a lethal P. yoelii YM infection. Our results show that PyP140/RON4 is located within the rhoptries or micronemes. It may associate in part with AMA1, but the conserved cysteine-rich domain does not appear to elicit inhibitory antibodies, a finding that is supported by the marked sequence conservation in this protein within Plasmodium spp., suggesting that it is not under immune pressure.
Collapse
Affiliation(s)
- David L Narum
- Malaria Vaccine Development Branch, NIH, 5640 Fishers Lane, Twinbrook I, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malar J 2008; 7:197. [PMID: 18828893 PMCID: PMC2567985 DOI: 10.1186/1475-2875-7-197] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.
Collapse
|
23
|
Remarque EJ, Faber BW, Kocken CHM, Thomas AW. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol 2008; 24:74-84. [PMID: 18226584 DOI: 10.1016/j.pt.2007.12.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 10/31/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Apical membrane antigen 1 (AMA1) is a micronemal protein of apicomplexan parasites that appears to be essential during the invasion of host cells. Immune responses to Plasmodium AMA1 can have profound parasite-inhibitory effects, both as measured in vitro and in animal challenge models, suggesting AMA1 as a potential vaccine component. However, AMA1 is polymorphic, probably as a result of immune selection operating on an important target of naturally occurring immunity. The current understanding of AMA1 will be presented, particularly in relation to the vaccine potential of AMA1 and the approaches being taken towards clinical development.
Collapse
Affiliation(s)
- Edmond J Remarque
- Department of Parasitology, Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
24
|
Weiss WR, Kumar A, Jiang G, Williams J, Bostick A, Conteh S, Fryauff D, Aguiar J, Singh M, O'Hagan DT, Ulmer JB, Richie TL. Protection of rhesus monkeys by a DNA prime/poxvirus boost malaria vaccine depends on optimal DNA priming and inclusion of blood stage antigens. PLoS One 2007; 2:e1063. [PMID: 17957247 PMCID: PMC2031826 DOI: 10.1371/journal.pone.0001063] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/11/2007] [Indexed: 11/21/2022] Open
Abstract
Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher interferon-γ ELIspot responses to the PkCSP antigen correlated with earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect.
Collapse
Affiliation(s)
- Walter R Weiss
- Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li S, Locke E, Bruder J, Clarke D, Doolan DL, Havenga MJE, Hill AVS, Liljestrom P, Monath TP, Naim HY, Ockenhouse C, Tang DCC, Van Kampen KR, Viret JF, Zavala F, Dubovsky F. Viral vectors for malaria vaccine development. Vaccine 2006; 25:2567-74. [PMID: 16914237 PMCID: PMC7131149 DOI: 10.1016/j.vaccine.2006.07.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/23/2006] [Accepted: 07/23/2006] [Indexed: 01/08/2023]
Abstract
A workshop on viral vectors for malaria vaccine development, organized by the PATH Malaria Vaccine Initiative, was held in Bethesda, MD on October 20, 2005. Recent advancements in viral-vectored malaria vaccine development and emerging vector technologies were presented and discussed. Classic viral vectors such as poxvirus, adenovirus and alphavirus vectors have been successfully used to deliver malaria antigens. Some of the vaccine candidates have demonstrated their potential in inducing malaria-specific immunity in animal models and human trials. In addition, emerging viral-vector technologies, such as measles virus (MV), vesicular stomatitis virus (VSV) and yellow fever (YF) virus, may also be useful for malaria vaccine development. Studies in animal models suggest that each viral vector is unique in its ability to induce humoral and/or cellular immune responses. Those studies have also revealed that optimization of Plasmodium genes for mammalian expression is an important aspect of vaccine design. Codon-optimization, surface-trafficking, de-glycosylation and removal of toxic domains can lead to improved immunogenicity. Understanding the vector's ability to induce an immune response and the expression of malaria antigens in mammalian cells will be critical in designing the next generation of viral-vectored malaria vaccines.
Collapse
|
26
|
Ahuja S, Ahuja S, Chen Q, Wahlgren M. Prediction of solubility on recombinant expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in Escherichia coli. Malar J 2006; 5:52. [PMID: 16796764 PMCID: PMC1523353 DOI: 10.1186/1475-2875-5-52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/25/2006] [Indexed: 11/21/2022] Open
Abstract
Background Cellular interactions elicited by Plasmodium falciparum erythrocyte membrane protein antigen 1 (PfEMP1) are brought about by multiple DBL (Duffy binding like), CIDR (cysteine-rich interdomain region) and C2 domain types. Elucidation of the functional and structural characteristics of these domains is contingent on the abundant availability of recombinant protein in a soluble form. A priori prediction of PfEMP1 domains of the 3D7 genome strain, most likely to be expressed in the soluble form in Escherichia coli was computed and proven experimentally. Methods A computational analysis correlating sequence-dependent features to likelihood for expression in soluble form was computed and predictions were validated by the colony filtration blot method for rapid identification of soluble protein expression in E. coli. Results Solubility predictions for all constituent PfEMP1 domains in the decreasing order of their probability to be expressed in a soluble form (% mean solubility) are as follows: ATS (56.7%) > CIDR1α (46.8%) > CIDR2β (42.9%) > DBL2-4γ (31.7%) > DBL2β + C2 (30.6%) > DBL1α (24.9%) > DBL2-7ε (23.1%) > DBL2-5δ (14.8%). The length of the domains does not correlate to their probability for successful expression in the soluble form. Immunoblot analysis probing for soluble protein confirmed the differential in solubility predictions. Conclusion The acidic terminal segment (ATS) and CIDR α/β domain types are suitable for recombinant expression in E. coli while all DBL subtypes (α, β, γ, δ, ε) are a poor choice for obtaining soluble protein on recombinant expression in E. coli. This study has relevance for researchers pursuing functional and structural studies on PfEMP1 domains.
Collapse
Affiliation(s)
- Sanjay Ahuja
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, P. O. Box 280, Stockholm, S-17177, Sweden
| | - Satpal Ahuja
- Wallenberg Retina Centre, Department of Ophthalmology, Lund University, BMC-B13, Klinikgatan 26, Lund, 221 84, Sweden
| | - Qijun Chen
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, P. O. Box 280, Stockholm, S-17177, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, P. O. Box 280, Stockholm, S-17177, Sweden
| |
Collapse
|