1
|
Chu X, Yang Q. Regulatory Mechanisms and Physiological Impacts of Quorum Sensing in Gram-Negative Bacteria. Infect Drug Resist 2024; 17:5395-5410. [PMID: 39654694 PMCID: PMC11626961 DOI: 10.2147/idr.s485388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
The Quorum sensing (QS) system is a widely existing communication mechanism, which regulates bacterial community behaviors and the expression of specific genes. The most common pathogenic bacteria in clinical infections are gram-negative bacteria, and QS plays an important regulatory role in the production of virulence factors and development of antibiotic resistance. This article reviews the QS systems of gram-negative bacteria and provides an overview of how they regulate their physiological functions.
Collapse
Affiliation(s)
- Xiaobing Chu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Markowska K, Szymanek-Majchrzak K, Pituch H, Majewska A. Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities. Int J Mol Sci 2024; 25:12808. [PMID: 39684519 DOI: 10.3390/ijms252312808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Biofilms are complex, highly organized structures formed by microorganisms, with functional cell arrangements that allow for intricate communication. Severe clinical challenges occur when anaerobic bacterial species establish long-lasting infections, especially those involving biofilms. These infections can occur in device-related settings (e.g., implants) as well as in non-device-related conditions (e.g., inflammatory bowel disease). Within biofilms, bacterial cells communicate by producing and detecting extracellular signals, particularly through specific small signaling molecules known as autoinducers. These quorum-sensing signals are crucial in all steps of biofilm formation: initial adhesion, maturation, and dispersion, triggering gene expression that coordinates bacterial virulence factors, stimulates immune responses in host tissues, and contributes to antibiotic resistance development. Within anaerobic biofilms, bacteria communicate via quorum-sensing molecules such as N-Acyl homoserine lactones (AHLs), autoinducer-2 (AI-2), and antimicrobial molecules (autoinducing peptides, AIPs). To effectively combat pathogenic biofilms, understanding biofilm formation mechanisms and bacterial interactions is essential. The strategy to disrupt quorum sensing, termed quorum quenching, involves methods like inactivating or enzymatically degrading signaling molecules, competing with signaling molecules for binding sites, or noncompetitively binding to receptors, and blocking signal transduction pathways. In this review, we comprehensively analyzed the fundamental molecular mechanisms of quorum sensing in biofilms formed by anaerobic bacteria. We also highlight quorum quenching as a promising strategy to manage bacterial infections associated with anaerobic bacterial biofilms.
Collapse
Affiliation(s)
- Kinga Markowska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Ksenia Szymanek-Majchrzak
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Wu C, Fujiki J, Mathieu J, Schwarz C, Cornell C, Alvarez PJJ. Phage-based biocontrol of Porphyromonas gingivalis through indirect targeting. Appl Environ Microbiol 2024; 90:e0095124. [PMID: 39248462 PMCID: PMC11497834 DOI: 10.1128/aem.00951-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Bacteriophages offer an opportunity for chemical-free, precise control of problematic bacteria, but this approach can be limited when lytic phages are difficult to obtain for the target host. In such cases, phage-based targeting of cooperating or cross-feeding bacteria (e.g., Streptococcus gordonii) can be an effective approach to control the problematic bacteria (e.g., Porphyromonas gingivalis). Using a dual-species biofilm system, phage predation of S. gordonii (108 PFU·mL-1) decreased the abundance of pathogenic P. gingivalis by >99% compared with no-treatment controls, while also inhibiting the production of cytotoxic metabolic end products (butyric and propionic acids). Phage treatment upregulated genes associated with interspecies co-adhesion (5- to 8-fold) and quorum sensing (10-fold) in residual P. gingivalis, which is conducive to increased potential to bind to S. gordonii. Counterintuitively, lower-titer phage applications (104 PFU·mL-1) increased the production of extracellular polymeric substance (EPS) by 22% and biofilm biomass by 50%. This overproduction of EPS may contribute to the phenomenon where the biofilm separated into two distinct species layers, as observed by confocal laser scanning microscopy. Although more complex mixed-culture systems should be considered to delineate the merits and limitations of this novel biocontrol approach (which would likely require the use of phage cocktails), our results offer proof of concept that indirect phage-based targeting can expand the applicability of phage-based control of pathogenic bacteria for public health protection. IMPORTANCE Lytic phages are valuable agents for targeted elimination of bacteria in diverse applications. Nevertheless, lytic phages are difficult to isolate for some target pathogens. We offer proof of concept that this limitation may be overcome via indirect phage targeting, which involves knocking out species that interact closely with and benefit the primary problematic target bacteria. Our target (P. gingivalis) only forms a periodontal pathogenic biofilm if the pioneer colonizer (S. gordonii) offers its surface for P. gingivalis to attach. Phage predation of the co-adhesive S. gordonii significantly reduced abundance of the target pathogen by >99%, decreased the total biofilm biomass by >44%, and suppressed its production of cytotoxic metabolic byproducts. Thus, this research extends the scope of phage-based biocontrol for public health protection.
Collapse
Affiliation(s)
- Chuncheng Wu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Jumpei Fujiki
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Carolyn Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
4
|
Stocke K, Lamont G, Tan J, Scott DA. Delineation of global, absolutely essential and conditionally essential pangenomes of Porphyromonas gingivalis. Sci Rep 2024; 14:22247. [PMID: 39333542 PMCID: PMC11436796 DOI: 10.1038/s41598-024-72451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Porphyromonas gingivalis is a Gram-negative, anaerobic oral pathobiont, an etiological agent of periodontitis and the most commonly studied periodontal bacterium. Multiple low passage clinical isolates were sequenced, and their genomes compared to several laboratory strains. Phylogenetic distances were mapped, a gene absence-presence matrix generated, and core (present in all genomes) and accessory (absent in one or more genomes) genes delineated. Subsequently, a second pangenome delineating the prevalence of inherently essential genes was generated. The prevalence of genes conditionally essential for surviving tobacco exposure, abscess formation and epithelial invasion was also determined, in addition to genes encoding key proteolytic enzymes containing putative signal peptides. While the absolutely essential pangenome was highly conserved, significant differences in the complete and conditionally essential pangenomes were apparent. Thus, genetic plasticity appears to lie primarily in gene sets facilitating adaptation to variant disease-related environments. Those genes that are highly pervasive in the P. gingivalis absolutely essential pangenome or are highly prevalent and essential for fitness in disease-relevant models, may represent particularly attractive therapeutic targets worthy of further investigation. As mutations in absolutely essential genes are expected to be lethal, the data provided herein should also facilitate improved planning for P. gingivalis gene mutation strategies.
Collapse
Affiliation(s)
- Kendall Stocke
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY, 40292, USA
| | - Gwyneth Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY, 40292, USA
| | - Jinlian Tan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY, 40292, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, KY, 40292, USA.
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
5
|
Costeira R, Aduse-Opoku J, Vernon JJ, Rodriguez-Algarra F, Joseph S, Devine DA, Marsh PD, Rakyan V, Curtis MA, Bell JT. Hemin availability induces coordinated DNA methylation and gene expression changes in Porphyromonas gingivalis. mSystems 2023; 8:e0119322. [PMID: 37436062 PMCID: PMC10470040 DOI: 10.1128/msystems.01193-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/12/2023] [Indexed: 07/13/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease in which the oral pathogen Porphyromonas gingivalis plays an important role. Porphyromonas gingivalis expresses virulence determinants in response to higher hemin concentrations, but the underlying regulatory processes remain unclear. Bacterial DNA methylation has the potential to fulfil this mechanistic role. We characterized the methylome of P. gingivalis, and compared its variation to transcriptome changes in response to hemin availability. Porphyromonas gingivalis W50 was grown in chemostat continuous culture with excess or limited hemin, prior to whole-methylome and transcriptome profiling using Nanopore and Illumina RNA-Seq. DNA methylation was quantified for Dam/Dcm motifs and all-context N6-methyladenine (6mA) and 5-methylcytosine (5mC). Of all 1,992 genes analyzed, 161 and 268 were respectively over- and under-expressed with excess hemin. Notably, we detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin availability. Joint analyses identified a subset of coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify altered methylation and expression responses to hemin availability in P. gingivalis, with insights into mechanisms regulating its virulence in periodontal disease. IMPORTANCE DNA methylation has important roles in bacteria, including in the regulation of transcription. Porphyromonas gingivalis, an oral pathogen in periodontitis, exhibits well-established gene expression changes in response to hemin availability. However, the regulatory processes underlying these effects remain unknown. We profiled the novel P. gingivalis epigenome, and assessed epigenetic and transcriptome variation under limited and excess hemin conditions. As expected, multiple gene expression changes were detected in response to limited and excess hemin that reflect health and disease, respectively. Notably, we also detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin. Joint analyses identified coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify novel regulatory processes underlying the mechanism of hemin regulated gene expression in P. gingivalis, with phenotypic impacts on its virulence in periodontal disease.
Collapse
Affiliation(s)
- Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Joseph Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jon J. Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Francisco Rodriguez-Algarra
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Susan Joseph
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Deirdre A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Philip D. Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Vardhman Rakyan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael A. Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| |
Collapse
|
6
|
Klomp T, Jahr H, Abdelbary MMH, Conrads G. Evaluation of hydrocortisone as a strain-dependent growth-regulator of Porphyromonasgingivalis. Anaerobe 2023; 80:102698. [PMID: 36681234 DOI: 10.1016/j.anaerobe.2023.102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Porphyromonas gingivalis is an oral key pathogen and known to be very diverse in geno- and phenotypes. It is a fastidious bacterium with low O2-tolerance and 3-7 days of incubation are necessary. With growing interest in the field of microbial endocrinology we explored the potential growth-stimulating effect of hydrocortisone (HC, synonym cortisol) on P. gingivalis cultures. MATERIAL AND METHODS Six different P. gingivalis strains were pre-incubated in supplemented Brain-Heart-Infusion broth under appropriate conditions for 24 h, diluted and transferred into microplates. A newly developed and semi-automated spectrophotometric measurement in triplicate, applying a SpectraMax i3x microplate reader at an optical density of 600 nm, was conducted to test growth differences between test group (exposed to a supplement of either 1.25, 2.5, 5, 10, or 20 μg/ml of hydrocortisone) and control group over 48 h of anaerobic incubation (O2 ≤ 1%). Furthermore, strains were also incubated on HC-supplemented blood agar to test for a possible growth-stimulating effect on solid media. RESULTS HC significantly stimulated the lag-phase growth of four out of six P. gingivalis strains. Our data suggest a concentration-dependent growth stimulatory effect of HC between 2.5 and 5 μg/ml, while below 1.25 μg/ml and above 10 μg/ml HC either did not stimulate or inhibited growth. CONCLUSIONS HC could reduce the incubation time when isolating P. gingivalis from clinical samples and could boost low biomass cultivations especially during their lag-phase. The growth-modulating effect might be via modulation of virulence factors/quorum sensing gene expression or by reactive oxygen species(ROS)-capturing during early stages of bacterial growth. Further experiments are necessary to explain the mechanism behind our observations.
Collapse
Affiliation(s)
- Tim Klomp
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany; Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen and Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Aachen, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany.
| |
Collapse
|
7
|
Polizzi A, Donzella M, Nicolosi G, Santonocito S, Pesce P, Isola G. Drugs for the Quorum Sensing Inhibition of Oral Biofilm: New Frontiers and Insights in the Treatment of Periodontitis. Pharmaceutics 2022; 14:2740. [PMID: 36559234 PMCID: PMC9781207 DOI: 10.3390/pharmaceutics14122740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Chemical molecules are used by microorganisms to communicate with each other. Quorum sensing is the mechanism through which microorganisms regulate their population density and activity with chemical signaling. The inhibition of quorum sensing, called quorum quenching, may disrupt oral biofilm formation, which is the main etiological factor of oral diseases, including periodontitis. Periodontitis is a chronic inflammatory disorder of infectious etiology involving the hard and soft periodontal tissues and which is related to various systemic disorders, including cardiovascular diseases, diabetes and obesity. The employment of adjuvant therapies to traditional scaling and root planing is currently being studied to further reduce the impact of periodontitis. In this sense, using antibiotics and antiseptics involves non-negligible risks, such as antibiotic resistance phenomena and hinders the re-establishment of eubiosis. Different quorum sensing signal molecules have been identified in periodontal pathogenic oral bacteria. In this regard, quorum sensing inhibitors are emerging as some interesting solutions for the management of periodontitis. Therefore, the aim of this review is to summarize the current state of knowledge on the mechanisms of quorum sensing signal molecules produced by oral biofilm and to analyze the potential of quorum sensing inhibitors for the management of periodontitis.
Collapse
Affiliation(s)
- Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Martina Donzella
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Giada Nicolosi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| |
Collapse
|
8
|
Zhang B, Jiang C, Cao H, Zeng W, Ren J, Hu Y, Li W, He Q. Transcriptome analysis of heat resistance regulated by quorum sensing system in Glaesserella parasuis. Front Microbiol 2022; 13:968460. [PMID: 36033895 PMCID: PMC9403865 DOI: 10.3389/fmicb.2022.968460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The ability of bacteria to resist heat shock allows them to adapt to different environments. In addition, heat shock resistance is known for their virulence. Our previous study showed that the AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of Glaesserella parasuis. The resistance of quorum sensing system deficient G. parasuis to heat shock was obviously weaker than that of wild type strain. However, the regulatory mechanism of this phenotype remains unclear. To illustrate the regulatory mechanism by which the quorum sensing system provides resistance to heat shock, the transcriptomes of wild type (GPS2), ΔluxS, and luxS complemented (C-luxS) strains were analyzed. Four hundred forty-four differentially expressed genes were identified in quorum sensing system deficient G. parasuis, which participated in multiple regulatory pathways. Furthermore, we found that G. parasuis regulates the expression of rseA, rpoE, rseB, degS, clpP, and htrA genes to resist heat shock via the quorum sensing system. We further confirmed that rseA and rpoE genes exerted an opposite regulatory effect on heat shock resistance. In conclusion, the findings of this study provide a novel insight into how the quorum sensing system affects the transcriptome of G. parasuis and regulates its heat shock resistance property.
Collapse
Affiliation(s)
- Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Hua Cao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Jingping Ren
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yaofang Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Qigai He,
| |
Collapse
|
9
|
He Z, Jiang W, Jiang Y, Dong J, Song Z, Xu J, Zhou W. Anti-biofilm activities of coumarin as quorum sensing inhibitor for Porphyromonas gingivalis. J Oral Microbiol 2022; 14:2055523. [PMID: 35368854 PMCID: PMC8967191 DOI: 10.1080/20002297.2022.2055523] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen in periodontitis, a biofilm-mediated infection disease. This research aimed to investigate the effect of coumarin on P. gingivalis biofilm formation. We detected the antimicrobial effect on P. gingivalis planktonic growth, observed membrane structure and morphological change by TEM, and quantified membrane permeability by calcein-AM staining. The cell surface hydrophobicity, aggregation, and attachment were assessed. We also investigated different sub-MIC concentrations of coumarin on biofilm formation, and observed biofilm structureby confocal laser scanning microscopy. The biofilm-related gene expression was evaluated using real-time PCR. The results showed that coumarin inhibited P. gingivalis growth and damaged the cell morphology above 400 μM concentration. Coumarin did not affect cell surface hydrophobicity, aggregation, attachment, and the early stage of biofilm formation at sub-MIC concentrations. Still, it exhibited anti-biofilm effects for the late-stage and pre-formed biofilms dispersion. The biofilms after coumarin treatment became interspersed, and biofilm-related gene expression was downregulated. Coumarin also inhibited AI-2 activity and interacted with the HmuY protein by molecular docking analysis. Our research demonstrated that coumarin inhibited P. gingivalis biofilm formation through a quorum sensing system.
Collapse
Affiliation(s)
- Zhiyan He
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Jiang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiting Jiang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiachen Dong
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine ; Shanghai, China.,Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Paz HES, Monteiro MF, Stolf CS, Altabtbaei K, Casati MZ, Casarin RCV, Kumar PS. Predicted functional and taxonomic analysis of subgingival biofilm of grade C periodontitis in young patients under maintenance therapy. J Periodontol 2021; 93:1119-1130. [PMID: 34727386 DOI: 10.1002/jper.21-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND In Grade C periodontitis in young patients (PerioC-Y), the functional roles of the subgingival community after years of periodontal treatment are still underexplored. This study evaluated the taxonomic and predicted functional content of the subgingival microbiome of PerioC-Y patients under supportive periodontal therapy (SPT). METHODS Clinical and microbiological data from subgingival biofilm were assessed from 10 PerioC-Y patients at two time points: at baseline and after 5.7±1.3 years of SPT. This was compared to 15 patients without a history of periodontitis. The V1-V3 and V4-V5 regions of the 16S rRNA were sequenced using the Illumina Miseq. Microbial composition was evaluated by the core microbiome, and alpha- and beta-diversity. The microbiome functional content was predicted using Picrust2, and the gene differential abundance was analyzed with DESeq2. RESULTS Clinical improvements were seen in PerioC-Y-SPT. Differences in β-diversity between PerioC-Y and Health were observed (Health x PerioC-Y-baseline, p = 0.02; Health x PerioC-Y-SPT, p = 0.05). Moreover, although β-diversity did not statistically change between baseline and SPT in PerioC-Y, the microbial correlation evidenced increased Streptococcus and decreased Treponema network contributions during SPT. Based on predicted functional data, treatment induced a reduction in genes related to flagellar protein and signal transduction in PerioC-Y. However, compared to healthy individuals, some genes remained more highly abundant in PerioC-Y-SPT, such as quorum sensing and efflux pump transporters. CONCLUSION Despite clinical improvements and a shift in taxonomic composition, the PerioC-Y patients' periodontal treatment was not enough to reach a similar microbiome to patients without disease experience. Some functional content in this biofilm remained altered in PerioC-Y regardless of disease control. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hélvis E S Paz
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Mabelle F Monteiro
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Camila S Stolf
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Khaled Altabtbaei
- Department of Periodontology, School of Dentistry, University of Alberta, Edmonton, Canada
| | - Márcio Z Casati
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Renato C V Casarin
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Purnima S Kumar
- Department of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Li J, Wang Y, Du Y, Zhang H, Fan Q, Sun L, Yi L, Wang S, Wang Y. mRNA-Seq reveals the quorum sensing system luxS gene contributes to the environmental fitness of Streptococcus suis type 2. BMC Microbiol 2021; 21:111. [PMID: 33849451 PMCID: PMC8045309 DOI: 10.1186/s12866-021-02170-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Background Streptococcus suis type 2 (SS2) is an important zoonotic pathogen. We have previously reported the structure of LuxS protein and found that the luxS gene is closely related to biofilm, virulence gene expression and drug resistance of SS2. However, the mechanism of luxS mediated SS2 stress response is unclear. Therefore, this experiment performed stress response to luxS mutant (ΔluxS) and complement strain (CΔluxS), overexpression strain (luxS+) and wild-type SS2 strain HA9801, and analyzed the differential phenotypes in combination with transcriptome data. Results The results indicate that the luxS gene deletion causes a wide range of phenotypic changes, including chain length. RNA sequencing identified 278 lx-regulated genes, of which 179 were up-regulated and 99 were down-regulated. Differential genes focus on bacterial growth, stress response, metabolic mechanisms and drug tolerance. Multiple mitotic genes were down-regulated; while the ABC transporter system genes, cobalamin /Fe3+-iron carrier ABC transporter ATPase and oxidative stress regulators were up-regulated. The inactivation of the luxS gene caused a significant reduction in the growth and survival in the acid (pH = 3.0, 4.0, 5.0) and iron (100 mM iron chelator 2,2′-dipyridyl) stress environments. However, the mutant strain ΔluxS showed increased antioxidant activity to H2O2 (58.8 mmol/L). Conclusions The luxS gene in SS2 appears to play roles in iron metabolism and protective responses to acidic and oxidative environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02170-w.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yanbin Du
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China. .,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
12
|
Niazy AA. LuxS quorum sensing system and biofilm formation of oral microflora: A short review article. Saudi Dent J 2021; 33:116-123. [PMID: 33679103 PMCID: PMC7910685 DOI: 10.1016/j.sdentj.2020.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
The LuxS quorum sensing system is considered as the main system that most of the oral bacteria use to communicate in order to create biofilms. Here we identified 11 of the most important biofilm formers that utilize the LuxS system and presented current and recent information regarding this system. Though different bacterial species are able to communicate thorough the LuxS system, it was also found that cross kingdom communication can occur between bacteria and fungi and bacteria and epithelial cells. Immune response also plays and important role in mitigating the effects of biofilms. Here we identified 6 of the most important molecules that are involved in the immune response to biofilms. These immune molecules maintain the stability in the oral cavity by preventing bacteria from overwhelming the space and simultaneously minimizing the immune response in order not to cause tissue damage. Here we also discuss current research being done in order to maintain the balance in the oral cavity via inhibiting biofilm formation without eradicating oral bacteria in order to prevent the overgrowth of other organisms such as Candida albicans. One approach being used is inhibiting AI-2 intermediates which leads to lack of quorum sensing communication between bacteria through the use of intermediate analogues. Another approach that found success is the utilization of D forms of sugars where D-ribose and D-galactose have been proven to inhibit the LuxS system and subsequently preventing the process of quorum sensing leading to the reduction in biofilm formation.
Collapse
Affiliation(s)
- Abdurahman A. Niazy
- Address: Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia.
| |
Collapse
|
13
|
Miller DP, Scott DA. Inherently and Conditionally Essential Protein Catabolism Genes of Porphyromonas gingivalis. Trends Microbiol 2020; 29:54-64. [PMID: 33071035 DOI: 10.1016/j.tim.2020.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Proteases are critical virulence determinants of Porphyromonas gingivalis, an emerging Alzheimer's disease, cancer, and arthritis pathogen and established agent of periodontitis. Transposon sequencing has been employed to define the core essential genome of this bacterium and genes conditionally essential in multiple environments - abscess formation; epithelial colonization; and cigarette smoke toxin exposure; as well as to elucidate genes required for iron acquisition and a functional type 9 secretion system. Validated and predicted protein catabolism genes identified include a combination of established virulence factors and a larger set of seemingly more mundane proteolytic genes. The functions and relevance of genes that share essentiality in multiple disease-relevant conditions are examined. These common stress-related genes may represent particularly attractive therapeutic targets for the control of P. gingivalis infections.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
14
|
Host Starvation and Female Sex Influence Enterobacterial ClpB Production: A Possible Link to the Etiology of Eating Disorders. Microorganisms 2020; 8:microorganisms8040530. [PMID: 32272706 PMCID: PMC7232239 DOI: 10.3390/microorganisms8040530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Altered signaling between gut bacteria and their host has recently been implicated in the pathophysiology of eating disorders, whereas the enterobacterial caseinolytic protease B (ClpB) may play a key role as an antigen mimetic of α-melanocyte-stimulating hormone, an anorexigenic neuropeptide. Here, we studied whether ClpB production by gut bacteria can be modified by chronic food restriction and female sex, two major risk factors for the development of eating disorders. We found that food restriction increased ClpB DNA in feces and ClpB protein in plasma in both male and female rats, whereas females displayed elevated basal ClpB protein levels in the lower gut and plasma as well as increased ClpB-reactive immunoglobulins (Ig)M and IgG. In contrast, direct application of estradiol in E. coli cultures decreased ClpB concentrations in bacteria, while testosterone had no effect. Thus, these data support a mechanistic link between host-dependent risk factors of eating disorders and the enterobacterial ClpB protein production.
Collapse
|
15
|
Li T, Wang D, Ren L, Mei Y, Ding T, Li Q, Chen H, Li J. Involvement of Exogenous N-Acyl-Homoserine Lactones in Spoilage Potential of Pseudomonas fluorescens Isolated From Refrigerated Turbot. Front Microbiol 2019; 10:2716. [PMID: 31849873 PMCID: PMC6895499 DOI: 10.3389/fmicb.2019.02716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023] Open
Abstract
Some bacteria can modulate their spoilage potential by responding to environmental signaling molecules via the quorum sensing (QS) system. However, the ability of Pseudomonas fluorescens, the specific spoilage organism (SSO) of turbot, to response to environmental signaling molecules remains unclear. This study investigated the effects of six synthetic N-acyl homoserine lactones (AHLs) on typical behaviors mediated by QS in P. fluorescens, such as biofilm formation and extracellular protease activity. Total volatile basic nitrogen (TVB-N) was used as a spoilage indicator to evaluate quality changes in AHL-treated turbot filets during storage. The results confirm the enhancing effect of environmental AHLs on QS-dependent factors of P. fluorescens and quality deterioration of turbot filets, with C4-HSL and C14-HSL being the most effective. Moreover, the content decrease of exogenous AHLs was also validated by gas chromatography–mass spectrometry analysis. Further, changes in rhlR transcription levels in P. fluorescens suggest that this bacterium can sense environmental AHLs. Finally, molecular docking analysis demonstrates the potential interactions of RhlR protein with various exogenous AHLs. These findings strongly implicate environmental AHLs in turbot spoilage caused by P. fluorescens, suggesting preservation of turbot should not exclusively consider the elimination of SSO-secreted AHLs.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Yongchao Mei
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Ting Ding
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuying Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
16
|
Li T, Wang D, Ren L, Mei Y, Ding T, Li Q, Chen H, Li J. Involvement of Exogenous N-Acyl-Homoserine Lactones in Spoilage Potential of Pseudomonas fluorescens Isolated From Refrigerated Turbot. Front Microbiol 2019; 10:2716. [PMID: 31849873 DOI: 10.3389/fmicb.2019.0271610.3389/fmicb.2019.02716.s001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 05/28/2023] Open
Abstract
Some bacteria can modulate their spoilage potential by responding to environmental signaling molecules via the quorum sensing (QS) system. However, the ability of Pseudomonas fluorescens, the specific spoilage organism (SSO) of turbot, to response to environmental signaling molecules remains unclear. This study investigated the effects of six synthetic N-acyl homoserine lactones (AHLs) on typical behaviors mediated by QS in P. fluorescens, such as biofilm formation and extracellular protease activity. Total volatile basic nitrogen (TVB-N) was used as a spoilage indicator to evaluate quality changes in AHL-treated turbot filets during storage. The results confirm the enhancing effect of environmental AHLs on QS-dependent factors of P. fluorescens and quality deterioration of turbot filets, with C4-HSL and C14-HSL being the most effective. Moreover, the content decrease of exogenous AHLs was also validated by gas chromatography-mass spectrometry analysis. Further, changes in rhlR transcription levels in P. fluorescens suggest that this bacterium can sense environmental AHLs. Finally, molecular docking analysis demonstrates the potential interactions of RhlR protein with various exogenous AHLs. These findings strongly implicate environmental AHLs in turbot spoilage caused by P. fluorescens, suggesting preservation of turbot should not exclusively consider the elimination of SSO-secreted AHLs.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Yongchao Mei
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Ting Ding
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuying Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
17
|
Romero-Lastra P, Sánchez MC, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Gene expression of Porphyromonas gingivalis ATCC 33277 when growing in an in vitro multispecies biofilm. PLoS One 2019; 14:e0221234. [PMID: 31437202 PMCID: PMC6706054 DOI: 10.1371/journal.pone.0221234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Porphyromonas gingivalis, an oral microorganism residing in the subgingival biofilm, may exert diverse pathogenicity depending on the presence of specific virulence factors, but its gene expression has not been completely established. This investigation aims to compare the transcriptomic profile of this pathogen when growing within an in vitro multispecies biofilm or in a planktonic state. MATERIALS AND METHODS P. gingivalis ATCC 33277 was grown in anaerobiosis within multi-well culture plates at 37°C under two conditions: (a) planktonic samples (no hydroxyapatite discs) or (b) within a multispecies-biofilm containing Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans deposited on hydroxyapatite discs. Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) combined with Fluorescence In Situ Hybridization (FISH) were used to verify the formation of the biofilm and the presence of P. gingivalis. Total RNA was extracted from both the multispecies biofilm and planktonic samples, then purified and, with the use of a microarray, its differential gene expression was analyzed. A linear model was used for determining the differentially expressed genes using a filtering criterion of two-fold change (up or down) and a significance p-value of <0.05. Differential expression was confirmed by Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR). RESULTS SEM verified the development of the multispecies biofilm and FISH confirmed the incorporation of P. gingivalis. The microarray demonstrated that, when growing within the multispecies biofilm, 19.1% of P. gingivalis genes were significantly and differentially expressed (165 genes were up-regulated and 200 down-regulated), compared with planktonic growth. These genes were mainly involved in functions related to the oxidative stress, cell envelope, transposons and metabolism. The results of the microarray were confirmed by RT-qPCR. CONCLUSION Significant transcriptional changes occurred in P. gingivalis when growing in a multispecies biofilm compared to planktonic state.
Collapse
Affiliation(s)
- Patricia Romero-Lastra
- Laboratory of Dental Research, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - María C. Sánchez
- Laboratory of Dental Research, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Arancha Llama-Palacios
- Laboratory of Dental Research, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Elena Figuero
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
- * E-mail:
| | - David Herrera
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
18
|
Zhang B, Ku X, Zhang X, Zhang Y, Chen G, Chen F, Zeng W, Li J, Zhu L, He Q. The AI-2/ luxS Quorum Sensing System Affects the Growth Characteristics, Biofilm Formation, and Virulence of Haemophilus parasuis. Front Cell Infect Microbiol 2019; 9:62. [PMID: 30941317 PMCID: PMC6434701 DOI: 10.3389/fcimb.2019.00062] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Haemophilus parasuis (H. parasuis) is a kind of opportunistic pathogen of the upper respiratory tract of piglets. Under certain circumstances, virulent strains can breach the mucosal barrier and enter the bloodstream, causing severe Glässer's disease. Many virulence factors are found to be related to the pathogenicity of H. parasuis strain, but the pathogenic mechanism remains unclear. LuxS/AI-2, as a kind of very important quorum sensing system, affects the growth characteristics, biofilm formation, antibiotic production, virulence, and metabolism of different strains. In order to investigate the effect of luxS/AI-2 quorum sensing system on the virulence of H. parasuis, a deletion mutant strain (ΔluxS) and complemented strain (C-luxS) were constructed and characterized. The results showed that the luxS gene participated in regulating and controlling stress resistance, biofilm formation and virulence. Compared with wild-type strain, ΔluxS strain decreased the production of AI-2 molecules and the tolerance toward oxidative stress and heat shock, and it reduced the abilities of autoagglutination, hemagglutination, and adherence, whereas it increased the abilities to form biofilm in vitro. In vivo experiments showed that ΔluxS strain attenuated its virulence about 10-folds and significantly decreased its tissue burden of bacteria in mice, compared with the wild-type strain. Taken together, the luxS/AI-2 quorum sensing system in H. parasuis not only plays an important role in growth and biofilm formation, but also affects the pathogenicity of H. parasuis.
Collapse
Affiliation(s)
- Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xugang Ku
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqian Zhang
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- College of Animal Sciences and Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Guo Chen
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhu
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Sánchez MC, Romero-Lastra P, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Comparative gene expression analysis of planktonic Porphyromonas gingivalis ATCC 33277 in the presence of a growing biofilm versus planktonic cells. BMC Microbiol 2019; 19:58. [PMID: 30866810 PMCID: PMC6417203 DOI: 10.1186/s12866-019-1423-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/19/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis, a microorganism residing in the oral cavity within complex multispecies biofilms, is one of the keystone pathogens in the onset and progression of periodontitis. In this in vitro study, using DNA microarray, we investigate the differential gene expression of Porphyromonas gingivalis ATCC 33277 when growing in the presence or in absence of its own monospecies biofilm. RESULTS Approximately 1.5% of genes (28 out of 1909 genes, at 1.5 fold change or more, p-value < 0.05) were differentially expressed by P. gingivalis cells when in the presence of a biofilm. These genes were predominantly related to the metabolism of iron, bacterial adhesion, invasion, virulence and quorum-sensing system. The results from microarrays were consistent with those obtained by RT-qPCR. CONCLUSION This study provides insight on the transcriptional changes of planktonic P. gingivalis cells when growing in the presence of a biofilm. The resulting phenotypes provide information on changes occurring in the gene expression of this pathogen.
Collapse
Affiliation(s)
- María C. Sánchez
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | | | - Honorato Ribeiro-Vidal
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Arancha Llama-Palacios
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Elena Figuero
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - David Herrera
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
- Department of Dental Clinical Specialities (DDCS), Faculty of Odontology, Plaza Ramón y Cajal s/n Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
20
|
He L, Wang H, Zhang R, Li H. The regulation of Porphyromonas gingivalis biofilm formation by ClpP. Biochem Biophys Res Commun 2018; 509:335-340. [PMID: 30579592 DOI: 10.1016/j.bbrc.2018.12.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Porphyromonas gingivalis is one of the most commonly detected pathogens in periodontal disease and root canal infections. Its viability and pathogenicity are greatly increased in plaque biofilms. Some caseinolytic proteases (Clp) reportedly regulate biofilm formation by various pathogenic bacteria, including P. gingivalis. However, the specific influence of ClpP and its mechanism of regulating biofilm formation by P. gingivalis remains unclear. Hence, in this study, a clpP deletion strain and complemented strain were constructed by homologous recombination, and an in vitro biofilm model was established. Biofilm architecture was observed by scanning electron microscopy. Bacterial cells within the biofilms were examined using confocal scanning laser microscopy. Crystal violet staining was used to determine the amount of formed biofilm. mRNA levels of related regulatory genes were assessed using real-time PCR. The clpP deletion and complemented strains of P. gingivalis were successfully constructed. The biofilm formation ability of the deletion strain was significantly reduced compared with that of the wild-type strain, while that of the complemented strain did not differ from that of the wild-type strain. The expression of fimA, mfa1, and luxS in the deletion strain was lower than in the wild-type and complemented strains at each timepoint. It can be concluded that ClpP increases the biofilm formation of P. gingivalis by regulating the expression levels of fimA, mfa1, and luxS.
Collapse
Affiliation(s)
- Lu He
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Hongyuan Wang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ru Zhang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Hong Li
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
21
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
22
|
Ben Amara H, Song HY, Ryu E, Park JS, Schwarz F, Kim BM, Choi BK, Koo KT. Effects of quorum-sensing inhibition on experimental periodontitis induced by mixed infection in mice. Eur J Oral Sci 2018; 126:449-457. [PMID: 30230039 DOI: 10.1111/eos.12570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
This study aimed to verify, in in vivo settings, whether quorum-sensing inhibition molecules could attenuate alveolar bone loss induced by Porphyromonas gingivalis/Fusobacterium nucleatum co-infection and reduce the bacterial colonization of periodontal tissues. In BALB/c mice, periodontitis was induced through oral inoculation with P. gingivalis and F. nucleatum six times during a 42-d period. Quorum sensing inhibitors (a furanone compound and D-ribose) were administered simultaneously with bacterial infection. Linear and volumetric modifications of interproximal alveolar bone levels were compared between groups using micro-computed tomography. Total bacteria, and P. gingivalis and F. nucleatum DNA in periodontal tissues, were quantified using real-time PCR. Radiographic linear measurements demonstrated a significant reduction of alveolar bone loss, of approximately 40%, in mice treated with quorum sensing inhibitors when compared with the co-infection group. This was confirmed by a significant increase of residual bone volume in the test group. While total bacterial genes in the treatment group significantly decreased by 93% in periodontal tissue samples when quorum sensing inhibitors were administered, no significant differences of P. gingivalis DNA were found. Quorum sensing inhibitors reduced periodontal breakdown and bacterial infection in periodontal tissues after co-infection with P. gingivalis and F. nucleatum.
Collapse
Affiliation(s)
- Heithem Ben Amara
- Department of Periodontology and Dental Research Institute, Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, Seoul, Korea
| | - Hyun Y Song
- Department of Periodontology and Dental Research Institute, Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, Seoul, Korea
| | - Eunju Ryu
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ji S Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Frank Schwarz
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Byeong M Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Geskovski N, Sazdovska SD, Gjosheva S, Petkovska R, Popovska M, Anastasova L, Mladenovska K, Goracinova K. Rational development of nanomedicines for molecular targeting in periodontal disease. Arch Oral Biol 2018; 93:31-46. [DOI: 10.1016/j.archoralbio.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023]
|
24
|
Heinrich AK, Hirschmann M, Neubacher N, Bode HB. LuxS-dependent AI-2 production is not involved in global regulation of natural product biosynthesis in Photorhabdus and Xenorhabdus. PeerJ 2017; 5:e3471. [PMID: 28663937 PMCID: PMC5488855 DOI: 10.7717/peerj.3471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
The Gram-negative bacteria Photorhabdus and Xenorhabdus are known to produce a variety of different natural products (NP). These compounds play different roles since the bacteria live in symbiosis with nematodes and are pathogenic to insect larvae in the soil. Thus, a fine tuned regulatory system controlling NP biosynthesis is indispensable. Global regulators such as Hfq, Lrp, LeuO and HexA have been shown to influence NP production of Photorhabdus and Xenorhabdus. Additionally, photopyrones as quorum sensing (QS) signals were demonstrated to be involved in the regulation of NP production in Photorhabdus. In this study, we investigated the role of another possible QS signal, autoinducer-2 (AI-2), in regulation of NP production. The AI-2 synthase (LuxS) is widely distributed within the bacterial kingdom and has a dual role as a part of the activated methyl cycle pathway, as well as being responsible for AI-2 precursor production. We deleted luxS in three different entomopathogenic bacteria and compared NP levels in the mutant strains to the wild type (WT) but observed no difference to the WT strains. Furthermore, the absence of the small regulatory RNA micA, which is encoded directly upstream of luxS, did not influence NP levels. Phenotypic differences between the P. luminescens luxS deletion mutant and an earlier described luxS deficient strain of P. luminescens suggested that two phenotypically different strains have evolved in different laboratories.
Collapse
Affiliation(s)
- Antje K. Heinrich
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Merle Hirschmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Nick Neubacher
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B. Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Romero-Lastra P, Sánchez MC, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states. PLoS One 2017; 12:e0174669. [PMID: 28369099 PMCID: PMC5378342 DOI: 10.1371/journal.pone.0174669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
Background and objective Porphyromonas gingivalis is a keystone pathogen in the onset and progression of periodontitis. Its pathogenicity has been related to its presence and survival within the subgingival biofilm. The aim of the present study was to compare the genome-wide transcription activities of P. gingivalis in biofilm and in planktonic growth, using microarray technology. Material and methods P. gingivalis ATCC 33277 was incubated in multi-well culture plates at 37°C for 96 hours under anaerobic conditions using an in vitro static model to develop both the planktonic and biofilm states (the latter over sterile ceramic calcium hydroxyapatite discs). The biofilm development was monitored by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). After incubation, the bacterial cells were harvested and total RNA was extracted and purified. Three biological replicates for each cell state were independently hybridized for transcriptomic comparisons. A linear model was used for determining differentially expressed genes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm differential expression. The filtering criteria of ≥ ±2 change in gene expression and significance p-values of <0.05 were selected. Results A total of 92 out of 1,909 genes (4.8%) were differentially expressed by P. gingivalis growing in biofilm compared to planktonic. The 54 up-regulated genes in biofilm growth were mainly related to cell envelope, transport, and binding or outer membranes proteins. Thirty-eight showed decreased expression, mainly genes related to transposases or oxidative stress. Conclusion The adaptive response of P. gingivalis in biofilm growth demonstrated a differential gene expression.
Collapse
Affiliation(s)
- P. Romero-Lastra
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - MC. Sánchez
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - H. Ribeiro-Vidal
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - A. Llama-Palacios
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - E. Figuero
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - D. Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - M. Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
26
|
Abstract
The term 'quorum sensing' describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Gram-positive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species) but also between species (inter-species), for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.
Collapse
Affiliation(s)
- Darije Plančak
- Department of Periodontology, School of Dental Medicine, Zagreb, Croatia
| | - Larisa Musić
- Dental practice, Community Healthcare Center Čakovec, Čakovec, Croatia
| | - Ivan Puhar
- Department of Periodontology, School of Dental Medicine, Zagreb, Croatia
| |
Collapse
|
27
|
He Z, Huang Z, Zhou W, Tang Z, Ma R, Liang J. Anti-biofilm Activities from Resveratrol against Fusobacterium nucleatum. Front Microbiol 2016; 7:1065. [PMID: 27458454 PMCID: PMC4932316 DOI: 10.3389/fmicb.2016.01065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022] Open
Abstract
Fusobacterium nucleatum is a Gram-negative, anaerobic bacterium that plays an important role in dental plaque biofilm formation. In this study, we evaluate the effect of resveratrol, a phytoalexin compound, on F. nucleatum biofilm formation. The effects of different concentrations of resveratrol on biofilms formed on 96-well microtiter plates at different time points were determined by the MTT assay. The structures and thicknesses of the biofilm were observed by confocal laser scanning microscopy (CLSM), and gene expression was investigated by real-time PCR. The results showed that resveratrol at sub-MIC levels can significantly decrease biofilm formation, whereas it does not affect the bacterial growth rate. It was observed by CLSM images that the biofilm was visually decreased with increasing concentrations of resveratrol. Gene expression was down regulated in the biofilm in the presence of resveratrol. Our results revealed that resveratrol can effectively inhibit biofilm formation.
Collapse
Affiliation(s)
- Zhiyan He
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Wei Zhou
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Rui Ma
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| | - Jingping Liang
- Department of Endodontics, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai, China
| |
Collapse
|
28
|
Ng HM, Kin LX, Dashper SG, Slakeski N, Butler CA, Reynolds EC. Bacterial interactions in pathogenic subgingival plaque. Microb Pathog 2016; 94:60-9. [DOI: 10.1016/j.micpath.2015.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
29
|
Patel M, Antala B, Shrivastava N. In silico screening of alleged miRNAs associated with cell competition: an emerging cellular event in cancer. ACTA ACUST UNITED AC 2015; 20:798-815. [DOI: 10.1515/cmble-2015-0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/20/2015] [Indexed: 01/13/2023]
Abstract
AbstractCell competition is identified as a crucial phenomenon for cancer and organ development. There is a possibility that microRNAs (miRNAs) may play an important role in the regulation of expression of genes involved in cell competition. In silico screening of miRNAs is an effort to abridge, economize and expedite the experimental approaches to identification of potential miRNAs involved in cell competition, as no study has reported involvement of miRNAs in cell competition to date. In this study, we used multiple screening steps as follows: (i) selection of cell competition related genes of Drosophila through a literature survey; (ii) homology study of selected cell competition related genes; (iii) identification of miRNAs that target conserved cell competitionrelated genes through prediction tools; (iv) sequence conservation analysis of identified miRNAs with human genome; (v) identification of conserved cell competition miRNAs using their expression profiles and exploration of roles of their homologous human miRNAs. This study led to the identification of nine potential cell competition miRNAs in the Drosophila genome. Importantly, eighteen human homologs of these nine potential Drosophila miRNAs are well reported for their involvement in different types of cancers. This confirms their probable involvement in cell competition as well, because cell competition is well justified for its involvement in cancer initiation and maintenance.
Collapse
|
30
|
Scheres N, Lamont RJ, Crielaard W, Krom BP. LuxS signaling in Porphyromonas gingivalis-host interactions. Anaerobe 2014; 35:3-9. [PMID: 25434960 DOI: 10.1016/j.anaerobe.2014.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/27/2022]
Abstract
Dental plaque is a multispecies biofilm in the oral cavity that significantly influences oral health. The presence of the oral anaerobic pathogen Porphyromonas gingivalis is an important determinant in the development of periodontitis. Direct and indirect interactions between P. gingivalis and the host play a major role in disease development. Transcriptome analysis recently revealed that P. gingivalis gene-expression is regulated by LuxS in both an AI-2-dependent and an AI-2 independent manner. However, little is known about the role of LuxS-signaling in P. gingivalis-host interactions. Here, we investigated the effect of a luxS mutation on the ability of P. gingivalis to induce an inflammatory response in human oral cells in vitro. Primary periodontal ligament (PDL) fibroblasts were challenged with P. gingivalis ΔluxS or the wild-type parental strain and gene-expression of pro-inflammatory mediators IL-1β, IL-6 and MCP-1 was determined by real-time PCR. The ability of P. gingivalis ΔluxS to induce an inflammatory response was severely impaired in PDL-fibroblasts. This phenotype could be restored by providing of LuxS in trans, but not by addition of the AI-2 precursor DPD. A similar phenomenon was observed in a previous transcriptome study showing that expression of PGN_0482 was reduced in the luxS mutant independently of AI-2. We therefore also analyzed the effect of a mutation in PGN_0482, which encodes an immuno-reactive, putative outer-membrane protein. Similar to P. gingivalis ΔluxS, the P. gingivalis Δ0482 mutant had an impaired ability to induce an inflammatory response in PDL fibroblasts. LuxS thus appears to influence the pro-inflammatory responses of host cells to P. gingivalis, likely through regulation of PGN_0482.
Collapse
Affiliation(s)
- Nina Scheres
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU Free University and the University of Amsterdam, Gustav Mahlerlaan 3004, 1081 BT Amsterdam, The Netherlands.
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, United States
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU Free University and the University of Amsterdam, Gustav Mahlerlaan 3004, 1081 BT Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU Free University and the University of Amsterdam, Gustav Mahlerlaan 3004, 1081 BT Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Guo L, He X, Shi W. Intercellular communications in multispecies oral microbial communities. Front Microbiol 2014; 5:328. [PMID: 25071741 PMCID: PMC4076886 DOI: 10.3389/fmicb.2014.00328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/14/2014] [Indexed: 01/22/2023] Open
Abstract
The oral cavity contains more than 700 microbial species that are engaged in extensive cell–cell interactions. These interactions contribute to the formation of highly structured multispecies communities, allow them to perform physiological functions, and induce synergistic pathogenesis. Co-adhesion between oral microbial species influences their colonization of oral cavity and effectuates, to a large extent, the temporal and spatial formation of highly organized polymicrobial community architecture. Individual species also compete and collaborate with other neighboring species through metabolic interactions, which not only modify the local microenvironment such as pH and the amount of oxygen, making it more suitable for the growth of other species, but also provide a metabolic framework for the participating microorganisms by maximizing their potential to extract energy from limited substrates. Direct physical contact of bacterial species with its neighboring co-habitants within microbial community could initiate signaling cascade and achieve modulation of gene expression in accordance with different species it is in contact with. In addition to communication through cell–cell contact, quorum sensing (QS) mediated by small signaling molecules such as competence-stimulating peptides (CSPs) and autoinducer-2 (AI-2), plays essential roles in bacterial physiology and ecology. This review will summarize the evidence that oral microbes participate in intercellular communications with co-inhabitants through cell contact-dependent physical interactions, metabolic interdependencies, as well as coordinative signaling systems to establish and maintain balanced microbial communities.
Collapse
Affiliation(s)
- Lihong Guo
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Xuesong He
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Wenyuan Shi
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| |
Collapse
|
32
|
Chen JC, Johnson BA, Erikson DW, Piltonen TT, Barragan F, Chu S, Kohgadai N, Irwin JC, Greene WC, Giudice LC, Roan NR. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts. Hum Reprod 2014; 29:1255-70. [PMID: 24626806 PMCID: PMC4017943 DOI: 10.1093/humrep/deu047] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/30/2014] [Accepted: 02/12/2014] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? SUMMARY ANSWER Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. WHAT IS KNOWN ALREADY Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. STUDY DESIGN, SIZE, DURATION This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. PARTICIPANTS/MATERIALS, SETTING, METHODS eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. MAIN RESULTS AND THE ROLE OF CHANCE Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and pro-chemotactic cytokines, as well as pro-angiogenic and proliferative growth factors (P < 0.05) in both eEC and eSF. Finally, functional assays revealed that conditioned media from SP-treated eEC and eSF significantly increased (P < 0.05) chemotaxis of CD14+ monocytes and CD4+ T cells. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro analyses of the effects of SP on endometrial cells. In addition, the measured response to SP was conducted in the absence of the ovarian hormones estradiol and progesterone, as well as epithelial-stromal paracrine signaling. While this study focused on establishing the baseline cellular response of endometrial cells to SP, future work should assess how hormone signaling in the presence of appropriate paracrine interactions affects SP-induced genes in these cells. WIDER IMPLICATIONS OF THE FINDINGS The results of this study support previous findings that SP and semen contain bioactive factors capable of eliciting chemotactic responses in the uterus, which can lead to recruitment of leukocytes to the endometrium. Future directions will explore if similar changes in gene expression do indeed occur after coitus in vivo, and how the signaling cascades initiated by SP in the endometrium can affect reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11-1-0562 (W.C.G.); NIH 5K12-DK083021-04, NIH 1K99AI104262-01A1, The UCSF Hellman Award (N.R.R.). The authors have nothing to disclose.
Collapse
Affiliation(s)
- Joseph C. Chen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Brittni A. Johnson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - David W. Erikson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Terhi T. Piltonen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
- Department of Obstetrics and Gynecology and Center of Clinical Research, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Fatima Barragan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Simon Chu
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Nargis Kohgadai
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Juan C. Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
- Department of Medicine, and Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Linda C. Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Nadia R. Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Henry LG, Boutrin MC, Aruni W, Robles A, Ximinies A, Fletcher HM. Life in a Diverse Oral Community - Strategies for Oxidative Stress Survival. J Oral Biosci 2014; 56:63-71. [PMID: 26744578 DOI: 10.1016/j.job.2014.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND While the oral cavity harbors more than 680 bacterial species, the interaction and association of selected bacterial species play a role in periodontal diseases. Bacterial species including Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, a consortium previously designated as the "red complex" is now being expanded to include other new emerging pathogens that are significantly associated with periodontal disease. HIGHLIGHT In addition to novel mechanisms for oxidative resistance of individual species, community dynamics may lead to an overall strategy for survival in the inflammatory environment of the periodontal pocket. Complex systems controlled by response regulators protect against oxidative and nitrosative stress. CONCLUSION The combination of these multifaceted strategies would provide a comprehensive defense and support system against the repetitive host immune response to promote microbial persistence and disease.
Collapse
Affiliation(s)
- Leroy G Henry
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Marie-Claire Boutrin
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Antonette Robles
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Alexia Ximinies
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Hansel M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| |
Collapse
|
34
|
Abstract
Acute apical abscess is the most common form of dental abscess and is caused by infection of the root canal of the tooth. It is usually localized intraorally, but in some cases the apical abscess may spread and result in severe complications or even mortality. The reasons why dental root canal infections can become symptomatic and evolve to severe spreading and sometimes life-threatening abscesses remain elusive. Studies using culture and advanced molecular microbiology methods for microbial identification in apical abscesses have demonstrated a multispecies community conspicuously dominated by anaerobic bacteria. Species/phylotypes commonly found in these infections belong to the genera Fusobacterium, Parvimonas, Prevotella, Porphyromonas, Dialister, Streptococcus, and Treponema. Advances in DNA sequencing technologies and computational biology have substantially enhanced the knowledge of the microbiota associated with acute apical abscesses and shed some light on the etiopathogeny of this disease. Species richness and abundance and the resulting network of interactions among community members may affect the collective pathogenicity and contribute to the development of acute infections. Disease modifiers, including transient or permanent host-related factors, may also influence the development and severity of acute abscesses. This review focuses on the current evidence about the etiology and treatment of acute apical abscesses and how the process is influenced by host-related factors and proposes future directions in research, diagnosis, and therapeutic approaches to deal with this disease.
Collapse
|
35
|
Paino A, Ahlstrand T, Nuutila J, Navickaite I, Lahti M, Tuominen H, Välimaa H, Lamminmäki U, Pöllänen MT, Ihalin R. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans. PLoS One 2013; 8:e70509. [PMID: 23936223 PMCID: PMC3729834 DOI: 10.1371/journal.pone.0070509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022] Open
Abstract
Aggregatibacteractinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL)-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI), was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control protein for IL-1β also interacted with BilRI. Our findings suggest that A. actinomycetemcomitans expresses an IL-1β-binding surface-exposed lipoprotein that may be part of the bacterial IL-1β-sensing system.
Collapse
Affiliation(s)
- Annamari Paino
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Tuuli Ahlstrand
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Jari Nuutila
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Indre Navickaite
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Maria Lahti
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heidi Tuominen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Hannamari Välimaa
- Haartman Institute, Department of Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Laboratory (HUSLAB), Helsinki University Hospital, Helsinki, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | - Riikka Ihalin
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
36
|
Chen JC, Erikson DW, Piltonen TT, Meyer MR, Barragan F, McIntire RH, Tamaresis JS, Vo KC, Giudice LC, Irwin JC. Coculturing human endometrial epithelial cells and stromal fibroblasts alters cell-specific gene expression and cytokine production. Fertil Steril 2013; 100:1132-43. [PMID: 23849844 DOI: 10.1016/j.fertnstert.2013.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine the effects of coculturing endometrial epithelial cells (eEC) with paired endometrial stromal fibroblasts (eSF) on cell-specific gene expression and cytokine secretion patterns. DESIGN In vitro study. SETTING University research laboratory. PATIENT(S) Endometrial biopsies were obtained from premenopausal women. INTERVENTION(S) Polarized eEC and subject-paired eSF were cultured for 12.5 hours alone (monoculture) or combined in a two-chamber coculture system without cell-cell contact. Cells and conditioned media were analyzed for global gene expression and cytokine secretion, respectively. Purified, endometrial tissue-derived eEC and eSF isolated by fluorescent activated cell sorting (FACS) were used as noncultured controls. MAIN OUTCOME MEASURE(S) Cell-specific global gene expression profiling and analysis of secreted cytokines in eEC/eSF cocultures and respective monocultures. RESULT(S) Transepithelial resistance, diffusible tracer exclusion, expression of tight junction proteins, and apical/basolateral vectorial secretion confirmed eEC structural and functional polarization. Distinct transcriptomes of eEC and eSF were consistent with their respective lineages and their endometrial origin. Coculture of eEC with eSF resulted in altered cell-specific gene expression and cytokine secretion. CONCLUSION(S) This coculture model provides evidence that interactions between endometrial functionally polarized epithelium and stromal fibroblasts affect cell-specific gene expression and cytokine secretion underscoring their relevance when modeling endometrium in vitro.
Collapse
Affiliation(s)
- Joseph C Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, Center for Reproductive Sciences, San Francisco, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Arunasri K, Adil M, Venu Charan K, Suvro C, Himabindu Reddy S, Shivaji S. Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS One 2013; 8:e57860. [PMID: 23472115 PMCID: PMC3589462 DOI: 10.1371/journal.pone.0057860] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/26/2013] [Indexed: 12/23/2022] Open
Abstract
This study demonstrates the effects of simulated microgravity on E. coli K 12 MG1655 grown on LB medium supplemented with glycerol. Global gene expression analysis indicated that the expressions of hundred genes were significantly altered in simulated microgravity conditions compared to that of normal gravity conditions. Under these conditions genes coding for adaptation to stress are up regulated (sufE and ssrA) and simultaneously genes coding for membrane transporters (ompC, exbB, actP, mgtA, cysW and nikB) and carbohydrate catabolic processes (ldcC, ptsA, rhaD and rhaS) are down regulated. The enhanced growth in simulated gravity conditions may be because of the adequate supply of energy/reducing equivalents and up regulation of genes involved in DNA replication (srmB) and repression of the genes encoding for nucleoside metabolism (dfp, pyrD and spoT). In addition, E. coli cultured in LB medium supplemented with glycerol (so as to protect the cells from freezing temperatures) do not exhibit multiple stress responses that are normally observed when cells are exposed to microgravity in LB medium without glycerol.
Collapse
Affiliation(s)
| | - Mohammed Adil
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | | | |
Collapse
|
38
|
Hirano T, Beck DAC, Demuth DR, Hackett M, Lamont RJ. Deep sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant. Front Cell Infect Microbiol 2012; 2:79. [PMID: 22919670 PMCID: PMC3422912 DOI: 10.3389/fcimb.2012.00079] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/21/2012] [Indexed: 01/10/2023] Open
Abstract
Porphyromonas gingivalis is a major etiological agent in chronic and aggressive forms of periodontal disease. The organism is an asaccharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput sequencing technologies provide the opportunity to relate functional genomics to basic biology. In this study we report qualitative and quantitative RNA-Seq analysis of the transcriptome of P. gingivalis. We have also applied RNA-Seq to the transcriptome of a ΔluxS mutant of P. gingivalis deficient in AI-2-mediated bacterial communication. The transcriptome analysis confirmed the expression of all predicted ORFs for strain ATCC 33277, including 854 hypothetical proteins, and allowed the identification of hitherto unknown transcriptional units. Twelve non-coding RNAs were identified, including 11 small RNAs and one cobalamin riboswitch. Fifty-seven genes were differentially regulated in the LuxS mutant. Addition of exogenous synthetic 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor) to the ΔluxS mutant culture complemented expression of a subset of genes, indicating that LuxS is involved in both AI-2 signaling and non-signaling dependent systems in P. gingivalis. This work provides an important dataset for future study of P. gingivalis pathophysiology and further defines the LuxS regulon in this oral pathogen.
Collapse
Affiliation(s)
- Takanori Hirano
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville Louisville, KY, USA
| | | | | | | | | |
Collapse
|
39
|
Bravo-Ambrosio A, Mastick G, Kaprielian Z. Motor axon exit from the mammalian spinal cord is controlled by the homeodomain protein Nkx2.9 via Robo-Slit signaling. Development 2012; 139:1435-46. [PMID: 22399681 PMCID: PMC3308178 DOI: 10.1242/dev.072256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2012] [Indexed: 01/11/2023]
Abstract
Mammalian motor circuits control voluntary movements by transmitting signals from the central nervous system (CNS) to muscle targets. To form these circuits, motor neurons (MNs) must extend their axons out of the CNS. Although exit from the CNS is an indispensable phase of motor axon pathfinding, the underlying molecular mechanisms remain obscure. Here, we present the first identification of a genetic pathway that regulates motor axon exit from the vertebrate spinal cord, utilizing spinal accessory motor neurons (SACMNs) as a model system. SACMNs are a homogeneous population of spinal MNs with axons that leave the CNS through a discrete lateral exit point (LEP) and can be visualized by the expression of the cell surface protein BEN. We show that the homeodomain transcription factor Nkx2.9 is selectively required for SACMN axon exit and identify the Robo2 guidance receptor as a likely downstream effector of Nkx2.9; loss of Nkx2.9 leads to a reduction in Robo2 mRNA and protein within SACMNs and SACMN axons fail to exit the spinal cord in Robo2-deficient mice. Consistent with short-range interactions between Robo2 and Slit ligands regulating SACMN axon exit, Robo2-expressing SACMN axons normally navigate through LEP-associated Slits as they emerge from the spinal cord, and fail to exit in Slit-deficient mice. Our studies support the view that Nkx2.9 controls SACMN axon exit from the mammalian spinal cord by regulating Robo-Slit signaling.
Collapse
Affiliation(s)
- Arlene Bravo-Ambrosio
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Grant Mastick
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Zaven Kaprielian
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
40
|
Gao L, Xu Y, Meng S, Wu Y, Huang H, Su R, Zhao L. Identification of the putative specific pathogenic genes of Porphyromonas gingivalis with type II fimbriae. DNA Cell Biol 2012; 31:1027-37. [PMID: 22257441 DOI: 10.1089/dna.2011.1487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Porphyromonas gingivalis, the key etiologic agent of periodontitis, can be classified into six types (I to V and Ib) based on the fimA genes that encode FimA (a subunit of fimbriae). Accumulated evidence indicates that P. gingivalis expressing Type II fimbriae (Pg-II) is the most frequent isolate from severe periodontitis cases and is more virulent than other types of P. gingivalis. However, during the Pg-II infection process, which specific virulence factors play the key role is still unclear. In this study, we examined the capabilities of three Pg-II strains to invade and modulate the inflammatory cytokine expression of human gingival epithelial cells (GECs) compared to two Pg-I strains. P. gingivalis oligo microarrays were used to compare gene expression profiles of Pg-II strains that invade GECs with Pg-I strains. The differential gene expression of Pg-II was confirmed by quantitative reverse transcription-polymerase chain reaction. Our results showed that all of the Pg-II strains could induce interleukin (IL)-1β and IL-6 secretion significantly when compared to Pg-I strains. Thirty-seven genes that were specifically expressed during the pathogenic process of Pg-II were identified by a microarray assay. These findings provide a new insight at the molecular level to explain the specific pathogenic mechanism of Pg-II strains.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Chengdu, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Nitric oxide stress resistance in Porphyromonas gingivalis is mediated by a putative hydroxylamine reductase. J Bacteriol 2012; 194:1582-92. [PMID: 22247513 DOI: 10.1128/jb.06457-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porphyromonas gingivalis, the causative agent of adult periodontitis, must maintain nitric oxide (NO) homeostasis and surmount nitric oxide stress from host immune responses or other oral bacteria to survive in the periodontal pocket. To determine the involvement of a putative hydroxylamine reductase (PG0893) and a putative nitrite reductase-related protein (PG2213) in P. gingivalis W83 NO stress resistance, genes encoding those proteins were inactivated by allelic exchange mutagenesis. The isogenic mutants P. gingivalis FLL455 (PG0893ermF) and FLL456 (PG2213ermF) were black pigmented and showed growth rates and gingipain and hemolytic activities similar to those of the wild-type strain. P. gingivalis FLL455 was more sensitive to NO than the wild type. Complementation of P. gingivalis FLL455 with the wild-type gene restored the level of NO sensitivity to a level similar to that of the parent strain. P. gingivalis FLL455 and FLL456 showed sensitivity to oxidative stress similar to that of the wild-type strain. DNA microarray analysis showed that PG0893 and PG2213 were upregulated 1.4- and 2-fold, respectively, in cells exposed to NO. In addition, 178 genes were upregulated and 201 genes downregulated more than 2-fold. The majority of these modulated genes were hypothetical or of unknown function. PG1181, predicted to encode a transcriptional regulator, was upregulated 76-fold. Transcriptome in silico analysis of the microarray data showed major metabolomic variations in key pathways. Collectively, these findings indicate that PG0893 and several other genes may play an important role in P. gingivalis NO stress resistance.
Collapse
|
42
|
Cao M, Feng Y, Wang C, Zheng F, Li M, Liao H, Mao Y, Pan X, Wang J, Hu D, Hu F, Tang J. Functional definition of LuxS, an autoinducer-2 (AI-2) synthase and its role in full virulence of Streptococcus suis serotype 2. J Microbiol 2011; 49:1000-11. [PMID: 22203565 DOI: 10.1007/s12275-011-1523-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022]
Abstract
Quorum sensing is a widespread chemical communication in response to fluctuation of bacterial population density, and has been implicated into bacterial biofilm formation and regulation of expression of virulence factors. The luxS gene product, S-ribosylhomocysteinase, catalizes the last committed step in biosynthetic pathway of autoinducer 2 (AI-2), a signaling molecule for inter-species quorum sensing. We found a luxS homologue in 05ZYH33, an epidemic strain of Streptococcus suis serotype 2 (SS2) in China. A luxS null mutant (ΔluxS) of 05ZYH33 strain was obtained using an approach of homologous recombination. LuxS was determined to be required for AI-2 production in 05ZYH33 strain of S. suis 2. Inactivation of luxS gene led to a wide range of phenotypic changes including thinner capsular walls, increased tolerance to H(2)O(2), reduced adherence capacity to epithelial cells, etc. In particular, loss of LuxS impaired dramatically its full virulence of SS2 in experimental model of piglets, and functional complementation restored it nearly to the level of parent strain. Genome-wide transcriptome analyses suggested that some known virulence factors such as CPS are down-regulated in the ΔluxS mutant, which might in part explain virulence attenuation by luxS deletion. Similarly, 29 of 71 genes with different expression level were proposed to be targets candidate regulated by LuxS/AI-2-dependent quorum sensing.
Collapse
Affiliation(s)
- Min Cao
- Department of Microbiology, Third Military Medical University, Chongqing, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dolgilevich S, Rafferty B, Luchinskaya D, Kozarov E. Genomic comparison of invasive and rare non-invasive strains reveals Porphyromonas gingivalis genetic polymorphisms. J Oral Microbiol 2011; 3. [PMID: 21541093 PMCID: PMC3086587 DOI: 10.3402/jom.v3i0.5764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/20/2011] [Accepted: 02/03/2011] [Indexed: 11/14/2022] Open
Abstract
Background Porphyromonas gingivalis strains are shown to invade human cells in vitro with different invasion efficiencies, varying by up to three orders of magnitude. Objective We tested the hypothesis that invasion-associated interstrain genomic polymorphisms are present in P. gingivalis and that putative invasion-associated genes can contribute to P. gingivalis invasion. Design Using an invasive (W83) and the only available non-invasive P. gingivalis strain (AJW4) and whole genome microarrays followed by two separate software tools, we carried out comparative genomic hybridization (CGH) analysis. Results We identified 68 annotated and 51 hypothetical open reading frames (ORFs) that are polymorphic between these strains. Among these are surface proteins, lipoproteins, capsular polysaccharide biosynthesis enzymes, regulatory and immunoreactive proteins, integrases, and transposases often with abnormal GC content and clustered on the chromosome. Amplification of selected ORFs was used to validate the approach and the selection. Eleven clinical strains were investigated for the presence of selected ORFs. The putative invasion-associated ORFs were present in 10 of the isolates. The invasion ability of three isogenic mutants, carrying deletions in PG0185, PG0186, and PG0982 was tested. The PG0185 (ragA) and PG0186 (ragB) mutants had 5.1×103-fold and 3.6×103-fold decreased in vitro invasion ability, respectively. Conclusion The annotation of divergent ORFs suggests deficiency in multiple genes as a basis for P. gingivalis non-invasive phenotype.
Collapse
Affiliation(s)
- Svetlana Dolgilevich
- Section Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York
| | | | | | | |
Collapse
|
44
|
Saito T, Inagaki S, Sakurai K, Okuda K, Ishihara K. Exposure of P. gingivalis to noradrenaline reduces bacterial growth and elevates ArgX protease activity. Arch Oral Biol 2011; 56:244-50. [DOI: 10.1016/j.archoralbio.2010.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 10/18/2022]
|
45
|
Bevacizumab therapy normalizes the pathological intraocular environment beyond neutralizing VEGF. Mol Vis 2010; 16:2175-84. [PMID: 21139682 PMCID: PMC2994336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/18/2010] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Vascular endothelial growth factor (VEGF) plays a key role in neovascularization by stimulating the proliferation and migration of vascular endothelial cells. The anti-VEGF therapy bevacizumab acts by binding to VEGF and preventing its effects. However, this linear interaction represents only a partial view of the pathobiology of neovascular diseases and the anti-VEGF treatment. To obtain an integrated view of the processes involved in VEGF-related ocular pathologies, we applied a systems approach and investigated whether intravitreal bevacizumab injections have a global effect in normalizing the ocular physiology perturbed by the disease. METHODS We analyzed 90 analytes representing various pathophysiological processes in aqueous humor. The samples were obtained from eight patients receiving intravitreal bevacizumab injections for various ocular VEGF-related conditions. The samples were obtained before and after the injection and were analyzed using microbead technology developed by Luminex xMAP. RESULTS Forty-three analytes were detected above the sensitivity of the assay both in pre- and post-injection samples. Of these, normal values of 41 analytes were known and these analytes were further analyzed. The detected analytes included relevant markers such as VEGF, C reactive protein, glutathione, and cytokines. We identified 24 markers that were perturbed more than 1.5 fold in diseased samples (pre-injection) compared to normal levels. The levels of perturbed analytes were compared in post-treatment samples. The results demonstrated an unequivocal trend toward normalization in post-treatment samples. CONCLUSIONS Our results show intraocular bevacizumab injections change the perturbed physiologic environment of the eye toward normalization. Its effects reached beyond neutralizing VEGF. The results also demonstrate that large-scale analysis of the aqueous, using a systems approach, could provide useful insight regarding ocular diseases, their pathophysiologies, and treatment responses.
Collapse
|
46
|
|
47
|
Shemesh M, Tam A, Aharoni R, Steinberg D. Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces. BMC Microbiol 2010; 10:51. [PMID: 20167085 PMCID: PMC2838874 DOI: 10.1186/1471-2180-10-51] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 02/18/2010] [Indexed: 11/29/2022] Open
Abstract
Background Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during in vitro biofilm development of Streptococcus mutans UA159 on several different dental surfaces. Results Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of S. mutans, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by S. mutans embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the S. mutans genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different. Conclusions Our results demonstrate that gene expression of S. mutans differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation.
Collapse
Affiliation(s)
- Moshe Shemesh
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah POB 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
48
|
Shao H, Demuth DR. Quorum sensing regulation of biofilm growth and gene expression by oral bacteria and periodontal pathogens. Periodontol 2000 2010; 52:53-67. [DOI: 10.1111/j.1600-0757.2009.00318.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Abstract
Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.
Collapse
Affiliation(s)
- K Hojo
- Food Science Institute, Meiji Dairies Co., 540 Naruda, Odawara, Kanagawa 250-0862, Japan.
| | | | | | | |
Collapse
|
50
|
Abstract
Although a variety of bacterial species have been reported to use the interspecies communication signal autoinducer-2 (AI-2) to regulate multiple behaviors, the molecular mechanisms of AI-2 recognition and signal transduction remain poorly understood. To date, two types of AI-2 receptors have been identified: LuxP, present in Vibrio spp., and LsrB, first identified in Salmonella enterica serovar Typhimurium. In S. Typhimurium, LsrB is the ligand binding protein of a transport system that enables the internalization of AI-2. Here, using both sequence analysis and structure prediction, we establish a set of criteria for identifying functional AI-2 receptors. We test our predictions experimentally, assaying key species for their abilities to import AI-2 in vivo, and test their LsrB orthologs for AI-2 binding in vitro. Using these experimental approaches, we were able to identify AI-2 receptors in organisms belonging to phylogenetically distinct families such as the Enterobacteriaceae, Rhizobiaceae, and Bacillaceae. Phylogenetic analysis of LsrB orthologs indicates that this pattern could result from one single origin of the functional LsrB gene in a gammaproteobacterium, suggesting possible posterior independent events of lateral gene transfer to the Alphaproteobacteria and Firmicutes. Finally, we used mutagenesis to show that two AI-2-interacting residues are essential for the AI-2 binding ability. These two residues are conserved in the binding sites of all the functional AI-2 binding proteins but not in the non-AI-2-binding orthologs. Together, these results strongly support our ability to identify functional LsrB-type AI-2 receptors, an important step in investigations of this interspecies signal.
Collapse
|