1
|
Singh V, Rai R, Mathew BJ, Chourasia R, Singh AK, Kumar A, Chaurasiya SK. Phospholipase C: underrated players in microbial infections. Front Cell Infect Microbiol 2023; 13:1089374. [PMID: 37139494 PMCID: PMC10149971 DOI: 10.3389/fcimb.2023.1089374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
During bacterial infections, one or more virulence factors are required to support the survival, growth, and colonization of the pathogen within the host, leading to the symptomatic characteristic of the disease. The outcome of bacterial infections is determined by several factors from both host as well as pathogen origin. Proteins and enzymes involved in cellular signaling are important players in determining the outcome of host-pathogen interactions. phospholipase C (PLCs) participate in cellular signaling and regulation by virtue of their ability to hydrolyze membrane phospholipids into di-acyl-glycerol (DAG) and inositol triphosphate (IP3), which further causes the activation of other signaling pathways involved in various processes, including immune response. A total of 13 PLC isoforms are known so far, differing in their structure, regulation, and tissue-specific distribution. Different PLC isoforms have been implicated in various diseases, including cancer and infectious diseases; however, their roles in infectious diseases are not clearly understood. Many studies have suggested the prominent roles of both host and pathogen-derived PLCs during infections. PLCs have also been shown to contribute towards disease pathogenesis and the onset of disease symptoms. In this review, we have discussed the contribution of PLCs as a determinant of the outcome of host-pathogen interaction and pathogenesis during bacterial infections of human importance.
Collapse
Affiliation(s)
- Vinayak Singh
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rupal Rai
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Bijina J. Mathew
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rashmi Chourasia
- Department of Chemistry, IES University, Bhopal, Madhya Pradesh, India
| | - Anirudh K. Singh
- School of Sciences, SAM Global University, Raisen, Madhya Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Shivendra K. Chaurasiya
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- *Correspondence: Shivendra K. Chaurasiya,
| |
Collapse
|
2
|
The Metabolic Adaptation in Response to Nitrate Is Critical for Actinobacillus pleuropneumoniae Growth and Pathogenicity under the Regulation of NarQ/P. Infect Immun 2022; 90:e0023922. [PMID: 35938858 PMCID: PMC9476948 DOI: 10.1128/iai.00239-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrate metabolism is an adaptation mechanism used by many bacteria for survival in anaerobic environments. As a by-product of inflammation, nitrate is used by the intestinal bacterial pathogens to enable gut infection. However, the responses of bacterial respiratory pathogens to nitrate are less well understood. Actinobacillus pleuropneumoniae is an important bacterial respiratory pathogen of swine. Previous studies have suggested that adaptation of A. pleuropneumoniae to anaerobiosis is important for infection. In this work, A. pleuropneumoniae growth and pathogenesis in response to the nitrate were investigated. Nitrate significantly promoted A. pleuropneumoniae growth under anaerobic conditions in vitro and lethality in mice. By using narQ and narP deletion mutants and single-residue-mutated complementary strains of ΔnarQ, the two-component system NarQ/P was confirmed to be critical for nitrate-induced growth, with Arg50 in NarQ as an essential functional residue. Transcriptome analysis showed that nitrate upregulated multiple energy-generating pathways, including nitrate metabolism, mannose and pentose metabolism, and glycerolipid metabolism via the regulation of NarQ/P. Furthermore, narQ, narP, and its target gene encoding the nitrate reductase Nap contributed to the pathogenicity of A. pleuropneumoniae. The Nap inhibitor tungstate significantly reduced the survival of A. pleuropneumoniae in vivo, suggesting that Nap is a potential drug target. These results give new insights into how the respiratory pathogen A. pleuropneumoniae utilizes the alternative electron acceptor nitrate to overcome the hypoxia microenvironment, which can occur in the inflammatory or necrotic infected tissues.
Collapse
|
3
|
Nahar N, Turni C, Tram G, Blackall PJ, Atack JM. Actinobacillus pleuropneumoniae: The molecular determinants of virulence and pathogenesis. Adv Microb Physiol 2021; 78:179-216. [PMID: 34147185 DOI: 10.1016/bs.ampbs.2020.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is responsible for high economic losses in swine herds across the globe. Pleuropneumonia is characterized by severe respiratory distress and high mortality. The knowledge about the interaction between bacterium and host within the porcine respiratory tract has improved significantly in recent years. A. pleuropneumoniae expresses multiple virulence factors, which are required for colonization, immune clearance, and tissue damage. Although vaccines are used to protect swine herds against A. pleuropneumoniae infection, they do not offer complete coverage, and often only protect against the serovar, or serovars, used to prepare the vaccine. This review will summarize the role of individual A. pleuropneumoniae virulence factors that are required during key stages of pathogenesis and disease progression, and highlight progress made toward developing effective and broadly protective vaccines against an organism of great importance to global agriculture and food production.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
4
|
Link between Heterotrophic Carbon Fixation and Virulence in the Porcine Lung Pathogen Actinobacillus pleuropneumoniae. Infect Immun 2019; 87:IAI.00768-18. [PMID: 31285248 DOI: 10.1128/iai.00768-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
Actinobacillus pleuropneumoniae is a capnophilic pathogen of the porcine respiratory tract lacking enzymes of the oxidative branch of the tricarboxylic acid (TCA) cycle. We previously claimed that A. pleuropneumoniae instead uses the reductive branch in order to generate energy and metabolites. Here, we show that bicarbonate and oxaloacetate supported anaerobic growth of A. pleuropneumoniae Isotope mass spectrometry revealed heterotrophic fixation of carbon from stable isotope-labeled bicarbonate by A. pleuropneumoniae, which was confirmed by nano-scale secondary ion mass spectrometry at a single-cell level. By gas chromatography-combustion-isotope ratio mass spectrometry we could further show that the labeled carbon atom is mainly incorporated into the amino acids aspartate and lysine, which are derived from the TCA metabolite oxaloacetate. We therefore suggest that carbon fixation occurs at the interface of glycolysis and the reductive branch of the TCA cycle. The heme precursor δ-aminolevulinic acid supported growth of A. pleuropneumoniae, similar to bicarbonate, implying that anaplerotic carbon fixation is needed for heme synthesis. However, deletion of potential carbon-fixing enzymes, including PEP-carboxylase (PEPC), PEP-carboxykinase (PEPCK), malic enzyme, and oxaloacetate decarboxylase, as well as various combinations thereof, did not affect carbon fixation. Interestingly, generation of a deletion mutant lacking all four enzymes was not possible, suggesting that carbon fixation in A. pleuropneumoniae is an essential metabolic pathway controlled by a redundant set of enzymes. A double deletion mutant lacking PEPC and PEPCK was not impaired in carbon fixation in vitro but showed reduction of virulence in a pig infection model.
Collapse
|
5
|
Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transbound Emerg Dis 2017; 65 Suppl 1:72-90. [PMID: 29083117 DOI: 10.1111/tbed.12739] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/15/2022]
Abstract
Porcine pleuropneumonia, caused by the bacterial porcine respiratory tract pathogen Actinobacillus pleuropneumoniae, leads to high economic losses in affected swine herds in most countries of the world. Pigs affected by peracute and acute disease suffer from severe respiratory distress with high lethality. The agent was first described in 1957 and, since then, knowledge about the pathogen itself, and its interactions with the host, has increased continuously. This is, in part, due to the fact that experimental infections can be studied in the natural host. However, the fact that most commercial pigs are colonized by this pathogen has hampered the applicability of knowledge gained under experimental conditions. In addition, several factors are involved in development of disease, and these have often been studied individually. In a DISCONTOOLS initiative, members from science, industry and clinics exchanged their expertise and empirical observations and identified the major gaps in knowledge. This review sums up published results and expert opinions, within the fields of pathogenesis, epidemiology, transmission, immune response to infection, as well as the main means of prevention, detection and control. The gaps that still remain to be filled are highlighted, and present as well as future challenges in the control of this disease are addressed.
Collapse
Affiliation(s)
- E L Sassu
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - J T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, London, UK
| | - T J Tobias
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M Gottschalk
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - P R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, UK
| | - I Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| |
Collapse
|
6
|
Li P, Xu Z, Sun X, Yin Y, Fan Y, Zhao J, Mao X, Huang J, Yang F, Zhu L. Transcript profiling of the immunological interactions between Actinobacillus pleuropneumoniae serotype 7 and the host by dual RNA-seq. BMC Microbiol 2017; 17:193. [PMID: 28899359 PMCID: PMC5596872 DOI: 10.1186/s12866-017-1105-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 02/08/2023] Open
Abstract
Background The complexity of the pathogenic mechanism underlying the host immune response to Actinobacillus pleuropneumonia (App) makes the use of preventive measures difficult, and a more global view of the host-pathogen interactions and new insights into this process are urgently needed to reveal the pathogenic and immune mechanisms underlying App infection. Here, we infected specific pathogen-free Mus musculus with App serotype 7 by intranasal inoculation to construct an acute hemorrhagic pneumonia infection model and isolated the infected lungs for analysis of the interactions by dual RNA-seq. Results Four cDNA libraries were constructed, and 2428 differentially expressed genes (DEGs) of the host and 333 DEGs of App were detected. The host DEGs were mainly enriched in inflammatory signaling pathways, such as the TLR, NLR, RLR, BCR and TCR signaling pathways, resulting in large-scale cytokine up-regulation and thereby yielding a cytokine cascade for anti-infection and lung damage. The majority of the up-regulated cytokines are involved in the IL-23/IL-17 cytokine-regulated network, which is crucial for host defense against bacterial infection. The DEGs of App were mainly related to the transport and metabolism of energy and materials. Most of these genes are metabolic genes involved in anaerobic metabolism and important for challenging the host and adapting to the anaerobic stress conditions observed in acute hemorrhagic pneumonia. Some of these genes, such as adhE, dmsA, and aspA, might be potential virulence genes. In addition, the up-regulation of genes associated with peptidoglycan and urease synthesis and the restriction of major virulence genes might be immune evasion strategies of App. The regulation of metabolic genes and major virulence genes indicate that the dominant antigens might differ during the infection process and that vaccines based on these antigens might allow establishment of a precise and targeted immune response during the early phase of infection. Conclusion Through an analysis of transcriptional data by dual RNA-seq, our study presents a novel global view of the interactions of App with its host and provides a basis for further study. Electronic supplementary material The online version of this article (10.1186/s12866-017-1105-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China
| | - Yue Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Yi Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Xiyu Mao
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Fan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Weenjiang District, Chengdu, Sichuan, China. .,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Rossi CC, Bossé JT, Li Y, Witney AA, Gould KA, Langford PR, Bazzolli DMS. A computational strategy for the search of regulatory small RNAs in Actinobacillus pleuropneumoniae. RNA (NEW YORK, N.Y.) 2016; 22:1373-85. [PMID: 27402897 PMCID: PMC4986893 DOI: 10.1261/rna.055129.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/24/2016] [Indexed: 05/26/2023]
Abstract
Bacterial regulatory small RNAs (sRNAs) play important roles in gene regulation and are frequently connected to the expression of virulence factors in diverse bacteria. Only a few sRNAs have been described for Pasteurellaceae pathogens and no in-depth analysis of sRNAs has been described for Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, responsible for considerable losses in the swine industry. To search for sRNAs in A. pleuropneumoniae, we developed a strategy for the computational analysis of the bacterial genome by using four algorithms with different approaches, followed by experimental validation. The coding strand and expression of 17 out of 23 RNA candidates were confirmed by Northern blotting, RT-PCR, and RNA sequencing. Among them, two are likely riboswitches, three are housekeeping regulatory RNAs, two are the widely studied GcvB and 6S sRNAs, and 10 are putative novel trans-acting sRNAs, never before described for any bacteria. The latter group has several potential mRNA targets, many of which are involved with virulence, stress resistance, or metabolism, and connect the sRNAs in a complex gene regulatory network. The sRNAs identified are well conserved among the Pasteurellaceae that are evolutionarily closer to A. pleuropneumoniae and/or share the same host. Our results show that the combination of newly developed computational programs can be successfully utilized for the discovery of novel sRNAs and indicate an intricate system of gene regulation through sRNAs in A. pleuropneumoniae and in other Pasteurellaceae, thus providing clues for novel aspects of virulence that will be explored in further studies.
Collapse
Affiliation(s)
- Ciro C Rossi
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Janine T Bossé
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, United Kingdom
| | - Kate A Gould
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, United Kingdom
| | - Paul R Langford
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Denise M S Bazzolli
- Laboratório de Genética Molecular de Micro-organismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| |
Collapse
|
8
|
Transcriptome analysis of Bacillus thuringiensis spore life, germination and cell outgrowth in a vegetable-based food model. Food Microbiol 2016; 55:73-85. [DOI: 10.1016/j.fm.2015.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022]
|
9
|
Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms. J Bacteriol 2015; 197:2810-20. [PMID: 26078448 DOI: 10.1128/jb.00182-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/10/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED In Pseudomonas aeruginosa, the transcription factor Anr controls the cellular response to low oxygen or anoxia. Anr activity is high in oxygen-limited environments, including biofilms and populations associated with chronic infections, and Anr is necessary for persistence in a model of pulmonary infection. In this study, we characterized the Anr regulon in biofilm-grown cells at 1% oxygen in the laboratory strain PAO1 and in a quorum sensing (QS)-deficient clinical isolate, J215. As expected, transcripts related to denitrification, arginine fermentation, high-affinity cytochrome oxidases, and CupA fimbriae were lower in the Δanr derivatives. In addition, we observed that transcripts associated with quorum sensing regulation, iron acquisition and storage, type VI secretion, and the catabolism of aromatic compounds were also differentially expressed in the Δanr strains. Prior reports have shown that quorum sensing-defective mutants have higher levels of denitrification, and we found that multiple Anr-regulated processes, including denitrification, were strongly inversely proportional to quorum sensing in both transcriptional and protein-based assays. We also found that in LasR-defective strains but not their LasR-intact counterparts, Anr regulated the production of the 4-hydroxy-2-alkylquinolines, which play roles in quorum sensing and interspecies interactions. These data show that Anr was required for the expression of important metabolic pathways in low-oxygen biofilms, and they reveal an expanded and compensatory role for Anr in the regulation of virulence-related genes in quorum sensing mutants, such as those commonly isolated from infections. IMPORTANCE Pseudomonas aeruginosa causes acute ocular, soft tissue, and pulmonary infections, as well as chronic infections in the airways of cystic fibrosis patients. P. aeruginosa uses quorum sensing (QS) to regulate virulence, but mutations in the gene encoding the master regulator of QS, lasR, are frequently observed in clinical isolates. We demonstrated that the regulon attributed to Anr, an oxygen-sensitive transcription factor, was more highly expressed in lasR mutants. Furthermore, we show that Anr regulates the production of several different secreted factors in lasR mutants. These data demonstrate the importance of Anr in naturally occurring quorum sensing mutants in the context of chronic infections.
Collapse
|
10
|
The generation of successive unmarked mutations and chromosomal insertion of heterologous genes in Actinobacillus pleuropneumoniae using natural transformation. PLoS One 2014; 9:e111252. [PMID: 25409017 PMCID: PMC4237320 DOI: 10.1371/journal.pone.0111252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022] Open
Abstract
We have developed a simple method of generating scarless, unmarked mutations in Actinobacillus pleuropneumoniae by exploiting the ability of this bacterium to undergo natural transformation, and with no need to introduce plasmids encoding recombinases or resolvases. This method involves two successive rounds of natural transformation using linear DNA: the first introduces a cassette carrying cat (which allows selection by chloramphenicol) and sacB (which allows counter-selection using sucrose) flanked by sequences to either side of the target gene; the second transformation utilises the flanking sequences ligated directly to each other in order to remove the cat-sacB cassette. In order to ensure efficient uptake of the target DNA during transformation, A. pleuropneumoniae uptake sequences are added into the constructs used in both rounds of transformation. This method can be used to generate multiple successive deletions and can also be used to introduce targeted point mutations or insertions of heterologous genes into the A. pleuropneumoniae chromosome for development of live attenuated vaccine strains. So far, we have applied this method to highly transformable isolates of serovars 8 (MIDG2331), which is the most prevalent in the UK, and 15 (HS143). By screening clinical isolates of other serovars, it should be possible to identify other amenable strains.
Collapse
|
11
|
Li L, Zhu J, Yang K, Xu Z, Liu Z, Zhou R. Changes in gene expression of Actinobacillus pleuropneumoniae in response to anaerobic stress reveal induction of central metabolism and biofilm formation. J Microbiol 2014; 52:473-81. [DOI: 10.1007/s12275-014-3456-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/23/2013] [Accepted: 01/03/2014] [Indexed: 01/07/2023]
|
12
|
Jackson AA, Gross MJ, Daniels EF, Hampton TH, Hammond JH, Vallet-Gely I, Dove SL, Stanton BA, Hogan DA. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence. J Bacteriol 2013; 195:3093-104. [PMID: 23667230 PMCID: PMC3697539 DOI: 10.1128/jb.02169-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/29/2013] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa hemolytic phospholipase C (PlcH) degrades phosphatidylcholine (PC), an abundant lipid in cell membranes and lung surfactant. A ΔplcHR mutant, known to be defective in virulence in animal models, was less able to colonize epithelial cell monolayers and was defective in biofilm formation on plastic when grown in lung surfactant. Microarray analyses found that strains defective in PlcH production had lower levels of Anr-regulated transcripts than the wild type. PC degradation stimulated the Anr regulon in an Anr-dependent manner under conditions where Anr activity was submaximal because of the presence of oxygen. Two PC catabolites, choline and glycine betaine (GB), were sufficient to stimulate Anr activity, and their catabolism was required for Anr activation. The addition of choline or GB to glucose-containing medium did not alter Anr protein levels, growth rates, or respiratory activity, and Anr activation could not be attributed to the osmoprotectant functions of GB. The Δanr mutant was defective in virulence in a mouse pneumonia model. Several lines of evidence indicate that Anr is important for the colonization of biotic and abiotic surfaces in both P. aeruginosa PAO1 and PA14 and that increases in Anr activity resulted in enhanced biofilm formation. Our data suggest that PlcH activity promotes Anr activity in oxic environments and that Anr activity contributes to virulence, even in the acute infection phase, where low oxygen tensions are not expected. This finding highlights the relationships among in vivo bacterial metabolism, the activity of the oxygen-sensitive regulator Anr, and virulence.
Collapse
Affiliation(s)
- Angelyca A. Jackson
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Maegan J. Gross
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Emily F. Daniels
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - John H. Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Isabelle Vallet-Gely
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
13
|
Klitgaard K, Friis C, Jensen TK, Angen Ø, Boye M. Transcriptional portrait of Actinobacillus pleuropneumoniae during acute disease--potential strategies for survival and persistence in the host. PLoS One 2012; 7:e35549. [PMID: 22530048 PMCID: PMC3328466 DOI: 10.1371/journal.pone.0035549] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/21/2012] [Indexed: 11/24/2022] Open
Abstract
Background Gene expression profiles of bacteria in their natural hosts can provide novel insight into the host-pathogen interactions and molecular determinants of bacterial infections. In the present study, the transcriptional profile of the porcine lung pathogen Actinobacillus pleuropneumoniae was monitored during the acute phase of infection in its natural host. Methodology/Principal Findings Bacterial expression profiles of A. pleuropneumoniae isolated from lung lesions of 25 infected pigs were compared in samples taken 6, 12, 24 and 48 hours post experimental challenge. Within 6 hours, focal, fibrino hemorrhagic lesions could be observed in the pig lungs, indicating that A. pleuropneumoniae had managed to establish itself successfully in the host. We identified 237 differentially regulated genes likely to encode functions required by the bacteria for colonization and survival in the host. This group was dominated by genes involved in various aspects of energy metabolism, especially anaerobic respiration and carbohydrate metabolism. Remodeling of the bacterial envelope and modifications of posttranslational processing of proteins also appeared to be of importance during early infection. The results suggested that A. pleuropneumoniae is using various strategies to increase its fitness, such as applying Na+ pumps as an alternative way of gaining energy. Furthermore, the transcriptional data provided potential clues as to how A. pleuropneumoniae is able to circumvent host immune factors and survive within the hostile environment of host macrophages. This persistence within macrophages may be related to urease activity, mobilization of various stress responses and active evasion of the host defenses by cell surface sialylation. Conclusions/Significance The data presented here highlight the importance of metabolic adjustments to host conditions as virulence factors of infecting microorganisms and help to provide insight into the mechanisms behind the efficient colonization and persistence of A. pleuropneumoniae during acute disease.
Collapse
Affiliation(s)
- Kirstine Klitgaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
14
|
Klitgaard K, Friis C, Angen O, Boye M. Comparative profiling of the transcriptional response to iron restriction in six serotypes of Actinobacillus pleuropneumoniae with different virulence potential. BMC Genomics 2010; 11:698. [PMID: 21143895 PMCID: PMC3091793 DOI: 10.1186/1471-2164-11-698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/09/2010] [Indexed: 01/16/2023] Open
Abstract
Background Comparative analysis of gene expression among serotypes within a species can provide valuable information on important differences between related genomes. For the pig lung pathogen Actinobacillus pleuropneumoniae, 15 serotypes with a considerable variation in virulence potential and immunogenicity have been identified. This serotypic diversity can only partly be explained by amount of capsule and differences in the RTX toxin genes in their genomes. Iron acquisition in vivo is an important bacterial function and in pathogenic bacteria, iron-limitation is often a signal for the induction of virulence genes. We used a pan-genomic microarray to study the transcriptional response to iron restriction in vitro in six serotypes of A. pleuropneumoniae (1, 2, 3, 5b, 6, and 7), representing at least two levels of virulence. Results In total, 45 genes were significantly (p < 0.0001) up-regulated and 67 genes significantly down-regulated in response to iron limitation. Not previously observed in A. pleuropneumoniae was the up-regulation of a putative cirA-like siderophore in all six serotypes. Three genes, recently described in A. pleuropneumoniae as possibly coding for haemoglobin-haptoglobin binding proteins, displayed significant serotype related up-regulation to iron limitation. For all three genes, the expression appeared at its lowest in serotype 3, which is generally considered one of the least virulent serotypes of A. pleuropneumoniae. The three genes share homology with the hmbR haemoglobin receptor of Neisseria meningitidis, a possible virulence factor which contributes to bacterial survival in rats. Conclusions By comparative analysis of gene expression among 6 different serotypes of A. pleuropneumoniae we identified a common set of presumably essential core genes, involved in iron regulation. The results support and expand previous observations concerning the identification of new potential iron acquisition systems in A. pleuropneumoniae, showing that this bacterium has evolved several strategies for scavenging the limited iron resources of the host. The combined effect of iron-depletion and serotype proved to be modest, indicating that serotypes of both moderate and high virulence at least in vitro are reacting almost identical to iron restriction. One notable exception, however, is the haemoglobin-haptoglobin binding protein cluster which merits further investigation.
Collapse
Affiliation(s)
- Kirstine Klitgaard
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1790, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
15
|
Ohba T, Shibahara T, Kobayashi H, Takashima A, Nagoshi M, Kubo M. Granulomatous lymphadenitis associated with Actinobacillus pleuropneumoniae serotype 2 in slaughter barrows. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2010; 51:733-737. [PMID: 20885825 PMCID: PMC2885113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study evaluated the occurrence of granulomatous lymphadenitis and its association with Actinobacillus spp. in 151 653 slaughtered pigs. Markedly enlarged pulmonary hilar, mediastinal, mandibular or hepatic lymph nodes were detected in 6 castrated males. The cut surfaces showed multifocal yellow-white lesions. Histologically, gram-negative bacilli were visible in the centers of the lesions with asteroid bodies, epithelioid cells, and multinucleated giant cells. Dense fibrous connective tissue surrounded these granulomatous lesions. Immunohistochemically, the organisms reacted with polyclonal antibodies against Actinobacillus pleuropneumoniae serotype 2 in all 6 barrows. The organism was isolated from the lymph nodes of all 6 animals. The results indicate that the granulomatous lymphadenitis was associated with A. pleuropneumoniae serotype 2 and the disorder had a tendency to occur in slaughter barrows.
Collapse
|
16
|
Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res 2010; 41:65. [PMID: 20546697 PMCID: PMC2899255 DOI: 10.1051/vetres/2010037] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 06/10/2010] [Indexed: 12/17/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. The virulence factors of this microorganism involved in colonization and the induction of lung lesions have been thoroughly studied and some have been well characterized. A. pleuropneumoniae binds preferentially to cells of the lower respiratory tract in a process involving different adhesins and probably biofilm formation. Apx toxins and lipopolysaccharides exert pathogenic effects on several host cells, resulting in typical lung lesions. Lysis of host cells is essential for the bacterium to obtain nutrients from the environment and A. pleuropneumoniae has developed several uptake mechanisms for these nutrients. In addition to persistence in lung lesions, colonization of the upper respiratory tract – and of the tonsils in particular – may also be important for long-term persistent asymptomatic infection. Information on virulence factors involved in tonsillar and nasal cavity colonization and persistence is scarce, but it can be speculated that similar features as demonstrated for the lung may play a role.
Collapse
Affiliation(s)
- Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
17
|
Septer AN, Bose JL, Dunn AK, Stabb EV. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri. FEMS Microbiol Lett 2010; 306:72-81. [PMID: 20298504 PMCID: PMC2866068 DOI: 10.1111/j.1574-6968.2010.01938.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence and anaerobic respiration in V. fischeri, we generated fnr mutants of V. fischeri strains MJ1 and ES114. In both strains, FNR was required for normal fumarate- and nitrate-dependent respiration. However, contrary to the report in transgenic E. coli, FNR mediated the repression of lux. ArcA represses bioluminescence, and P(arcA)-lacZ reporters showed reduced expression in fnr mutants, suggesting a possible indirect effect of FNR on bioluminescence via arcA. Finally, the fnr mutant of ES114 was not impaired in colonization of its host squid, Euprymna scolopes. This study extends the characterization of FNR to the Vibrionaceae and underscores the importance of studying lux regulation in its native background.
Collapse
Affiliation(s)
- Alecia N. Septer
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Jeffrey L. Bose
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Anne K. Dunn
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
| | - Eric V. Stabb
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
18
|
Deslandes V, Denicourt M, Girard C, Harel J, Nash JHE, Jacques M. Transcriptional profiling of Actinobacillus pleuropneumoniae during the acute phase of a natural infection in pigs. BMC Genomics 2010; 11:98. [PMID: 20141640 PMCID: PMC2829017 DOI: 10.1186/1471-2164-11-98] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 02/08/2010] [Indexed: 01/18/2023] Open
Abstract
Background Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease which causes great economic losses worldwide. Many virulence factors are involved in the pathogenesis, namely capsular polysaccharides, RTX toxins, LPS and many iron acquisition systems. In order to identify genes that are expressed in vivo during a natural infection, we undertook transcript profiling experiments with an A. pleuropneumoniae DNA microarray, after recovery of bacterial mRNAs from serotype 5b-infected porcine lungs. AppChip2 contains 2033 PCR amplicons based on the genomic sequence of App serotype 5b strain L20, representing more than 95% of ORFs greater than 160 bp in length. Results Transcriptional profiling of A. pleuropneumoniae recovered from the lung of a pig suffering from a natural infection or following growth of the bacterial isolate in BHI medium was performed. An RNA extraction protocol combining beadbeating and hot-acid-phenol was developed in order to maximize bacterial mRNA yields and quality following total RNA extraction from lung lesions. Nearly all A. pleuropneumoniae transcripts could be detected on our microarrays, and 150 genes were deemed differentially expressed in vivo during the acute phase of the infection. Our results indicate that, for example, gene apxIVA from an operon coding for RTX toxin ApxIV is highly up-regulated in vivo, and that two genes from the operon coding for type IV fimbriae (APL_0878 and APL_0879) were also up-regulated. These transcriptional profiling data, combined with previous comparative genomic hybridizations performed by our group, revealed that 66 out of the 72 up-regulated genes are conserved amongst all serotypes and that 3 of them code for products that are predicted outer membrane proteins (genes irp and APL_0959, predicted to code for a TonB-dependent receptor and a filamentous hemagglutinin/adhesin respectively) or lipoproteins (gene APL_0920). Only 4 of 72 up-regulated genes had previously been identified in controled experimental infections. Conclusions These genes that we have identified as up-regulated in vivo, conserved across serotypes and coding for potential outer membrane proteins represent potential candidates for the development of a cross-protective vaccine against porcine pleuropneumonia.
Collapse
Affiliation(s)
- Vincent Deslandes
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Park C, Ha Y, Kim S, Chae C, Ryu DY. Construction and characterization of an Actinobacillus pleuropneumoniae serotype 2 mutant lacking the Apx toxin secretion protein genes apxIIIB and apxIIID. J Vet Med Sci 2009; 71:1317-23. [PMID: 19887737 DOI: 10.1292/jvms.001317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apx toxins have been identified as important virulence factors of Actinobacillus pleuropneumoniae, the etiologic agent of porcine pleuropneumonia. In some A. pleuropneumoniae serotypes, Apx toxins are secreted by the cell membrane proteins encoded by apxIIIB and apxIIID genes. In an effort to develop a live vaccine strain against A. pleuropneumoniae, we inactivated the apxIIIB and apxIIID genes in A. pleuropneumoniae 1536, a serotype 2 strain, resulting in the DeltaapxIIIB/DapxIIID mutant strain (1536DeltaBDeltaD). Immunization of pigs with live 1536DeltaBDeltaD A. pleuropneumoniae conferred protection against homologous challenge with wild-type A. pleuropneumoniae 1536. Thus, impaired Apx toxin secretion may decrease the virulence of A. pleuropneumoniae and may be an effective strategy for the development of a live-attenuated A. pleuropneumoniae vaccine.
Collapse
Affiliation(s)
- Changbo Park
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
20
|
Bossé JT, Durham AL, Rycroft AN, Kroll JS, Langford PR. New plasmid tools for genetic analysis of Actinobacillus pleuropneumoniae and other pasteurellaceae. Appl Environ Microbiol 2009; 75:6124-31. [PMID: 19666733 PMCID: PMC2753053 DOI: 10.1128/aem.00809-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 07/30/2009] [Indexed: 11/20/2022] Open
Abstract
We have generated a set of plasmids, based on the mobilizable shuttle vector pMIDG100, which can be used as tools for genetic manipulation of Actinobacillus pleuropneumoniae and other members of the Pasteurellaceae. A tandem reporter plasmid, pMC-Tandem, carrying promoterless xylE and gfpmut3 genes downstream of a multiple-cloning site (MCS), can be used for identification of transcriptional regulators and conditions which favor gene expression from different cloned promoters. The ability to detect transcriptional regulators using the tandem reporter system was validated in A. pleuropneumoniae using the cloned rpoE (sigma(E)) promoter (P). The resulting plasmid, pMCrpoEP, was used to identify a mutant defective in production of RseA, the negative regulator of sigma(E), among a bank of random transposon mutants, as well as to detect induction of sigma(E) following exposure of A. pleuropneumoniae to ethanol or heat shock. pMCsodCP, carrying the cloned sodC promoter of A. pleuropneumoniae, was functional in A. pleuropneumoniae, Haemophilus influenzae, Haemophilus parasuis, Mannheimia haemolytica, and Pasteurella multocida. Two general expression vectors, pMK-Express and pMC-Express, which differ in their antibiotic resistance markers (kanamycin and chloramphenicol, respectively), were constructed for the Pasteurellaceae. Both plasmids have the A. pleuropneumoniae sodC promoter upstream of the gfpmut3 gene and an extended MCS. Replacement of gfpmut3 with a gene of interest allows complementation and heterologous gene expression, as evidenced by expression of the Haemophilus ducreyi nadV gene in A. pleuropneumoniae, rendering the latter NAD independent.
Collapse
Affiliation(s)
- Janine T Bossé
- Molecular Infectious Diseases Group, Department of Paediatrics, Imperial College London, St Mary's Campus, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Lone AG, Deslandes V, Nash JHE, Jacques M, MacInnes JI. Modulation of gene expression in Actinobacillus pleuropneumoniae exposed to bronchoalveolar fluid. PLoS One 2009; 4:e6139. [PMID: 19578537 PMCID: PMC2700959 DOI: 10.1371/journal.pone.0006139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/08/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae, the causative agent of porcine contagious pleuropneumonia, is an important pathogen of swine throughout the world. It must rapidly overcome the innate pulmonary immune defenses of the pig to cause disease. To better understand this process, the objective of this study was to identify genes that are differentially expressed in a medium that mimics the lung environment early in the infection process. METHODS AND PRINCIPAL FINDINGS Since bronchoalveolar lavage fluid (BALF) contains innate immune and other components found in the lungs, we examined gene expression of a virulent serovar 1 strain of A. pleuropneumoniae after a 30 min exposure to BALF, using DNA microarrays and real-time PCR. The functional classes of genes found to be up-regulated most often in BALF were those encoding proteins involved in energy metabolism, especially anaerobic metabolism, and in cell envelope, DNA, and protein biosynthesis. Transcription of a number of known virulence genes including apxIVA and the gene for SapF, a protein which is involved in resistance to antimicrobial peptides, was also up-regulated in BALF. Seventy-nine percent of the genes that were up-regulated in BALF encoded a known protein product, and of these, 44% had been reported to be either expressed in vivo and/or involved in virulence. CONCLUSIONS The results of this study suggest that in early stages of infection, A. pleuropneumoniae may modulate expression of genes involved in anaerobic energy generation and in the synthesis of proteins involved in cell wall biogenesis, as well as established virulence factors. Given that many of these genes are thought to be expressed in vivo or involved in virulence, incubation in BALF appears, at least partially, to simulate in vivo conditions and may provide a useful medium for the discovery of novel vaccine or therapeutic targets.
Collapse
Affiliation(s)
- Abdul G. Lone
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Vincent Deslandes
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, St-Hyacinthe, Québec, Canada
- Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - John H. E. Nash
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, St-Hyacinthe, Québec, Canada
- Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Janet I. MacInnes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Buettner FFR, Bendalla IM, Bossé JT, Meens J, Nash JHE, Härtig E, Langford PR, Gerlach GF. Analysis of the Actinobacillus pleuropneumoniae HlyX (FNR) regulon and identification of iron-regulated protein B as an essential virulence factor. Proteomics 2009; 9:2383-98. [PMID: 19343711 DOI: 10.1002/pmic.200800439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Indexed: 11/09/2022]
Abstract
The Gram-negative rod Actinobacillus pleuropneumoniae is a facultative anaerobic pathogen of the porcine respiratory tract, and HlyX, the A. pleuropneumoniae homologue of fumarate and nitrate reduction regulator (FNR), has been shown to be important for persistence. An A. pleuropneumoniae hlyX deletion mutant has a decreased generation time but highly prolonged survival in comparison to its wild type parent strain when grown anaerobically in glucose-supplemented medium. Applying a combination of proteomic and transcriptomic approaches as well as in silico analyses, we identified 23 different proteins and 418 genes to be modulated by HlyX (> or = twofold up- or down-regulated). A putative HlyX-box was identified upstream of 54 of these genes implying direct control by HlyX. Consistent with its role as a strong positive regulator, HlyX induced the expression of genes for anaerobic metabolism encoding alternative terminal reductases and hydrogenases. In addition, expression of virulence-associated genes encoding iron uptake systems, a putative DNA adenine modification system, and an autotransporter serine protease were induced by HlyX under anaerobic growth conditions. With respect to virulence-associated genes, we focused on the iron-regulated protein B (FrpB) as it is the outer membrane protein most strongly up-regulated by HlyX. An frpB deletion mutant of A. pleuropneumoniae had the same growth characteristics as wild type grown aerobically and anaerobically. In contrast, A. pleuropneumoniae DeltafrpB did not cause any disease and could not be re-isolated from experimentally infected pigs, thereby identifying FrpB as a previously unknown virulence factor.
Collapse
Affiliation(s)
- Falk F R Buettner
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Resistance of Haemophilus influenzae to reactive nitrogen donors and gamma interferon-stimulated macrophages requires the formate-dependent nitrite reductase regulator-activated ytfE gene. Infect Immun 2009; 77:1945-58. [PMID: 19289513 DOI: 10.1128/iai.01365-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Haemophilus influenzae efficiently colonizes and persists at the human nasopharyngeal mucosa, causing disease when it spreads to other sites. Nitric oxide (NO) represents a major antimicrobial defense deployed by host cells in locations colonized by H. influenzae during pathogenesis that are likely to vary in oxygen levels. Formate-dependent nitrite reductase regulator (FNR) is an oxygen-sensitive regulator in several bacterial pathogens. We report that fnr of H. influenzae is required for anaerobic defense against exposure to NO donors and to resist NO-dependent effects of gamma interferon (IFN-gamma)-activated murine bone marrow-derived macrophages. To understand the mechanism of resistance, we investigated the role of FNR-regulated genes in defense against NO sources. Expression analysis revealed FNR-dependent activation of nrfA, dmsA, napA, and ytfE. Nonpolar deletion mutants of nrfA and ytfE exhibited sensitivity to NO donors, and the ytfE gene was more critical for survival. Compared to the wild-type strain, the ytfE mutant exhibited decreased survival when exposed to macrophages, a defect that was more pronounced after prior stimulation of macrophages with IFN-gamma or lipopolysaccharide. Complementation restored survival of the mutant to the level in the parental strain. Increased sensitivity of the ytfE mutant relative to that of the parent was abrogated by treatment of macrophages with a NO synthase inhibitor, implicating YtfE in resistance to a NO-dependent pathway. These results identify a requirement for FNR in positive control of ytfE and indicate a critical role for ytfE in resistance of H. influenzae to reactive nitrogen species and the antibacterial effects of macrophages.
Collapse
|
24
|
Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells. Infect Immun 2009; 77:1426-41. [PMID: 19139196 DOI: 10.1128/iai.00297-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Host-pathogen interactions are of great importance in understanding the pathogenesis of infectious microorganisms. We developed in vitro models to study the host-pathogen interactions of porcine respiratory tract pathogens using two immortalized epithelial cell lines, namely, the newborn pig trachea (NPTr) and St. Jude porcine lung (SJPL) cell lines. We first studied the interactions of Actinobacillus pleuropneumoniae, an important swine pathogen, using these models. Under conditions where cytotoxicity was absent or low, we showed that A. pleuropneumoniae adheres to both cell lines, stimulating the induction of NF-kappaB. The NPTr cells consequently secrete interleukin 8, while the SJPL cells do not, since they are deprived of the NF-kappaB p65 subunit. Cell death ultimately occurs by necrosis, not apoptosis. The transcriptomic profile of A. pleuropneumoniae was determined after contact with the porcine lung epithelial cells by using DNA microarrays. Genes such as tadB and rcpA, members of a putative adhesin locus, and a gene whose product has high homology to the Hsf autotransporter adhesin of Haemophilus influenzae were upregulated, as were the genes pgaBC, involved in biofilm biosynthesis, while capsular polysaccharide-associated genes were downregulated. The in vitro models also proved to be efficient with other swine pathogens, such as Actinobacillus suis, Haemophilus parasuis, and Pasteurella multocida. Our results demonstrate that interactions of A. pleuropneumoniae with host epithelial cells seem to involve complex cross talk which results in regulation of various bacterial genes, including some coding for putative adhesins. Furthermore, our data demonstrate the potential of these in vitro models in studying the host-pathogen interactions of other porcine respiratory tract pathogens.
Collapse
|
25
|
Functional characterization of AasP, a maturation protease autotransporter protein of Actinobacillus pleuropneumoniae. Infect Immun 2008; 76:5608-14. [PMID: 18852244 DOI: 10.1128/iai.00085-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a highly contagious respiratory infection in pigs. AasP, a putative subtilisin-like serine protease autotransporter, has recently been identified in A. pleuropneumoniae. We hypothesized that, similarly to other autotransporters of this type, AasP may undergo autocatalytic cleavage resulting in release of the passenger domain of the protein. Furthermore, AasP may be responsible for cleavage of other A. pleuropneumoniae outer membrane proteins. To address these hypotheses, the aasP gene was cloned and the expressed recombinant AasP protein used to raise monospecific rabbit antiserum. Immunoblot analysis of whole-cell lysates and secreted proteins demonstrated that AasP does not undergo proteolytic cleavage. Immunoblot analysis also confirmed that AasP is universally expressed by A. pleuropneumoniae. Confirmation of the maturation protease function of AasP was obtained through phenotypic analysis of an A. pleuropneumoniae aasP deletion mutant and by functional complementation. Comparison of the secreted proteins of the wild type, an aasP mutant derivative, and an aasP mutant complemented in trans led to the identification of OmlA protein fragments that were present only in the secreted-protein preparations of the wild-type and complemented strains, indicating that AasP is involved in modification of OmlA. This is the first demonstration of a function for any autotransporter protein in Actinobacillus pleuropneumoniae.
Collapse
|
26
|
Ohba T, Shibahara T, Kobayashi H, Takashima A, Nagoshi M, Osanai R, Kubo M. Multifocal granulomatous hepatitis caused by Actinobacillus pleuropneumoniae serotype 2 in slaughter pigs. J Comp Pathol 2008; 139:61-6. [PMID: 18617183 DOI: 10.1016/j.jcpa.2008.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 04/16/2008] [Indexed: 10/21/2022]
Abstract
In a survey of 66 894 slaughter pigs, 11 animals from three farms were found to have multifocal granulomatous lesions in the liver, caused by Actinobacillus pleuropneumoniae serotype 2. The lesions consisted of epithelioid cells and multinucleated giant cells, with asteroid bodies and discernible gram-negative bacteria. Lymph nodes and spleen were occasionally affected. The results suggested that haematogenous spread had occurred from pre-existing pulmonary infections.
Collapse
Affiliation(s)
- T Ohba
- Toyama Prefectural Meat Inspection Centre, 28-4 Shinbori, Imizu, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Buettner FFR, Bendallah IM, Bosse JT, Dreckmann K, Nash JHE, Langford PR, Gerlach GF. Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence. Infect Immun 2008; 76:2284-95. [PMID: 18378638 PMCID: PMC2423083 DOI: 10.1128/iai.01540-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/10/2008] [Accepted: 03/23/2008] [Indexed: 11/20/2022] Open
Abstract
The ability of the bacterial pathogen Actinobacillus pleuropneumoniae to grow anaerobically allows the bacterium to persist in the lung. The ArcAB two-component system is crucial for metabolic adaptation in response to anaerobic conditions, and we recently showed that an A. pleuropneumoniae arcA mutant had reduced virulence compared to the wild type (F. F. Buettner, A. Maas, and G.-F. Gerlach, Vet. Microbiol. 127:106-115, 2008). In order to understand the attenuated phenotype, we investigated the ArcA regulon of A. pleuropneumoniae by using a combination of transcriptome (microarray) and proteome (two-dimensional difference gel electrophoresis and subsequent mass spectrometry) analyses. We show that ArcA negatively regulates the expression of many genes, including those encoding enzymes which consume intermediates during fumarate synthesis. Simultaneously, the expression of glycerol-3-phosphate dehydrogenase, a component of the respiratory chain serving as a direct reduction equivalent for fumarate reductase, was upregulated. This result, together with the in silico analysis finding that A. pleuropneumoniae has no oxidative branch of the citric acid cycle, led to the hypothesis that fumarate reductase might be crucial for virulence by providing (i) energy via fumarate respiration and (ii) succinate and other essential metabolic intermediates via the reductive branch of the citric acid cycle. To test this hypothesis, an isogenic A. pleuropneumoniae fumarate reductase deletion mutant was constructed and studied by using a pig aerosol infection model. The mutant was shown to be significantly attenuated, thereby strongly supporting a crucial role for fumarate reductase in the pathogenesis of A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Falk F R Buettner
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Tegetmeyer HE, Jones SCP, Langford PR, Baltes N. ISApl1, a novel insertion element of Actinobacillus pleuropneumoniae, prevents ApxIV-based serological detection of serotype 7 strain AP76. Vet Microbiol 2008; 128:342-53. [PMID: 18065168 DOI: 10.1016/j.vetmic.2007.10.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/25/2007] [Accepted: 10/30/2007] [Indexed: 11/28/2022]
Abstract
Actinobacillus pleuropneumoniae, a gram-negative rod of the Pasteurellaceae family, causes pleuropneumonia in pigs. Establishing A. pleuropneumoniae free herds is difficult due to the occurrence of persistently infected animals. The ApxIV toxin is expressed by A. pleuropneumoniae in vivo and an ELISA based on the toxin is used to detect infection and to differentiate between infected and vaccinated animals. In this study, we have identified a 1070bp insertion element of the IS30 family, designated ISApl1, in the A. pleuropneumoniae serotype 7 strain AP76. ISApl1 contains a 924bp ORF encoding a transposase, which is flanked by 27bp inverted repeats showing six mismatches. We investigated the occurrence of ISApl1 in other A. pleuropneumoniae strains, and its possible interference with virulence associated factors. Four insertion sites were identified in AP76: within the apxIVA toxin ORF, within a putative autotransporter adhesin ORF, upstream of a capsular polysaccharide biosynthesis gene cluster, and downstream of a beta-lactamase gene. ISApl1 is also present in some serotype 7 field isolates, but not in reference or field strains of other serotypes. In A. pleuropneumoniae AP76, the transposase gene is transcribed in vitro. The insertion in the apxIVA toxin gene remains stable after animal passage. Since this insertion should disrupt toxin expression, we tested 7 pigs infected with AP76 at day 21 post-infection. All were negative in the ApxIV ELISA but four out of seven were positive in an ApxII toxin ELISA. These results show that insertion elements can affect the detection of A. pleuropneumoniae infected animals.
Collapse
Affiliation(s)
- Halina E Tegetmeyer
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover Foundation, Germany
| | | | | | | |
Collapse
|
29
|
Oldfield NJ, Donovan EA, Worrall KE, Wooldridge KG, Langford PR, Rycroft AN, Ala'Aldeen DAA. Identification and characterization of novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae. Vaccine 2008; 26:1942-54. [PMID: 18342410 DOI: 10.1016/j.vaccine.2008.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/28/2008] [Accepted: 02/07/2008] [Indexed: 11/18/2022]
Abstract
Actinobacillus pleuropneumoniae is an important respiratory pathogen of swine, for which there is no highly effective vaccine. A phage expression library of the A. pleuropneumoniae genome was constructed and screened to identify potential vaccine components. Open reading frames within immuno-reactive phage were analyzed in silico to identify conserved outer membrane proteins. Four ORFs, named comL, lolB, lppC and ompA were chosen for further study. The four encoded proteins were shown experimentally to be antigenic, highly conserved, outer membrane, in vivo-expressed proteins. In pig protection studies, none of the proteins was individually capable of protecting pigs from colonization and infection with the homologous A. pleuropneumoniae strain, despite a detectable specific antibody response being induced.
Collapse
Affiliation(s)
- Neil J Oldfield
- Molecular Bacteriology and Immunology Group, Institute of Infection, Immunity & Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Buettner FFR, Maas A, Gerlach GF. An Actinobacillus pleuropneumoniae arcA deletion mutant is attenuated and deficient in biofilm formation. Vet Microbiol 2008; 127:106-15. [PMID: 17881160 DOI: 10.1016/j.vetmic.2007.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/06/2007] [Accepted: 08/07/2007] [Indexed: 11/28/2022]
Abstract
Actinobacillus pleuropneumoniae is a facultative anaerobic pathogen of the porcine respiratory tract requiring anaerobic metabolic activity for persistence on lung epithelium. The ArcAB two-component system facilitating metabolic adaptation to anaerobicity was investigated with regard to its impact on virulence and colonization of the porcine respiratory tract. Using pig infection experiments we demonstrate that deletion of arcA renders A. pleuropneumoniae significantly attenuated in acute infection and reduced long-term survival on unaltered lung epithelium as well as in sequesters. Contrary to its role in enterobacteria, the deletion of arcA in A. pleuropneumoniae does not affect growth and survival under anaerobic conditions. Instead, other than the parent strain A. pleuropneumoniae DeltaarcA does not show autoaggregation under anaerobic conditions and is deficient in biofilm formation. It is hypothesized that the lack of these functions is, at least in part, responsible for the reduction of virulence.
Collapse
Affiliation(s)
- Falk F R Buettner
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover, Germany
| | | | | |
Collapse
|
31
|
Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions. BMC Genomics 2007; 8:72. [PMID: 17355629 PMCID: PMC1832192 DOI: 10.1186/1471-2164-8-72] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 03/13/2007] [Indexed: 12/02/2022] Open
Abstract
Background To better understand effects of iron restriction on Actinobacillus pleuropneumoniae and to identify new potential vaccine targets, we conducted transcript profiling studies using a DNA microarray containing all 2025 ORFs of the genome of A. pleuropneumoniae serotype 5b strain L20. This is the first study involving the use of microarray technology to monitor the transcriptome of A. pleuropneumoniae grown under iron restriction. Results Upon comparing growth of this pathogen in iron-sufficient versus iron-depleted medium, 210 genes were identified as being differentially expressed. Some genes (92) were identified as being up-regulated; many have confirmed or putative roles in iron acquisition, such as the genes coding for two TonB energy-transducing proteins and the hemoglobin receptor HgbA. Transcript profiling also led to identification of some new iron acquisition systems of A. pleuropneumoniae. Genes coding for a possible Yfe system (yfeABCD), implicated in the acquisition of chelated iron, were detected, as well as genes coding for a putative enterobactin-type siderophore receptor system. ORFs for homologs of the HmbR system of Neisseria meningitidis involved in iron acquisition from hemoglobin were significantly up-regulated. Down-regulated genes included many that encode proteins containing Fe-S clusters or that use heme as a cofactor. Supplementation of the culture medium with exogenous iron re-established the expression level of these genes. Conclusion We have used transcriptional profiling to generate a list of genes showing differential expression during iron restriction. This strategy enabled us to gain a better understanding of the metabolic changes occurring in response to this stress. Many new potential iron acquisition systems were identified, and further studies will have to be conducted to establish their role during iron restriction.
Collapse
|
32
|
Zigha A, Rosenfeld E, Schmitt P, Duport C. The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. J Bacteriol 2007; 189:2813-24. [PMID: 17259311 PMCID: PMC1855811 DOI: 10.1128/jb.01701-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Glucose-grown cells of Bacillus cereus respond to anaerobiosis and low extracellular oxidoreduction potentials (ORP), notably by enhancing enterotoxin production. This response involves the ResDE two-component system. We searched the B. cereus genome for other redox response regulators potentially involved in this adaptive process, and we identified one gene encoding a protein predicted to have an amino acid sequence 58% identical (80% similar) to that of the Bacillus subtilis Fnr redox regulator. The fnr gene of the food-borne pathogen B. cereus F4430/73 has been cloned and partially characterized. We showed that fnr was up-regulated during anaerobic fermentation, especially when fermentation occurred at low ORP (under highly reducing conditions). The expression of fnr was down-regulated in the presence of O(2) and nitrate which, unlike fumarate, stimulated the respiratory pathways. The inactivation of B. cereus fnr abolished fermentative growth but only moderately affected aerobic and anaerobic nitrate respiratory growth. Analyses of glucose by-products and the transcription profiles of key catabolic genes confirmed the strong regulatory impact of Fnr on B. cereus fermentative pathways. More importantly, the fnr mutation strongly decreased the expression of PlcR-dependent hbl and nhe genes, leading to the absence of hemolysin BL (Hbl) and nonhemolytic enterotoxin (Nhe) secretion by the mutant. These data indicate that fnr is essential for both fermentation and toxinogenesis. The results also suggest that both Fnr and the ResDE two-component system belong to a redox regulatory pathway that functions at least partially independently of the pleiotropic virulence gene regulator PlcR to regulate enterotoxin gene expression.
Collapse
Affiliation(s)
- Assia Zigha
- Université d'Avignon-INRA, UMR A408, Sécurité et Qualité des Produits d'Origine Végétale, Avignon F-84029, France
| | | | | | | |
Collapse
|
33
|
Maas A, Jacobsen ID, Meens J, Gerlach GF. Use of an Actinobacillus pleuropneumoniae multiple mutant as a vaccine that allows differentiation of vaccinated and infected animals. Infect Immun 2006; 74:4124-32. [PMID: 16790786 PMCID: PMC1489739 DOI: 10.1128/iai.00133-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/02/2006] [Accepted: 05/02/2006] [Indexed: 11/20/2022] Open
Abstract
Vaccination against Actinobacillus pleuropneumoniae is hampered by the lack of vaccines inducing reliable cross-serotype protection. In contrast, pigs surviving natural infection are at least partially protected from clinical symptoms upon reinfection with any serotype. Thus, we set out to construct an attenuated A. pleuropneumoniae live vaccine allowing the differentiation of vaccinated from infected animals (the DIVA concept) by successively deleting virulence-associated genes. Based on an A. pleuropneumoniae serotype 2 prototype live negative marker vaccine (W. Tonpitak, N. Baltes, I. Hennig-Pauka, and G.-F. Gerlach, Infect. Immun. 70:7120-7125, 2002), genes encoding three enzymes involved in anaerobic respiration and the ferric uptake regulator Fur were deleted, resulting in a highly attenuated sixfold mutant; this mutant was still able to colonize the lower respiratory tract and induced a detectable immune response. Upon a single aerosol application, this mutant provided significant protection from clinical symptoms upon heterologous infection with an antigenically distinct A. pleuropneumoniae serotype 9 challenge strain and allowed the serological discrimination between infected and vaccinated groups.
Collapse
Affiliation(s)
- Alexander Maas
- Institut fuer Mikrobiologie, Zentrum fuer Infektionsmedizin, Stiftung Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | | | | | | |
Collapse
|
34
|
Bartolini E, Frigimelica E, Giovinazzi S, Galli G, Shaik Y, Genco C, Welsch JA, Granoff DM, Grandi G, Grifantini R. Role of FNR and FNR-regulated, sugar fermentation genes in Neisseria meningitidis infection. Mol Microbiol 2006; 60:963-72. [PMID: 16677307 PMCID: PMC2258229 DOI: 10.1111/j.1365-2958.2006.05163.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While it is generally accepted that anaerobic metabolism is required during infection, supporting experimental data have only been described in a limited number of studies. To provide additional evidence on the role of anaerobic metabolism in bacterial pathogens while invading mammalian hosts, we analysed the effect of the inactivation of FNR, the major regulatory protein involved in the adaptation to oxygen restrictive conditions, and of two of the FNR-regulated genes on the survival of Neisseria meningitidis serogroup B (MenB) in vivo. We found that fnr deletion resulted in more than 1 log reduction in the meningococcal capacity to proliferate both in infant rats and in mice. To identify which of the FNR-regulated genes were responsible for this attenuated phenotype, we defined the FNR regulon by combining DNA microarray analysis and FNR-DNA binding studies. Under oxygen-restricted conditions, FNR positively controlled the transcription of nine transcriptional units, the most upregulated of which were the two operons NMB0388-galM and mapA-pgmbeta implicated in sugar metabolism and fermentation. When galM and mapA were knocked out, the mutants were attenuated by 2 and 3 logs respectively. As the operons are controlled by FNR, from these data we conclude that MenB survival in the host anatomical sites where oxygen is limiting is supported by sugar fermentation.
Collapse
Affiliation(s)
| | | | | | | | - Yazdani Shaik
- Department of Medicine, Section of Infectious Diseases, 650 Albany Street and Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Caroline Genco
- Department of Medicine, Section of Infectious Diseases, 650 Albany Street and Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jo Anne Welsch
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609, USA
| | - Dan M. Granoff
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609, USA
| | - Guido Grandi
- Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | | |
Collapse
|