1
|
Wang BX, Leshchiner D, Luo L, Tuncel M, Hokamp K, Hinton JCD, Monack DM. High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection. Nat Genet 2024; 56:1288-1299. [PMID: 38831009 PMCID: PMC11176087 DOI: 10.1038/s41588-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijuan Luo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Tuncel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Jiang L, Li W, Hou X, Ma S, Wang X, Yan X, Yang B, Huang D, Liu B, Feng L. Nitric oxide is a host cue for Salmonella Typhimurium systemic infection in mice. Commun Biol 2023; 6:501. [PMID: 37161082 PMCID: PMC10169850 DOI: 10.1038/s42003-023-04876-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
Nitric oxide (NO) is produced as an innate immune response against microbial infections. Salmonella Typhimurium (S. Typhimurium), the major causative pathogen of human gastroenteritis, induces more severe systemic disease in mice. However, host factors contributing to the difference in species-related virulence are unknown. Here, we report that host NO production promotes S. Typhimurium replication in mouse macrophages at the early infection stage by activating Salmonella pathogenicity island-2 (SPI-2). The NO signaling-induced SPI-2 activation is mediated by Fnr and PhoP/Q two-component system. NO significantly induced fnr transcription, while Fnr directly activated phoP/Q transcription. Mouse infection assays revealed a NO-dependent increase in bacterial burden in systemic organs during the initial days of infection, indicating an early contribution of host NO to virulence. This study reveals a host signaling-mediated virulence activation pathway in S. Typhimurium that contributes significantly to its systemic infection in mice, providing further insights into Salmonella pathogenesis and host-pathogen interaction.
Collapse
Affiliation(s)
- Lingyan Jiang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Wanwu Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xi Hou
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Shuai Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xinyue Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xiaolin Yan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Di Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Wang Z, Zhu S, Li C, Lyu L, Yu J, Wang D, Xu Z, Ni J, Gao B, Lu J, Yao YF. Gene essentiality profiling reveals a novel determinant of stresses preventing protein aggregation in Salmonella. Emerg Microbes Infect 2022; 11:1554-1571. [PMID: 35603550 PMCID: PMC9176671 DOI: 10.1080/22221751.2022.2081618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adaptation to various stresses during infection is important for Salmonella Typhimurium virulence, while the fitness determinants under infection-relevant stress conditions remain unknown. Here, we simulated conditions Salmonella encountered within the host or in the environment by 15 individual stresses as well as two model cell lines (epithelium and macrophage) to decipher the genes and pathways required for fitness. By high-resolution Tn-seq analysis, a total of 1242 genes were identified as essential for fitness under at least one stress condition. The comparative analysis of fitness determinants in 17 stress conditions indicated the essentiality of genes varied in different mimicking host niches. A total of 12 genes were identified as fitness determinants in all stress conditions, including recB, recC, and xseA (encode three exonuclease subunits necessary for DNA recombination repair) and a novel essential fitness gene yheM. YheM is a putative sulfurtransferase subunit that is responsible for tRNA modification, and our results showed that Salmonella lacking yheM accumulated more aggregates of endogenous protein than wild-type. Moreover, we established a scoring scheme for sRNA essentiality analysis and found STnc2080 of unknown function was essential for resistance to LL-37. In summary, we systematically dissected Salmonella gene essentiality profiling and demonstrated the general and specific adaptive requirements in infection-relevant niches. Our data not only provide valuable insights on how Salmonella responds to environmental stresses during infections but also highlight the potential clinical application of fitness determinants in vaccine development.
Collapse
Affiliation(s)
- Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Congcong Li
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lin Lyu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhihong Xu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, People's Republic of China
| | - Jie Lu
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai, People's Republic of China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Shan S, Hu T, Yang Y. The deletion of HK-1 gene affects the bacterial virulence of Pseudomonas stutzeri LH-42. PLoS One 2022; 17:e0277089. [PMID: 36445858 PMCID: PMC9707753 DOI: 10.1371/journal.pone.0277089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Two-component systems (TCSs) are widespread regulatory systems in bacteria, which control cellular functions and play an important role in sensing various external stimuli and regulating gene expression in response to environmental changes. Among the nineteen genes for the two-component system found in the whole genome of Pseudomonas stutzeri LH-42, one of the TCS coded by the HK-1 gene, has a structural domain similar to the HAMP domain, which plays an important role in regulating bacterial virulence in other bacteria. In this study, the deletion mutant LH-42△HK-1 was successfully constructed using the lambda Red recombinase system. Compared with the wild-type strain, the mutant strain LH-42△HK-1 showed a significantly slower growth time and a longer stationary phase time. In addition, in the plate bacteriostatic experiment with Escherichia coli DH5α as an indicator strain, the inhibition zone size of the mutant strain showed significantly less than the wild-type strain(P<0.05), indicating that the virulence of the mutant strain was significantly reduced compared with the wild-type strain. Overall, the results indicate that the deletion of the gene HK-1 decreased bacterial virulence in Pseudomonas stutzeri LH-42.
Collapse
Affiliation(s)
- Si Shan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
| | - Tingting Hu
- The First People’s Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Yu Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
5
|
Mandal RK, Jiang T, Kwon YM. Genetic Determinants in Salmonella enterica Serotype Typhimurium Required for Overcoming In Vitro Stressors in the Mimicking Host Environment. Microbiol Spectr 2021; 9:e0015521. [PMID: 34878334 PMCID: PMC8653844 DOI: 10.1128/spectrum.00155-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium, a nontyphoidal Salmonella (NTS), results in a range of enteric diseases, representing a major disease burden worldwide. There is still a significant portion of Salmonella genes whose mechanistic basis to overcome host innate defense mechanisms largely remains unknown. Here, we have applied transposon insertion sequencing (Tn-seq) method to unveil the genetic factors required for the growth or survival of S. Typhimurium under various host stressors simulated in vitro. A highly saturating Tn5 library of S. Typhimurium 14028s was subjected to selection during growth in the presence of short-chain fatty acid (100 mM propionate), osmotic stress (3% NaCl), or oxidative stress (1 mM H2O2) or survival in extreme acidic pH (30 min in pH 3) or starvation (12 days in 1× phosphate-buffered saline [PBS]). We have identified a total of 339 conditionally essential genes (CEGs) required to overcome at least one of these conditions mimicking host insults. Interestingly, all eight genes encoding FoF1-ATP synthase subunit proteins were required for fitness in all five stresses. Intriguingly, a total of 88 genes in Salmonella pathogenicity islands (SPI), including SPI-1, SPI-2, SPI-3, SPI-5, SPI-6, and SPI-11, are also required for fitness under the in vitro conditions. Additionally, by comparative analysis of the genes identified in this study and the genes previously shown to be required for in vivo fitness, we identified novel genes (marBCT, envF, barA, hscA, rfaQ, rfbI, and the genes encoding putative proteins STM14_1138, STM14_3334, STM14_4825, and STM_5184) that have compelling potential for the development of vaccines and antibacterial drugs to curb Salmonella infection. IMPORTANCE Salmonella enterica serotype Typhimurium is a major human bacterial pathogen that enters the food chain through meat animals asymptomatically carrying this pathogen. Despite the rich genome sequence data, a significant portion of Salmonella genes remain to be characterized for their potential contributions to virulence. In this study, we used transposon insertion sequencing (Tn-seq) to elucidate the genetic factors required for growth or survival under various host stressors, including short-chain fatty acids, osmotic stress, oxidative stress, extreme acid, and starvation. Among the total of 339 conditionally essential genes (CEGs) that are required under at least one of these five stress conditions were 221 previously known virulence genes required for in vivo fitness during infection in at least one of four animal species, including mice, chickens, pigs, and cattle. This comprehensive map of virulence phenotype-genotype in S. Typhimurium provides a roadmap for further interrogation of the biological functions encoded by the genome of this important human pathogen to survive in hostile host environments.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tieshan Jiang
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Young Min Kwon
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
6
|
Ray S, Das S, Panda PK, Suar M. Identification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis. Gut Pathog 2018; 10:30. [PMID: 30008809 PMCID: PMC6040060 DOI: 10.1186/s13099-018-0257-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) infections caused primarily by S. Enteritidis and S. Typhimurium particularly in immunocompromised hosts have accounted for a large percentage of fatalities in developed nations. Antibiotics have revolutionized the cure of enteric infections but have also led to the rapid emergence of pathogen resistance. New powerful therapeutics involving metabolic enzymes are expected to be potential targets for combating microbial infections and ensuring effective health management. Therefore, the need for new antimicrobials to fight such health emergencies is paramount. Enteric bacteria successfully evade the gut and colonize their hosts through specialized virulence strategies. An important player, alanine racemase is a key enzyme facilitating bacterial survival. RESULTS This study aims at understanding the contribution of alanine racemase genes alr, dadX and SEN3897 to Salmonella survival in vitro and in vivo. We have shown SEN3897 to function as a unique alanine racemase in S. Enteritidis which displayed essential alanine racemase activity. Interestingly, the sole presence of this gene in alr dadX double mutant showed a strict dependence on d-alanine supplementation both in vitro and in vivo. However, Alr complementation in d-alanine auxotrophic strain restored the alanine racemase deficiency. The Km and Vmax of SEN3897 was 89.15 ± 10.2 mM, 400 ± 25.6 µmol/(min mg) for l-alanine and 35 ± 6 mM, 132.5 ± 11.3 µmol/(min mg) for d-alanine, respectively. In vitro assays for invasion and survival as well as in vivo virulence assays involving SEN3897 mutant showed attenuated phenotypes. Further, this study also showed attenuation of d-alanine auxotrophic strain in vivo for the development of potential targets against Salmonella that can be investigated further. CONCLUSION This study identified a third alanine racemase gene unique in S. Enteritidis which had a potential effect on survival and pathogenesis in vitro and in vivo. Our results also confirmed that SEN3897 by itself wasn't able to rescue d-alanine auxotrophy in S. Enteritidis which further contributed to its virulence properties.
Collapse
Affiliation(s)
- Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | - Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | | | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| |
Collapse
|
7
|
Karash S, Liyanage R, Qassab A, Lay JO, Kwon YM. A Comprehensive Assessment of the Genetic Determinants in Salmonella Typhimurium for Resistance to Hydrogen Peroxide Using Proteogenomics. Sci Rep 2017; 7:17073. [PMID: 29213059 PMCID: PMC5719062 DOI: 10.1038/s41598-017-17149-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/17/2017] [Indexed: 02/04/2023] Open
Abstract
Salmonella is an intracellular pathogen infecting a wide range of hosts and can survive in macrophages. An essential mechanism used by macrophages to eradicate Salmonella is production of reactive oxygen species. Here, we used proteogenomics to determine the candidate genes and proteins that have a role in resistance of S. Typhimurium to H2O2. For Tn-seq, a saturated Tn5 insertion library was grown in vitro under either 2.5 (H2O2L) or 3.5 mM H2O2 (H2O2H). We identified two sets of overlapping genes required for resistance of S. Typhimurium to H2O2L and H2O2H, and the results were validated via phenotypic evaluation of 50 selected mutants. The enriched pathways for H2O2 resistance included DNA repair, aromatic amino acid biosynthesis (aroBK), Fe-S cluster biosynthesis, iron homeostasis and a putative iron transporter system (ybbKLM), and H2O2 scavenging enzymes. Proteomics revealed that the majority of essential proteins, including ribosomal proteins, were downregulated upon exposure to H2O2. On the contrary, a subset of conditionally essential proteins identified by Tn-seq were analyzed by targeted proteomics, and 70% of them were upregulated by H2O2. The identified genes will deepen our understanding on S. Typhimurium survival mechanisms in macrophages, and can be exploited to develop new antimicrobial drugs.
Collapse
Affiliation(s)
- Sardar Karash
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Rohana Liyanage
- Department of Chemistry, University of Arkansas, Fayetteville, AR, 72701, USA.,Statewide Mass Spectrometry Facility, Fayetteville, AR, 72701, USA
| | - Abdullah Qassab
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jackson O Lay
- Department of Chemistry, University of Arkansas, Fayetteville, AR, 72701, USA.,Statewide Mass Spectrometry Facility, Fayetteville, AR, 72701, USA
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA. .,Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
8
|
Freed NE. Creation of a Dense Transposon Insertion Library Using Bacterial Conjugation in Enterobacterial Strains Such As Escherichia Coli or Shigella flexneri. J Vis Exp 2017. [PMID: 28994778 PMCID: PMC5752320 DOI: 10.3791/56216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Transposon mutagenesis is a method that allows gene disruption via the random genomic insertion of a piece of DNA called a transposon. The protocol below outlines a method for high efficiency transfer between bacterial strains of a plasmid harboring a transposon containing a kanamycin resistance marker. The plasmid-borne transposase is encoded by a variant tnp gene that inserts the transposon into the genome of the recipient strain with very low insertional bias. This method thus allows the creation of large mutant libraries in which transposons have been inserted into unique genomic positions in a recipient strain of either Escherichia coli or Shigella flexneri bacteria. By using bacterial conjugation, as opposed to other methods such as electroporation or chemical transformation, large libraries with hundreds of thousands of unique clones can be created. This yields high-density insertion libraries, with insertions occurring as frequently as every 4-6 base pairs in non-essential genes. This method is superior to other methods as it allows for an inexpensive, easy to use, and high efficiency method for the creation of a dense transposon insertion library. The transposon library can be used in downstream applications such as transposon sequencing (Tn-Seq), to infer genetic interaction networks, or more simply, in mutational (forward genetic) screens.
Collapse
Affiliation(s)
- Nikki E Freed
- Institute of Natural and Mathematical Sciences, Massey University;
| |
Collapse
|
9
|
Kilroy S, Raspoet R, Martel A, Bosseler L, Appia-Ayme C, Thompson A, Haesebrouck F, Ducatelle R, Van Immerseel F. Salmonella Enteritidis flagellar mutants have a colonization benefit in the chicken oviduct. Comp Immunol Microbiol Infect Dis 2017; 50:23-28. [PMID: 28131374 DOI: 10.1016/j.cimid.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/28/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Abstract
Egg borne Salmonella Enteritidis is still a major cause of human food poisoning. Eggs can become internally contaminated following colonization of the hen's oviduct. In this paper we aimed to analyze the role of flagella of Salmonella Enteritidis in colonization of the hen's oviduct. Using a transposon library screen we showed that mutants lacking functional flagella are significantly more efficient in colonizing the hen's oviduct in vivo. A micro-array analysis proved that transcription of a number of flagellar genes is down-regulated inside chicken oviduct cells. Flagella contain flagellin, a pathogen associated molecular pattern known to bind to Toll-like receptor 5, activating a pro-inflammatory cascade. In vitro tests using primary oviduct cells showed that flagellin is not involved in invasion. Using a ligated loop model, a diminished inflammatory reaction was seen in the oviduct resulting from injection of an aflagellated mutant compared to the wild-type. It is hypothesized that Salmonella Enteritidis downregulates flagellar gene expression in the oviduct and consequently prevents a flagellin-induced inflammatory response, thereby increasing its oviduct colonization efficiency.
Collapse
Affiliation(s)
- Sofie Kilroy
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Ruth Raspoet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Leslie Bosseler
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Corinne Appia-Ayme
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, Norwich, United Kingdom; Institute of Food Research, Norwich Research Park, Colney Ln, Norwich NR4 7UA, United Kingdom.
| | - Arthur Thompson
- Institute of Food Research, Norwich Research Park, Colney Ln, Norwich NR4 7UA, United Kingdom.
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
10
|
Freed NE, Bumann D, Silander OK. Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality. BMC Microbiol 2016; 16:203. [PMID: 27599549 PMCID: PMC5011829 DOI: 10.1186/s12866-016-0818-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Gene essentiality - whether or not a gene is necessary for cell growth - is a fundamental component of gene function. It is not well established how quickly gene essentiality can change, as few studies have compared empirical measures of essentiality between closely related organisms. RESULTS Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in the bacterial pathogen Shigella flexneri 2a 2457T on a genome-wide scale. Superficial analysis of this data suggested that 481 protein-coding genes in this Shigella strain are critical for robust cellular growth on rich media. Comparison of this set of genes with a gold-standard data set of essential genes in the closely related Escherichia coli K12 BW25113 revealed that an excessive number of genes appeared essential in Shigella but non-essential in E. coli. Importantly, and in converse to this comparison, we found no genes that were essential in E. coli and non-essential in Shigella, implying that many genes were artefactually inferred as essential in Shigella. Controlling for such artefacts resulted in a much smaller set of discrepant genes. Among these, we identified three sets of functionally related genes, two of which have previously been implicated as critical for Shigella growth, but which are dispensable for E. coli growth. CONCLUSIONS The data presented here highlight the small number of protein coding genes for which we have strong evidence that their essentiality status differs between the closely related bacterial taxa E. coli and Shigella. A set of genes involved in acetate utilization provides a canonical example. These results leave open the possibility of developing strain-specific antibiotic treatments targeting such differentially essential genes, but suggest that such opportunities may be rare in closely related bacteria.
Collapse
Affiliation(s)
- Nikki E Freed
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand.,Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Olin K Silander
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand. .,Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Smith C, Stringer AM, Mao C, Palumbo MJ, Wade JT. Mapping the Regulatory Network for Salmonella enterica Serovar Typhimurium Invasion. mBio 2016; 7:e01024-16. [PMID: 27601571 PMCID: PMC5013294 DOI: 10.1128/mbio.01024-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Salmonella enterica pathogenicity island 1 (SPI-1) encodes proteins required for invasion of gut epithelial cells. The timing of invasion is tightly controlled by a complex regulatory network. The transcription factor (TF) HilD is the master regulator of this process and senses environmental signals associated with invasion. HilD activates transcription of genes within and outside SPI-1, including six other TFs. Thus, the transcriptional program associated with host cell invasion is controlled by at least 7 TFs. However, very few of the regulatory targets are known for these TFs, and the extent of the regulatory network is unclear. In this study, we used complementary genomic approaches to map the direct regulatory targets of all 7 TFs. Our data reveal a highly complex and interconnected network that includes many previously undescribed regulatory targets. Moreover, the network extends well beyond the 7 TFs, due to the inclusion of many additional TFs and noncoding RNAs. By comparing gene expression profiles of regulatory targets for the 7 TFs, we identified many uncharacterized genes that are likely to play direct roles in invasion. We also uncovered cross talk between SPI-1 regulation and other regulatory pathways, which, in turn, identified gene clusters that likely share related functions. Our data are freely available through an intuitive online browser and represent a valuable resource for the bacterial research community. IMPORTANCE Invasion of epithelial cells is an early step during infection by Salmonella enterica and requires secretion of specific proteins into host cells via a type III secretion system (T3SS). Most T3SS-associated proteins required for invasion are encoded in a horizontally acquired genomic locus known as Salmonella pathogenicity island 1 (SPI-1). Multiple regulators respond to environmental signals to ensure appropriate timing of SPI-1 gene expression. In particular, there are seven transcription regulators that are known to be involved in coordinating expression of SPI-1 genes. We have used complementary genome-scale approaches to map the gene targets of these seven regulators. Our data reveal a highly complex and interconnected regulatory network that includes many previously undescribed target genes. Moreover, our data functionally implicate many uncharacterized genes in the invasion process and reveal cross talk between SPI-1 regulation and other regulatory pathways. All datasets are freely available through an intuitive online browser.
Collapse
Affiliation(s)
- Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Chunhong Mao
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, USA
| | - Michael J Palumbo
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
12
|
Microarray-based detection of Salmonella enterica serovar Enteritidis genes involved in chicken reproductive tract colonization. Appl Environ Microbiol 2014; 80:7710-6. [PMID: 25281378 DOI: 10.1128/aem.02867-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Enteritidis has developed the potential to contaminate table eggs internally, by colonization of the chicken reproductive tract and internalization in the forming egg. The serotype Enteritidis has developed mechanisms to colonize the chicken oviduct more successfully than other serotypes. Until now, the strategies exploited by Salmonella Enteritidis to do so have remained largely unknown. For that reason, a microarray-based transposon library screen was used to identify genes that are essential for the persistence of Salmonella Enteritidis inside primary chicken oviduct gland cells in vitro and inside the reproductive tract in vivo. A total of 81 genes with a potential role in persistence in both the oviduct cells and the oviduct tissue were identified. Major groups of importance include the Salmonella pathogenicity islands 1 and 2, genes involved in stress responses, cell wall, and lipopolysaccharide structure, and the region-of-difference genomic islands 9, 21, and 40.
Collapse
|
13
|
Maier L, Vyas R, Cordova CD, Lindsay H, Schmidt TSB, Brugiroux S, Periaswamy B, Bauer R, Sturm A, Schreiber F, von Mering C, Robinson MD, Stecher B, Hardt WD. Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe 2014; 14:641-51. [PMID: 24331462 DOI: 10.1016/j.chom.2013.11.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023]
Abstract
The intestinal microbiota features intricate metabolic interactions involving the breakdown and reuse of host- and diet-derived nutrients. The competition for these resources can limit pathogen growth. Nevertheless, some enteropathogenic bacteria can invade this niche through mechanisms that remain largely unclear. Using a mouse model for Salmonella diarrhea and a transposon mutant screen, we discovered that initial growth of Salmonella Typhimurium (S. Tm) in the unperturbed gut is powered by S. Tm hyb hydrogenase, which facilitates consumption of hydrogen (H2), a central intermediate of microbiota metabolism. In competitive infection experiments, a hyb mutant exhibited reduced growth early in infection compared to wild-type S. Tm, but these differences were lost upon antibiotic-mediated disruption of the host microbiota. Additionally, introducing H2-consuming bacteria into the microbiota interfered with hyb-dependent S. Tm growth. Thus, H2 is an Achilles' heel of microbiota metabolism that can be subverted by pathogens and might offer opportunities to prevent infection.
Collapse
Affiliation(s)
- Lisa Maier
- Institute of Microbiology, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Rounak Vyas
- SIB Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Helen Lindsay
- SIB Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Sandrine Brugiroux
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | | | - Rebekka Bauer
- Institute of Microbiology, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Alexander Sturm
- Institute of Microbiology, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Frank Schreiber
- Department of Environmental Microbiology, Eawag and Department of Environmental Systems Sciences, ETH Zurich, CH-8600 Dübendorf, Switzerland
| | - Christian von Mering
- SIB Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mark D Robinson
- SIB Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | | |
Collapse
|
14
|
Raspoet R, Shearer N, Appia-Ayme C, Haesebrouck F, Ducatelle R, Thompson A, Van Immerseel F. A genome-wide screen identifies Salmonella Enteritidis lipopolysaccharide biosynthesis and the HtrA heat shock protein as crucial factors involved in egg white persistence at chicken body temperature. Poult Sci 2014; 93:1263-9. [PMID: 24795321 DOI: 10.3382/ps.2013-03711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eggs contaminated with Salmonella Enteritidis are an important source of human foodborne Salmonella infections. Salmonella Enteritidis is able to contaminate egg white during formation of the egg within the chicken oviduct, and it has developed strategies to withstand the antimicrobial properties of egg white to survive in this hostile environment. The mechanisms involved in the persistence of Salmonella Enteritidis in egg white are likely to be complex. To address this issue, a microarray-based transposon library screen was performed to identify genes necessary for survival of Salmonella Enteritidis in egg white at chicken body temperature. The majority of identified genes belonged to the lipopolysaccharide biosynthesis pathway. Additionally, we provide evidence that the serine protease/heat shock protein (HtrA) appears essential for the survival of Salmonella Enteritidis in egg white at chicken body temperature.
Collapse
Affiliation(s)
- R Raspoet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, Feng Y, Wang G, Peng C, Jiang X, Zhou D, Ni P, Liang C, Liu L, Wang J, Mao C, Fang X, Peng M, Huang J. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS One 2014; 9:e95543. [PMID: 24743270 PMCID: PMC3990668 DOI: 10.1371/journal.pone.0095543] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/28/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. METHODOLOGY/PRINCIPAL FINDINGS Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana 'Brazil' in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety 'Brazil'. CONCLUSIONS/SIGNIFICANCE Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana.
Collapse
Affiliation(s)
- Lijia Guo
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Laying Yang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huicai Zeng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | | | | | - Guofen Wang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | | | | | | | - Changcong Liang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lei Liu
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jun Wang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chao Mao
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Junsheng Huang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
16
|
Hammarlöf DL, Canals R, Hinton JCD. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics. Curr Opin Microbiol 2013; 16:643-51. [PMID: 24021902 DOI: 10.1016/j.mib.2013.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/12/2013] [Indexed: 02/01/2023]
Abstract
The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens.
Collapse
Affiliation(s)
- Disa L Hammarlöf
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | |
Collapse
|
17
|
Pezoa D, Yang HJ, Blondel CJ, Santiviago CA, Andrews-Polymenis HL, Contreras I. The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken. PLoS One 2013; 8:e63917. [PMID: 23691117 PMCID: PMC3653874 DOI: 10.1371/journal.pone.0063917] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/09/2013] [Indexed: 02/06/2023] Open
Abstract
The role of the Salmonella Pathogenicity Islands (SPIs) in pathogenesis of Salmonella enterica Typhimurium infection in the chicken is poorly studied, while many studies have been completed in murine models. The Type VI Secretion System (T6SS) is a recently described protein secretion system in Gram-negative bacteria. The genus Salmonella contains five phylogenetically distinct T6SS encoded in differentially distributed genomic islands. S. Typhimurium harbors a T6SS encoded in SPI-6 (T6SSSPI-6), which contributes to the ability of Salmonella to colonize mice. On the other hand, serotype Gallinarum harbors a T6SS encoded in SPI-19 (T6SSSPI-19) that is required for colonization of chicks. In this work, we investigated the role of T6SSSPI-6 in infection of chicks by S. Typhimurium. Oral infection of White Leghorn chicks showed that a ΔT6SSSPI-6 mutant had reduced colonization of the gut and internal organs, compared with the wild-type strain. Transfer of the intact T6SSSPI-6 gene cluster into the T6SS mutant restored bacterial colonization. In addition, our results showed that transfer of T6SSSPI-19 from S. Gallinarum to the ΔT6SSSPI-6 mutant of S. Typhimurium not only complemented the colonization defect but also resulted in a transient increase in the colonization of the cecum and ileum of chicks at days 1 and 3 post-infection. Our data indicates that T6SSSPI-6 contributes to chicken colonization and suggests that both T6SSSPI-6 and T6SSSPI-19 perform similar functions in vivo despite belonging to different phylogenetic families.
Collapse
Affiliation(s)
- David Pezoa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Hee-Jeong Yang
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College of Medicine, College Station, Texas, United States of America
| | - Carlos J. Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helene L. Andrews-Polymenis
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College of Medicine, College Station, Texas, United States of America
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Kemski MM, Stevens B, Rappleye CA. Spectrum of T-DNA integrations for insertional mutagenesis of Histoplasma capsulatum. Fungal Biol 2012; 117:41-51. [PMID: 23332832 DOI: 10.1016/j.funbio.2012.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Agrobacterium-mediated transformation is being increasingly used for insertional mutagenesis of fungi. To better evaluate its effectiveness as a mutagen for the fungal pathogen Histoplasma capsulatum, we analyzed a collection of randomly selected T-DNA insertion mutants. Testing of different T-DNA element vectors engineered for transformation of fungi showed that pBHt2 provides the highest transformation efficiency and the lowest rate of vector backbone carryover. Sixty-eight individual T-DNA integrations were characterized by recovery of T-DNA ends and flanking genomic sequences. The right border (RB) end of the T-DNA is largely preserved whereas the left border (LB) end is frequently truncated. Analysis of T-DNA insertion sites confirms the lack of any integration hotspots in the Histoplasma genome. Relative to genes, T-DNA integrations show significant bias towards promoter regions at the expense of coding sequences. With consideration for potential promoter interruption and the demonstrated efficacy of intronic insertions, 61 % of mapped T-DNA insertions should impair gene expression or function. Mapping of T-DNA flanking sequences demonstrates 67 % of T-DNA integrations are integrations at a single chromosomal site and 31 % of T-DNA integrations are associated with large-scale chromosomal rearrangements. This characterization of T-DNA insertions in mutants selected without regard to phenotype supports application of Agrobacterium-mediated transformation as an insertional mutagen for genome-based screens and functional discovery of genes in Histoplasma.
Collapse
Affiliation(s)
- Megan M Kemski
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
19
|
Luo Y, Kong Q, Yang J, Mitra A, Golden G, Wanda SY, Roland KL, Jensen RV, Ernst PB, Curtiss R. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1. PLoS One 2012; 7:e40645. [PMID: 22792393 PMCID: PMC3391293 DOI: 10.1371/journal.pone.0040645] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 06/13/2012] [Indexed: 12/26/2022] Open
Abstract
Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1) is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.
Collapse
Affiliation(s)
- Yingqin Luo
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Qingke Kong
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jiseon Yang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Arindam Mitra
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Greg Golden
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Soo-Young Wanda
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Peter B. Ernst
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
20
|
Selection of Salmonella enterica serovar Typhi genes involved during interaction with human macrophages by screening of a transposon mutant library. PLoS One 2012; 7:e36643. [PMID: 22574205 PMCID: PMC3344905 DOI: 10.1371/journal.pone.0036643] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated.
Collapse
|
21
|
Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect Immun 2012; 80:1996-2007. [PMID: 22493086 DOI: 10.1128/iai.06205-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The enteropathogen Salmonella enterica serovar Typhimurium employs a suite of tightly regulated virulence factors within the intracellular compartment of phagocytic host cells resulting in systemic dissemination in mice. A type VI secretion system (T6SS) within Salmonella pathogenicity island 6 (SPI-6) has been implicated in this process; however, the regulatory inputs and the roles of noncore genes in this system are not well understood. Here we describe four clusters of noncore T6SS genes in SPI-6 based on a comparative relationship with the T6SS-3 of Burkholderia mallei and report that the disruption of these genes results in defects in intracellular replication and systemic dissemination in mice. In addition, we show that the expression of the SPI-6-encoded Hcp and VgrG orthologs is enhanced during late stages of macrophage infection. We identify six regions that are transcriptionally active during cell infections and that have regulatory contributions from the regulators of virulence SsrB, PhoP, and SlyA. We show that levels of protein expression are very weak under in vitro conditions and that expression is not enhanced upon the deletion of ssrB, phoP, slyA, qseC, ompR, or hfq, suggesting an unknown activating factor. These data suggest that the SPI-6 T6SS has been integrated into the Salmonella Typhimurium virulence network and customized for host-pathogen interactions through the action of noncore genes.
Collapse
|
22
|
Genome scanning for conditionally essential genes in Salmonella enterica Serotype Typhimurium. Appl Environ Microbiol 2012; 78:3098-107. [PMID: 22367088 DOI: 10.1128/aem.06865-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As more whole-genome sequences become available, there is an increasing demand for high-throughput methods that link genes to phenotypes, facilitating discovery of new gene functions. In this study, we describe a new version of the Tn-seq method involving a modified EZ:Tn5 transposon for genome-wide and quantitative mapping of all insertions in a complex mutant library utilizing massively parallel Illumina sequencing. This Tn-seq method was applied to a genome-saturating Salmonella enterica serotype Typhimurium mutant library recovered from selection under 3 different in vitro growth conditions (diluted Luria-Bertani [LB] medium, LB medium plus bile acid, and LB medium at 42°C), mimicking some aspects of host stressors. We identified an overlapping set of 105 protein-coding genes in S. Typhimurium that are conditionally essential under at least one of the above selective conditions. Competition assays using 4 deletion mutants (pyrD, glnL, recD, and STM14_5307) confirmed the phenotypes predicted by Tn-seq data, validating the utility of this approach in discovering new gene functions. With continuously increasing sequencing capacity of next generation sequencing technologies, this robust Tn-seq method will aid in revealing unexplored genetic determinants and the underlying mechanisms of various biological processes in Salmonella and the other approximately 70 bacterial species for which EZ:Tn5 mutagenesis has been established.
Collapse
|
23
|
Yang X, Suo Z, Thornburg T, Holderness K, Cao L, Lim T, Walters N, Kellerman L, Loetterle L, Avci R, Pascual DW. Expression of Escherichia coli virulence usher protein attenuates wild-type Salmonella. Virulence 2012; 3:29-42. [PMID: 22286706 DOI: 10.4161/viru.3.1.18447] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Generation of a live attenuated vaccine for bacterial pathogens often requires prior knowledge of the pathogen's virulence factors. We hypothesized an alternative approach of heterologous gene expression would make a wild-type (wt) pathogen more susceptible to host cell killing, thus, resulting in immunization. As proof of concept, the heterologous expression of enterotoxigenic E. coli (ETEC) colonization factor antigen I (CFA/I) was tested to attenuate Salmonella. The overexpression of CFA/I resulted in significant attenuation of wt Salmonella. In-depth studies revealed the attenuation depended on the co-expression of chaperone (CfaA) and usher (CfaC) proteins. Remarkably, the CfaAC-attenuated Salmonella conferred protection against wt Salmonella challenge. Mechanistic study indicated CfaAC made Salmonella outer membranes permeable, causing Salmonella to be vulnerable to host destruction. Thus, enhancing bacterial permeability via CfaAC represents an alternative method to attenuate pathogens despite the presence of unknown virulence factors.
Collapse
Affiliation(s)
- Xinghong Yang
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
A transposon site hybridization screen identifies galU and wecBC as important for survival of Yersinia pestis in murine macrophages. J Bacteriol 2011; 194:653-62. [PMID: 22139502 DOI: 10.1128/jb.06237-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yersinia pestis is able to survive and replicate within murine macrophages. However, the mechanism by which Y. pestis promotes its intracellular survival is not well understood. To identify genes that are important for Y. pestis survival in macrophages, a library comprised of ∼31,500 Y. pestis KIM6+ transposon insertion mutants (input pool) was subjected to negative selection in primary murine macrophages. Genes underrepresented in the output pool of surviving bacteria were identified by transposon site hybridization to DNA oligonucleotide microarrays. The screen identified several genes known to be important for survival of Y. pestis in macrophages, including phoPQ and members of the PhoPQ regulon (e.g., pmrF). In addition, genes predicated to encode a glucose-1-phosphate uridylyltransferase (galU), a UDP-N-acetylglucosamine 2-epimerase (wecB) and a UDP-N-acetyl-d-mannosamine dehydrogenase (wecC) were identified in the screen. Viable-count assays demonstrated that a KIM6+ galU mutant and a KIM6+ wecBC mutant were defective for survival in murine macrophages. The galU mutant was studied further because of its strong phenotype. The KIM6+ galU mutant exhibited increased susceptibility to the antimicrobial peptides polymyxin B and cathelicidin-related antimicrobial peptide (CRAMP). Polyacrylamide gel electrophoresis demonstrated that the lipooligosaccharide (LOS) of the galU mutant migrated faster than the LOS of the parent KIM6+, suggesting the core was truncated. In addition, the analysis of LOS isolated from the galU mutant by mass spectrometry showed that aminoarabinose modification of lipid A is absent. Therefore, addition of aminoarabinose to lipid A and complete LOS core (galU), as well as enterobacterial common antigen (wecB and wecC), is important for survival of Y. pestis in macrophages.
Collapse
|
25
|
Infection of mice by Salmonella enterica serovar Enteritidis involves additional genes that are absent in the genome of serovar Typhimurium. Infect Immun 2011; 80:839-49. [PMID: 22083712 DOI: 10.1128/iai.05497-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models.
Collapse
|
26
|
Alegado RA, Chin CY, Monack DM, Tan MW. The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cell Microbiol 2011; 13:1618-37. [PMID: 21790938 DOI: 10.1111/j.1462-5822.2011.01645.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of enteric pathogens to perceive and adapt to distinct environments within the metazoan intestinal tract is critical for pathogenesis; however, the preponderance of interactions between microbe- and host-derived factors remain to be fully understood. Salmonella enterica serovar Typhimurium is a medically important enteric bacterium that colonizes, proliferates and persists in the intestinal lumen of the nematode Caenorhabditis elegans. Several Salmonella virulence factors important in murine and tissue culture models also contribute to worm mortality and intestinal persistence. For example, PhoP and the virulence plasmid pSLT are virulence factors required for resistance to the C. elegans antimicrobial peptide SPP-1. To uncover additional determinants required for Salmonella typhimurium pathogenesis in vivo, we devised a genetic screen to identify bacterial mutants defective in establishing a persistent infection in the intestine of C. elegans. Here we report on identification of 14 loci required for persistence in the C. elegans intestine and characterization of KdpD, a sensor kinase of a two-component system in S. typhimurium pathogenesis. We show that kdpD mutants are profoundly attenuated in intestinal persistence in the nematode and in macrophage survival. These findings may be attributed to the essential role KdpD plays in promoting resistance to osmotic, oxidative and antimicrobial stresses.
Collapse
Affiliation(s)
- Rosanna A Alegado
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
27
|
McDermott JE, Yoon H, Nakayasu ES, Metz TO, Hyduke DR, Kidwai AS, Palsson BO, Adkins JN, Heffron F. Technologies and approaches to elucidate and model the virulence program of salmonella. Front Microbiol 2011; 2:121. [PMID: 21687430 PMCID: PMC3108385 DOI: 10.3389/fmicb.2011.00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/15/2011] [Indexed: 11/13/2022] Open
Abstract
Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches used to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated large amounts of data and necessitated the development of computational approaches for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird's eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.
Collapse
Affiliation(s)
- Jason E. McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Hyunjin Yoon
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| | - Ernesto S. Nakayasu
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Thomas O. Metz
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Daniel R. Hyduke
- Systems Biology, University of California San DiegoSan Diego, CA, USA
| | - Afshan S. Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| | | | - Joshua N. Adkins
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| |
Collapse
|
28
|
Martínez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, Bustamante VH. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol 2011; 80:1637-56. [PMID: 21518393 DOI: 10.1111/j.1365-2958.2011.07674.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events.
Collapse
Affiliation(s)
- Luary C Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | | | | | | | | | | | | |
Collapse
|
29
|
Evans MR, Fink RC, Vazquez-Torres A, Porwollik S, Jones-Carson J, McClelland M, Hassan HM. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol 2011; 11:58. [PMID: 21418628 PMCID: PMC3075218 DOI: 10.1186/1471-2180-11-58] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/21/2011] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control) helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium. Results We compared the transcriptional profiles of the virulent wild-type (WT) strain (ATCC 14028s) and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome); of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis) were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV), Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784). In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr. Conclusion(s) We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella biosynthesis, and motility. Furthermore, ArcA and Fnr share in the regulation of 120 S. Typhimurium genes.
Collapse
Affiliation(s)
- Matthew R Evans
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Van Immerseel F. Stress-induced survival strategies enable Salmonella Enteritidis to persistently colonize the chicken oviduct tissue and cope with antimicrobial factors in egg white: A hypothesis to explain a pandemic. Gut Pathog 2010; 2:23. [PMID: 21172004 PMCID: PMC3016255 DOI: 10.1186/1757-4749-2-23] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 01/30/2023] Open
Abstract
Background Egg-associated transmission to humans seems to be characteristic of the Salmonella serotype Enteritidis, explaining why this particular serotype has caused a worldwide pandemic since the mid '80s. Salmonella Enteritidis is much more capable to persistently colonize the laying hen reproductive tract and to survive in the hostile egg white, as compared to other serotypes. Presentation of the hypothesis It is hypothesized that stress-induced survival mechanisms enable the serotype Enteritidis to persistently colonize the oviduct without causing damage and excessive inflammation, and to cope with the antimicrobial compounds present in egg white. Testing the hypothesis To test the hypothesis first of all Salmonella Enteritidis genes that are essential for colonization of the oviduct and survival in eggs need to be identified. Comparative genomics tools should be used to identify genes or pathogenicity islands that are present in Salmonella Enteritidis and not in the multiple non egg-contaminating serotypes. High-throughput signature-tagged-mutagenesis approaches, coupled to micro-array detection of the genes that lead to an attenuated phenotype when mutated is proposed as an ideal tool to identify genes involved in oviduct colonization and egg white survival. Identifying the stressors and antibacterial molecules in the oviduct and in the egg white that limit colonization or survival of non-Enteritidis serotypes is a second important objective that can theoretically be achieved using screenings of expressed oviduct cDNA libraries for their antibacterial activity against strains from multiple serotypes. Finally, the effect of contact with these stressors in the oviduct or egg white on Salmonella gene expression will need to be analyzed, in order to clarify whether serotype Enteritidis-specific regulation of certain stress-survival pathways are either or not present. Implications of the hypothesis Knowledge on the pathogenesis of egg infections would furthermore give insights that might be extrapolated to other biological interactions, in which a highly specialized bacterial pathogen resists the host response in a specific biological niche. In addition, this info can be of value in developing early warning criteria to identify emerging egg-associated Salmonella strains and in developing safe live attenuated vaccine strains.
Collapse
Affiliation(s)
- Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Research Group Veterinary Public Health and Zoonoses, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
31
|
Bailly-Bechet M, Benecke A, Hardt WD, Lanza V, Sturm A, Zecchina R. An externally modulated, noise-driven switch for the regulation of SPI1 in Salmonella enterica serovar Typhimurium. J Math Biol 2010; 63:637-62. [DOI: 10.1007/s00285-010-0385-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 11/03/2010] [Indexed: 11/29/2022]
|
32
|
Fur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium. J Bacteriol 2010; 193:497-505. [PMID: 21075923 DOI: 10.1128/jb.00942-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential element for the survival of living cells. However, excess iron is toxic, and its uptake is exquisitely regulated by the ferric uptake regulator, Fur. In Salmonella, the Salmonella pathogenicity island 1 (SPI-1) encodes a type three secretion system, which is required for invasion of host epithelial cells in the small intestine. A major activator of SPI-1 is HilA, which is encoded within SPI-1. One known regulator of hilA is Fur. The mechanism of hilA regulation by Fur is unknown. We report here that Fur is required for virulence in Salmonella enterica serovar Typhimurium and that Fur is required for the activation of hilA, as well as of other HilA-dependent genes, invF and sipC. The Fur-dependent regulation of hilA was independent of PhoP, a known repressor of hilA. Instead, the expression of the gene coding for the histone-like protein, hns, was significantly derepressed in the fur mutant. Indeed, the activation of hilA by Fur was dependent on 28 nucleotides located upstream of hns. Moreover, we used chromatin immunoprecipitation to show that Fur bound, in vivo, to the upstream region of hns in a metal-dependent fashion. Finally, deletion of fur in an hns mutant resulted in Fur-independent activation of hilA. In conclusion, Fur activates hilA by repressing the expression of hns.
Collapse
|
33
|
Forest CG, Ferraro E, Sabbagh SC, Daigle F. Intracellular survival of Salmonella enterica serovar Typhi in human macrophages is independent of Salmonella pathogenicity island (SPI)-2. MICROBIOLOGY-SGM 2010; 156:3689-3698. [PMID: 20817644 DOI: 10.1099/mic.0.041624-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For successful infection, Salmonella enterica secretes and injects effector proteins into host cells by two distinct type three secretion systems (T3SSs) located on Salmonella pathogenicity islands (SPIs)-1 and -2. The SPI-2 T3SS is involved in intracellular survival of S. enterica serovar Typhimurium and systemic disease. As little is known regarding the function of the SPI-2 T3SS from S. enterica serovar Typhi, the aetiological agent of typhoid fever, we investigated its role for survival in human macrophages. Mutations in the translocon (sseB), basal secretion apparatus (ssaR) and regulator (ssrB) did not result in any reduction in survival under many of the conditions tested. Similar results were obtained with another S. Typhi strain or by using human primary cells. Results were corroborated based on complete deletion of the SPI-2 T3SS. Surprisingly, the data suggest that the SPI-2 T3SS of S. Typhi is not required for survival in human macrophages.
Collapse
Affiliation(s)
- Chantal G Forest
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Elyse Ferraro
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Sébastien C Sabbagh
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - France Daigle
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
34
|
Identification of genes that are dispensable for animal infection by Salmonella typhimurium. J Microbiol 2010; 48:399-403. [PMID: 20571960 DOI: 10.1007/s12275-010-9332-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/28/2010] [Indexed: 12/17/2022]
Abstract
In the current study, we generated a pool of Salmonella typhimurium mutants using the Tn10d-cam mini-transposon. This pool of mutants was administered to BALB/c mice through the oral route, and bacteria were recovered from the spleen 3 days post-infection. After three rounds of serial passage, we observed enrichment of two insertion mutants, a yddG insertion and an amyA insertion. These two genes have been implicated in growth on plant products (amyA) and survival in the presence of paraquat (yddG), both of which are natural environments for Salmonella. Thus, while in vivo expression technology has identified S. typhimurium genes that are absolutely necessary for animal infection, other genes involved in vegetative growth also appear to play role in the establishment of pathogenesis.
Collapse
|
35
|
Arrach N, Cheng P, Zhao M, Santiviago CA, Hoffman RM, McClelland M. High-throughput screening for salmonella avirulent mutants that retain targeting of solid tumors. Cancer Res 2010; 70:2165-70. [PMID: 20231149 DOI: 10.1158/0008-5472.can-09-4005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Salmonella has a natural ability to target a wide range of tumors in animal models. However, strains used for cancer therapy have generally been selected only for their avirulence rather than their tumor-targeting ability. To select Salmonella strains that are avirulent and yet efficient in tumor targeting, a necessary criterion for clinical applications, we measured the relative fitness of 41,000 Salmonella transposon insertion mutants growing in mouse models of human prostate and breast cancer. Two classes of potentially safe mutants were identified. Class 1 mutants showed reduced fitness in normal tissues and unchanged fitness in tumors (e.g., mutants in htrA, SPI-2, and STM3120). Class 2 mutants showed reduced fitness in tumors and normal tissues (e.g., mutants in aroA and aroD). In a competitive fitness assay in human PC-3 tumors growing in mice, class 1 mutant STM3120 had a fitness advantage over class 2 mutants aroA and aroD, validating the findings of the initial screening of a large pool of transposon mutants and indicating a potential advantage of class 1 mutants for delivery of cancer therapeutics. In addition, an STM3120 mutant successfully targeted tumors after intragastric delivery, opening up the oral route as an option for therapy administration.
Collapse
Affiliation(s)
- Nabil Arrach
- Sanford-Burnham Medical Research Institute, La Jolla, California 92121, USA
| | | | | | | | | | | |
Collapse
|
36
|
Indoleamine 2,3-dioxygenase 1 is a lung-specific innate immune defense mechanism that inhibits growth of Francisella tularensis tryptophan auxotrophs. Infect Immun 2010; 78:2723-33. [PMID: 20385761 DOI: 10.1128/iai.00008-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Upon microbial challenge, organs at various anatomic sites of the body employ different innate immune mechanisms to defend against potential infections. Accordingly, microbial pathogens evolved to subvert these organ-specific host immune mechanisms to survive and grow in infected organs. Francisella tularensis is a bacterium capable of infecting multiple organs and thus encounters a myriad of organ-specific defense mechanisms. This suggests that F. tularensis may possess specific factors that aid in evasion of these innate immune defenses. We carried out a microarray-based, negative-selection screen in an intranasal model of Francisella novicida infection to identify Francisella genes that contribute to bacterial growth specifically in the lungs of mice. Genes in the bacterial tryptophan biosynthetic pathway were identified as being important for F. novicida growth specifically in the lungs. In addition, a host tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase 1 (IDO1), is induced specifically in the lungs of mice infected with F. novicida or Streptococcus pneumoniae. Furthermore, the attenuation of F. novicida tryptophan mutant bacteria was rescued in the lungs of IDO1(-/-) mice. IDO1 is a lung-specific innate immune mechanism that controls pulmonary Francisella infections.
Collapse
|
37
|
Stevens MP, Humphrey TJ, Maskell DJ. Molecular insights into farm animal and zoonotic Salmonella infections. Philos Trans R Soc Lond B Biol Sci 2009; 364:2709-23. [PMID: 19687040 PMCID: PMC2865095 DOI: 10.1098/rstb.2009.0094] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica is a facultative intracellular pathogen of worldwide importance. Infections may present in a variety of ways, from asymptomatic colonization to inflammatory diarrhoea or typhoid fever depending on serovar- and host-specific factors. Human diarrhoeal infections are frequently acquired via the food chain and farm environment by virtue of the ability of selected non-typhoidal serovars to colonize the intestines of food-producing animals and contaminate the avian reproductive tract and egg. Colonization of reservoir hosts often occurs in the absence of clinical symptoms; however, some S. enterica serovars threaten animal health owing to their ability to cause acute enteritis or translocate from the intestines to other organs causing fever, septicaemia and abortion. Despite the availability of complete genome sequences of isolates representing several serovars, the molecular mechanisms underlying Salmonella colonization, pathogenesis and transmission in reservoir hosts remain ill-defined. Here we review current knowledge of the bacterial factors influencing colonization of food-producing animals by Salmonella and the basis of host range, differential virulence and zoonotic potential.
Collapse
Affiliation(s)
- Mark P Stevens
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | |
Collapse
|
38
|
Chaudhuri RR, Peters SE, Pleasance SJ, Northen H, Willers C, Paterson GK, Cone DB, Allen AG, Owen PJ, Shalom G, Stekel DJ, Charles IG, Maskell DJ. Comprehensive identification of Salmonella enterica serovar typhimurium genes required for infection of BALB/c mice. PLoS Pathog 2009; 5:e1000529. [PMID: 19649318 PMCID: PMC2712085 DOI: 10.1371/journal.ppat.1000529] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 07/06/2009] [Indexed: 01/13/2023] Open
Abstract
Genes required for infection of mice by Salmonella Typhimurium can be identified by the interrogation of random transposon mutant libraries for mutants that cannot survive in vivo. Inactivation of such genes produces attenuated S. Typhimurium strains that have potential for use as live attenuated vaccines. A quantitative screen, Transposon Mediated Differential Hybridisation (TMDH), has been developed that identifies those members of a large library of transposon mutants that are attenuated. TMDH employs custom transposons with outward-facing T7 and SP6 promoters. Fluorescently-labelled transcripts from the promoters are hybridised to whole-genome tiling microarrays, to allow the position of the transposon insertions to be determined. Comparison of microarray data from the mutant library grown in vitro (input) with equivalent data produced after passage of the library through mice (output) enables an attenuation score to be determined for each transposon mutant. These scores are significantly correlated with bacterial counts obtained during infection of mice using mutants with individual defined deletions of the same genes. Defined deletion mutants of several novel targets identified in the TMDH screen are effective live vaccines.
Collapse
Affiliation(s)
- Roy R. Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Peters
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Pleasance
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Helen Northen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chrissie Willers
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin K. Paterson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Danielle B. Cone
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Gil Shalom
- Arrow Therapeutics Ltd., London, United Kingdom
| | - Dov J. Stekel
- Centre for Systems Biology, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ian G. Charles
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Santiviago CA, Reynolds MM, Porwollik S, Choi SH, Long F, Andrews-Polymenis HL, McClelland M. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 2009; 5:e1000477. [PMID: 19578432 PMCID: PMC2698986 DOI: 10.1371/journal.ppat.1000477] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 05/15/2009] [Indexed: 01/03/2023] Open
Abstract
Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS).
Collapse
|
40
|
Development of a cell culture method to isolate and enrich Salmonella enterica serotype enteritidis from shell eggs for subsequent detection by real-time PCR. Appl Environ Microbiol 2009; 75:5321-7. [PMID: 19561188 DOI: 10.1128/aem.02422-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Enteritidis is a major cause of nontyphoidal salmonellosis from ingestion of contaminated raw or undercooked shell eggs. Current techniques used to identify Salmonella serotype Enteritidis in eggs are extremely laborious and time-consuming. In this study, a novel eukaryotic cell culture system was combined with real-time PCR analysis to rapidly identify Salmonella serotype Enteritidis in raw shell eggs. The system was compared to the standard microbiological method of the International Organization for Standardization (Anonymous, Microbiology of food and animal feeding stuffs-horizontal method for the detection of Salmonella, 2002). The novel technique utilizes a mouse macrophage cell line (RAW 264.7) as the host for the isolation and intracellular replication of Salmonella serotype Enteritidis. Exposure of macrophages to Salmonella serotype Enteritidis-contaminated eggs results in uptake and intracellular replication of the bacterium, which can subsequently be detected by real-time PCR analysis of the DNA released after disruption of infected macrophages. Macrophage monolayers were exposed to eggs contaminated with various quantities of Salmonella serotype Enteritidis. As few as 10 CFU/ml was detected in cell lysates from infected macrophages after 10 h by real-time PCR using primer and probe sets specific for DNA segments located on the Salmonella serotype Enteritidis genes sefA and orgC. Salmonella serotype Enteritidis could also be distinguished from other non-serogroup D Salmonella serotypes by using the sefA- and orgC-specific primer and probe sets. Confirmatory identification of Salmonella serotype Enteritidis in eggs was also achieved by isolation of intracellular bacteria from lysates of infected macrophages on xylose lysine deoxycholate medium. This method identifies Salmonella serotype Enteritidis from eggs in less than 10 h compared to the more than 5 days required for the standard reference microbiological method of the International Organization for Standardization (Microbiology of food and animal feeding stuffs-horizontal method for the detection of Salmonella, 2002).
Collapse
|
41
|
Beste DJV, Espasa M, Bonde B, Kierzek AM, Stewart GR, McFadden J. The genetic requirements for fast and slow growth in mycobacteria. PLoS One 2009; 4:e5349. [PMID: 19479006 PMCID: PMC2685279 DOI: 10.1371/journal.pone.0005349] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/31/2009] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis infects a third of the world's population. Primary tuberculosis involving active fast bacterial replication is often followed by asymptomatic latent tuberculosis, which is characterised by slow or non-replicating bacteria. Reactivation of the latent infection involving a switch back to active bacterial replication can lead to post-primary transmissible tuberculosis. Mycobacterial mechanisms involved in slow growth or switching growth rate provide rational targets for the development of new drugs against persistent mycobacterial infection. Using chemostat culture to control growth rate, we screened a transposon mutant library by Transposon site hybridization (TraSH) selection to define the genetic requirements for slow and fast growth of Mycobacterium bovis (BCG) and for the requirements of switching growth rate. We identified 84 genes that are exclusively required for slow growth (69 hours doubling time) and 256 genes required for switching from slow to fast growth. To validate these findings we performed experiments using individual M. tuberculosis and M. bovis BCG knock out mutants. We have demonstrated that growth rate control is a carefully orchestrated process which requires a distinct set of genes encoding several virulence determinants, gene regulators, and metabolic enzymes. The mce1 locus appears to be a component of the switch to slow growth rate, which is consistent with the proposed role in virulence of M. tuberculosis. These results suggest novel perspectives for unravelling the mechanisms involved in the switch between acute and persistent TB infections and provide a means to study aspects of this important phenomenon in vitro.
Collapse
Affiliation(s)
| | - Mateus Espasa
- FHMS, University of Surrey, Guildford, United Kingdom
| | - Bhushan Bonde
- FHMS, University of Surrey, Guildford, United Kingdom
| | | | | | | |
Collapse
|
42
|
Samudrala R, Heffron F, McDermott JE. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 2009; 5:e1000375. [PMID: 19390620 PMCID: PMC2668754 DOI: 10.1371/journal.ppat.1000375] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 03/11/2009] [Indexed: 11/18/2022] Open
Abstract
The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates--effector proteins--are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.
Collapse
Affiliation(s)
- Ram Samudrala
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jason E. McDermott
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
43
|
Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. J Bacteriol 2009; 191:3950-64. [PMID: 19376879 DOI: 10.1128/jb.00016-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Listeriolysin O (LLO) is a pore-forming toxin that mediates phagosomal escape and cell-to-cell spread of the intracellular pathogen Listeria monocytogenes. In order to identify factors that control the production, activity, or secretion of this essential virulence factor, we constructed a Himar1 mariner transposon delivery system and screened 50,000 mutants for a hypohemolytic phenotype on blood agar plates. Approximately 200 hypohemolytic mutants were identified, and the 51 most prominent mutants were screened ex vivo for intracellular growth defects. Eight mutants with a phenotype were identified, and they contained insertions in the following genes: lmo0964 (similar to yjbH), lmo1268 (clpX), lmo1401 (similar to ymdB), lmo1575 (similar to ytqI), lmo1695 (mprF), lmo1821 (similar to prpC), lmo2219 (prsA2), and lmo2460 (similar to cggR). Some of these genes are involved in previously unexplored areas of research with L. monocytogenes: the genes yjbH and clpX regulate the disulfide stress response in Bacillus subtilis, and the prpC phosphatase has been implicated in virulence in other gram-positive pathogens. Here we demonstrate that prsA2, an extracytoplasmic peptidyl-prolyl cis/trans isomerase, is critical for virulence and contributes to the folding of LLO and to the activity of another virulence factor, the broad-range phospholipase C (PC-PLC). Furthermore, although it has been shown that prsA2 expression is linked to PrfA, the master virulence transcription factor in L. monocytogenes pathogenesis, we demonstrate that prsA2 is not directly controlled by PrfA. Finally, we show that PrsA2 is involved in flagellum-based motility, indicating that this factor likely serves a broad physiological role.
Collapse
|
44
|
Andrews-Polymenis HL, Santiviago CA, McClelland M. Novel genetic tools for studying food-borne Salmonella. Curr Opin Biotechnol 2009; 20:149-57. [PMID: 19285855 DOI: 10.1016/j.copbio.2009.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 11/17/2022]
Abstract
Nontyphoidal Salmonellae are highly prevalent food-borne pathogens. High-throughput sequencing of Salmonella genomes is expanding our knowledge of the evolution of serovars and epidemic isolates. Genome sequences have also allowed the creation of complete microarrays. Microarrays have improved the throughput of in vivo expression technology (IVET) used to uncover promoters active during infection. In another method, signature tagged mutagenesis (STM), pools of mutants are subjected to selection. Changes in the population are monitored on a microarray, revealing genes under selection. Complete genome sequences permit the construction of pools of targeted in-frame deletions that have improved STM by minimizing the number of clones and the polarity of each mutant. Together, genome sequences and the continuing development of new tools for functional genomics will drive a revolution in the understanding of Salmonellae in many different niches that are critical for food safety.
Collapse
Affiliation(s)
- Helene L Andrews-Polymenis
- Texas A&M University System Health Science Center, College of Medicine, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
45
|
Yoon H, McDermott JE, Porwollik S, McClelland M, Heffron F. Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. PLoS Pathog 2009; 5:e1000306. [PMID: 19229334 PMCID: PMC2639726 DOI: 10.1371/journal.ppat.1000306] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 01/22/2009] [Indexed: 11/18/2022] Open
Abstract
To cause a systemic infection, Salmonella must respond to many environmental cues during mouse infection and express specific subsets of genes in a temporal and spatial manner, but the regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 83 regulators inferred to play a role in Salmonella enteriditis Typhimurium (STM) virulence and tested them in three virulence assays (intraperitoneal [i.p.], and intragastric [i.g.] infection in BALB/c mice, and persistence in 129X1/SvJ mice). Overall, 35 regulators were identified whose absence attenuated virulence in at least one assay, and of those, 14 regulators were required for systemic mouse infection, the most stringent virulence assay. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint, we focused on these 14 genes. Transcriptional profiles were obtained for deletions of each of these 14 regulators grown under four different environmental conditions. These results, as well as publicly available transcriptional profiles, were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 14 regulators control the same set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that the response regulator SsrB and the MarR type regulator, SlyA, are the terminal regulators in a cascade that integrates multiple signals. Furthermore, experiments to demonstrate epistatic relationships showed that SsrB can replace SlyA and, in some cases, SlyA can replace SsrB for expression of SPI-2 encoded virulence factors.
Collapse
Affiliation(s)
- Hyunjin Yoon
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jason E. McDermott
- Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Steffen Porwollik
- The Sydney Kimmel Cancer Center, San Diego, California, United States of America
| | - Michael McClelland
- The Sydney Kimmel Cancer Center, San Diego, California, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
46
|
High-throughput bioluminescence-based mutant screening strategy for identification of bacterial virulence genes. Appl Environ Microbiol 2009; 75:2166-75. [PMID: 19201969 DOI: 10.1128/aem.02449-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A high-throughput bioluminescence screening procedure for identification of virulence genes in bacteria was developed and applied to the fish pathogen Edwardsiella ictaluri. A random transposon mutant library expressing bioluminescence was constructed and robotically arrayed on 384-well plates. Mutants were cultivated and mixed with catfish serum and neutrophils in 96-well plates, and bioluminescence was used to detect mutants that are more susceptible to killing by these host factors. The virulence and vaccine efficacy of selected mutants were determined in channel catfish. Transposon insertion sites in 13 mutants attenuated in the natural host were mapped to the E. ictaluri genome. Ten unique genes were mutated, including genes encoding a negative regulator of sigmaE activity, a glycine cleavage system protein, tricarboxylic acid cycle enzymes, an O polysaccharide biosynthesis enzyme, proteins encoded on the native plasmid pEI1, and a fimbrial chaperon protein. Three of these mutants were found to have potential as live attenuated vaccines. This study demonstrates a novel application of bioluminescence to identify bacterial genes required for host resistance; as a result, efficacious and genetically defined live attenuated vaccine candidates were developed.
Collapse
|
47
|
Bottlenecks and Hubs in Inferred Networks Are Important for Virulence in Salmonella typhimurium. J Comput Biol 2009; 16:169-80. [DOI: 10.1089/cmb.2008.04tt] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
48
|
Abstract
Salmonella's success at proliferating intracellularly and causing disease depends on the translocation of a major virulence protein, SifA, into the host cell. SifA recruits membranes enriched in lysosome associated membrane protein 1 (LAMP1) and is needed for growth of Salmonella induced filaments (Sifs) and the Salmonella containing vacuole (SCV). It directly binds a host protein called SKIP (SifA and kinesin interacting protein) which is critical for membrane stability and motor dynamics at the SCV. SifA also contains a WxxxE motif, predictive of G protein mimicry in bacterial effectors, but whether and how it mimics the action of a host G protein is not known. We show that SKIP's pleckstrin homology domain, which directly binds SifA, also binds to the late endosomal GTPase Rab9. Knockdown studies suggest that both SKIP and Rab9 function to maintain peripheral LAMP1 distribution in cells. The Rab9:SKIP interaction is GTP-dependent and is inhibited by SifA binding to the SKIP pleckstrin homology domain, suggesting that SifA may be a Rab9 antagonist. SifA:SKIP binding is significantly tighter than Rab9:SKIP binding and may thus allow SifA to bring SKIP to the SCV via SKIP's Rab9-binding site. Rab9 can measurably reverse SifA-dependent LAMP1 recruitment and the perinuclear location of the SCV in cells. Importantly, binding to SKIP requires SifA residues W197 and E201 of the conserved WxxxE signature sequence, leading to the speculation that bacterial G protein mimicry may result in G protein antagonism.
Collapse
|
49
|
Dziva F, Stevens MP. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenicEscherichia coliin their natural hosts. Avian Pathol 2008; 37:355-66. [DOI: 10.1080/03079450802216652] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Aminoglycosides affect intracellular Salmonella enterica serovars typhimurium and virchow. Antimicrob Agents Chemother 2008; 52:920-6. [PMID: 18172002 DOI: 10.1128/aac.00382-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The high antibacterial activity and selectivity of aminoglycosides and their low activity against intracellular bacteria associated with eukaryotic cells make them the antibiotics of choice for the elimination of extracellular bacteria during intracellular studies. Given the evidence that aminoglycosides can penetrate the eukaryotic cell membrane, the goal of this study was to examine the influence of aminoglycosides on macrophage-associated Salmonella. Herein, we show that gentamicin, kanamycin, and tobramycin at concentrations between 15 to 150 microg ml(-1) do not kill intracellular Salmonella but have other effects on the bacterial physiology. By using Salmonella enterica serovars Typhimurium and Virchow harboring luciferase reporter plasmid, we observed that the light produced by intracellular Salmonella declined immediately upon exposure to aminoglycosides, indicating that the bacteria were under stress. The extent of this effect was dependent on the macrophage host, on the identity of the aminoglycoside and its concentration, on the exposure time, and on the Salmonella serovar. Salmonella associated with Nramp1-negative macrophages, in which the phagosomal pH is higher, were more susceptible to aminoglycosides than Salmonella associated with Nramp1-expressing macrophages. These results verify that aminoglycosides affect intracellular bacteria and that the extent of this effect is dependent on the acidity level within the phagosome, suggesting that for the study of intracellular bacteria, the aminoglycoside concentration should be limited to two to five times the MIC for the bacterial strain studied. This precaution should guarantee the complete execution of extracellular bacteria with minimal effects on the intracellular bacteria and the host cells.
Collapse
|