1
|
Caigoy JC, Nariya H, Shimamoto T, Yan Z, Shimamoto T. ArcAB system promotes biofilm formation through direct repression of hapR transcription in Vibrio cholerae. Microbiol Res 2025; 297:128155. [PMID: 40185028 DOI: 10.1016/j.micres.2025.128155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Vibrio cholerae, the causative agent of cholera, can efficiently adapt its metabolic processes, including biofilm formation, in response to varying respiratory conditions- such as aerobic, microaerobic, and anaerobic- through the ArcAB system. In this study, we elucidate the activation mechanism of V. cholerae ArcB and ArcA and identify ArcB residues H292, D577, and H722, along with ArcA residue D54 as key phosphorylation sites. Furthermore, we demonstrate that the ArcAB system plays a crucial role in regulating biofilm formation under both aerobic and anaerobic conditions. Our findings reveal that the positive regulation of biofilm formation by the ArcAB systems involves the high cell density (HCD) quorum sensing (QS) regulator HapR. Specifically, phosphorylated ArcA represses hapR transcription, thereby promoting biofilm formation under anaerobic condition. This study also highlights an epistatic relationship between ArcA and HapR in biofilm regulation. Overall, our results underscore the critical role of the ArcAB system in the biofilm formation of pathogenic V. cholerae under oxygen-limiting conditions.
Collapse
Affiliation(s)
- Jant Cres Caigoy
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Hirofumi Nariya
- Graduate School of Human Life Sciences, Jumonji University, Japan
| | - Toshi Shimamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Zhiqun Yan
- Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Tadashi Shimamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan.
| |
Collapse
|
2
|
Manna T, Dey S, Karmakar M, Panda AK, Ghosh C. Investigations on genomic, topological and structural properties of diguanylate cyclases involved in Vibrio cholerae biofilm signalling using in silico techniques: Promising drug targets in combating cholera. Curr Res Struct Biol 2025; 9:100166. [PMID: 40330072 PMCID: PMC12051071 DOI: 10.1016/j.crstbi.2025.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
During various stages of its life cycle, Vibrio cholerae initiate biofilm signalling cascade. Intercellular high level of the signalling nucleotide 3'-5' cyclic dimeric guanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclases (DGCs) from its precursor molecule GTP, is crucial for biofilm formation. Present study endeavours to in silico approaches in evaluating genomic, physicochemical, topological and functional properties of six c-di-GMP regulatory DGCs (CdgA, CdgH, CdgK, CdgL, CdgM, VpvC) of V. cholerae. Genomic investigations unveiled that codon preferences were inclined towards AU ending over GC ending codons and overall GC content ranged from 44.6 to 49.5 with codon adaptation index ranging from 0.707 to 0.783. Topological analyses deciphered the presence of transmembrane domains in all proteins. All the DGCs were acidic, hydrophilic and thermostable. Only CdgA, CdgH and VpvC were predicted to be stable during in vitro conditions. Non-polar amino acids with leucine being the most abundant amino acid among these DGCs with α-helix as the predominant secondary structure, responsible for forming the transmembrane regions by secondary structure analysis. Tertiary structures of the proteins were obtained by computation using AlphaFold and trRosetta. Predicted structures by both the servers were compared in various aspects using PROCHECK, ERRAT and Modfold8 servers. Selected 3D structures were refined using GalaxyRefine. InterPro Scan revealed presence of a conserved GGDEF domain in all DGCs and predicted the active site residues in the GGDEF domain. Molecular docking studies using CB-DOCK 2 tool revealed that among the DGCs, VpvC exhibited highest affinity for GTP (-5.6 kcal/mol), which was closely followed by CdgL (-5.5 kcal/mol). MD simulations depicted all DGC-GTP complexes to be stable due to its considerably low eigenvalues. Such studies are considered to provide maiden insights into the genomic and structural properties of V. cholerae DGCs, actively involved in biofilm signalling systems, and it is projected to be beneficial in the discovery of novel DGC inhibitors that can target and downregulate the c-di-GMP regulatory system to develop anti-biofilm strategies against the cholera pathogen.
Collapse
Affiliation(s)
- Tuhin Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subhamoy Dey
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Monalisha Karmakar
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
- Rani Rashmoni Green University, Singur, West Bengal, India
| | - Chandradipa Ghosh
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
3
|
Martino RA, Volke DC, Tenaglia AH, Tribelli PM, Nikel PI, Smania AM. Genetic Dissection of Cyclic di-GMP Signalling in Pseudomonas aeruginosa via Systematic Diguanylate Cyclase Disruption. Microb Biotechnol 2025; 18:e70137. [PMID: 40172309 PMCID: PMC11963287 DOI: 10.1111/1751-7915.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
The second messenger bis-(3' → 5')-cyclic dimeric guanosine monophosphate (c-di-GMP) governs adaptive responses in the opportunistic pathogen Pseudomonas aeruginosa, including biofilm formation and the transition from acute to chronic infections. Understanding the intricate c-di-GMP signalling network remains challenging due to the overlapping activities of numerous diguanylate cyclases (DGCs). In this study, we employed a CRISPR-based multiplex genome-editing tool to disrupt all 32 GGDEF domain-containing proteins (GCPs) implicated in c-di-GMP signalling in P. aeruginosa PA14. Phenotypic and physiological analyses revealed that the resulting mutant was unable to form biofilms and had attenuated virulence. Residual c-di-GMP levels were still detected despite the extensive GCP disruption, underscoring the robustness of this regulatory network. Taken together, these findings provide insights into the complex c-di-GMP metabolism and showcase the importance of functional overlapping in bacterial signalling. Moreover, our approach overcomes the native redundancy in c-di-GMP synthesis, providing a framework to dissect individual DGC functions and paving the way for targeted strategies to address bacterial adaptation and pathogenesis.
Collapse
Affiliation(s)
- Román A. Martino
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Albano H. Tenaglia
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| | - Paula M. Tribelli
- Universidad de Buenos AiresFacultad de Ciencias Exactas y Naturales, Departamento de Química BiológicaBuenos AiresArgentina
- CONICET, Universidad de Buenos AiresInstituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)Buenos AiresArgentina
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Andrea M. Smania
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| |
Collapse
|
4
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Cancino-Diaz ME, Guerrero-Barajas C, Betanzos-Cabrera G, Cancino-Diaz JC. Nucleotides as Bacterial Second Messengers. Molecules 2023; 28:7996. [PMID: 38138485 PMCID: PMC10745434 DOI: 10.3390/molecules28247996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.
Collapse
Affiliation(s)
- Mario E. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| | - Claudia Guerrero-Barajas
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición y Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla s/n, Pueblo San Juan Tilcuautla, Pachuca Hidalgo 42160, Mexico;
| | - Juan C. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| |
Collapse
|
6
|
van der Does C, Braun F, Ren H, Albers SV. Putative nucleotide-based second messengers in archaea. MICROLIFE 2023; 4:uqad027. [PMID: 37305433 PMCID: PMC10249747 DOI: 10.1093/femsml/uqad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Second messengers transfer signals from changing intra- and extracellular conditions to a cellular response. Over the last few decades, several nucleotide-based second messengers have been identified and characterized in especially bacteria and eukaryotes. Also in archaea, several nucleotide-based second messengers have been identified. This review will summarize our understanding of nucleotide-based second messengers in archaea. For some of the nucleotide-based second messengers, like cyclic di-AMP and cyclic oligoadenylates, their roles in archaea have become clear. Cyclic di-AMP plays a similar role in osmoregulation in euryarchaea as in bacteria, and cyclic oligoadenylates are important in the Type III CRISPR-Cas response to activate CRISPR ancillary proteins involved in antiviral defense. Other putative nucleotide-based second messengers, like 3',5'- and 2',3'-cyclic mononucleotides and adenine dinucleotides, have been identified in archaea, but their synthesis and degradation pathways, as well as their functions as secondary messengers, still remain to be demonstrated. In contrast, 3'-3'-cGAMP has not yet been identified in archaea, but the enzymes required to synthesize 3'-3'-cGAMP have been found in several euryarchaeotes. Finally, the widely distributed bacterial second messengers, cyclic diguanosine monophosphate and guanosine (penta-)/tetraphosphate, do not appear to be present in archaea.
Collapse
Affiliation(s)
- Chris van der Does
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hongcheng Ren
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Condinho M, Carvalho B, Cruz A, Pinto SN, Arraiano CM, Pobre V. The role of RNA regulators, quorum sensing and c-di-GMP in bacterial biofilm formation. FEBS Open Bio 2023; 13:975-991. [PMID: 35234364 PMCID: PMC10240345 DOI: 10.1002/2211-5463.13389] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Biofilms provide an ecological advantage against many environmental stressors, such as pH and temperature, making it the most common life-cycle stage for many bacteria. These protective characteristics make eradication of bacterial biofilms challenging. This is especially true in the health sector where biofilm formation on hospital or patient equipment, such as respirators, or catheters, can quickly become a source of anti-microbial resistant strains. Biofilms are complex structures encased in a self-produced polymeric matrix containing numerous components such as polysaccharides, proteins, signalling molecules, extracellular DNA and extracellular RNA. Biofilm formation is tightly controlled by several regulators, including quorum sensing (QS), cyclic diguanylate (c-di-GMP) and small non-coding RNAs (sRNAs). These three regulators in particular are fundamental in all stages of biofilm formation; in addition, their pathways overlap, and the significance of their role is strain-dependent. Currently, ribonucleases are also of interest for their potential role as biofilm regulators, and their relationships with QS, c-di-GMP and sRNAs have been investigated. This review article will focus on these four biofilm regulators (ribonucleases, QS, c-di-GMP and sRNAs) and the relationships between them.
Collapse
Affiliation(s)
- Manuel Condinho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Adriana Cruz
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Sandra N. Pinto
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
8
|
Walton MG, Cubillejo I, Nag D, Withey JH. Advances in cholera research: from molecular biology to public health initiatives. Front Microbiol 2023; 14:1178538. [PMID: 37283925 PMCID: PMC10239892 DOI: 10.3389/fmicb.2023.1178538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
The aquatic bacterium Vibrio cholerae is the etiological agent of the diarrheal disease cholera, which has plagued the world for centuries. This pathogen has been the subject of studies in a vast array of fields, from molecular biology to animal models for virulence activity to epidemiological disease transmission modeling. V. cholerae genetics and the activity of virulence genes determine the pathogenic potential of different strains, as well as provide a model for genomic evolution in the natural environment. While animal models for V. cholerae infection have been used for decades, recent advances in this area provide a well-rounded picture of nearly all aspects of V. cholerae interaction with both mammalian and non-mammalian hosts, encompassing colonization dynamics, pathogenesis, immunological responses, and transmission to naïve populations. Microbiome studies have become increasingly common as access and affordability of sequencing has improved, and these studies have revealed key factors in V. cholerae communication and competition with members of the gut microbiota. Despite a wealth of knowledge surrounding V. cholerae, the pathogen remains endemic in numerous countries and causes sporadic outbreaks elsewhere. Public health initiatives aim to prevent cholera outbreaks and provide prompt, effective relief in cases where prevention is not feasible. In this review, we describe recent advancements in cholera research in these areas to provide a more complete illustration of V. cholerae evolution as a microbe and significant global health threat, as well as how researchers are working to improve understanding and minimize impact of this pathogen on vulnerable populations.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
9
|
Bina XR, Bina JE. Vibrio cholerae RND efflux systems: mediators of stress responses, colonization and pathogenesis. Front Cell Infect Microbiol 2023; 13:1203487. [PMID: 37256112 PMCID: PMC10225521 DOI: 10.3389/fcimb.2023.1203487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Resistance Nodulation Division (RND) efflux systems are ubiquitous transporters in gram-negative bacteria that provide protection against antimicrobial agents and thereby enhance survival in virtually all environments these prokaryotes inhabit. Vibrio cholerae is a dual lifestyle enteric pathogen that spends much of its existence in aquatic environments. An unwitting encounter with a human host can lead to V. cholerae intestinal colonization by strains that encode cholera toxin and toxin co-regulated pilus virulence factors leading to potentially fatal cholera diarrhea and dissemination in the environment. Adaptive response mechanisms to host factors encountered by these pathogens are therefore critical both to engage survival mechanisms such as RND-mediated transporters and to induce timely expression of virulence factors. Sensing of cues encountered in the host may therefore activate more than protective responses such as efflux systems, but also be coordinated to initiate expression of virulence factors. This review summarizes recent advances that contribute towards the understanding of RND efflux physiological functions and how the transport systems interface with the regulation of virulence factor production in V. cholerae.
Collapse
Affiliation(s)
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
10
|
The HD-GYP domain protein of Shewanella putrefaciens YZ08 regulates biofilm formation and spoilage activities. Food Res Int 2022; 157:111466. [DOI: 10.1016/j.foodres.2022.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
11
|
Tan H, Da F, Lin G, Wan X, Cai S, Cai J, Qin Q. Construction of a phosphodiesterase mutant and evaluation of its potential as an effective live attenuated vaccine in pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus). FISH & SHELLFISH IMMUNOLOGY 2022; 124:543-551. [PMID: 35460878 DOI: 10.1016/j.fsi.2022.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Vibrio alginolyticus is a dominant pathogen that causes vibriosis of fish and shellfish. VAGM003125 is a specific phosphodiesterase bearing HD-GYP domain, which extensively regulates multicellular behavior and physiological processes in bacteria. In this study, an in-frame deleted ΔVAGM003125 mutant was constructed and changes of ΔVAGM003125 mutant in physiology and pathogenicity were examined. The potential application of ΔVAGM003125 mutant as a live attenuated vaccine was also assessed. The ΔVAGM003125 mutant displayed no significant differences in the growth rate and morphology in comparison to the wild type strain. However, the ΔVAGM003125 mutant significantly enhanced biofilm formation compared to the wild type strain. Also, the ΔVAGM003125 mutant was noted as being able to attenuate swarming motility, ECPase, and adherence compared to the wild type strain. Moreover, the ΔVAGM003125 mutant induced high antibody titers and provided effective immune protection, which was evidenced with a relative survival rate of 81% without histopathological abnormality. Following ΔVAGM003125 mutant vaccination, immune-related genes of pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus) including IgM, MHC-Iα, IL-16, IL-1, and TNF-α was up-regulated. Taken together, the present data suggested that the ΔVAGM003125 mutant might be applied as an attenuated live vaccination against V. alginolyticus during fish culture.
Collapse
Affiliation(s)
- Huiming Tan
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Fan Da
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Guixiang Lin
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Xiaoju Wan
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.
| | - Jia Cai
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Wen Y, Wang Y, Chen S, Zhou X, Zhang Y, Yang D, Núñez G, Liu Q. Dysregulation of Cytosolic c-di-GMP in Edwardsiella piscicida Promotes Cellular Non-Canonical Ferroptosis. Front Cell Infect Microbiol 2022; 12:825824. [PMID: 35186798 PMCID: PMC8855483 DOI: 10.3389/fcimb.2022.825824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 01/31/2023] Open
Abstract
Programmed cell death plays an important role in modulating host immune defense and pathogen infection. Ferroptosis is a type of inflammatory cell death induced by intracellular iron-dependent accumulation of toxic lipid peroxides. Although ferroptosis has been associated with cancer and other sterile diseases, very little is known about the role of ferroptosis in modulating host-pathogen interactions. We show that accumulation of the secondary messenger bis-(3′,5′)-cyclic dimeric GMP (c-di-GMP) in the pathogenic bacterium Edwardsiella piscicida (E. piscicida) triggers a non-canonical ferroptosis pathway in infected HeLa cells. Moreover, we observed that the dysregulation of c-di-GMP in E. piscicida promotes iron accumulation, mitochondrial dysfunction, and production of reactive oxygen species, all of which that can be blocked by iron chelator. Importantly, unlike classical ferroptosis that is executed via excess lipid peroxidation, no lipid peroxidation was detected in the infected cells. Furthermore, lipoxygenases inhibitors and lipophilic antioxidants are not able to suppress morphological changes and cell death induced by E. piscicida mutant producing excess c-di-GMP, and this c-di-GMP dysregulation attenuates bacterial virulence in vivo. Collectively, our results reveal a novel non-canonical ferroptosis pathway mediated by bacterial c-di-GMP and provide evidence for a role of ferroptosis in the regulation of pathogen infection.
Collapse
Affiliation(s)
- Ying Wen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Ying Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- *Correspondence: Qin Liu,
| |
Collapse
|
13
|
H-NOX proteins in the virulence of pathogenic bacteria. Biosci Rep 2021; 42:230559. [PMID: 34939646 PMCID: PMC8738867 DOI: 10.1042/bsr20212014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022] Open
Abstract
Nitric oxide (NO) is a toxic gas encountered by bacteria as a product of their own metabolism or as a result of a host immune response. Non-toxic concentrations of NO have been shown to initiate changes in bacterial behaviors such as the transition between planktonic and biofilm-associated lifestyles. The heme nitric oxide/oxygen binding proteins (H-NOX) are a widespread family of bacterial heme-based NO sensors that regulate biofilm formation in response to NO. The presence of H-NOX in several human pathogens combined with the importance of planktonic–biofilm transitions to virulence suggests that H-NOX sensing may be an important virulence factor in these organisms. Here we review the recent data on H-NOX NO signaling pathways with an emphasis on H-NOX homologs from pathogens and commensal organisms. The current state of the field is somewhat ambiguous regarding the role of H-NOX in pathogenesis. However, it is clear that H-NOX regulates biofilm in response to environmental factors and may promote persistence in the environments that serve as reservoirs for these pathogens. Finally, the evidence that large subgroups of H-NOX proteins may sense environmental signals besides NO is discussed within the context of a phylogenetic analysis of this large and diverse family.
Collapse
|
14
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Kakkar A, Verma RK, Samal B, Chatterjee S. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae. Environ Microbiol 2021; 23:5433-5462. [PMID: 34240791 DOI: 10.1111/1462-2920.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF ) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell-cell signalling to coordinate virulence-associated function in Xoo.
Collapse
Affiliation(s)
- Akanksha Kakkar
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | | |
Collapse
|
16
|
Fernández-Llamosas H, Díaz E, Carmona M. Motility, Adhesion and c-di-GMP Influence the Endophytic Colonization of Rice by Azoarcus sp. CIB. Microorganisms 2021; 9:microorganisms9030554. [PMID: 33800326 PMCID: PMC7998248 DOI: 10.3390/microorganisms9030554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
Proficient crop production is needed to ensure the feeding of a growing global population. The association of bacteria with plants plays an important role in the health state of the plants contributing to the increase of agricultural production. Endophytic bacteria are ubiquitous in most plant species providing, in most cases, plant promotion properties. However, the knowledge on the genetic determinants involved in the colonization of plants by endophytic bacteria is still poorly understood. In this work we have used a genetic approach based on the construction of fliM, pilX and eps knockout mutants to show that the motility mediated by a functional flagellum and the pili type IV, and the adhesion modulated by exopolysaccarides are required for the efficient colonization of rice roots by the endophyte Azoarcus sp. CIB. Moreover, we have demonstrated that expression of an exogenous diguanylate cyclase or phophodiesterase, which causes either an increase or decrease of the intracellular levels of the second messenger cyclic di-GMP (c-di-GMP), respectively, leads to a reduction of the ability of Azoarcus sp. CIB to colonize rice plants. Here we present results demonstrating the unprecedented role of the universal second messenger cyclic-di-GMP in plant colonization by an endophytic bacterium, Azoarcus sp. CIB. These studies pave the way to further strategies to modulate the interaction of endophytes with their target plant hosts.
Collapse
|
17
|
Yoon SH, Waters CM. The ever-expanding world of bacterial cyclic oligonucleotide second messengers. Curr Opin Microbiol 2021; 60:96-103. [PMID: 33640793 DOI: 10.1016/j.mib.2021.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023]
Abstract
Cyclic dinucleotide (cdN) second messengers are essential for bacteria to sense and adapt to their environment. These signals were first discovered with the identification of 3'-5', 3'-5' cyclic di-GMP (c-di-GMP) in 1987, a second messenger that is now known to be the linchpin signaling pathway modulating bacterial motility and biofilm formation. In the past 15 years, three more cdNs were uncovered: 3'-5', 3'-5' cyclic di-AMP (c-di-AMP) and 3'-5', 3'-5' cyclic GMP-AMP (3',3' cGAMP) in bacteria and 2'-5', 3'-5' cyclic GMP-AMP (2',3' cGAMP) in eukaryotes. We now appreciate that bacteria can synthesize many varieties of cdNs from every ribonucleotide, and even cyclic trinucleotide (ctN) second messengers have been discovered. Here we highlight our current understanding of c-di-GMP and c-di-AMP in bacterial physiology and focus on recent advances in 3',3' cGAMP signaling effectors, its role in bacterial phage response, and the diversity of its synthase family.
Collapse
Affiliation(s)
- Soo Hun Yoon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA.
| |
Collapse
|
18
|
Abstract
Vibrio cholerae, a Gram-negative bacterium, is a natural inhabitant of the aqueous environment. However, once ingested, this bacterium can colonize the human host and cause the disease cholera. CsrA is a posttranscriptional global regulator in Vibrio cholerae. Although CsrA is critical for V. cholerae survival within the mammalian host, the regulatory targets of CsrA remain mostly unknown. To identify pathways controlled by CsrA, RNA-seq transcriptome analysis was carried out by comparing the wild type and the csrA mutant grown to early exponential, mid-exponential, and stationary phases of growth. This enabled us to identify the global effects of CsrA-mediated regulation throughout the V. cholerae growth cycle. We found that CsrA regulates 22% of the V. cholerae transcriptome, with significant regulation within the gene ontology (GO) processes that involve amino acid transport and metabolism, central carbon metabolism, lipid metabolism, iron uptake, and flagellum-dependent motility. Through CsrA-RNA coimmunoprecipitation experiments, we found that CsrA binds to multiple mRNAs that encode regulatory proteins. These include transcripts encoding the major sigma factors RpoS and RpoE, which may explain how CsrA regulation affects such a large proportion of the V. cholerae transcriptome. Other direct targets include flrC, encoding a central regulator in flagellar gene expression, and aphA, encoding the virulence gene transcription factor AphA. We found that CsrA binds to the aphA mRNA both in vivo and in vitro, and CsrA significantly increases AphA protein synthesis. The increase in AphA was due to increased translation, not transcription, in the presence of CsrA, consistent with CsrA binding to the aphA transcript and enhancing its translation. CsrA is required for the virulence of V. cholerae and this study illustrates the central role of CsrA in virulence gene regulation.
Collapse
|
19
|
Liang F, Zhang B, Yang Q, Zhang Y, Zheng D, Zhang LQ, Yan Q, Wu X. Cyclic-di-GMP Regulates the Quorum-Sensing System and Biocontrol Activity of Pseudomonas fluorescens 2P24 through the RsmA and RsmE Proteins. Appl Environ Microbiol 2020; 86:e02016-20. [PMID: 33036989 PMCID: PMC7688223 DOI: 10.1128/aem.02016-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/04/2020] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is a rhizosphere bacterium that protects many crop plants against soilborne diseases caused by phytopathogens. The PcoI/PcoR quorum-sensing (QS) system and polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are particularly relevant to the strain's biocontrol potential. In this study, we investigated the effects of c-di-GMP on the biocontrol activity of strain 2P24. The expression of the Escherichia coli diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) in P. fluorescens 2P24 significantly increased and decreased the cellular concentration of c-di-GMP, respectively. The production of the QS signals N-acyl homoserine lactones (AHLs) and 2,4-DAPG was negatively regulated by c-di-GMP in 2P24. The regulatory proteins RsmA and RsmE were positively regulated by c-di-GMP. Genomic analysis revealed that 2P24 has 23 predicted proteins that contain c-di-GMP-synthesizing or -degrading domains. Among these proteins, C0J56_12915, C0J56_13325, and C0J56_27925 contributed to the production of c-di-GMP and were also involved in the regulation of the QS signal and antibiotic 2,4-DAPG production in P. fluorescens Overexpression of C0J56_12915, C0J56_13325, and C0J56_27925 in 2P24 impaired its root colonization and biocontrol activities. Taken together, these results demonstrated that c-di-GMP played an important role in fine-tuning the biocontrol traits of P. fluorescensIMPORTANCE In various bacteria, the bacterial second messenger c-di-GMP influences a wide range of cellular processes. However, the function of c-di-GMP on biocontrol traits in the plant-beneficial rhizobacteria remains largely unclear. The present work shows that the QS system and polyketide antibiotic 2,4-DAPG production are regulated by c-di-GMP through RsmA and RsmE proteins in P. fluorescens 2P24. The diguanylate cyclases (DGCs) C0J56_12915, C0J56_13325, and C0J56_27925 are especially involved in regulating the biocontrol traits of 2P24. Our work also demonstrated a connection between the Gac/Rsm cascade and the c-di-GMP signaling pathway in P. fluorescens.
Collapse
Affiliation(s)
- Fei Liang
- College of Agriculture, Guangxi University, Nanning, China
| | - Bo Zhang
- College of Agriculture, Guangxi University, Nanning, China
| | - Qingqing Yang
- College of Agriculture, Guangxi University, Nanning, China
| | - Yang Zhang
- College of Agriculture, Guangxi University, Nanning, China
| | - Dehong Zheng
- College of Agriculture, Guangxi University, Nanning, China
| | - Li-Qun Zhang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Biswas S, Chouhan OP, Bandekar D. Diguanylate Cyclases in Vibrio cholerae: Essential Regulators of Lifestyle Switching. Front Cell Infect Microbiol 2020; 10:582947. [PMID: 33194821 PMCID: PMC7642852 DOI: 10.3389/fcimb.2020.582947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
Biofilm formation in Vibrio cholerae empowers the bacteria to lead a dual lifestyle and enhances its infectivity. While the formation and dispersal of the biofilm involves multiple components—both proteinaceous and non-proteinaceous, the key to the regulatory control lies with the ubiquitous secondary signaling molecule, cyclic-di-GMP (c-di-GMP). A number of different cellular components may interact with c-di-GMP, but the onus of synthesis of this molecule lies with a class of enzymes known as diguanylate cyclases (DGCs). DGC activity is generally associated with proteins possessing a GGDEF domain, ubiquitously present across all bacterial systems. V. cholerae is also endowed with multiple DGCs and information about some of them have been pouring in over the past decade. This review summarizes the DGCs confirmed till date in V. cholerae, and emphasizes the importance of DGCs and their product, c-di-GMP in the virulence and lifecycle of the bacteria.
Collapse
Affiliation(s)
- Sumit Biswas
- ViStA Lab, Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani-KK Birla Goa Campus, Goa, India
| | - Om Prakash Chouhan
- ViStA Lab, Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani-KK Birla Goa Campus, Goa, India
| | - Divya Bandekar
- ViStA Lab, Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani-KK Birla Goa Campus, Goa, India
| |
Collapse
|
21
|
Cont A, Rossy T, Al-Mayyah Z, Persat A. Biofilms deform soft surfaces and disrupt epithelia. eLife 2020; 9:56533. [PMID: 33025904 PMCID: PMC7556879 DOI: 10.7554/elife.56533] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
During chronic infections and in microbiota, bacteria predominantly colonize their hosts as multicellular structures called biofilms. A common assumption is that biofilms exclusively interact with their hosts biochemically. However, the contributions of mechanics, while being central to the process of biofilm formation, have been overlooked as a factor influencing host physiology. Specifically, how biofilms form on soft, tissue-like materials remains unknown. Here, we show that biofilms of the pathogens Vibrio cholerae and Pseudomonas aeruginosa can induce large deformations of soft synthetic hydrogels. Biofilms buildup internal mechanical stress as single cells grow within the elastic matrix. By combining mechanical measurements and mutations in matrix components, we found that biofilms deform by buckling, and that adhesion transmits these forces to their substrates. Finally, we demonstrate that V. cholerae biofilms can generate sufficient mechanical stress to deform and even disrupt soft epithelial cell monolayers, suggesting a mechanical mode of infection.
Collapse
Affiliation(s)
- Alice Cont
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tamara Rossy
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zainebe Al-Mayyah
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Narendrakumar L, Jaikumar VS, Chandrika SK, Thomas S. Epidemiological and pathogenic characteristics of Haitian variant V. cholerae circulating in India over a decade (2000-2018). Microb Pathog 2020; 149:104538. [PMID: 32987116 DOI: 10.1016/j.micpath.2020.104538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Vibrio cholerae, causative agent of the water-borne disease cholera still threatens a large proportion of world's population. The major biotypes of the pathogen are classical and El Tor. There have been recent reports of variant V. cholerae strains circulating around the world. In the present study, the epidemiological status of V. cholerae strains circulating in the country over a decade was assessed. Also, a comprehensive analysis of the difference in pathogenicity between the different biotypes of V. cholerae strains was evaluated both in-vitro and in-vivo. The amount of CT produced by different biotypes of V. cholerae strains were analyzed by GM1 ELISA and the probable reasons for the difference in toxin production was discussed. MLST analysis grouped the isolates into a single Sequence Type (ST 69) whereas PFGE analysis clustered the isolates into ten different pulsotypes revealing molecular diversity. The circulating strains were identified to produce cholera toxin and CT mRNA intermediate to the classical and prototype El Tor strains. Also, the circulating strains were identified to possess four ToxR binding sequences. In-vivo pathogenicity analysis by rabbit ileal loop fluid accumulation assay revealed the Haitian variant strains to be more hyperemic than the prototype strains.
Collapse
Affiliation(s)
- Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India
| | - Vishnu S Jaikumar
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India
| | - Sivakumar K Chandrika
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695 014, Kerala, India.
| |
Collapse
|
23
|
Structures of c-di-GMP/cGAMP degrading phosphodiesterase VcEAL: identification of a novel conformational switch and its implication. Biochem J 2020; 476:3333-3353. [PMID: 31647518 DOI: 10.1042/bcj20190399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3'3'-cyclic GMP-AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5'-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5'-pGpG-Ca2+ structure, β5-α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5'-pGpG-Ca2+ structure quite different from other 5'-pGpG bound structures reported earlier.
Collapse
|
24
|
Xie ZY, Gong XX, Xu XD, Mei B, Xuan XZ, Long H, Zhang X, Cai XN. Identification of Vibrio alginolyticus virulent strain-specific DNA regions by suppression subtractive hybridization and PCR. J Appl Microbiol 2020; 129:1472-1485. [PMID: 32510751 DOI: 10.1111/jam.14739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/23/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022]
Abstract
AIMS Vibrio alginolyticus was frequently isolated from diseased farmed fish in the coaster waters of Hainan Island over the past two decades. In this study, we attempted to identify candidates of virulent strain-specific DNA regions for this pathogen. METHODS AND RESULTS Suppression subtractive hybridization (SSH) and PCR were successively performed between the typical virulent strain and avirulent strain of V. alginolyticus, in which they shared 99·54% homology of 16S rDNAs. Out of 2873 subtracted clones, nine clones were finally indicated to harbour virulent strain-specific DNA fragments. The receivable functions of the major fragments in the nine clones were believed to encode methyl-accepting chemotaxis protein (n = 1), type VI secretion system-associated FHA domain protein TagH (n = 1), diguanylate cyclase (n = 1), AraC family transcriptional regulator (n = 1), ABC-type uncharacterized transport system permease component (n = 1) and hypothetical proteins (n = 4). Two hypothetical proteins contain several disordered regions. CONCLUSIONS Some specific DNA regions existed in the virulent strain of V. alginolyticus, and the SSH assay could be a highly sensitive method for identifying virulent regions in pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY This report is the first to describe the identification of virulent strain-specific DNA regions in the V. alginolyticus genome, which is helpful in developing virulent strain-specific rapid detection methods and is a pivotal precondition for clarifying the molecular virulence mechanism of V. alginolyticus.
Collapse
Affiliation(s)
- Z-Y Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, China.,College of Marine Sciences, Hainan University, Haikou, Hainan Province, China
| | - X-X Gong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, China.,College of Marine Sciences, Hainan University, Haikou, Hainan Province, China
| | - X-D Xu
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, China
| | - B Mei
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, China
| | - X-Z Xuan
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, China
| | - H Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, China
| | - X Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, China.,College of Marine Sciences, Hainan University, Haikou, Hainan Province, China
| | - X-N Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, China.,College of Marine Sciences, Hainan University, Haikou, Hainan Province, China
| |
Collapse
|
25
|
Valentini M, Filloux A. Multiple Roles of c-di-GMP Signaling in Bacterial Pathogenesis. Annu Rev Microbiol 2020; 73:387-406. [PMID: 31500536 DOI: 10.1146/annurev-micro-020518-115555] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intracellular signaling molecule cyclic di-GMP (c-di-GMP) regulates the lifestyle of bacteria and controls many key functions and mechanisms. In the case of bacterial pathogens, a wide variety of virulence lifestyle factors have been shown to be regulated by c-di-GMP. Evidence of the importance of this molecule for bacterial pathogenesis has become so great that new antimicrobial agents are tested for their capacity of targeting c-di-GMP signaling. This review summarizes the current knowledge on this topic and reveals its application for the development of new antivirulence intervention strategies.
Collapse
Affiliation(s)
- Martina Valentini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland;
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom;
| |
Collapse
|
26
|
Xi D, Yang S, Liu Q, Li Y, Li Y, Yan J, Wang X, Ning K, Cao B. The response regulator ArcA enhances biofilm formation in the vpsT manner under the anaerobic condition in Vibrio cholerae. Microb Pathog 2020; 144:104197. [PMID: 32283260 DOI: 10.1016/j.micpath.2020.104197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/27/2022]
Abstract
Vibrio cholerae, the agent of severe diarrheal disease cholera, is known to form biofilm to persist in the environmental and the host,s intestines. The bacteria execute a complex regulatory pathway producing virulence factors that allow colonization and cause disease in response to environmental signals in the intestine, including low oxygen-limited condition. VpsR and VpsT are primary regulators of the biofilm formation-regulatory network. In this study, we determined that anaerobic induction enhanced biofilm formation via the two component system, ArcB/A, which functions as a positive regulator of toxT expression. The biofilm formation has reduced approximately 2.4-fold in the ΔarcA mutant compared to the wild type in anaerobic condition. Chip-qPCR and EMSA assays confirmed that ArcA can bind directly to the vpsT promoter and then activates the expression of biofilm formation related genes, vpsA-K and vpsL-Q. Meanwhile, the ΔarcA mutant decreased the ability of colonization in intestine with CI (competition index) of 0.27 compared to wild type strain. These results suggest that ArcA links the expression of virulence and biofilm synthesis genes during anaerobic condition, and contributes to understand the complex relationship between biofilm formation and the intestinal signals during infection.
Collapse
Affiliation(s)
- Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Shuang Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Qian Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Kexin Ning
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China.
| |
Collapse
|
27
|
Wang F, Wang Y, Cen C, Fu L, Wang Y. A tandem GGDEF-EAL domain protein-regulated c-di-GMP signal contributes to spoilage-related activities of Shewanella baltica OS155. Appl Microbiol Biotechnol 2020; 104:2205-2216. [PMID: 31927761 DOI: 10.1007/s00253-020-10357-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 11/26/2022]
Abstract
Cyclic diguanylate (c-di-GMP) is a second messenger involved in the regulation of various physiological processes in bacteria. However, its function in spoilage bacteria has not yet been addressed. Here, we studied the function of a tandem GGDEF-EAL domain protein, Sbal_3235, in the spoilage bacterium Shewanella baltica OS155. The deletion of sbal_3235 significantly reduced the c-di-GMP level, biofilm formation, and exopolysaccharide, trimethylamine (TMA), and putrescine production; sbal_3235 deletion also downregulated the expression of the torS and speF genes and affected membrane fatty acid composition. Site-directed mutagenesis in conserved GGDEF and EAL motifs abolished diguanylate cyclase (DGC) and phosphodiesterase (PDE) activity, respectively. These data indicate that Sbal_3235 is an essential contributor to the c-di-GMP pool with bifunctional DGC and PDE activity, which is involved in the biofilm formation and spoilage activity of S. baltica OS155. Our findings expand the biochemical role of c-di-GMP and uncover its link to spoilage activities, providing novel targets for food quality and safety controlling.
Collapse
Affiliation(s)
- Feifei Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Yongzheng Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Congnan Cen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
28
|
Xi D, Li Y, Yan J, Li Y, Wang X, Cao B. Small RNA coaR contributes to intestinal colonization in Vibrio cholerae via the two-component system EnvZ/OmpR. Environ Microbiol 2020; 22:4231-4243. [PMID: 31868254 DOI: 10.1111/1462-2920.14906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae is a waterborne bacterium responsible for worldwide outbreaks of acute and fatal cholera. Recently, small regulatory RNAs (sRNAs) have become increasingly recognized as important regulators of virulence gene expression in response to environmental signals. In this study, we determined that two-component system EnvZ/OmpR was required for intestinal colonization in V. cholerae O1 EI Tor strain E12382. Analysis of the characteristics of OmpR revealed a potential binding site in the intergenic region between vc1470 and vc1471, and qRT-PCR showed that expression of the intergenic region increased 5.3-fold in the small intestine compared to LB medium. Race and northern blot assays were performed and demonstrated a new sRNA, coaR (cholerae osmolarity and acidity related regulatory RNA). A ΔcoaR mutant showed a deficient colonization ability in small intestine with CI of 0.15. We identified a target of coaR, tcpI, a negative regulator of the major pilin subunit of TcpA. The ΔtcpI mutant has an increased colonization with CI of 3.16. The expression of coaR increased 2.8-fold and 3.3-fold under relative acidic and hypertonic condition. In summary, coaR was induced under the condition of high osmolarity and acid stress via EnvZ/OmpR and explained that tcpI relieves pH-mediated repression of toxin co-regulated pilus synthesis.
Collapse
Affiliation(s)
- Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| |
Collapse
|
29
|
Vibrio cholerae residing in food vacuoles expelled by protozoa are more infectious in vivo. Nat Microbiol 2019; 4:2466-2474. [PMID: 31570868 DOI: 10.1038/s41564-019-0563-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/19/2019] [Indexed: 11/09/2022]
Abstract
Vibrio cholerae interacts with many organisms in the environment, including heterotrophic protists (protozoa). Several species of protozoa have been reported to release undigested bacteria in expelled food vacuoles (EFVs) when feeding on some pathogens. While the production of EFVs has been reported, their biological role as a vector for the transmission of pathogens remains unknown. Here we report that ciliated protozoa release EFVs containing V. cholerae. The EFVs are stable, the cells inside them are protected from multiple stresses, and large numbers of cells escape when incubated at 37 °C or in the presence of nutrients. We show that OmpU, a major outer membrane protein positively regulated by ToxR, has a role in the production of EFVs. Notably, cells released from EFVs have growth and colonization advantages over planktonic cells both in vitro and in vivo. Our results suggest that EFVs facilitate V. cholerae survival in the environment, enhancing their infectious potential and may contribute to the dissemination of epidemic V. cholerae strains. These results improve our understanding of the mechanisms of persistence and the modes of transmission of V. cholerae and may further apply to other opportunistic pathogens that have been shown to be released by protists in EFVs.
Collapse
|
30
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
|
32
|
Silva-Valenzuela CA, Camilli A. Niche adaptation limits bacteriophage predation of Vibrio cholerae in a nutrient-poor aquatic environment. Proc Natl Acad Sci U S A 2019; 116:1627-1632. [PMID: 30635420 PMCID: PMC6358685 DOI: 10.1073/pnas.1810138116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, has reservoirs in fresh and brackish water where it interacts with virulent bacteriophages. Phages are the most abundant biological entity on earth and coevolve with bacteria. It was reported that concentrations of phage and V. cholerae inversely correlate in aquatic reservoirs and in the human small intestine, and therefore that phages may quench cholera outbreaks. Although there is strong evidence for phage predation in cholera patients, evidence is lacking for phage predation of V. cholerae in aquatic environments. Here, we used three virulent phages, ICP1, ICP2, and ICP3, commonly shed by cholera patients in Bangladesh, as models to understand the predation dynamics in microcosms simulating aquatic environments. None of the phages were capable of predation in fresh water, and only ICP1 was able to prey on V. cholerae in estuarine water due to a requirement for salt. We conclude that ICP2 and ICP3 are better adapted for predation in a nutrient rich environment. Our results point to the evolution of niche-specific predation by V. cholerae-specific virulent phages, which complicates their use in predicting or monitoring cholera outbreaks as well as their potential use in reducing aquatic reservoirs of V. cholerae in endemic areas.
Collapse
Affiliation(s)
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| |
Collapse
|
33
|
Fernandez N, Waters CM. Analyzing Diguanylate Cyclase Activity In Vivo using a Heterologous Escherichia coli Host. ACTA ACUST UNITED AC 2018; 52:e74. [PMID: 30489040 DOI: 10.1002/cpmc.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bacterial biofilms are notorious for their deleterious effects on human health and industrial biofouling. Key processes in biofilm formation are regulated by the second messenger signal cyclic dimeric guanosine monophosphate (c-di-GMP); accumulation of c-di-GMP promotes biofilm formation, while lowering c-di-GMP promotes motility. Complex networks of modular enzymes are involved in regulating c-di-GMP homeostasis. Understanding how these enzymes function in bacterial cells can help enlighten how bacteria use environmental cues to modulate c-di-GMP and cell physiology. In this article, we describe a workflow that utilizes Escherichia coli as a heterologous host to allow the researcher to identify genes encoding potential c-di-GMP-metabolizing proteins, to express the gene of interest from an inducible plasmid, and to directly detect changes in intracellular c-di-GMP using ultra-performance liquid chromatography-tandem mass spectrometry. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nicolas Fernandez
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| |
Collapse
|
34
|
Peterson KM, Gellings PS. Multiple intraintestinal signals coordinate the regulation of Vibrio cholerae virulence determinants. Pathog Dis 2018; 76:4791527. [PMID: 29315383 DOI: 10.1093/femspd/ftx126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is a Gram-negative motile bacterium capable of causing fatal pandemic disease in humans via oral ingestion of contaminated water or food. Within the human intestine, the motile vibrios must evade the innate host defense mechanisms, penetrate the mucus layer covering the small intestine, adhere to and multiply on the surface of the microvilli and cause disease via the action of cholera toxin. The explosive diarrhea associated with V. cholerae intestinal colonization leads to dissemination of the vibrios back into the environment to complete this phase of the life cycle. The host phase of the vibrio life cycle is made possible via the concerted action of a signaling cascade that controls the synthesis of V. cholerae colonization determinants. These virulence proteins are coordinately synthesized in response to specific host signals that are still largely undefined. A more complete understanding of the molecular events involved in the V. cholerae recognition of intraintestinal signals and the subsequent transcriptional response will provide important information regarding how pathogenic bacteria establish infection and provide novel methods for treating and/or preventing bacterial infections such as Asiatic cholera. This review will summarize what is currently known in regard to host intraintestinal signals that inform the complex ToxR regulatory cascade in order to coordinate in a spatial and temporal fashion virulence protein synthesis within the human small intestine.
Collapse
Affiliation(s)
- Kenneth M Peterson
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA 71130, USA
| | - Patrick S Gellings
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA 71130, USA
| |
Collapse
|
35
|
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9:522-554. [PMID: 28362216 PMCID: PMC5955472 DOI: 10.1080/21505594.2017.1313372] [Citation(s) in RCA: 827] [Impact Index Per Article: 118.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
Collapse
Affiliation(s)
- Ranita Roy
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Monalisa Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Gianfranco Donelli
- b Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Vishvanath Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
36
|
Cakar F, Zingl FG, Schild S. Silence is golden: gene silencing of V. cholerae during intestinal colonization delivers new aspects to the acid tolerance response. Gut Microbes 2018; 10:228-234. [PMID: 30110191 PMCID: PMC6546326 DOI: 10.1080/19490976.2018.1502538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 07/09/2018] [Indexed: 02/03/2023] Open
Abstract
Bacterial pathogens of the gastrointestinal tract alter their expression profile upon ingestion by the host and activate a variety of factors enhancing colonization and virulence. However, gene silencing during infection might be as important as gene activation to achieve full colonization fitness. Thus, we developed and successfully applied a reporter technology to identify 101 in vivo repressed (ivr) genes of the bacterial pathogen Vibrio cholerae. In depth analysis of the in vivo repressed H+/Cl- transporter ClcA revealed an inverse requirement along gastrointestinal colonization. ClcA could be linked to acid tolerance response required during stomach passage, but ClcA expression is detrimental during subsequent colonization of the lower intestinal tract as it exploits the proton-motive force in alkaline environments. The study summarized in this addendum demonstrates that constitutive expression of ivr genes can reduce intestinal colonization fitness of V. cholerae, highlighting the necessity to downregulate these genes in vivo.
Collapse
Affiliation(s)
- Fatih Cakar
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Franz G. Zingl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Austria
| |
Collapse
|
37
|
Abstract
The nearly ubiquitous bacterial second messenger cyclic di-GMP is involved in a multitude of fundamental physiological processes such as sessility/motility transition and the switch between the acute and chronic infection status, combined with cell cycle control. The discovery of cyclic di-GMP, though, has been an example par excellence of scientific serendipity. We recapitulate here its years-long discovery process as an activator of the cellulose synthase of the environmental bacterium Komagataeibacter xylinus and its consequences for follow-up research. Indeed, the discovery of cyclic di-GMP as a ubiquitous second messenger contributed to the change in perception of bacteria as simple unicellular organisms just randomly building-up multicellular communities. Subsequently, cyclic di-GMP also paved the way to the identification of other pro- and eukaryotic cyclic dinucleotide second messengers.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, SE-17177, Stockholm, Sweden.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
38
|
The GDP-switched GAF domain of DcpA modulates the concerted synthesis/hydrolysis of c-di-GMP in Mycobacterium smegmatis. Biochem J 2018; 475:1295-1308. [PMID: 29555845 DOI: 10.1042/bcj20180079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 02/03/2023]
Abstract
The second messenger c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate] plays a key role in bacterial growth, survival and pathogenesis, and thus its intracellular homeostasis should be finely maintained. Mycobacterium smegmatis encodes a GAF (mammalian cGMP-regulated phosphodiesterases, Anabaenaadenylyl cyclases and Escherichia coli transcription activator FhlA) domain containing bifunctional enzyme DcpA (diguanylate cyclase and phosphodiesterase A) that catalyzes the synthesis and hydrolysis of c-di-GMP. Here, we found that M. smegmatis DcpA catalyzes the hydrolysis of c-di-GMP at a higher velocity, compared with synthetic activity, resulting in a sum reaction from the ultimate substrate GTP to the final product pGpG [5'-phosphoguanylyl-(3'-5')-guanosine]. Fusion with the N-terminal GAF domain enables the GGDEF (Gly-Gly-Asp-Glu-Phe) domain of DcpA to dimerize and accordingly gain synthetic activity. Screening of putative metabolites revealed that GDP is the ligand of the GAF domain. Binding of GDP to the GAF domain down-regulates synthetic activity, but up-regulates hydrolytic activity, which, in consequence, might enable a timely response to the transient accumulation of c-di-GMP at the stationary phase or under stresses. Combined with the crystal structure of the EAL (Glu-Ala-Leu) domain and the small-angle X-ray scattering data, we propose a putative regulatory model of the GAF domain finely tuned by the intracellular GTP/GDP ratio. These findings help us to better understand the concerted control of the synthesis and hydrolysis of c-di-GMP in M. smegmatis in various microenvironments.
Collapse
|
39
|
In vivo repressed genes of Vibrio cholerae reveal inverse requirements of an H +/Cl - transporter along the gastrointestinal passage. Proc Natl Acad Sci U S A 2018; 115:E2376-E2385. [PMID: 29463743 PMCID: PMC5877934 DOI: 10.1073/pnas.1716973115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The facultative human pathogen Vibrio cholerae changes its transcriptional profile upon oral ingestion by the host to facilitate survival and colonization fitness. Here, we used a modified version of recombination-based in vivo expression technology to investigate gene silencing during the in vivo passage, which has been understudied. Using a murine model of cholera, we screened a V. cholerae transposon library composed of 10,000 randomly generated reporter fusions and identified 101 in vivo repressed (ivr) genes. Our data indicate that constitutive expression of ivr genes reduces colonization fitness, highlighting the necessity to down-regulate these genes in vivo. For example, the ivr gene clcA, encoding an H+/Cl- transporter, could be linked to the acid tolerance response against hydrochloric acid. In a chloride-dependent manner, ClcA facilitates survival under low pH (e.g., the stomach), but its presence becomes detrimental under alkaline conditions (e.g., lower gastrointestinal tract). This pH-dependent clcA expression is controlled by the LysR-type activator AphB, which acts in concert with AphA to initiate the virulence cascade in V. cholerae after oral ingestion. Thus, transcriptional networks dictating induction of virulence factors and the repression of ivr genes overlap to regulate in vivo colonization dynamics. Overall, the results presented herein highlight the impact of spatiotemporal gene silencing in vivo. The molecular characterization of the underlying mechanisms can provide important insights into in vivo physiology and virulence network regulation.
Collapse
|
40
|
CodY-Mediated c-di-GMP-Dependent Inhibition of Mammalian Cell Invasion in Listeria monocytogenes. J Bacteriol 2018; 200:JB.00457-17. [PMID: 29229701 DOI: 10.1128/jb.00457-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
Elevated levels of the second messenger c-di-GMP suppress virulence in diverse pathogenic bacteria, yet mechanisms are poorly characterized. In the foodborne pathogen Listeria monocytogenes, high c-di-GMP levels inhibit mammalian cell invasion. Here, we show that invasion is impaired because of the decreased expression levels of internalin genes whose products are involved in invasion. We further show that at high c-di-GMP levels, the expression of the entire virulence regulon is suppressed, and so is the expression of the prfA gene encoding the master activator of the virulence regulon. Analysis of mechanisms controlling prfA expression pointed to the transcription factor CodY as a c-di-GMP-sensitive component. In high-c-di-GMP strains, codY gene expression is decreased, apparently due to the lower activity of CodY, which functions as an activator of codY transcription. We found that listerial CodY does not bind c-di-GMP in vitro and therefore investigated whether c-di-GMP levels affect two known cofactors of listerial CodY, branched-chain amino acids and GTP. Our manipulation of branched-chain amino acid levels did not perturb the c-di-GMP effect; however, our replacement of listerial CodY with the streptococcal CodY homolog, whose activity is GTP independent, abolished the c-di-GMP effect. The results of this study suggest that elevated c-di-GMP levels decrease the activity of the coordinator of metabolism and virulence, CodY, possibly via lower GTP levels, and that decreased CodY activity suppresses L. monocytogenes virulence by the decreased expression of the PrfA virulence regulon.IMPORTANCEListeria monocytogenes is a pathogen causing listeriosis, a disease responsible for the highest mortality rate among foodborne diseases. Understanding how the virulence of this pathogen is regulated is important for developing treatments to decrease the frequency of listerial infections in susceptible populations. In this study, we describe the mechanism through which elevated levels of the second messenger c-di-GMP inhibit listerial invasion in mammalian cells. Inhibition is caused by the decreased activity of the transcription factor CodY that coordinates metabolism and virulence.
Collapse
|
41
|
Shibata K, Nakasone Y, Terazima M. Photoreaction of BlrP1: the role of a nonlinear photo-intensity sensor. Phys Chem Chem Phys 2018. [DOI: 10.1039/c7cp08436f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blue-light-regulated phosphodiesterase 1 (BlrP1) dimer exhibits a large conformational change, which is assigned to a quaternary structural change. The conformational change requires photoexcitation of both monomer units in the dimer, indicating that BlrP1 plays a role of a nonlinear light intensity sensor.
Collapse
Affiliation(s)
- Kosei Shibata
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Yusuke Nakasone
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Masahide Terazima
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|
42
|
|
43
|
Silva-Valenzuela CA, Lazinski DW, Kahne SC, Nguyen Y, Molina-Quiroz RC, Camilli A. Growth arrest and a persister state enable resistance to osmotic shock and facilitate dissemination of Vibrio cholerae. THE ISME JOURNAL 2017; 11:2718-2728. [PMID: 28742070 PMCID: PMC5702728 DOI: 10.1038/ismej.2017.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/27/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Vibrio cholerae is a water-borne bacterial pathogen and causative agent of cholera. Although V. cholerae is a halophile, it can survive in fresh water, and this has a major role in cholera epidemics through consumption of contaminated water and subsequent fecal-oral spread. After dissemination from humans back into fresh water, V. cholerae encounters limited nutrient availability and an abrupt drop in conductivity but little is known about how V. cholerae adapts to, and survives in this environment. In this work, by abolishing or altering the expression of V. cholerae genes in a high-throughput manner, we observed that many osmotic shock tolerant mutants exhibited slowed or arrested growth, and/or generated a higher proportion of persister cells. In addition, we show that growth-arrested V. cholerae, including a persister subpopulation, are generated during infection of the intestinal tract and together allow for the successful dissemination to fresh water. Our results suggest that growth-arrested and persister subpopulations enable survival of V. cholerae upon shedding to the aquatic environment.
Collapse
Affiliation(s)
- Cecilia A Silva-Valenzuela
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - David W Lazinski
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Shoshanna C Kahne
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Y Nguyen
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Roberto C Molina-Quiroz
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| |
Collapse
|
44
|
Altered Regulation of the Diguanylate Cyclase YaiC Reduces Production of Type 1 Fimbriae in a Pst Mutant of Uropathogenic Escherichia coli CFT073. J Bacteriol 2017; 199:JB.00168-17. [PMID: 28924030 DOI: 10.1128/jb.00168-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022] Open
Abstract
The pst gene cluster encodes the phosphate-specific transport (Pst) system. Inactivation of the Pst system constitutively activates the two-component regulatory system PhoBR and attenuates the virulence of pathogenic bacteria. In uropathogenic Escherichia coli strain CFT073, attenuation by inactivation of pst is predominantly attributed to the decreased expression of type 1 fimbriae. However, the molecular mechanisms connecting the Pst system and type 1 fimbriae are unknown. To address this, a transposon library was constructed in the pst mutant, and clones were tested for a regain in type 1 fimbrial production. Among them, the diguanylate cyclase encoded by yaiC (adrA in Salmonella) was identified to connect the Pst system and type 1 fimbrial expression. In the pst mutant, the decreased expression of type 1 fimbriae is connected by the induction of yaiC This is predominantly due to altered expression of the FimBE-like recombinase genes ipuA and ipbA, affecting at the same time the inversion of the fim promoter switch (fimS). In the pst mutant, inactivation of yaiC restored fim-dependent adhesion to bladder cells and virulence. Interestingly, the expression of yaiC was activated by PhoB, since transcription of yaiC was linked to the PhoB-dependent phoA-psiF operon. As YaiC is involved in cyclic di-GMP (c-di-GMP) biosynthesis, an increased accumulation of c-di-GMP was observed in the pst mutant. Hence, the results suggest that one mechanism by which deletion of the Pst system reduces the expression of type 1 fimbriae is through PhoBR-mediated activation of yaiC, which in turn increases the accumulation of c-di-GMP, represses the fim operon, and, consequently, attenuates virulence in the mouse urinary tract infection model.IMPORTANCE Urinary tract infections (UTIs) are common bacterial infections in humans. They are mainly caused by uropathogenic Escherichia coli (UPEC). We previously showed that interference with phosphate homeostasis decreases the expression of type 1 fimbriae and attenuates UPEC virulence. Herein, we identified that alteration of the phosphate metabolism increases production of the signaling molecule c-di-GMP, which in turn decreases the expression of type 1 fimbriae. We also determine the regulatory cascade leading to the accumulation of c-di-GMP and identify the Pho regulon as new players in c-di-GMP-mediated cell signaling. By understanding the molecular mechanisms leading to the expression of virulence factors, we will be in a better position to develop new therapeutics.
Collapse
|
45
|
Cyclic Di-GMP and VpsR Induce the Expression of Type II Secretion in Vibrio cholerae. J Bacteriol 2017; 199:JB.00106-17. [PMID: 28674069 DOI: 10.1128/jb.00106-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/09/2017] [Indexed: 12/23/2022] Open
Abstract
Vibrio cholerae is a human pathogen that alternates between growth in environmental reservoirs and infection of human hosts, causing severe diarrhea. The second messenger cyclic di-GMP (c-di-GMP) mediates this transition by controlling a wide range of functions, such as biofilms, virulence, and motility. Here, we report that c-di-GMP induces expression of the extracellular protein secretion (eps) gene cluster, which encodes the type II secretion system (T2SS) in V. cholerae Analysis of the eps genes confirmed the presence of two promoters located upstream of epsC, the first gene in the operon, one of which is induced by c-di-GMP. This induction is directly mediated by the c-di-GMP-binding transcriptional activator VpsR. Increased expression of the eps operon did not impact secretion of extracellular toxin or biofilm formation but did increase expression of the pseudopilin protein EpsG on the cell surface.IMPORTANCE Type II secretion systems (T2SSs) are the primary molecular machines by which Gram-negative bacteria secrete proteins and protein complexes that are folded and assembled in the periplasm. The substrates of T2SSs include extracellular factors, such as proteases and toxins. Here, we show that the widely conserved second messenger cyclic di-GMP (c-di-GMP) upregulates expression of the eps genes encoding the T2SS in the pathogen V. cholerae via the c-di-GMP-dependent transcription factor VpsR.
Collapse
|
46
|
A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infect Immun 2017; 85:IAI.00347-17. [PMID: 28652311 DOI: 10.1128/iai.00347-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
The signaling molecule cyclic diguanylate (c-di-GMP) mediates physiological adaptation to extracellular stimuli in a wide range of bacteria. The complex metabolic pathways governing c-di-GMP synthesis and degradation are highly regulated, but the specific cues that impact c-di-GMP signaling are largely unknown. In the intestinal pathogen Clostridium difficile, c-di-GMP inhibits flagellar motility and toxin production and promotes pilus-dependent biofilm formation, but no specific biological functions have been ascribed to any of the individual c-di-GMP synthases or phosphodiesterases (PDEs). Here, we report the functional and biochemical characterization of a c-di-GMP PDE, PdcA, 1 of 37 confirmed or putative c-di-GMP metabolism proteins in C. difficile 630. Our studies reveal that pdcA transcription is controlled by the nutrient-regulated transcriptional regulator CodY and accordingly increases during stationary phase. In addition, PdcA PDE activity is allosterically regulated by GTP, further linking c-di-GMP levels to nutrient availability. Mutation of pdcA increased biofilm formation and reduced toxin biosynthesis without affecting swimming motility or global intracellular c-di-GMP. Analysis of the transcriptional response to pdcA mutation indicates that PdcA-dependent phenotypes manifest during stationary phase, consistent with regulation by CodY. These results demonstrate that inactivation of this single PDE gene is sufficient to impact multiple c-di-GMP-dependent phenotypes, including the production of major virulence factors, and suggest a link between c-di-GMP signaling and nutrient availability.
Collapse
|
47
|
Ignatov D, Johansson J. RNA-mediated signal perception in pathogenic bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28792118 DOI: 10.1002/wrna.1429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
48
|
Cao M, Goodrich-Blair H. Ready or Not: Microbial Adaptive Responses in Dynamic Symbiosis Environments. J Bacteriol 2017; 199:e00883-16. [PMID: 28484049 PMCID: PMC5512229 DOI: 10.1128/jb.00883-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis.
Collapse
Affiliation(s)
- Mengyi Cao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
49
|
Nguyen TD, Jeong K, Ryu J, Jung CH. A Rapid Screening of Ligand Binding by Measuring Intrinsic Fluorescence Changes of Proteins. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tien Duc Nguyen
- Department of Molecular Medicine; Chonnam National University; Gwangju Korea
| | - Kwangjun Jeong
- Department of Molecular Medicine; Chonnam National University; Gwangju Korea
| | - Juyeon Ryu
- Department of Chemistry; Chonnam National University; Gwangju Korea
| | - Che-Hun Jung
- Department of Molecular Medicine; Chonnam National University; Gwangju Korea
- Department of Chemistry; Chonnam National University; Gwangju Korea
| |
Collapse
|
50
|
Reddy S, Turaga G, Abdelhamed H, Banes MM, Wills RW, Lawrence ML. Listeria monocytogenes PdeE, a phosphodiesterase that contributes to virulence and has hydrolytic activity against cyclic mononucleotides and cyclic dinucleotides. Microb Pathog 2017; 110:399-408. [PMID: 28711509 DOI: 10.1016/j.micpath.2017.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/27/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
We have identified and partially characterized a putative HD domain hydrolase, LMOf2365_2464, which is highly expressed during listerial intracellular replication. LMOf2365_2464 is annotated as a putative HD domain-containing hydrolase. The ability of an isogenic mutant strain, F2365Δ2464, to adhere, invade and replicate in intestinal epithelial cells (Caco-2) was significantly lower than parent strain F2365. Colonization of mouse liver and spleen by L. monocytogenes F2365 was significantly higher than it was for the mutant. The recombinant protein showed phosphodiesterase activity in the presence of divalent metal ions, indicating its role in nucleotide metabolism. It has activity against several cyclic nucleotides and cyclic dinucleotides, but its strongest activity is against cyclic di-AMP and cyclic AMP. Based on this enzymatic activity, we designated LMOf2365_2464 phosphodiesterase E (PdeE).
Collapse
Affiliation(s)
- Swetha Reddy
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Gokul Turaga
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Michelle M Banes
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Robert W Wills
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark L Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|