1
|
Vieira B, Alcantara JB, Destro G, Guerra MES, Oliveira S, Lima CA, Longato GB, Hakansson AP, Leite LC, Darrieux M, R. Converso T. Role of the polyamine transporter PotABCD during biofilm formation by Streptococcus pneumoniae. PLoS One 2024; 19:e0307573. [PMID: 39110759 PMCID: PMC11305561 DOI: 10.1371/journal.pone.0307573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Streptococcus pneumoniae is a bacterium of great global importance, responsible for more than one million deaths per year. This bacterium is commonly acquired in the first years of life and colonizes the upper respiratory tract asymptomatically by forming biofilms that persist for extended times in the nasopharynx. However, under conditions that alter the bacterial environment, such as viral infections, pneumococci can escape from the biofilm and invade other niches, causing local and systemic disease of varying severity. The polyamine transporter PotABCD is required for optimal survival of the organism in the host. Immunization of mice with recombinant PotD can reduce subsequent bacterial colonization. PotD has also been suggested to be involved in pneumococcal biofilm development. Therefore, in this study we aimed to elucidate the role of PotABCD and polyamines in pneumococcal biofilm formation. First, the formation of biofilms was evaluated in the presence of exogenous polyamines-the substrate transported by PotABCD-added to culture medium. Next, a potABCD-negative strain was used to determine biofilm formation in different model systems using diverse levels of complexity from abiotic surface to cell substrate to in vivo animal models and was compared with its wild-type strain. The results showed that adding more polyamines to the medium stimulated biofilm formation, suggesting a direct correlation between polyamines and biofilm formation. Also, deletion of potABCD operon impaired biofilm formation in all models tested. Interestingly, more differences between wild-type and mutant strains were observed in the more complex model, which emphasizes the significance of employing more physiological models in studying biofilm formation.
Collapse
Affiliation(s)
- Brenda Vieira
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Jessica B. Alcantara
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Giulia Destro
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria E. S. Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Sheila Oliveira
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Carolina A. Lima
- Laboratório de Farmacologia Molecular e Compostos Bioativos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Giovanna B. Longato
- Laboratório de Farmacologia Molecular e Compostos Bioativos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Luciana C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago R. Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
2
|
Trentini MM, Rodriguez D, Kanno AI, Goulart C, Darrieux M, de Cerqueira Leite LC. Robust Immune Response and Protection against Lethal Pneumococcal Challenge with a Recombinant BCG-PspA-PdT Prime/Boost Scheme Administered to Neonatal Mice. Vaccines (Basel) 2024; 12:122. [PMID: 38400107 PMCID: PMC10893189 DOI: 10.3390/vaccines12020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Pneumococcal diseases are an important public health problem, with high mortality rates in young children. Although conjugated pneumococcal vaccines offer high protection against invasive pneumococcal diseases, this is restricted to vaccine serotypes, leading to serotype replacement. Furthermore, the current vaccines do not protect neonates. Therefore, several protein-based pneumococcal vaccines have been studied over the last few decades. Our group established a recombinant BCG expressing rPspA-PdT as a prime/rPspA-PdT boost strategy, which protected adult mice against lethal intranasal pneumococcal challenge. Here, we immunized groups of neonate C57/Bl6 mice (6-10) (at 5 days) with rBCG PspA-PdT and a boost with rPspA-PdT (at 12 days). Controls were saline or each antigen alone. The prime/boost strategy promoted an IgG1 to IgG2c isotype shift compared to protein alone. Furthermore, there was an increase in specific memory cells (T and B lymphocytes) and higher cytokine production (IFN-γ, IL-17, TNF-α, IL-10, and IL-6). Immunization with rBCG PspA-PdT/rPspA-PdT showed 100% protection against pulmonary challenge with the WU2 pneumococcal strain; two doses of rPspA-PdT showed non-significant protection in the neonates. These results demonstrate that a prime/boost strategy using rBCG PspA-PdT/rPspA-PdT is effective in protecting neonates against lethal pneumococcal infection via the induction of strong antibody and cytokine responses.
Collapse
Affiliation(s)
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Cibelly Goulart
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Michelle Darrieux
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista 12916-900, Brazil;
| | | |
Collapse
|
3
|
Pitiot A, Ferreira M, Parent C, Boisseau C, Cortes M, Bouvart L, Paget C, Heuzé-Vourc'h N, Sécher T. Mucosal administration of anti-bacterial antibodies provide long-term cross-protection against Pseudomonas aeruginosa respiratory infection. Mucosal Immunol 2023; 16:312-325. [PMID: 36990281 DOI: 10.1016/j.mucimm.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
Bacterial respiratory infections, either acute or chronic, are major threats to human health. Direct mucosal administration, through the airways, of therapeutic antibodies (Abs) offers a tremendous opportunity to benefit patients with respiratory infections. The mode of action of anti-infective Abs relies on pathogen neutralization and crystallizable fragment (Fc)-mediated recruitment of immune effectors to facilitate their elimination. Using a mouse model of acute pneumonia induced by Pseudomonas aeruginosa, we depicted the immunomodulatory mode of action of a neutralizing anti-bacterial Abs. Beyond the rapid and efficient containment of the primary infection, the Abs delivered through the airways harnessed genuine innate and adaptive immune responses to provide long-term protection, preventing secondary bacterial infection. In vitro antigen-presenting cells stimulation assay, as well as in vivo bacterial challenges and serum transfer experiments indicate an essential contribution of immune complexes with the Abs and pathogen in the induction of the sustained and protective anti-bacterial humoral response. Interestingly, the long-lasting response protected partially against secondary infections with heterologous P. aeruginosa strains. Overall, our findings suggest that Abs delivered mucosally promotes bacteria neutralization and provides protection against secondary infection. This opens novel perspectives for the development of anti-infective Abs delivered to the lung mucosa, to treat respiratory infections.
Collapse
Affiliation(s)
- Aubin Pitiot
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Marion Ferreira
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Christelle Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Chloé Boisseau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Mélanie Cortes
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Laura Bouvart
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France.
| |
Collapse
|
4
|
Conjugation Mechanism for Pneumococcal Glycoconjugate Vaccines: Classic and Emerging Methods. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120774. [PMID: 36550980 PMCID: PMC9774679 DOI: 10.3390/bioengineering9120774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Licensed glycoconjugate vaccines are generally prepared using native or sized polysaccharides coupled to a carrier protein through random linkages along the polysaccharide chain. These polysaccharides must be chemically modified before covalent linking to a carrier protein in order to obtain a more defined polysaccharide structure that leads to a more rational design and safer vaccines. There are classic and new methods for site-selective glycopolysaccharide conjugation, either chemical or enzymatic modification of the polysaccharide length or of specific amino acid residues of the protein carrier. Here, we discuss the state of the art and the advancement of conjugation of S. pneumoniae glycoconjugate vaccines based on pneumococcal capsular polysaccharides to improve existing vaccines.
Collapse
|
5
|
Waz NT, Oliveira S, Girardello R, Lincopan N, Barazzone G, Parisotto T, Hakansson AP, Converso TR, Darrieux M. Influence of the Polysaccharide Capsule on the Bactericidal Activity of Indolicidin on Streptococcus pneumoniae. Front Microbiol 2022; 13:898815. [PMID: 35633685 PMCID: PMC9136410 DOI: 10.3389/fmicb.2022.898815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for high morbidity and mortality worldwide. The polysaccharide capsule confers protection against phagocytosis and influences many aspects of pneumococcal pathogenesis. The capsular polysaccharides (CPS) are highly immunogenic and exhibit great structural variability, with more than 100 serotypes described so far. Antimicrobial peptides (AMPs) are an important part of the innate defense mechanisms against many pathogens. Indolicidin is a cationic AMP produced by bovine neutrophils, with bactericidal effects against several bacteria. CPS has been shown to interfere with the ability of AMPs to kill pneumococci, but the effects of capsule variability on susceptibility to indolicidin have not been explored. The present work determined the effects of capsule on resistance to indolicidin in vitro. Using a bactericidal plate assay, we observed that different pneumococcal serotypes exhibited variable resistance to indolicidin, which correlated with the capsule net charge. Interestingly, the effect of capsule expression on resistance to indolicidin was dependent on the serotype; bacteria with lower zeta potential were more resistant to indolicidin when capsule was present, while those with less negative surface charge were more resistant in the absence of capsule. The addition of purified CPS partially rescued the bacteria from the bactericidal effects of indolicidin, while the addition of anticapsular antibodies accentuated the peptide’s bactericidal action, suggesting a possible new protective mechanism induced by polysaccharide-based pneumococcal vaccines.
Collapse
Affiliation(s)
- Natalha T. Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Sheila Oliveira
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Raquel Girardello
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Nilton Lincopan
- Laboratório de Resistoma e Alternativas Terapêuticas, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giovana Barazzone
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Thais Parisotto
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
- *Correspondence: Michelle Darrieux,
| |
Collapse
|
6
|
Bahroudi M, Bakhshi B, Soudi S, Najar-Peerayeh S. Immunomodulatory effects of mesenchymal stem cell-conditioned media on lipopolysaccharide of Vibrio cholerae as a vaccine candidate. Stem Cell Res Ther 2021; 12:564. [PMID: 34732259 PMCID: PMC8567566 DOI: 10.1186/s13287-021-02622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vibrio cholerae is the causative agent of cholera, which is commonly associated with high morbidity and mortality, and presents a major challenge to healthcare systems throughout the world. Lipopolysaccharide (LPS) is required for full protection against V. cholerae but can induce inflammation and septic shock. Mesenchymal stem cells (MSCs) are currently used to treat infectious and inflammatory diseases. Therefore, this study aimed to evaluate the immune-modulating effects of the LPS-MSC-conditioned medium (CM) on V. cholerae LPS immunization in a murine model. METHODS After preconditioning MSCs with LPS, mice were immunized intraperitoneally on days 0 and 14 with the following combinations: LPS + LPS-MSC-CM; detoxified LPS (DLPS) + MSC-CM; LPS + MSC sup; LPS; LPS-MSC-CM; MSC supernatant (MSC sup); and PBS. The mouse serum and saliva samples were collected to evaluate antibody (serum IgG and saliva IgA) and cytokine responses (TNF-α, IL-10, IL-6, TGF-β, IL-4, IL-5, and B-cell activating factor (BAFF)). RESULTS The LPS + LPS-MSC-CM significantly increased total IgG and IgA compared to other combinations (P < 0.001). TNF-α levels, in contrast to IL-10 and TGF-β, were reduced significantly in mice receiving the LPS + LPS-MSC-CM compared to mice receiving only LPS. IL-4, IL-5, and BAFF levels significantly increased in mice receiving increased doses of LPS + LPS-MSC-CM compared to those who received only LPS. The highest vibriocidal antibody titer (1:64) was observed in LPS + LPS-MSC-CM-immunized mice and resulted in a significant improvement in survival in infant mice infected by V. cholerae O1. CONCLUSIONS The LPS-MSC-CM modulates the immune response to V. cholerae LPS by regulating inflammatory and anti-inflammatory responses and inducing vibriocidal antibodies, which protect neonate mice against V. cholerae infection.
Collapse
Affiliation(s)
- Mahboube Bahroudi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| |
Collapse
|
7
|
Exploring the Ability of Meningococcal Vaccines to Elicit Mucosal Immunity: Insights from Humans and Mice. Pathogens 2021; 10:pathogens10070906. [PMID: 34358056 PMCID: PMC8308890 DOI: 10.3390/pathogens10070906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Neisseria meningitidis causes a devastating invasive disease but is also a normal colonizer of the human nasopharynx. Due to the rapid progression of disease, the best tool to protect individuals against meningococcal infections is immunization. Clinical experience with polysaccharide conjugate vaccines has revealed that an ideal meningococcal vaccine must prevent both invasive disease and nasal colonization, which confers herd immunity. However, not all meningococcal vaccines are equal in their ability to prevent nasal colonization, for unknown reasons. Herein, we describe recent efforts to utilize humanized mouse models to understand the impact of different meningococcal vaccines on nasal colonization. These mice are susceptible to nasal colonization, and they become immune following live nasal infection or immunization with matched capsule-conjugate or protein-based vaccines, replicating findings from human work. We bring together insights regarding meningococcal colonization and immunity from clinical work with findings using humanized mouse models, providing new perspective into the different determinants of mucosal versus systemic immunity. Then, we use this as a framework to help focus future studies toward understanding key mechanistic aspects left unresolved, including the bacterial factors required for colonization and immune evasion, determinants of nasal mucosal protection, and characteristics of an ideal meningococcal vaccine.
Collapse
|
8
|
Grant LR, Slack MPE, Yan Q, Trzciński K, Barratt J, Sobczyk E, Appleby J, Cané A, Jodar L, Isturiz RE, Gessner BD. The epidemiologic and biologic basis for classifying older age as a high-risk, immunocompromising condition for pneumococcal vaccine policy. Expert Rev Vaccines 2021; 20:691-705. [PMID: 34233558 DOI: 10.1080/14760584.2021.1921579] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Immunosenescence is a normal biologic process involving deterioration of protective immune responses. Consequently, older adults experience increased risk of infectious diseases, particularly pneumonia, and its leading bacterial cause, Streptococcus pneumoniae. Pneumococcal vaccine recommendations are often limited to adults with specific medical conditions despite similar disease risks among older adults due to immunosenescence. AREAS COVERED This article reviews epidemiologic, biologic, and clinical evidence supporting the consideration of older age due to immunosenescence as an immunocompromising condition for the purpose of pneumococcal vaccine policy and the role vaccination can play in healthy aging. EXPERT OPINION Epidemiologic and biologic evidence suggest that pneumococcal disease risk increases with age and is comparable for healthy older adults and younger adults with immunocompromising conditions. Because immunocompromising conditions are already indicated for pneumococcal conjugate vaccines (PCVs), a comprehensive public health strategy would also recognize immunosenescence. Moreover, older persons should be vaccinated before reaching the highest risk ages, consistent with the approach for other immunocompromising conditions. To facilitate PCV use among older adults, vaccine technical committees (VTCs) could classify older age as an immunocompromising condition based on the process of immunosenescence. With global aging, VTCs will need to consider immunosenescence and vaccine use during healthy aging.
Collapse
Affiliation(s)
- Lindsay R Grant
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Mary P E Slack
- School of Medicine, Griffith University Gold Coast Campus, Australia
| | - Qi Yan
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jane Barratt
- International Federation on Ageing, Toronto, Ontario, Canada
| | | | - James Appleby
- The Gerontological Society of America, Washington, D.C., USA
| | - Alejandro Cané
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Raul E Isturiz
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Bradford D Gessner
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
9
|
Lagousi T, Basdeki P, De Jonge MI, Spoulou V. Understanding host immune responses to pneumococcal proteins in the upper respiratory tract to develop serotype-independent pneumococcal vaccines. Expert Rev Vaccines 2020; 19:959-972. [PMID: 33107359 DOI: 10.1080/14760584.2020.1843433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Nasopharyngeal colonization is a precondition for mucosal and invasive pneumococcal disease. Prevention of colonization may reduce pneumococcal transmission and disease incidence. Therefore, several protein-based pneumococcal vaccines are currently under investigation. Areas covered: We aimed to better understand the host immune responses to pneumococcal proteins in the upper respiratory tract (URT) that could facilitate the development of serotype-independent pneumococcal vaccines. English peer-reviewed papers reporting immunological mechanisms involved in host immune response to pneumococcal proteins in the URT were retrieved through a PubMed search using the terms 'pneumococcal proteins,' 'nasopharyngeal colonization' and/or 'cellular/humoral host immune response.' Expert opinion: Although pneumococcal protein antigens induce humoral immune responses, as well as IL-17A-mediated immunity, none of them, when used as single antigen, is sufficient to control and broadly protect against pneumococcal colonization. Novel vaccines should contain multiple conserved protein antigens to activate both arms of the immune system and evoke protection against the whole spectrum of pneumococcal variants by reducing, rather than eradicating, pneumococcal carriage. The highest efficacy would likely be achieved when the vaccine is intranasally applied, inducing mucosal immunity and enhancing the first line of defense by restricting pneumococcal density in the URT, which in turn will lead to reduced transmission and protection against disease.
Collapse
Affiliation(s)
- Theano Lagousi
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| | - Paraskevi Basdeki
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| | - Marien I De Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Vana Spoulou
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| |
Collapse
|
10
|
Converso TR, Assoni L, André GO, Darrieux M, Leite LCC. The long search for a serotype independent pneumococcal vaccine. Expert Rev Vaccines 2020; 19:57-70. [PMID: 31903805 DOI: 10.1080/14760584.2020.1711055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Serotype replacement - a consequence of polysaccharide vaccine use - will continue to drive the inclusion of new serotypes on conjugate vaccines, increasing production complexity and costs, and making an already expensive vaccine less accessible to developing countries, where prevalence is higher and resources available for health systems, scarcer. Serotype-independent formulations are a promising option, but so far they have not been successful in reducing colonization/transmission.Areas covered: Protein-based and whole-cell vaccine candidates studied in the past 30 years. Challenges for serotype-independent vaccine development and alternative approaches.Expert opinion: Clinical trials performed so far demonstrated the importance to establish more reliable animal models and better correlates of protection. Defining appropriate endpoints for clinical trials of serotype-independent vaccine candidates has been a challenge. Inhibition of colonization has been evaluated, but concern on the extent of bacterial elimination is still a matter of debate. Challenges on establishing representative sites for clinical trials, sample sizes and appropriate age groups are discussed. On a whole, although many challenges will have to be overcome, establishing protein-based antigens as serotype-independent vaccines is still the best alternative against the huge burden of pneumococcal diseases in the world.
Collapse
Affiliation(s)
- T R Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - G O André
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - M Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Opening the OPK Assay Gatekeeper: Harnessing Multi-Modal Protection by Pneumococcal Vaccines. Pathogens 2019; 8:pathogens8040203. [PMID: 31652741 PMCID: PMC6963391 DOI: 10.3390/pathogens8040203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
Pneumococcal vaccine development is driven by the achievement of high activity in a single gatekeeper assay: the bacterial opsonophagocytic killing (OPK) assay. New evidence challenges the dogma that anti-capsular antibodies have only a single function that predicts success. The emerging concept of multi-modal protection presents an array of questions that are fundamental to adopting a new vaccine design process. If antibodies have hidden non-opsonic functions that are protective, should these be optimized for better vaccines? What would protein antigens add to protective activity? Are cellular immune functions additive to antibodies for success? Do different organs benefit from different modes of protection? Can vaccine activities beyond OPK protect the immunocompromised host? This commentary raises these issues at a time when capsule-only OPK assay-based vaccines are increasingly seen as a limiting strategy.
Collapse
|
12
|
Gonçalves VM, Kaneko K, Solórzano C, MacLoughlin R, Saleem I, Miyaji EN. Progress in mucosal immunization for protection against pneumococcal pneumonia. Expert Rev Vaccines 2019; 18:781-792. [PMID: 31305196 DOI: 10.1080/14760584.2019.1643719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Lower respiratory tract infections are the fourth cause of death worldwide and pneumococcus is the leading cause of pneumonia. Nonetheless, existing pneumococcal vaccines are less effective against pneumonia than invasive diseases and serotype replacement is a major concern. Protein antigens could induce serotype-independent protection, and mucosal immunization could offer local and systemic immune responses and induce protection against pneumococcal colonization and lung infection. Areas covered: Immunity induced in the experimental human pneumococcal carriage model, approaches to address the physiological barriers to mucosal immunization and improve delivery of the vaccine antigens, different strategies already tested for pneumococcal mucosal vaccination, including live recombinant bacteria, nanoparticles, bacterium-like particles, and nanogels as well as, nasal, pulmonary, sublingual and oral routes of vaccination. Expert opinion: The most promising delivery systems are based on nanoparticles, bacterial-like particles or nanogels, which possess greater immunogenicity than the antigen alone and are considered safer than approaches based on living cells or toxoids. These particles can protect the antigen from degradation, eliminating the refrigeration need during storage and allowing the manufacture of dry powder formulations. They can also increase antigen uptake, control release of antigen and trigger innate immune responses.
Collapse
Affiliation(s)
| | - Kan Kaneko
- b School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building , Liverpool , UK
| | - Carla Solórzano
- c Department of Clinical Sciences, Liverpool School of Tropical Medicine , Liverpool , UK
| | - Ronan MacLoughlin
- d Science Department and Clinical Department, Aerogen Ltd., IDA Business Park , Galway , Ireland
| | - Imran Saleem
- b School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building , Liverpool , UK
| | | |
Collapse
|
13
|
LaCanna R, Liccardo D, Zhang P, Tragesser L, Wang Y, Cao T, Chapman HA, Morrisey EE, Shen H, Koch WJ, Kosmider B, Wolfson MR, Tian Y. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J Clin Invest 2019; 129:2107-2122. [PMID: 30985294 DOI: 10.1172/jci125014] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Alveolar epithelium plays a pivotal role in protecting the lungs from inhaled infectious agents. Therefore, the regenerative capacity of the alveolar epithelium is critical for recovery from these insults in order to rebuild the epithelial barrier and restore pulmonary functions. Here, we show that sublethal infection of mice with Streptococcus pneumoniae, the most common pathogen of community-acquired pneumonia, led to exclusive damage in lung alveoli, followed by alveolar epithelial regeneration and resolution of lung inflammation. We show that surfactant protein C-expressing (SPC-expressing) alveolar epithelial type II cells (AECIIs) underwent proliferation and differentiation after infection, which contributed to the newly formed alveolar epithelium. This increase in AECII activities was correlated with increased nuclear expression of Yap and Taz, the mediators of the Hippo pathway. Mice that lacked Yap/Taz in AECIIs exhibited prolonged inflammatory responses in the lung and were delayed in alveolar epithelial regeneration during bacterial pneumonia. This impaired alveolar epithelial regeneration was paralleled by a failure to upregulate IκBa, the molecule that terminates NF-κB-mediated inflammatory responses. These results demonstrate that signals governing resolution of lung inflammation were altered in Yap/Taz mutant mice, which prevented the development of a proper regenerative niche, delaying repair and regeneration of alveolar epithelium during bacterial pneumonia.
Collapse
Affiliation(s)
- Ryan LaCanna
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniela Liccardo
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peggy Zhang
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren Tragesser
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tongtong Cao
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter J Koch
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Beata Kosmider
- Department of Physiology, Department of Thoracic Medicine and Surgery, Center for Inflammation, Translational and Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marla R Wolfson
- Department of Physiology, Department of Thoracic Medicine and Surgery, Center for Inflammation, Translational and Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Regenerative therapy based on miRNA-302 mimics for enhancing host recovery from pneumonia caused by Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2019; 116:8493-8498. [PMID: 30971494 DOI: 10.1073/pnas.1818522116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial pneumonia remains a leading cause of morbidity and mortality worldwide. A defining feature of pneumonia is lung injury, leading to protracted suffering and vulnerability long after bacterial clearance. Little is known about which cells are damaged during bacterial pneumonia and if the regenerative process can be harnessed to promote tissue repair and host recovery. Here, we show that infection of mice with Streptococcus pneumoniae (Sp) caused substantial damage to alveolar epithelial cells (AEC), followed by a slow process of regeneration. Concurrent with AEC regeneration, the expression of miRNA-302 is elevated in AEC. Treatment of Sp-infected mice with miRNA-302 mimics improved lung functions, host recovery, and survival. miRNA-302 mediated its therapeutic effects, not by inhibiting apoptosis and preventing damage, but by promoting proliferation of local epithelial progenitor cells to regenerate AEC. These results demonstrate the ability of microRNA-based therapy to promote AEC regeneration and enhance host recovery from bacterial pneumonia.
Collapse
|
15
|
Ramos-Sevillano E, Ercoli G, Brown JS. Mechanisms of Naturally Acquired Immunity to Streptococcus pneumoniae. Front Immunol 2019; 10:358. [PMID: 30881363 PMCID: PMC6405633 DOI: 10.3389/fimmu.2019.00358] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
In this review we give an update on the mechanisms of naturally acquired immunity against Streptococcus pneumoniae, one of the major human bacterial pathogens that is a common cause of pneumonia, septicaemia, and meningitis. A clear understanding of the natural mechanisms of immunity to S. pneumoniae is necessary to help define why the very young and elderly are at high risk of disease, and for devising new prevention strategies. Recent data has shown that nasopharynx colonization by S. pneumoniae induces antibody responses to protein and capsular antigens in both mice and humans, and also induces Th17 CD4+ cellular immune responses in mice and increases pre-existing responses in humans. These responses are protective, demonstrating that colonization is an immunizing event. We discuss the data from animal models and humans on the relative importance of naturally acquired antibody and Th17 cells on immunity to S. pneumoniae at three different anatomical sites of infection, the nasopharynx (the site of natural asymptomatic carriage), the lung (site of pneumonia), and the blood (site of sepsis). Mouse data suggest that CD4+ Th17 cells prevent both primary and secondary nasopharyngeal carriage with no role for antibody induced by previous colonization. In contrast, antibody is necessary for prevention of sepsis but CD4+ cellular responses are not. Protection against pneumonia requires a combination of both antibody and Th17 cells, in both cases targeting protein rather than capsular antigen. Proof of which immune component prevents human infection is less easily available, but two recent papers demonstrate that human IgG targeting S. pneumoniae protein antigens is highly protective against septicaemia. The role of CD4+ responses to prior nasopharyngeal colonization for protective immunity in humans is unclear. The evidence that there is significant naturally-acquired immunity to S. pneumoniae independent of anti-capsular polysaccharide has clinical implications for the detection of subjects at risk of S. pneumoniae infections, and the data showing the importance of protein antigens as targets for antibody and Th17 mediated immunity should aid the development of new vaccine strategies.
Collapse
Affiliation(s)
| | | | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, United Kingdom
| |
Collapse
|
16
|
Oliver E, Pope C, Clarke E, Langton Hewer C, Ogunniyi AD, Paton JC, Mitchell T, Malley R, Finn A. Th17 responses to pneumococcus in blood and adenoidal cells in children. Clin Exp Immunol 2019; 195:213-225. [PMID: 30325010 PMCID: PMC6330644 DOI: 10.1111/cei.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2018] [Indexed: 11/30/2022] Open
Abstract
Pneumococcal infections cause a large global health burden, and the search for serotype-independent vaccines continues. Existing conjugate vaccines reduce nasopharyngeal colonization by target serotypes. Such mucosal effects of novel antigens may similarly be important. CD4+ Th17 cell-dependent, antibody-independent reductions in colonization and enhanced clearance have been described in mice. Here we describe the evaluation of T helper type 17 (Th17) cytokine responses to candidate pneumococcal protein vaccine antigens in human cell culture, using adenoidal and peripheral blood mononuclear cells. Optimal detection of interleukin (IL)-17A was at day 7, and of IL-22 at day 11, in these primary cell cultures. Removal of CD45RO+ memory T cells abolished these responses. Age-associated increases in magnitude of responses were evident for IL-17A, but not IL-22, in adenoidal cells. There was a strong correlation between individual IL-17A and IL-22 responses after pneumococcal antigen stimulation (P < 0·015). Intracellular cytokine staining following phorbol myristate acetate (PMA)/ionomycin stimulation demonstrated that > 30% CD4+ T cells positive for IL-22 express the innate markers γδT cell receptor and/or CD56, with much lower proportions for IL-17A+ cells (P < 0·001). Responses to several vaccine candidate antigens were observed but were consistently absent, particularly in blood, to PhtD (P < 0·0001), an antigen recently shown not to impact colonization in a clinical trial of a PhtD-containing conjugate vaccine in infants. The data presented and approach discussed have the potential to assist in the identification of novel vaccine antigens aimed at reducing pneumococcal carriage and transmission, thus improving the design of empirical clinical trials.
Collapse
Affiliation(s)
- E. Oliver
- School of Cellular and Molecular Medicine, Biomedical Sciences BuildingUniversity of BristolBristolUK
| | - C. Pope
- School of Cellular and Molecular Medicine, Biomedical Sciences BuildingUniversity of BristolBristolUK
| | - E. Clarke
- Vaccines and Immunity Theme, MRC Unit The GambiaFajaraThe Gambia
| | | | - A. D. Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideAdelaideAustralia
| | - J. C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical ScienceUniversity of AdelaideAdelaideAustralia
| | - T. Mitchell
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - R. Malley
- Division of Infectious Diseases, Department of MedicineChildren’s Hospital and Harvard Medical SchoolBostonMAUSA
| | - A. Finn
- School of Cellular and Molecular Medicine, Biomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
17
|
Merakou C, Schaefers MM, Priebe GP. Progress Toward the Elusive Pseudomonas aeruginosa Vaccine. Surg Infect (Larchmt) 2018; 19:757-768. [PMID: 30388058 DOI: 10.1089/sur.2018.233] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The gram-negative bacterial pathogen Pseudomonas aeruginosa causes a wide range of infections, mostly in hospitalized and immunocompromised patients, those with burns, surgical wounds, or combat-related wounds, and in people with cystic fibrosis. The increasing antibiotic resistance of P. aeruginosa confers a pressing need for vaccines, yet there are no P. aeruginosa vaccines approved for human use, and recent promising candidates have failed in large clinical trials. Discussion: In this review, we summarize recent clinical trials and pre-clinical studies of P. aeruginosa vaccines and provide a suggested framework for the makeup of a future successful vaccine. Murine models of infection suggest that antibodies, specifically opsonophagocytic killing antibodies (OPK), antitoxin antibodies, and anti-attachment antibodies, combined with T cell immunity, specifically TH17 responses, are needed for broad and potent protection against P. aeruginosa infection. A better understanding of the human immune response to P. aeruginosa infections, and to vaccine candidates, will eventually pave the way to a successful vaccine for this wily pathogen.
Collapse
Affiliation(s)
- Christina Merakou
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Matthew M Schaefers
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Gregory P Priebe
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts.,3 Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
18
|
Kim HY, Kim SK, Seo HS, Jeong S, Ahn KB, Yun CH, Han SH. Th17 activation by dendritic cells stimulated with gamma-irradiated Streptococcus pneumoniae. Mol Immunol 2018; 101:344-352. [PMID: 30036800 DOI: 10.1016/j.molimm.2018.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/22/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) play an important role in antigen presentation, which is an essential step for the induction of antigen-specific adaptive immunity. Inactivated bacterial whole cell vaccines have been widely used to prevent many bacterial infections because they elicit good immunogenicity due to the presence of various antigens and are relatively inexpensive and easy to manufacture. Recently, gamma-irradiated whole cells of nonencapsulated Streptococcus pneumoniae were developed as a broad-spectrum and serotype-independent multivalent vaccine. In the present study, we generated gamma-irradiated S. pneumoniae (r-SP) and investigated its capacity to stimulate mouse bone marrow-derived DCs (BM-DCs) in comparison with heat-inactivated and formalin-inactivated S. pneumoniae (h-SP and f-SP, respectively). r-SP showed an attenuated binding and internalization level to BM-DCs when compared to h-SP or f-SP. r-SP weakly induced the expression of CD80, CD83, CD86, MHC class I, and PD-L2 compared with h-SP or f-SP. Furthermore, r-SP less potently induced IL-6, TNF-α, and IL-23 expression than h-SP or f-SP but more potently induced IL-1β expression than h-SP or f-SP in BM-DCs. Since Th17-mediated immune responses are known to be important for the protection against pneumococcal infections, r-SP-primed DCs were co-cultured with splenocytes or splenic CD4+ T cells. Interestingly, r-SP-sensitized BM-DCs markedly induced IL-17A+ CD4+ T cells whereas h-SP- or f-SP-sensitized BM-DCs weakly induced them. Collectively, these results suggest that r-SP could be an effective pneumococcal vaccine candidate eliciting Th17-mediated immune responses by stimulation of DCs.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Kyung Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Soyoung Jeong
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Bum Ahn
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea; Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018; 16:355-367. [PMID: 29599457 PMCID: PMC5949087 DOI: 10.1038/s41579-018-0001-8] [Citation(s) in RCA: 641] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus pneumoniae has a complex relationship with its obligate human host. On the one hand, the pneumococci are highly adapted commensals, and their main reservoir on the mucosal surface of the upper airways of carriers enables transmission. On the other hand, they can cause severe disease when bacterial and host factors allow them to invade essentially sterile sites, such as the middle ear spaces, lungs, bloodstream and meninges. Transmission, colonization and invasion depend on the remarkable ability of S. pneumoniae to evade or take advantage of the host inflammatory and immune responses. The different stages of pneumococcal carriage and disease have been investigated in detail in animal models and, more recently, in experimental human infection. Furthermore, widespread vaccination and the resulting immune pressure have shed light on pneumococcal population dynamics and pathogenesis. Here, we review the mechanistic insights provided by these studies on the multiple and varied interactions of the pneumococcus and its host.
Collapse
|
20
|
Ritchie ND, Ritchie R, Bayes HK, Mitchell TJ, Evans TJ. IL-17 can be protective or deleterious in murine pneumococcal pneumonia. PLoS Pathog 2018; 14:e1007099. [PMID: 29813133 PMCID: PMC5993294 DOI: 10.1371/journal.ppat.1007099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/08/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is the major bacterial cause of community-acquired pneumonia, and the leading agent of childhood pneumonia deaths worldwide. Nasal colonization is an essential step prior to infection. The cytokine IL-17 protects against such colonization and vaccines that enhance IL-17 responses to pneumococcal colonization are being developed. The role of IL-17 in host defence against pneumonia is not known. To address this issue, we have utilized a murine model of pneumococcal pneumonia in which the gene for the IL-17 cytokine family receptor, Il17ra, has been inactivated. Using this model, we show that IL-17 produced predominantly from γδ T cells protects mice against death from the invasive TIGR4 strain (serotype 4) which expresses a relatively thin capsule. However, in pneumonia produced by two heavily encapsulated strains with low invasive potential (serotypes 3 and 6B), IL-17 significantly enhanced mortality. Neutrophil uptake and killing of the serotype 3 strain was significantly impaired compared to the serotype 4 strain and depletion of neutrophils with antibody enhanced survival of mice infected with the highly encapsulated SRL1 strain. These data strongly suggest that IL-17 mediated neutrophil recruitment to the lungs clears infection from the invasive TIGR4 strain but that lung neutrophils exacerbate disease caused by the highly encapsulated pneumococcal strains. Thus, whilst augmenting IL-17 immune responses against pneumococci may decrease nasal colonization, this may worsen outcome during pneumonia caused by some strains.
Collapse
MESH Headings
- Animals
- Bacteremia/immunology
- Bacteremia/microbiology
- Bacterial Capsules/immunology
- Bacterial Capsules/ultrastructure
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoalveolar Lavage Fluid/microbiology
- Disease Models, Animal
- Interleukin-17/immunology
- Lung/cytology
- Lung/enzymology
- Lung/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Nasopharynx/microbiology
- Neutrophils/cytology
- Neutrophils/immunology
- Peroxidase/metabolism
- Phagocytosis
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/mortality
- Pneumonia, Pneumococcal/prevention & control
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Interleukin-17/genetics
- Specific Pathogen-Free Organisms
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/ultrastructure
Collapse
Affiliation(s)
- Neil D. Ritchie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Hannah K. Bayes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tim J. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences University of Birmingham, Birmingham, United Kingdom
| | - Tom J. Evans
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
21
|
Evaluation of the Role of stat3 in Antibody and T H17-Mediated Responses to Pneumococcal Immunization and Infection by Use of a Mouse Model of Autosomal Dominant Hyper-IgE Syndrome. Infect Immun 2018; 86:IAI.00024-18. [PMID: 29463618 DOI: 10.1128/iai.00024-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Loss-of-function mutations in the signal transducer and activator of transcription 3 gene (stat3) result in autosomal dominant hyper-IgE syndrome (AD-HIES), a condition in which patients have recurrent debilitating infections, including frequent pneumococcal and staphylococcal pneumonias. stat3 mutations cause defective adaptive TH17 cellular responses, an immune mechanism believed to be critical for clearance of pneumococcal colonization and diminished antibody responses. Here we wished to evaluate the role of stat3 in the clearance of pneumococcal carriage and immunity using mice with a stat3 mutation recapitulating AD-HIES. We show here that naive AD-HIES mice have prolonged nasal carriage of pneumococcus compared to WT mice. Mutant and wild-type mice were then immunized with a pneumococcal whole-cell vaccine (WCV) that provides TH17-mediated protection against pneumococcal colonization and antibody-mediated protection against pneumonia and sepsis. WCV-immunized AD-HIES mice made significantly less pneumococcus-specific interleukin-17A (IL-17A) and antibody than WT mice. The WCV-elicited protection against colonization was abrogated in AD-HIES mice, but immunization with WCV still protected AD-HIES mice against aspiration pneumonia/sepsis. Taken together, our results suggest that impaired clearance of nasopharyngeal carriage due to poor adaptive IL-17A responses may contribute to the increased rates of pneumococcal respiratory infection in AD-HIES patients.
Collapse
|
22
|
Regionally compartmentalized resident memory T cells mediate naturally acquired protection against pneumococcal pneumonia. Mucosal Immunol 2018; 11:220-235. [PMID: 28513594 PMCID: PMC5693795 DOI: 10.1038/mi.2017.43] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/10/2017] [Indexed: 02/04/2023]
Abstract
As children age, they become less susceptible to the diverse microbes causing pneumonia. These microbes are pathobionts that infect the respiratory tract multiple times during childhood, generating immunological memory. To elucidate mechanisms of such naturally acquired immune protection against pneumonia, we modeled a relevant immunological history in mice by infecting their airways with mismatched serotypes of Streptococcus pneumoniae (pneumococcus). Previous pneumococcal infections provided protection against a heterotypic, highly virulent pneumococcus, as evidenced by reduced bacterial burdens and long-term sterilizing immunity. This protection was diminished by depletion of CD4+ cells prior to the final infection. The resolution of previous pneumococcal infections seeded the lungs with CD4+ resident memory T (TRM) cells, which responded to heterotypic pneumococcus stimulation by producing multiple effector cytokines, particularly interleukin (IL)-17A. Following lobar pneumonias, IL-17-producing CD4+ TRM cells were confined to the previously infected lobe, rather than dispersed throughout the lower respiratory tract. Importantly, pneumonia protection also was confined to that immunologically experienced lobe. Thus regionally localized memory cells provide superior local tissue protection to that mediated by systemic or central memory immune defenses. We conclude that respiratory bacterial infections elicit CD4+ TRM cells that fill a local niche to optimize heterotypic protection of the affected tissue, preventing pneumonia.
Collapse
|
23
|
Mohammadzadeh M, Mamishi S, Pourakbari B, Mahmoudi S. Recent approaches in whole cell pneumococcal vaccine development: a review study. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:381-388. [PMID: 29487737 PMCID: PMC5825939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Despite the availability of relatively effective vaccines, Streptococcus pneumoniae still causes widespread morbidity and mortality. Current vaccines contain free polysaccharides or protein-polysaccharide conjugates, but do not induce protection against serotypes that are not included in the vaccines. Therefore, developing alternative vaccines is of high priority and importance. Several investigators have identified protective antigens common to pneumococci of many or all serotypes. Malley et al. in their study, have recommended unencapsulated whole cells, as an alternative vaccine, a number of such antigens unoccluded by capsule were presented in a native configuration in 2001. This review aimed at presenting this candidate of pneumococcal vaccine and results in an animal model.
Collapse
Affiliation(s)
- Mona Mohammadzadeh
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran,Department of Pediatric Infectious Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Setareh Mamishi, MD, Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pediatric Infectious Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Tel\fax: +98 21 66428996,
| | - Babak Pourakbari
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Mahmoudi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Ritchie ND, Ijaz UZ, Evans TJ. IL-17 signalling restructures the nasal microbiome and drives dynamic changes following Streptococcus pneumoniae colonization. BMC Genomics 2017; 18:807. [PMID: 29058583 PMCID: PMC5651609 DOI: 10.1186/s12864-017-4215-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
Background The bacterial pathogen Streptococcus pneumoniae colonizes the nasopharynx prior to causing disease, necessitating successful competition with the resident microflora. Cytokines of the IL-17 family are important in host defence against this pathogen but their effect on the nasopharyngeal microbiome is unknown. Here we analyse the influence of IL-17 on the composition and interactions of the nasopharyngeal microbiome before and after pneumococcal colonization. Results Using a murine model and 16S rRNA profiling, we found that a lack of IL-17 signalling led to profound alterations in the nasal but not lung microbiome characterized by decreased diversity and richness, increases in Proteobacteria and reduction in Bacteroidetes, Actinobacteria and Acidobacteria. Following experimental pneumococcal nasal inoculation, animals lacking IL-17 family signalling showed increased pneumococcal colonization, though both wild type and knockout animals showed as significant disruption of nasal microbiome composition, with increases in the proportion of Proteobacteria, even in animals that did not have persistent colonization. Sparse correlation analysis of the composition of the microbiome at various time points after infection showed strong positive interactions within the Firmicutes and Proteobacteria, but strong antagonism between members of these two phyla. Conclusions These results show the powerful influence of IL-17 signalling on the composition of the nasal microbiome before and after pneumococcal colonization, and apparent lack of interspecific competition between pneumococci and other Firmicutes. IL-17 driven changes in nasal microbiome composition may thus be an important factor in successful resistance to pneumococcal colonization and potentially could be manipulated to augment host defence against this pathogen. Electronic supplementary material The online version of this article (10.1186/s12864-017-4215-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neil D Ritchie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Glasgow, UK
| | - Tom J Evans
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
25
|
A Combination of Recombinant Mycobacterium bovis BCG Strains Expressing Pneumococcal Proteins Induces Cellular and Humoral Immune Responses and Protects against Pneumococcal Colonization and Sepsis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00133-17. [PMID: 28768668 DOI: 10.1128/cvi.00133-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022]
Abstract
Pneumococcal diseases remain a substantial cause of mortality in young children in developing countries. The development of potentially serotype-transcending vaccines has been extensively studied; ideally, such a vaccine should include antigens that are able to induce protection against colonization (likely mediated by interleukin-17A [IL-17A]) and invasive disease (likely mediated by antibody). The use of strong adjuvants or alternative delivery systems that are able to improve the immunological response of recombinant proteins has been proposed but poses potential safety and practical concerns in children. We have previously constructed a recombinant Mycobacterium bovis BCG strain expressing a pneumococcal surface protein A (PspA)-PdT fusion protein (rBCG PspA-PdT) that was able to induce an effective immune response and protection against sepsis in a prime-boost strategy. Here, we constructed two new rBCG strains expressing the pneumococcal proteins SP 0148 and SP 2108, which confer IL-17A-dependent protection against pneumococcal colonization in mouse models. Immunization of mice with rBCG 0148 or rBCG 2108 in a prime-boost strategy induced IL-17A and gamma interferon (IFN-γ) production. The combination of these rBCG strains with rBCG PspA-PdT (rBCG Mix), followed by a booster dose of the combined recombinant proteins (rMix) induced an IL-17A response against SP 0148 and SP 2108 and a humoral response characterized by increased levels of IgG2c against PspA and functional antibodies against pneumolysin. Furthermore, immunization with the rBCG Mix prime/rMix booster (rBCG Mix/rMix) provides protection against pneumococcal colonization and sepsis. These results suggest the use of combined rBCG strains as a potentially serotype-transcending pneumococcal vaccine in a prime-boost strategy, which could provide protection against pneumococcal colonization and sepsis.
Collapse
|
26
|
Basha S, Kaur R, Mosmann TR, Pichichero ME. Reduced T-Helper 17 Responses to Streptococcus pneumoniae in Infection-Prone Children Can Be Rescued by Addition of Innate Cytokines. J Infect Dis 2017; 215:1321-1330. [PMID: 28201637 DOI: 10.1093/infdis/jix090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Background T-helper (Th) 17 cells are important in the control of Streptococcus pneumoniae. We sought to understand the mechanism of failure of Th17 immunity resulting in S. pneumoniae infections in children <2 years old. Methods Peripheral blood mononuclear cells (PBMCs) from infection-prone (IP) and non-IP (NIP) children 9-18 months old were examined for their responses to heat-killed S. Pneumoniae, using flow cytometry, reverse-transcription polymerase chain reaction, and enzyme-linked immunoassay. We measured cytokine production, proliferation, and differentiation of Th17 cells and the expression of transcription factors in response to S. pneumoniae. Results PBMCs of IP children stimulated with heat-killed S. pneumoniae had significantly reduced percentages of CD4+ Th1 (interleukin2, tumor necrosis factor α) and Th17 (interleukin 17A) cells compared with NIP children. Addition of exogenous Th17-promoting cytokines (interleukin 6, 1β, and 23 and transforming growth factor β) restored CD4+ Th17 cell function in cells from IP children to levels measured in NIP children. Conclusions Reduced Th17 responses to S. pneumoniae in PBMCs of IP children can be rescued by addition of Th17-promoting cytokines.
Collapse
Affiliation(s)
- Saleem Basha
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute and
| | - Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute and
| | - Tim R Mosmann
- Human Immunology Center, University of Rochester Medical Center, New York
| | - Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute and
| |
Collapse
|
27
|
Ahmed M, Smith DM, Hamouda T, Rangel-Moreno J, Fattom A, Khader SA. A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine 2017; 35:4983-4989. [PMID: 28774560 DOI: 10.1016/j.vaccine.2017.07.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is contracted via aerosol infection, typically affecting the lungs. Mycobacterium bovis bacillus Calmette-Guerin (BCG) is the only licensed vaccine and has variable efficacy in protecting against pulmonary TB. Additionally, chemotherapy is associated with low compliance contributing to development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Thus, there is an urgent need for the design of more effective vaccines against TB. Experimental vaccines delivered through the mucosal route induce robust T helper type 17 (Th17)/ Interleukin (IL) -17 responses and provide superior protection against Mtb infection. Thus, the development of safe mucosal adjuvants for human use is critical. In this study, we demonstrate that nanoemulsion (NE)-based adjuvants when delivered intranasally along with Mtb specific immunodominant antigens (NE-TB vaccine) induce potent mucosal IL-17T-cell responses. Additionally, the NE-TB vaccine confers significant protection against Mtb infection, and when delivered along with BCG, is associated with decreased disease severity. These findings strongly support the development of a NE-TB vaccine as a novel, safe and effective, first-of-kind IL-17 inducing mucosal vaccine for potential use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | | | - Tarek Hamouda
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14624, United States
| | - Ali Fattom
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States.
| |
Collapse
|
28
|
Karasartova D, Gazi U, Tosun O, Gureser AS, Sahiner IT, Dolapci M, Ozkan AT. Anti-Pneumococcal Vaccine-Induced Cellular Immune Responses in Post-Traumatic Splenectomized Individuals. J Clin Immunol 2017; 37:388-396. [PMID: 28488145 DOI: 10.1007/s10875-017-0397-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/24/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Splenectomy is associated with increased risk of overwhelming post-splenectomy infections despite proper anti-pneumococcal vaccination. As most studies concentrated on vaccination-induced humoral immunity, the cellular immune responses triggered in splenectomized patients are not yet well studied. The present study aims to investigate this area as it can contribute to the development of more effective vaccination strategies. METHODS Five healthy and 14 splenectomized patients were vaccinated with pneumococcal conjugate polysaccharide vaccine (PCV) followed by pneumococcal polysaccharide vaccine according to the guidelines established by Advisory Committee on Immunization Practices. PBMC samples collected 0, 8, and 12 weeks after PCV immunization were in vitro stimulated with PCV. Levels of lymphoproliferation, TH cell differentiation, and cytokine release were assessed by carboxyfluorescein succinimidyl ester labeling, intracellular cytokine staining, and ELISA, respectively. RESULTS While TH1-dominated immune response was detected in both groups, asplenic individuals generated significantly lower levels of TH1 cells following in vitro stimulation. Similarly, levels of IFN-γ, IL-4, and IL-17 release and lymphoproliferation were significantly lower in asplenic patients. CONCLUSIONS According to our data, splenectomy negatively influences the levels of PCV-induced lymphoproliferation, TH1 differentiation, and cytokine release. Besides, PCV failed to induce TH17-dominant immune response which is crucial for protection against extracellular pathogens.
Collapse
Affiliation(s)
- Djursun Karasartova
- Department of Medical Microbiology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Umut Gazi
- Department of Medical Microbiology and Clinic Microbiology, Faculty of Medicine, Near East University, Near East Boulevard, Nicosia, Cyprus.
| | - Ozgur Tosun
- Department of Biostatistics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Ayse S Gureser
- Department of Medical Microbiology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Ibrahim T Sahiner
- Department of General Surgery, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Mete Dolapci
- Department of General Surgery, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Aysegul T Ozkan
- Department of Medical Microbiology, Faculty of Medicine, Hitit University, Corum, Turkey
| |
Collapse
|
29
|
Mahdi LK, Higgins MA, Day CJ, Tiralongo J, Hartley-Tassell LE, Jennings MP, Gordon DL, Paton AW, Paton JC, Ogunniyi AD. The Pneumococcal Alpha-Glycerophosphate Oxidase Enhances Nasopharyngeal Colonization through Binding to Host Glycoconjugates. EBioMedicine 2017; 18:236-243. [PMID: 28330602 PMCID: PMC5405170 DOI: 10.1016/j.ebiom.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/20/2017] [Accepted: 03/02/2017] [Indexed: 11/22/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a major human pathogen, causing a broad spectrum of diseases including otitis media, pneumonia, bacteraemia and meningitis. Here we examined the role of a potential pneumococcal meningitis vaccine antigen, alpha-glycerophosphate oxidase (SpGlpO), in nasopharyngeal colonization. We found that serotype 4 and serotype 6A strains deficient in SpGlpO have significantly reduced capacity to colonize the nasopharynx of mice, and were significantly defective in adherence to human nasopharyngeal carcinoma cells in vitro. We also demonstrate that intranasal immunization with recombinant SpGlpO significantly protects mice against subsequent nasal colonization by wild type serotype 4 and serotype 6A strains. Furthermore, we show that SpGlpO binds strongly to lacto/neolacto/ganglio host glycan structures containing the GlcNAcβ1-3Galβ disaccharide, suggesting that SpGlpO enhances colonization of the nasopharynx through its binding to host glycoconjugates. We propose that SpGlpO is a promising vaccine candidate against pneumococcal carriage, and warrants inclusion in a multi-component protein vaccine formulation that can provide robust, serotype-independent protection against all forms of pneumococcal disease.
Collapse
Affiliation(s)
- Layla K Mahdi
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Melanie A Higgins
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Christopher J Day
- Institute For Glycomics, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Joe Tiralongo
- Institute For Glycomics, Griffith University, Gold Coast, QLD, 4222, Australia
| | | | - Michael P Jennings
- Institute For Glycomics, Griffith University, Gold Coast, QLD, 4222, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders University, Bedford Park, SA 5042, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, SA 5005, Australia.
| | - Abiodun D Ogunniyi
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, SA 5005, Australia.
| |
Collapse
|
30
|
Ahmed M, Jiao H, Domingo-Gonzalez R, Das S, Griffiths KL, Rangel-Moreno J, Nagarajan UM, Khader SA. Rationalized design of a mucosal vaccine protects against Mycobacterium tuberculosis challenge in mice. J Leukoc Biol 2017; 101:1373-1381. [PMID: 28258153 DOI: 10.1189/jlb.4a0616-270r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/23/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is a leading cause of global morbidity and mortality. The only licensed TB vaccine, Mycobacterium bovis bacillus Calmette-Guerin (BCG), has variable efficacy in protecting against pulmonary TB. Thus, the development of more effective TB vaccines is critical to control the TB epidemic. Specifically, vaccines delivered through the mucosal route are known to induce Th17 responses and provide superior protection against Mtb infection. However, already tested Th17-inducing mucosal adjuvants, such as heat-labile enterotoxins and cholera toxins, are not considered safe for use in humans. In the current study, we rationally screened adjuvants for their ability to induce Th17-polarizing cytokines in dendritic cells (DCs) and determined whether they could be used in a protective mucosal TB vaccine. Our new studies show that monophosphoryl lipid A (MPL), when used in combination with chitosan, potently induces Th17-polarizing cytokines in DCs and downstream Th17/Th1 mucosal responses and confers significant protection in mice challenged with a clinical Mtb strain. Additionally, we show that both TLRs and the inflammasome pathways are activated in DCs by MPL-chitosan to mediate induction of Th17-polarizing cytokines. Together, our studies put forward the potential of a new, protective mucosal TB vaccine candidate, which incorporates safe adjuvants already approved for use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hongmei Jiao
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,School of Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Racquel Domingo-Gonzalez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kristin L Griffiths
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA; and
| | - Uma M Nagarajan
- Department of Pediatrics and Microbiology/Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
31
|
Campos IB, Herd M, Moffitt KL, Lu YJ, Darrieux M, Malley R, Leite LCC, Gonçalves VM. IL-17A and complement contribute to killing of pneumococci following immunization with a pneumococcal whole cell vaccine. Vaccine 2017; 35:1306-1315. [PMID: 28161422 DOI: 10.1016/j.vaccine.2017.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/01/2016] [Accepted: 01/17/2017] [Indexed: 11/20/2022]
Abstract
The pneumococcal whole cell vaccine (PWCV) has been investigated as an alternative to polysaccharide-based vaccines currently in use. It is a non-encapsulated killed vaccine preparation that induces non-capsular antibodies protecting mice against invasive pneumococcal disease (IPD) and reducing nasopharyngeal (NP) carriage via IL-17A activation of mouse phagocytes. Here, we show that PWCV induces antibody and IL-17A production to protect mice against challenge in a fatal aspiration-sepsis model after only one dose. We observed protection even with a boiled preparation, attesting to the stability and robustness of the vaccine. PWCV antibodies were shown to bind to different encapsulated strains, but complement deposition on the pneumococcal surface was observed only on serotype 3 strains; using flow cytometer methodology, variations in PWCV quality, as in the boiled vaccine, were detected. Moreover, anti-PWCV induces phagocytosis of different pneumococcal serotypes by murine peritoneal cells in the presence of complement or IL-17A. These findings suggest that complement and IL-17A may participate in the process of phagocytosis induced by PWCV antibodies. IL-17A can stimulate phagocytic cells to kill pneumococcus and this is enhanced in the presence of PWCV antibodies bound to the bacterial cell surface. Our results provide further support for the PWCV as a broad-range vaccine against all existing serotypes, potentially providing protection for humans against NP colonization and IPD. Additionally, we suggest complement deposition assay as a tool to detect subtle differences between PWCV lots.
Collapse
Affiliation(s)
- Ivana B Campos
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia-USP-IPT-IB, São Paulo, Brazil
| | - Muriel Herd
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Kristin L Moffitt
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular, Universidade São Francisco, Bragança Paulista, Brazil
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
32
|
Abstract
The discovery of the key roles of interleukin-17A (IL-17A) and IL-17A producing cells in inflammation, autoimmune diseases and host defense has led to the experimental targeting of the IL-17A pathway in animal models of diseases as well as in clinical trials in humans. These therapeutic agents include biological products that target IL-17A and IL-23, an upstream regulator of IL-17A production. IL-17A producing T helper cells (Th17 cells) are a distinct lineage from the Th1 and Th2 CD4+ lineages and have been suggested to represent a good drug target in certain inflammatory conditions. Targeting IL-17A has been proven to be a good approach as anti-IL-17A is FDA approved for the treatment of psoriasis in 2015. In host defense, IL-17A has been shown to be mostly beneficial against infection caused by extracellular bacteria and fungi. This review will overview the discovery of IL-17A, the receptors used by this cytokine and its role in mucosal immunity and inflammation.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
33
|
Wang Y, Jiang B, Guo Y, Li W, Tian Y, Sonnenberg GF, Weiser JN, Ni X, Shen H. Cross-protective mucosal immunity mediated by memory Th17 cells against Streptococcus pneumoniae lung infection. Mucosal Immunol 2017; 10:250-259. [PMID: 27118490 PMCID: PMC5083242 DOI: 10.1038/mi.2016.41] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023]
Abstract
Pneumonia caused by Streptococcus pneumoniae (Sp) remains a leading cause of serious illness and death worldwide. Immunization with conjugated pneumococcal vaccine has lowered the colonization rate and consequently invasive diseases by inducing serotype-specific antibodies. However, many of the current pneumonia cases result from infection by serotype strains not included in the vaccine. In this study, we asked if cross-protection against lung infection by heterologous strains can be induced, and investigated the underlying immune mechanism. We found that immune mice recovered from a prior infection were protected against heterologous Sp strains in the pneumonia challenge model, as evident by accelerated bacterial clearance, reduced pathology, and apoptosis of lung epithelial cells. Sp infection in the lung induced strong T-helper type 17 (Th17) responses at the lung mucosal site. Transfer of CD4+ T cells from immune mice provided heterologous protection against pneumonia, and this protection was abrogated by interleukin-17A (IL-17A) blockade. Transfer of memory CD4+ T cells from IL-17A-knockout mice failed to provide protection. These results indicate that memory Th17 cells had a key role in providing protection against pneumonia in a serotype-independent manner and suggest the feasibility of developing a broadly protective vaccine against bacterial pneumonia by targeting mucosal Th17 T cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Bin Jiang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Yongli Guo
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Wenchao Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology & Immunology, and The Jill Robert’s Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY, USA
| | - Jeffery N. Weiser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Xin Ni
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
34
|
Systemic immunization with rPotD reduces Streptococcus pneumoniae nasopharyngeal colonization in mice. Vaccine 2017; 35:149-155. [DOI: 10.1016/j.vaccine.2016.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
|
35
|
Hong SJ, Kim SK, Ko EB, Yun CH, Han SH. Wall teichoic acid is an essential component of Staphylococcus aureus for the induction of human dendritic cell maturation. Mol Immunol 2016; 81:135-142. [PMID: 27978487 DOI: 10.1016/j.molimm.2016.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus is a Gram-positive pathogen that can cause chronic skin inflammation, pneumonia, and septic shock. The immunomodulatory functions of wall teichoic acid (WTA), a glycopolymer abundantly expressed on the Gram-positive bacterial cell wall, are poorly understood. Here, we investigated the role of WTA in the phenotypic and functional activation of human monocyte-derived dendritic cells (DCs) treated with ethanol-killed S. aureus. WTA-deficient S. aureus mutant (ΔtagO) exhibited attenuated binding and internalization to DCs compared to the wild-type. ΔtagO induced lower expression of maturation markers on and cytokines in DCs than the wild-type S. aureus. Furthermore, autologous human peripheral blood mononuclear cells cocultured with ΔtagO-treated DCs exhibited a marked reduction in T cell proliferative activity, the expression of activation markers, and the production of cytokines compared to the wild-type S. aureus-stimulated DCs. Collectively, these results suggest that WTA is an important cell wall component of S. aureus for the induction of DC maturation and activation.
Collapse
Affiliation(s)
- Sung Jun Hong
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Kyung Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Byeol Ko
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
36
|
Sundberg-Kövamees M, Grunewald J, Wahlström J. Immune cell activation and cytokine release after stimulation of whole blood with pneumococcal C-polysaccharide and capsular polysaccharides. Int J Infect Dis 2016; 52:1-8. [DOI: 10.1016/j.ijid.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/02/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022] Open
|
37
|
Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W, Eddens T, Vikram A, Good M, Schoenborn AA, Bibby K, Montelaro RC, Metzger DW, Gulati AS, Kolls JK. Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation. Immunity 2016; 44:659-671. [PMID: 26982366 DOI: 10.1016/j.immuni.2016.02.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/17/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022]
Abstract
Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr, and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R-signaling-deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 cell development, and regulated the susceptibility to autoimmune inflammation.
Collapse
Affiliation(s)
- Pawan Kumar
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Leticia Monin
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Patricia Castillo
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Taylor Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Misty Good
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alexi A Schoenborn
- Division of Pediatric Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ronald C Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dennis W Metzger
- Center for Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Ajay S Gulati
- Division of Pediatric Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
38
|
Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016; 34:1504-1514. [PMID: 26878294 DOI: 10.1016/j.vaccine.2016.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/14/2023]
Abstract
Th17 cells are characterized as preferential producer of interleukins including IL-17A, IL-17F, IL-21 and IL-22. Corresponding receptors of these cytokines are expressed on number of cell types found in the mucosa, including epithelial cells and fibroblasts which constitute the prime targets of the Th17-associated cytokines. Binding of IL-17 family members to their corresponding receptors lead to modulation of antimicrobial functions of target cells including alveolar epithelial cells. Stimulated alveolar epithelial cells produce antimicrobial peptides and are involved in granulepoesis, neutrophil recruitment and tissue repair. Mucosal immunity mediated by Th17 cells is protective against numerous pulmonary pathogens including extracellular bacterial and fungal pathogens. This review focuses on the protective role of Th17 cells during pulmonary infection, highlighting subset differentiation, effector cytokines production, followed by study of the binding of these cytokines to their corresponding receptors, the subsequent signaling pathway they engender and their effector role in host defense.
Collapse
Affiliation(s)
- Jitendra Singh Rathore
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA; Gautam Buddha University, School of Biotechnology, Greater Noida, Yamuna Expressway, Uttar Pradesh, India.
| | - Yan Wang
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
39
|
Elhaik Goldman S, Dotan S, Talias A, Lilo A, Azriel S, Malka I, Portnoi M, Ohayon A, Kafka D, Ellis R, Elkabets M, Porgador A, Levin D, Azhari R, Swiatlo E, Ling E, Feldman G, Tal M, Dagan R, Mizrachi Nebenzahl Y. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice. Int J Mol Med 2016; 37:1127-38. [PMID: 26935978 DOI: 10.3892/ijmm.2016.2512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1 involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shahar Dotan
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Amir Talias
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Amit Lilo
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shalhevet Azriel
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Itay Malka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Maxim Portnoi
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ariel Ohayon
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Daniel Kafka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ronald Ellis
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ditza Levin
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Rosa Azhari
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Edwin Swiatlo
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eduard Ling
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Galia Feldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Michael Tal
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Ron Dagan
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | | |
Collapse
|
40
|
Seo HS. Application of radiation technology in vaccines development. Clin Exp Vaccine Res 2015; 4:145-58. [PMID: 26273573 PMCID: PMC4524899 DOI: 10.7774/cevr.2015.4.2.145] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/10/2015] [Accepted: 06/20/2015] [Indexed: 12/11/2022] Open
Abstract
One of the earliest methods used in the manufacture of stable and safe vaccines is the use of chemical and physical treatments to produce inactivated forms of pathogens. Although these types of vaccines have been successful in eliciting specific humoral immune responses to pathogen-associated immunogens, there is a large demand for the development of fast, safe, and effective vaccine manufacturing strategies. Radiation sterilization has been used to develop a variety of vaccine types, because it can eradicate chemical contaminants and penetrate pathogens to destroy nucleic acids without damaging the pathogen surface antigens. Nevertheless, irradiated vaccines have not widely been used at an industrial level because of difficulties obtaining the necessary equipment. Recent successful clinical trials of irradiated vaccines against pathogens and tumors have led to a reevaluation of radiation technology as an alternative method to produce vaccines. In the present article, we review the challenges associated with creating irradiated vaccines and discuss potential strategies for developing vaccines using radiation technology.
Collapse
Affiliation(s)
- Ho Seong Seo
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
41
|
Luo M, Shao B, Nie W, Wei XW, Li YL, Wang BL, He ZY, Liang X, Ye TH, Wei YQ. Antitumor and Adjuvant Activity of λ-carrageenan by Stimulating Immune Response in Cancer Immunotherapy. Sci Rep 2015; 5:11062. [PMID: 26098663 PMCID: PMC4476469 DOI: 10.1038/srep11062] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/15/2015] [Indexed: 02/05/2023] Open
Abstract
λ-Carrageenan is a seaweed polysaccharide which has been generally used as proinflammatory agent in the basic research, however, how the immunomodulating activity of λ-carrageenan affects tumor microenvironment remains unknown. In this study, we found that intratumoral injection of λ-carrageenan could inhibit tumor growth in B16-F10 and 4T1 bearing mice and enhance tumor immune response by increasing the number of tumor-infiltrating M1 macrophages, DCs and more activated CD4(+)CD8(+) T lymphocytes in spleen. In addition, λ-carrageenan could enhance the secretion of IL17A in spleen and significantly increase the level of TNF-α in tumor, most of which was secreted by infiltrating macrophages. Moreover, λ-carrageenan exhibited an efficient adjuvant effect in OVA-based preventative and therapeutic vaccine for cancer treatment, which significantly enhanced the production of anti-OVA antibody. The toxicity analysis suggested that λ-carrageenan was with a good safety profile. Thus, λ-carrageenan might be used both as a potent antitumor agent and an efficient adjuvant in cancer immunotherapy.
Collapse
Affiliation(s)
- Min Luo
- State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Bin Shao
- State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Wen Nie
- Department of medical oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xia-Wei Wei
- State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Yu-Li Li
- State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Bi-Lan Wang
- State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Zhi-Yao He
- State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Xiao Liang
- State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Ting-Hong Ye
- State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
42
|
Harnessing the Therapeutic Potential of Th17 Cells. Mediators Inflamm 2015; 2015:205156. [PMID: 26101460 PMCID: PMC4460252 DOI: 10.1155/2015/205156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/05/2015] [Indexed: 12/16/2022] Open
Abstract
Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases.
Collapse
|
43
|
Genetic conjugation of components in two pneumococcal fusion protein vaccines enhances paediatric mucosal immune responses. Vaccine 2015; 33:1711-8. [PMID: 25698489 DOI: 10.1016/j.vaccine.2015.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/20/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae colonises the upper respiratory tract and can cause pneumonia, meningitis and otitis media. Existing pneumococcal conjugate vaccines are expensive to produce and only protect against 13 of the 90+ pneumococcal serotypes; hence there is an urgent need for the development of new vaccines. We have shown previously in mice that pneumolysin (Ply) and a non-toxic variant (Δ6Ply) enhance antibody responses when genetically fused to pneumococcal surface adhesin A (PsaA), a potentially valuable effect for future vaccines. We investigated this adjuvanticity in human paediatric mucosal primary immune cell cultures. Adenoidal mononuclear cells (AMNC) from children aged 0-15 years (n=46) were stimulated with conjugated, admixed or individual proteins, cell viability and CD4+ T-cell proliferative responses were assessed using flow cytometry and cytokine secretion was measured using multiplex technology. Proliferation of CD4+ T-cells in response to PsaAPly, was significantly higher than responses to individual or admixed proteins (p=0.002). In contrast, an enhanced response to PsaAΔ6Ply compared to individual or admixed proteins only occurred at higher concentrations (p<0.01). Evaluation of cytotoxicity suggested that responses occurred when Ply-induced cytolysis was inhibited, either by fusion or mutation, but importantly an additional toxicity independent immune enhancing effect was also apparent as a result of fusion. Responses were MHC class II dependent and had a Th1/Th17 profile. Genetic fusion of Δ6Ply to PsaA significantly modulates and enhances pro-inflammatory CD4+ T-cell responses without the cytolytic effects of some other pneumolysoids. Membrane binding activity of such proteins may confer valuable adjuvant properties as fusion may assist Δ6Ply to deliver PsaA to the APC surface effectively, contributing to the initiation of anti-pneumococcal CD4+ T-cell immunity.
Collapse
|
44
|
Nabatanzi R, Bayigga L, Ssinabulya I, Kiragga A, Kambugu A, Olobo J, Joloba M, Kamya MR, Mayanja-Kizza H, Nakanjako D. Low antigen-specific CD4 T-cell immune responses despite normal absolute CD4 counts after long-term antiretroviral therapy an African cohort. Immunol Lett 2014; 162:264-72. [PMID: 25263953 DOI: 10.1016/j.imlet.2014.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND CD4 counts guide antiretroviral therapy (ART) initiation and prophylaxis for opportunistic infections. It is unclear whether normal CD4 counts translate to normalized immune responses among ART-treated adults. We compared antigen-specific CD4 T-cell immune responses among ART-treated adults with CD4≥500cells/μl, optimal immune responders (O-IR), and their age-matched healthy HIV-negative counterparts. METHODS In a sample-based case-control study, cryopreserved peripheral blood mononuclear cells from 15 O-IR after 7 years of ART and 15 healthy controls, were analyzed for CD4+ T-cell proliferation using CFSE dye and cytokine production. RESULTS CD4 T-cell proliferation, upon stimulation with PPD and pneumococcal polysaccharide antigen, was lower among O-IR relative to HIV-negative controls; p=0.016 and p=0.016 respectively. CD4 T-cell production of IL-2 was lower among O-IR relative to HIV-negative control p=0.002. CD4 T-cell proliferation upon stimulation with SEB and CMV antigens was similar among O-IR and HIV-negative controls p=0.971 and p=0.480, respectively, and so was IL-4 and IFN γ production; p=0.528 and p=0.892, respectively. CONCLUSION Seven years of suppressive ART caused partial CD4 T-cell function recovery in an African HIV treatment cohort, despite restoration of CD4 T-cell counts to levels≥500cells/μl. The role innate immunity in the recovery of immune function during long-term ART should be investigated to guide decisions on continued prophylaxis against opportunistic infections.
Collapse
Affiliation(s)
- Rose Nabatanzi
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Lois Bayigga
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Isaac Ssinabulya
- Department of Internal Medicine, Makerere University College of Health Sciences, Makerere University, Kampala, Uganda.
| | - Agnes Kiragga
- Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| | - Andrew Kambugu
- Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| | - Joseph Olobo
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda; Department of Internal Medicine, Makerere University College of Health Sciences, Makerere University, Kampala, Uganda; Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| | - Moses R Kamya
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda; Department of Internal Medicine, Makerere University College of Health Sciences, Makerere University, Kampala, Uganda; Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| | | | - Damalie Nakanjako
- Department of Internal Medicine, Makerere University College of Health Sciences, Makerere University, Kampala, Uganda; Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| |
Collapse
|
45
|
Bobat S, Cunningham AF. Bacterial infections and vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 828:75-98. [PMID: 25253028 DOI: 10.1007/978-1-4939-1489-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Saeeda Bobat
- The Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands, UK,
| | | |
Collapse
|
46
|
Abstract
Respiratory infections and diseases are among the leading causes of death worldwide, and effective treatments probably require manipulating the inflammatory response to pathogenic microbes or allergens. Here, we review mechanisms controlling the production and functions of interleukin-17 (IL-17) and IL-22, cytokines that direct several aspects of lung immunity. Innate lymphocytes (γδ T cells, natural killer cells, innate lymphoid cells) are the major source of IL-17 and IL-22 during acute infections, while CD4(+) T-helper 17 (Th17) cells contribute to vaccine-induced immunity. The characterization of dendritic cell (DC) subsets has revealed their central roles in T-cell activation. CD11b(+) DCs stimulated with bacteria or fungi secrete IL-1β and IL-23, potent inducers of IL-17 and IL-22. On the other hand, recognition of viruses by plasmacytoid DCs inhibits IL-1β and IL-23 release, increasing susceptibility to bacterial superinfections. IL-17 and IL-22 primarily act on the lung epithelium, inducing antimicrobial proteins and neutrophil chemoattractants. Recent studies found that stimulation of macrophages and DCs with IL-17 also contributes to antibacterial immunity, while IL-22 promotes epithelial proliferation and repair following injury. Chronic diseases such as asthma and chronic obstructive pulmonary disease have been associated with IL-17 and IL-22 responses directed against innocuous antigens. Future studies will evaluate the therapeutic efficacy of targeting the IL-17/IL-22 pathway in pulmonary inflammation.
Collapse
Affiliation(s)
- Jeremy P. McAleer
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| |
Collapse
|
47
|
Singh R, Gupta P, Sharma PK, Ades EW, Hollingshead SK, Singh S, Lillard JW. Prediction and characterization of helper T-cell epitopes from pneumococcal surface adhesin A. Immunology 2014; 141:514-30. [PMID: 24138116 PMCID: PMC3956426 DOI: 10.1111/imm.12194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/29/2022] Open
Abstract
Pneumococcal surface adhesin A (PsaA) is a multifunctional lipoprotein known to bind nasopharyngeal epithelial cells, and is significantly involved in bacterial adherence and virulence. Identification of PsaA peptides that optimally bind human leucocyte antigen (HLA) and elicit a potent immune response would be of great importance to vaccine development. However, this is hindered by the multitude of HLA polymorphisms in humans. To identify the conserved immunodominant epitopes, we used an experimental dataset of 28 PsaA synthetic peptides and in silico methods to predict specific peptide-binding to HLA and murine MHC class II molecules. We also characterized spleen and cervical lymph node (CLN) -derived T helper (Th) lymphocyte cytokine responses to these peptides after Streptococcus pneumoniae strain EF3030 challenge in mice. Individual, yet overlapping, peptides 15 amino acids in length revealed residues of PsaA that consistently caused the highest interferon-γ, interleukin-2 (IL-2), IL-5 and IL-17 responses and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo re-stimulated splenic and CLN CD4⁺ T cells isolated from S. pneumoniae strain EF3030-challenged F1 (B6 × BALB/c) mice. In silico analysis revealed that peptides from PsaA may interact with a broad range of HLA-DP, -DQ and -DR alleles, due in part to regions lacking β-turns and asparagine endopeptidase sites. These data suggest that Th cell peptides (7, 19, 20, 22, 23 and 24) screened for secondary structures and MHC class II peptide-binding affinities can elicit T helper cytokine and proliferative responses to PsaA peptides.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of MedicineAtlanta, GA, USA
| | - Pranav Gupta
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of MedicineAtlanta, GA, USA
| | - Praveen K Sharma
- Centre of Life Sciences, School of Natural Sciences, Central University of JharkhandRanchi, India
| | - Edwin W Ades
- Division of Bacterial Diseases, Centers for Disease Control and PreventionAtlanta, GA, USA
| | - Susan K Hollingshead
- Department of Microbiology, University of Alabama at Birmingham School of MedicineBirmingham, AL, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of MedicineAtlanta, GA, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of MedicineAtlanta, GA, USA
| |
Collapse
|
48
|
Cellular immune response in young children accounts for recurrent acute otitis media. Curr Allergy Asthma Rep 2014; 13:495-500. [PMID: 24022464 DOI: 10.1007/s11882-013-0370-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acute otitis media (AOM) is a common disease in young children. Streptococcus pneumoniae (Spn) and Haemophilus influenzae (NTHi) are the two most common pathogens that cause AOM. Over the past 5 years, our group has been studying the immunologic profile of children that experience repeated AOM infections despite tympanocentesis drainage of middle ear fluid and individualized antibiotic treatment; we call these children stringently-defined otitis prone(sOP). Although protection against AOM is primarily mediated by ototpathogen-specific antibody, our recent studies suggest that suboptimal memory B and T cell responses and an immaturity in antigen-presenting cells may play a significant role in the propensity to recurrent AOM infections. This review focuses on the studies performed to define immunologic dysfunction in sOP children.
Collapse
|
49
|
|
50
|
Gopal R, Rangel-Moreno J, Fallert Junecko BA, Mallon DJ, Chen K, Pociask DA, Connell TD, Reinhart TA, Alcorn JF, Ross TM, Kolls JK, Khader SA. Mucosal pre-exposure to Th17-inducing adjuvants exacerbates pathology after influenza infection. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:55-63. [PMID: 24183780 DOI: 10.1016/j.ajpath.2013.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/06/2013] [Accepted: 09/16/2013] [Indexed: 01/09/2023]
Abstract
Mucosal vaccines are thought to confer superior protection against mucosal infectious diseases. In addition, mucosal routes of vaccine delivery preferentially induce the generation of T helper 17 (Th17) cells, which produce the cytokine IL-17. Th17 cells are critical in mediating vaccine-induced immunity against several mucosal infectious diseases. However, IL-17 is also a potent proinflammatory cytokine, and we recently showed that IL-17 mediates immunopathology and lung injury after influenza infection in mice. In the present study, we tested the hypothesis that mucosal pre-exposure to Th17-inducing adjuvants can promote disease exacerbation upon subsequent infection with influenza virus. Mice mucosally pre-exposed to Th17-inducing adjuvants, such as type II heat-labile enterotoxin or cholera toxin, resulted in increased morbidity and exacerbated lung inflammation upon subsequent infection with influenza virus. Furthermore, the increased morbidity was accompanied by increased expression of inflammatory chemokines and increased accumulation of neutrophils. Importantly, blockade of the IL-17 pathway in mice pre-exposed to Th17-inducing adjuvants resulted in attenuation of the inflammatory phenotype seen in influenza-infected mice. Our findings indicate that, before mucosal Th17-inducing adjuvants can be used in vaccine strategies, the short- and long-term detrimental effects of such adjuvants on disease exacerbation and lung injury in response to infections, such as influenza, should be carefully studied.
Collapse
Affiliation(s)
- Radha Gopal
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Beth A Fallert Junecko
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel J Mallon
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kong Chen
- Department of Pediatrics and Immunology, the Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Derek A Pociask
- Department of Pediatrics and Immunology, the Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Terry D Connell
- Witebsky Center for Microbial Pathogenesis and Immunology and Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Todd A Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John F Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ted M Ross
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida
| | - Jay K Kolls
- Department of Pediatrics and Immunology, the Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shabaana A Khader
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|