1
|
Tibocha-Bonilla JD, Gandhi V, Lieng C, Moyne O, Santibáñez-Palominos R, Zengler K. Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida. NPJ Syst Biol Appl 2025; 11:55. [PMID: 40413180 PMCID: PMC12103522 DOI: 10.1038/s41540-025-00521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/20/2025] [Indexed: 05/27/2025] Open
Abstract
The genome-scale model of metabolism and gene expression (ME-model) for Pseudomonas putida KT2440, iPpu1676-ME, provides a comprehensive representation of biosynthetic costs and proteome allocation. Compared to a metabolic-only model, iPpu1676-ME significantly expands on gene expression, macromolecular assembly, and cofactor utilization, enabling accurate growth predictions without additional constraints. Multi-omics analysis using RNA sequencing and ribosomal profiling data revealed translational prioritization in P. putida, with core pathways, such as nicotinamide biosynthesis and queuosine metabolism, exhibiting higher translational efficiency, while secondary pathways displayed lower priority. Notably, the ME-model significantly outperformed the M-model in alignment with multi-omics data, thereby validating its predictive capacity. Thus, iPpu1676-ME offers valuable insights into P. putida's proteome allocation and presents a powerful tool for understanding resource allocation in this industrially relevant microorganism.
Collapse
Affiliation(s)
- Juan D Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Vishant Gandhi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Chloe Lieng
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | | | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0403, USA.
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0418, USA.
| |
Collapse
|
2
|
Shang G, Zhou C, Zhang B, Zhang Y, Teng S, Ye K. Effect of co-inoculation of Pseudomonas fragi and Pseudomonas putida on the spoilage of chilled pork after the screening of a variety of different combinations of two Pseudomonas species. Int J Food Microbiol 2025; 436:111215. [PMID: 40252500 DOI: 10.1016/j.ijfoodmicro.2025.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
This study preliminarily evaluated the effect of different combinations of two Pseudomonas species (P. fragi, P. lundensis, P. fluorescens, and P. putida) on the protein degradation capacity of meat and bacteria growth rules. Then P. fragi and P. putida, with the co-spoilage potential, were inoculated on pork to determine the ability of spoilage, and the potential spoilage genes further were revealed by whole genome sequencing. Results showed that, in the P. fragi + P. putida and P. fragi + P. fluorescens group, the diameter of Raw-pork Juice Agar (RJA) decomposition zone was significantly higher than that in the single-inoculated group, respectively. Furthermore, the results in situ showed that P. fragi and P. putida grew rapidly after co-culture, in which μmax was significantly higher than that in the single-inoculated group. In addition, at the end of storage, the pH and TVB-N values of pork after co-culture were significantly higher than those of the single-inoculated group, and the texture of pork was softer. Simultaneously, the contents of volatile organic compounds including 1-Octen-3-ol, 2-Nonanone, and Hexanal, were significantly increased after co-culture. Moreover, the genes of P. fragi and P. putida, identified by whole genome sequencing, related to amino acid metabolism, carbohydrate metabolism, and motor chemotaxis may be the primary reasons involved in the co-spoilage of pork. In conclusion, this study demonstrated that P. fragi and P. putida had a synergistic interaction to accelerate the spoilage of pork, which could provide a better understanding of co-spoilage of different Pseudomonas spp.
Collapse
Affiliation(s)
- Guangru Shang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Cong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Bingjie Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yuping Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Shuang Teng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
3
|
de Siqueira GMV, Srinivasan A, Chen Y, Gin JW, Petzold CJ, Lee TS, Guazzaroni ME, Eng T, Mukhopadhyay A. Alternate routes to acetate tolerance lead to varied isoprenol production from mixed carbon sources in Pseudomonas putida. Appl Environ Microbiol 2025; 91:e0212324. [PMID: 40110994 PMCID: PMC12016510 DOI: 10.1128/aem.02123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Lignocellulose is a renewable resource for the production of a diverse array of platform chemicals, including the biofuel isoprenol. Although this carbon stream provides a rich source of sugars, other organic compounds, such as acetate, can be used by microbial hosts. Here, we examined the growth and isoprenol production in a Pseudomonas putida strain pre-tolerized ("PT") background where its native isoprenol catabolism pathway is deleted, using glucose and acetate as carbon sources. We found that PT displays impaired growth in minimal medium containing acetate and often fails to grow in glucose-acetate medium. Using a mutant recovery-based approach, we generated tolerized strains that overcame these limitations, achieving fast growth and isoprenol production in the mixed carbon feed. Changes in the glucose and acetate assimilation routes, including an upregulation in PP_0154 (SpcC, succinyl-CoA:acetate CoA-transferase) and differential expression of the gluconate assimilation pathways, were key for higher isoprenol titers in the tolerized strains, whereas a different set of mechanisms were likely enabling tolerance phenotypes in media containing acetate. Among these, a coproporphyrinogen-III oxidase (HemN) was upregulated across all tolerized strains and in one isolate required for acetate tolerance. Utilizing a defined glucose and acetate mixture ratio reflective of lignocellulosic feedstocks for isoprenol production in P. putida allowed us to obtain insights into the dynamics and challenges unique to dual carbon source utilization that are obscured when studied separately. Together, this enabled the development of a P. putida bioconversion chassis able to use a more complex carbon stream to produce isoprenol.IMPORTANCEAcetate is a relatively abundant component of many lignocellulosic carbon streams and has the potential to be used together with sugars, especially in microbes with versatile catabolism such as P. putida. However, the use of mixed carbon streams necessitates additional optimization. Furthermore, the use of P. putida for the production of the biofuel target, isoprenol, requires the use of engineered strains that have additional growth and production constraints when cultivated in acetate and glucose mixtures. In this study, we generate acetate-tolerant P. putida strains that overcome these challenges and examine their ability to produce isoprenol. We show that acetate tolerance and isoprenol production, although independent phenotypes, can both be optimized in a given P. putida strain. Using proteomics and whole genome sequencing, we examine the molecular basis of both phenotypes and show that tolerance to acetate can occur via alternate routes and result in different impacts on isoprenol production.
Collapse
Affiliation(s)
- Guilherme M. V. de Siqueira
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aparajitha Srinivasan
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan Chen
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jennifer W. Gin
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christopher J. Petzold
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Taek Soon Lee
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thomas Eng
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
4
|
Mahboub HH, Yousefi M, Abdelgawad HA, Abdelwarith AA, Younis EM, Sakr E, Khamis T, Ismail SH, Abdel Rahman AN. Expression profiling of antimicrobial peptides and immune-related genes in Nile tilapia following Pseudomonas putida infection and nano-titanium dioxide gel exposure. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110037. [PMID: 39577786 DOI: 10.1016/j.fsi.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Pseudomonas putida is a virulent bacterium that prompts major losses in fish. Recently, there has been a noticeable direction for utilizing nanomaterials in the aquaculture industry for sustaining fish health and performance. Hence, the present study is the first trial to investigate the antibacterial influence of nano titanium dioxide gel (NTG) as a watery addition for combating P. putida infection in Nile tilapia (Oreochromis niloticus). Further, antioxidant-immune capacity, and gene expression in the spleen including antimicrobial peptides and immune-related genes are assessed. Fish (n = 200; 47.50 ± 1.32 g of body weight) were assigned into four groups for 10 days [control, NTG (0.9 mg/L), P. putida, and NTG + P. putida]. Findings demonstrated that the infection by P. putida induced a decline in antioxidant immune indicators including catalase, glutathione peroxidase, and nitric oxide. Furthermore, a noteworthy rise in lipid peroxide (malondialdehyde), tumor necrosis factor-alpha (TNF-α), and stress indicator (glucose) levels was noticed. P. putida infection induced remarkable alterations in the expression of antimicrobial peptides genes [tilapia piscidin (TP3 and TP4), colony-stimulating factor 1 receptor, hepcidin-2, beta-defensin1, and neutrophil cytosolic factor 4] and immune-relevant genes [transforming growth factor beta, tumor necrosis factor receptor-associated factor 6, TNF-α, interleukins (IL-10 and IL-11)]. Notably, applying NTG regenerated all the negative consequences of P. putida infection. Inclusive, this study underscores the crucial role of NTG as a potent antibacterial and immune-antioxidant agent, highlighting its potential in protecting O. niloticus from P. putida infection and improving immune-antioxidant response.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, Miklukho-Maklaya St, Moscow, 117198, Russia.
| | - Hosny Ahmed Abdelgawad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Emad Sakr
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO Box 12588, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
5
|
Yuan F, Qiu F, Xie J, Fan Y, Zhang B, Zhang T, Zhang Z, Gu L, Li M. Mechanism of Action of Fusarium oxysporum CCS043 Utilizing Allelochemicals for Rhizosphere Colonization and Enhanced Infection Activity in Rehmannia glutinosa. PLANTS (BASEL, SWITZERLAND) 2024; 14:38. [PMID: 39795298 PMCID: PMC11722847 DOI: 10.3390/plants14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Rehmannia glutinosa is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly Fusarium oxysporum; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce F. oxysporum CCS043 outbreaks. In this study; the genome of F. oxysporum CCS043 from R. glutinosa's rhizosphere microbiota was sequenced and assembled de novo; resulting in a 47.67 Mb genome comprising 16,423 protein-coding genes. Evolutionary analysis suggests that different F. oxysporum strains may adapt to the host rhizosphere microecosystem by acquiring varying numbers of specific genes while maintaining a constant number of core genes.The allelopathic effects of ferulic acid; verbascoside; and catalpol on F. oxysporum CCS043 were examined at the physiological and transcriptomic levels. The application of ferulic acid was observed to primarily facilitate the proliferation and growth of F. oxysporum CCS043; whereas verbascoside notably enhanced the biosynthesis of infection-related enzymes such as pectinase and cellulase. Catalpol demonstrated a moderate level of allelopathic effects in comparison to the other two. Furthermore; 10 effectors were identified by combining the genomic data. Meanwhile; it was found that among the effector-protein-coding genes; ChiC; VRDA; csn; and chitinase exhibited upregulated expression across all treatments. The expression patterns of these key genes were validated using qRT-PCR. Transient overexpression of the two effector-encoding genes in detached R. glutinosa leaves provided further confirmation that ChiC (GME8876_g) and csn (GME9251_g) are key effector proteins responsible for the induction of hypersensitive reactions in R. glutinosa leaf cells. This study provides a preliminary indication that the use of allelochemicals by F. oxysporum CCS043 can promote its own growth and proliferation and enhance infection activity. This finding offers a solid theoretical basis and data support for elucidating the fundamental causes of fungal disease outbreaks in continuous cropping of R. glutinosa and for formulating effective mitigation strategies.
Collapse
Affiliation(s)
- Feiyue Yuan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
| | - Fuxiang Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jiawei Xie
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongxi Fan
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Bao Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Tingting Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhongyi Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
| | - Li Gu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mingjie Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
6
|
Sun L, Yang W, Li L, Wang D, Zan X, Cui F, Qi X, Sun L, Sun W. Characterization and Transcriptional Regulation of the 2-Ketogluconate Utilization Operon in Pseudomonas plecoglossicida. Microorganisms 2024; 12:2530. [PMID: 39770733 PMCID: PMC11678583 DOI: 10.3390/microorganisms12122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Pseudomonas plecoglossicida JUIM01 is an industrial 2-keto-d-gluconate (2KGA)-producing strain. However, its regulation mechanism of 2KGA metabolism remains to be clarified. Among other reported Pseudomonas species, the 2-ketogluconate utilization operon (kgu operon) plays key roles in 2KGA catabolism. In this study, the structural genes of the kgu operon and its promoter in P. plecoglossicida JUIM01 were identified using reverse transcription PCR and lacZ reporter gene fusion. The results showed the kgu operon in P. plecoglossicida was composed of four structural genes: kguE, kguK, kguT, and kguD. The ptxS gene located upstream of kguE was excluded from the kgu operon. Then, the knockout and corresponding complementation strains of kguE, kguK, kguT, and kguD were constructed, respectively, to prove the kgu operon was involved in 2KGA catabolism of P. plecoglossicida. The knockout stains, especially JUIM01ΔkguE, showed potential as industrial production strains for 2KGA. Moreover, the transcriptional regulation mechanism of PtxS on the kgu operon was elucidated using multiple methods. In P. plecoglossicida, the LacI-family transcription regulator PtxS could recognize a 14 bp palindrome (5'-TGAAACCGGTTTCA-3') within the promoter region of the kgu operon and specifically bind to a 26 bp region where the palindrome was located. As the binding sites overlapped with the transcription start site of the kgu operon, the binding of PtxS possibly hindered the binding of RNA polymerase, thus repressing the transcription of the kgu operon and further regulating 2KGA catabolism. 2KGA bound to PtxS as an effector to dissociate it from the kgu operon promoter region, so as to relieve the transcription repression. The results will provide strategies for improving the product accumulation in 2KGA industrial production and theoretical bases for the construction of a Pseudomonas chassis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.S.); (W.Y.); (L.L.); (D.W.); (X.Z.); (F.C.); (X.Q.); (L.S.)
| |
Collapse
|
7
|
Udaondo Z, Ramos JL, Abram K. Unraveling the genomic diversity of the Pseudomonas putida group: exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. FEMS Microbiol Rev 2024; 48:fuae025. [PMID: 39390673 PMCID: PMC11585281 DOI: 10.1093/femsre/fuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
The genus Pseudomonas is characterized by its rich genetic diversity, with over 300 species been validly recognized. This reflects significant progress made through sequencing and computational methods. Pseudomonas putida group comprises highly adaptable species that thrive in diverse environments and play various ecological roles, from promoting plant growth to being pathogenic in immunocompromised individuals. By leveraging the GRUMPS computational pipeline, we scrutinized 26 363 genomes labeled as Pseudomonas in the NCBI GenBank, categorizing all Pseudomonas spp. genomes into 435 distinct species-level clusters or cliques. We identified 224 strains deposited under the taxonomic identifier "Pseudomonas putida" distributed within 31 of these species-level clusters, challenging prior classifications. Nine of these 31 cliques contained at least six genomes labeled as "Pseudomonas putida" and were analysed in depth, particularly clique_1 (P. alloputida) and clique_2 (P. putida). Pangenomic analysis of a set of 413 P. putida group strains revealed over 2.2 million proteins and more than 77 000 distinct protein families. The core genome of these 413 strains includes 2226 protein families involved in essential biological processes. Intraspecific genetic homogeneity was observed within each clique, each possessing a distinct genomic identity. These cliques exhibit distinct core genes and diverse subgroups, reflecting adaptation to specific environments. Contrary to traditional views, nosocomial infections by P. alloputida, P. putida, and P. monteilii have been reported, with strains showing varied antibiotic resistance profiles due to diverse mechanisms. This review enhances the taxonomic understanding of key P. putida group species using advanced population genomics approaches and provides a comprehensive understanding of their genetic diversity, ecological roles, interactions, and potential applications.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
8
|
Kim HJ, Kim BC, Park H, Cho G, Lee T, Kim HT, Bhatia SK, Yang YH. Microbial production of levulinic acid from glucose by engineered Pseudomonas putida KT2440. J Biotechnol 2024; 395:161-169. [PMID: 39343057 DOI: 10.1016/j.jbiotec.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Levulinic acid(LA) is produced through acid-catalyzed hydrolysis and dehydration of lignocellulosic biomass. It is a key platform chemical used as an intermediate in various industries including biofuels, cosmetics, pharmaceuticals, and polymers. Traditional LA production uses chemical conversion, which requires high temperatures and pressures, strong acids, and produces undesirable side reactions, repolymerization products, and waste problems Therefore, we designed an integrated process to produce LA from glucose through metabolic engineering of Pseudomonas putida KT2440. As a metabolic engineering strategy, codon optimized phospho-2-dehydro-3-deoxyheptonate aldolase (AroG), 3-dehydroshikimate dehydratase (AsbF), and acetoacetate decarboxylase (Adc) were introduced to express genes of the shikimate and β-ketoadipic acid pathways, and the 3-oxoadipate CoA-transferase (pcaIJ) gene was deleted to prevent loss of biosynthetic intermediates. To increase the accumulation of the produced LA, the lva operon encoding levulinyl-CoA synthetase (LvaE) was deleted resulting in the high LA-producing strain P. putida HP203. Culture conditions such as medium, temperature, glucose concentration, and nitrogen source were optimized, and under optimal conditions, P. putida HP203 strain biosynthesized 36.3 mM (4.2 g/L) LA from glucose in a fed-batch fermentation system. When lignocellulosic biomass hydrolysate was used as the substrate, this strain produced 7.31 mM of LA. This is the first report of microbial production of LA from glucose by P. putida. This study suggests the possibility of manipulating biosynthetic pathway to produce biological products from glucose for various applications.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hanna Park
- Corporate R&D, CJ CheilJedang, Suwon, Gyeonggi 16495, Republic of Korea
| | - Geunsang Cho
- Corporate R&D, CJ CheilJedang, Suwon, Gyeonggi 16495, Republic of Korea
| | - Taekyu Lee
- Corporate R&D, CJ CheilJedang, Suwon, Gyeonggi 16495, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Dong Y, Zhai K, Li Y, Lv Z, Zhao M, Gan T, Ma Y. Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in Pseudomonas putida. Curr Issues Mol Biol 2024; 46:12784-12799. [PMID: 39590355 PMCID: PMC11592762 DOI: 10.3390/cimb46110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are semi-crystalline elastomers with a low melting point and high elongation at break, allowing for a wide range of applications in domestic, agricultural, industrial, and mainly medical fields. Utilizing low-cost cellulose hydrolyzed sugar as a carbon source and metabolic engineering to enhance synthesis in Pseudomonas putida is a promising strategy for commercializing mcl-PHAs, but little has been attempted to improve the utilization of glucose for synthesizing mcl-PHAs. In this study, a multi-pathway modification was performed to improve the utilization of substrate glucose and the synthesis capacity of PHAs. To enhance glucose metabolism to flow to acetyl-CoA, which is an important precursor of mcl-PHA, multiple genes in glucose metabolism were inactive (branch pathway and negative regulatory) and overexpressed (positive regulatory) in this study. The two genes, gcd (encoding glucose dehydrogenase) and gltA (encoding citrate synthase), involved in glucose peripheral pathways and TCA cycles were separately and jointly knocked out in Pseudomonas putida QSRZ6 (ΔphaZΔhsdR), and the mcl-PHA synthesis was improved in the mutants; particularly, the mcl-PHA titer of QSRZ603 (ΔgcdΔgltA) was increased by 33.7%. Based on the glucose branch pathway truncation, mcl-PHA synthesis was further improved with hexR-inactivation (encoding a negative regulator in glucose metabolism). Compared with QSRZ603 and QSRZ6, the mcl-PHA titer of QSRZ607 (ΔgcdΔgltAΔhexR) was increased by 62.8% and 117.5%, respectively. The mutant QSRZ609 was constructed by replacing the endogenous promoter of gltB encoding a transcriptional activator of the two-component regulatory system GltR/GltS with the ribosome subunit promoter P33. The final mcl-PHA content and titers of QSRZ609 reached 57.3 wt% and 2.5 g/L, an increase of and 20.9% and 27.3% over that of the parent strain QSRZ605 and an increase of 110.4% and 159.9% higher as compared to QSRZ6, respectively. The fermentation was optimized with a feeding medium in shaker flacks; then, the mcl-PHA contents and titer of QSRZ609 were 59.1 wt% and 6.8 g/L, respectively. The results suggest that the regulation from glucose to acetyl-CoA by polygenic modification is an effective strategy for enhancing mcl-PHA synthesis, and the mutants obtained in this study can be used as chassis to further increase mcl-PHA production.
Collapse
Affiliation(s)
- Yue Dong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Keyao Zhai
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yatao Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhen Lv
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mengyao Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tian Gan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuchao Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
Chen W, Ma R, Feng Y, Xiao Y, Sekowska A, Danchin A, You C. GnuR Represses the Expression of Glucose and Gluconate Catabolism in Pseudomonas putida KT2440. Microb Biotechnol 2024; 17:e70059. [PMID: 39589324 PMCID: PMC11590683 DOI: 10.1111/1751-7915.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
In Pseudomonas putida KT2440, a prime chassis for biotechnology, the clustered distribution of glucose catabolism genes and four related transcription factors (TFs) may facilitate the tight regulation of glucose catabolism. However, the genes under the direct control of these TFs remain unidentified, leaving their regulatory roles elusive. Furthermore, the carbon source gluconate was metabolised similarly to glucose in KT2440, but the responses of these catabolic and TF genes to gluconate were unclear. Here, these mysteries were unravelled through multi-omics analysis integrated with physiological studies. First, we found that the expression of these catabolic and TF genes were significantly induced by both glucose and gluconate in KT2440. The independent responses of these genes to glucose and gluconate were differentiated in the gcd deletion mutant. We then defined the regulon of GnuR, one of the four related TFs, and discovered that GnuR directly repressed the expression of catabolic genes involved in the Entner-Doudoroff and the peripheral glucose and gluconate metabolism pathways. These results were further confirmed by physiological studies. Finally, a regulatory mode of an incoherent feedforward loop involving GnuR is proposed.
Collapse
Affiliation(s)
- Wenbo Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| | - Rao Ma
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| | - Yong Feng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| | - Yunzhu Xiao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| | | | - Antoine Danchin
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong KongHong KongChina
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanologyShenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
11
|
Sun WJ, Zhang QN, Li LL, Qu MX, Zan XY, Cui FJ, Zhou Q, Wang DM, Sun L. The Functional Characterization of the 6-Phosphogluconate Dehydratase Operon in 2-Ketogluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01. Foods 2024; 13:3444. [PMID: 39517228 PMCID: PMC11544825 DOI: 10.3390/foods13213444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Genus Pseudomonas bacteria mainly consume glucose through the Entner-Doudoroff (ED) route due to a lack of a functional Embden-Meyerhof-Parnas (EMP) pathway. In the present study, a 6-phosphogluconate dehydratase (edd) operon in the ED route was well investigated to find its structural characteristics and roles in the regulation of glucose consumption and 2-ketogluconic acid (2KGA) metabolism in the industrial 2KGA-producer P. plecoglossicida JUIM01. The edd operon contained four structural genes of edd, glk, gltR, and gtrS, encoding 6-PG dehydratase Edd, glucokinase Glk, response regulatory factor GltR, and histidine kinase GtrS, respectively. A promoter region was observed in the 5'-upstream of the edd gene, with a transcriptional start site located 129 bp upstream of the edd gene and in a pseudo-palindromic sequence of 5'-TTGTN7ACAA-3' specifically binding to the transcription factor HexR. The knockout of the edd gene showed a remarkably negative effect on cell growth and re-growth using 2KGA as a substrate, beneficial to 2KGA production, with an increase of 8%. The deletion of glk had no significant effect on the cell growth or glucose metabolism, while showing an adverse impact on the 2KGA production, with a decrease of 5%. The outputs of the present study would provide a theoretical basis for 2KGA-producer improvement with metabolic engineering strategies and the development and optimization of P. plecoglossicida as the chassis cells.
Collapse
Affiliation(s)
- Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Qian-Nan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Lu-Lu Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Meng-Xin Qu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Qiang Zhou
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Shangrao 334221, China
| | - Da-Ming Wang
- Key Laboratory of Elemene Class Anti-Cancer Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.-J.S.); (Q.-N.Z.)
| |
Collapse
|
12
|
Weimer A, Pause L, Ries F, Kohlstedt M, Adrian L, Krömer J, Lai B, Wittmann C. Systems biology of electrogenic Pseudomonas putida - multi-omics insights and metabolic engineering for enhanced 2-ketogluconate production. Microb Cell Fact 2024; 23:246. [PMID: 39261865 PMCID: PMC11389600 DOI: 10.1186/s12934-024-02509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Pseudomonas putida KT2440 has emerged as a promising host for industrial bioproduction. However, its strictly aerobic nature limits the scope of applications. Remarkably, this microbe exhibits high bioconversion efficiency when cultured in an anoxic bio-electrochemical system (BES), where the anode serves as the terminal electron acceptor instead of oxygen. This environment facilitates the synthesis of commercially attractive chemicals, including 2-ketogluconate (2KG). To better understand this interesting electrogenic phenotype, we studied the BES-cultured strain on a systems level through multi-omics analysis. Inspired by our findings, we constructed novel mutants aimed at improving 2KG production. RESULTS When incubated on glucose, P. putida KT2440 did not grow but produced significant amounts of 2KG, along with minor amounts of gluconate, acetate, pyruvate, succinate, and lactate. 13C tracer studies demonstrated that these products are partially derived from biomass carbon, involving proteins and lipids. Over time, the cells exhibited global changes on both the transcriptomic and proteomic levels, including the shutdown of translation and cell motility, likely to conserve energy. These adaptations enabled the cells to maintain significant metabolic activity for several weeks. Acetate formation was shown to contribute to energy supply. Mutants deficient in acetate production demonstrated superior 2KG production in terms of titer, yield, and productivity. The ∆aldBI ∆aldBII double deletion mutant performed best, accumulating 2KG at twice the rate of the wild type and with an increased yield (0.96 mol/mol). CONCLUSIONS By integrating transcriptomic, proteomic, and metabolomic analyses, this work provides the first systems biology insight into the electrogenic phenotype of P. putida KT2440. Adaptation to anoxic-electrogenic conditions involved coordinated changes in energy metabolism, enabling cells to sustain metabolic activity for extended periods. The metabolically engineered mutants are promising for enhanced 2KG production under these conditions. The attenuation of acetate synthesis represents the first systems biology-informed metabolic engineering strategy for enhanced 2KG production in P. putida. This non-growth anoxic-electrogenic mode expands our understanding of the interplay between growth, glucose phosphorylation, and glucose oxidation into gluconate and 2KG in P. putida.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Laura Pause
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Fabian Ries
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lorenz Adrian
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jens Krömer
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bin Lai
- BMBF Junior Research Group Biophotovoltaics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
13
|
Peoples LM, Isanta-Navarro J, Bras B, Hand BK, Rosenzweig F, Elser JJ, Church MJ. Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate. mSystems 2024; 9:e0077024. [PMID: 38980051 PMCID: PMC11334502 DOI: 10.1128/msystems.00770-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Microorganisms grow despite imbalances in the availability of nutrients and energy. The biochemical and elemental adjustments that bacteria employ to sustain growth when these resources are suboptimal are not well understood. We assessed how Pseudomonas putida KT2440 adjusts its physiology at differing dilution rates (to approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) stress using chemostats. Cellular elemental and biomolecular pools were variable in response to different limiting resources at a slow dilution rate of 0.12 h-1, but these pools were more similar across treatments at a faster rate of 0.48 h-1. At slow dilution rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by changes in cellular C quotas and rates of oxygen consumption, both of which were highest under P- and lowest under C- stress. Underlying these phenotypic changes was differential gene expression of terminal oxidases used for ATP generation that allows for increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 formed aggregates and biofilms, a physiological response that hindered an accurate assessment of growth rate, but which could serve as a mechanism that allows cells to remain in conditions where growth is favorable. Our findings highlight the ways that microorganisms dynamically adjust their physiology under different resource supply conditions, with distinct mechanisms depending on the limiting resource at slow growth and convergence toward an aggregative phenotype with similar compositions under conditions that attempt to force fast growth. IMPORTANCE All organisms experience suboptimal growth conditions due to low nutrient and energy availability. Their ability to survive and reproduce under such conditions determines their evolutionary fitness. By imposing suboptimal resource ratios under different dilution rates on the model organism Pseudomonas putida KT2440, we show that this bacterium dynamically adjusts its elemental composition, morphology, pools of biomolecules, and levels of gene expression. By examining the ability of bacteria to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility manifests at the cellular level and impacts the flow of energy and elements through ecosystems.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Brian K. Hand
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James J. Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
14
|
Yunus IS, Hudson GA, Chen Y, Gin JW, Kim J, Baidoo EEK, Petzold CJ, Adams PD, Simmons BA, Mukhopadhyay A, Keasling JD, Lee TS. Systematic engineering for production of anti-aging sunscreen compound in Pseudomonas putida. Metab Eng 2024; 84:69-82. [PMID: 38839037 DOI: 10.1016/j.ymben.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sunscreen has been used for thousands of years to protect skin from ultraviolet radiation. However, the use of modern commercial sunscreen containing oxybenzone, ZnO, and TiO2 has raised concerns due to their negative effects on human health and the environment. In this study, we aim to establish an efficient microbial platform for production of shinorine, a UV light absorbing compound with anti-aging properties. First, we methodically selected an appropriate host for shinorine production by analyzing central carbon flux distribution data from prior studies alongside predictions from genome-scale metabolic models (GEMs). We enhanced shinorine productivity through CRISPRi-mediated downregulation and utilized shotgun proteomics to pinpoint potential competing pathways. Simultaneously, we improved the shinorine biosynthetic pathway by refining its design, optimizing promoter usage, and altering the strength of ribosome binding sites. Finally, we conducted amino acid feeding experiments under various conditions to identify the key limiting factors in shinorine production. The study combines meta-analysis of 13C-metabolic flux analysis, GEMs, synthetic biology, CRISPRi-mediated gene downregulation, and omics analysis to improve shinorine production, demonstrating the potential of Pseudomonas putida KT2440 as platform for shinorine production.
Collapse
Affiliation(s)
- Ian S Yunus
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joonhoon Kim
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul D Adams
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
15
|
Qi X, Cai H, Wang X, Liu R, Cai T, Wang S, Liu X, Wang X. Electricity generation by Pseudomonas putida B6-2 in microbial fuel cells using carboxylates and carbohydrate as substrates. ENGINEERING MICROBIOLOGY 2024; 4:100148. [PMID: 39629331 PMCID: PMC11610965 DOI: 10.1016/j.engmic.2024.100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 12/07/2024]
Abstract
Microbial fuel cells (MFCs) employing Pseudomonas putida B6-2 (ATCC BAA-2545) as an exoelectrogen have been developed to harness energy from various conventional substrates, such as acetate, lactate, glucose, and fructose. Owing to its metabolic versatility, P. putida B6-2 demonstrates adaptable growth rates on diverse, cost-effective carbon sources within MFCs, exhibiting distinct energy production characteristics. Notably, the anode chamber's pH rises with carboxylates' (acetate and lactate) consumption and decreases with carbohydrates' (glucose and fructose) utilization. The MFC utilizing fructose as a substrate achieved the highest power density at 411 mW m-2. Initial analysis revealed that P. putida B6-2 forms biofilms covered with nanowires, contributing to bioelectricity generation. These microbial nanowires are likely key players in direct extracellular electron transport through physical contact. This study established a robust foundation for producing valuable compounds and bioenergy from common substrates in bioelectrochemical systems (BESs) utilizing P. putida as an exoelectrogen.
Collapse
Affiliation(s)
- Xiaoyan Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huangwei Cai
- Chemical Engineering Department, Columbia University, New York, NY 10027, United States
| | - Xiaolei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ruijun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ting Cai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Sen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xueying Liu
- Powerchina Renewable Energy Co., Ltd., Beijing, 100101, China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
16
|
Godoy P, Udaondo Z, Duque E, Ramos JL. Biosynthesis of fragrance 2-phenylethanol from sugars by Pseudomonas putida. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:51. [PMID: 38566218 PMCID: PMC10986128 DOI: 10.1186/s13068-024-02498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Petrochemicals contribute to environmental issues, with concerns ranging from energy consumption and carbon emission to pollution. In contrast, microbial biorefineries offer eco-friendly alternatives. The solvent-tolerant Pseudomonas putida DOT-T1E serves as a suitable host for producing aromatic compounds, specifically L-phenylalanine and its derivative, 2-phenylethanol (2-PE), which find widespread applications in various industries. RESULTS This study focuses on enhancing 2-PE production in two L-phenylalanine overproducing strains of DOT-T1E, namely CM12-5 and CM12-5Δgcd (xylABE), which grow with glucose and glucose-xylose, respectively. To synthesize 2-PE from L-phenylalanine, these strains were transformed with plasmid pPE-1, bearing the Ehrlich pathway genes, and it was found higher 2-PE production with glucose (about 50-60 ppm) than with xylose (< 3 ppm). To understand the limiting factors, we tested the addition of phenylalanine and intermediates from the Ehrlich and shikimate pathways. The results identified intracellular L-phenylalanine as a key limiting factor for 2-PE production. To overcame this limitation, a chorismate mutase/prephenate dehydratase variant-insentive to feedback inhibition by aromatic amino acids-was introduced in the producing strains. This led to increased L-phenylalanine production and subsequently produced more 2-PE (100 ppm). Random mutagenesis of the strains also produced strains with higher L-phenylalanine titers and increased 2-PE production (up to 120 ppm). The improvements resulted from preventing dead-end product accumulation from shikimate and limiting the catabolism of potential pathway intermediates in the Ehrlich pathway. The study explored agricultural waste substrates, such as corn stover, sugarcane straw and corn-syrup as potential C sources. The best results were obtained using 2G substrates at 3% (between 82 and 100 ppm 2-PE), with glucose being the preferred sugar for 2-PE production among the monomeric sugars in these substrates. CONCLUSIONS The findings of this study offer strategies to enhance phenylalanine production, a key substrate for the synthesis of aromatic compounds. The ability of P. putida DOT-T1E to thrive with various C-sources and its tolerance to substrates, products, and potential toxicants in industrial wastes, are highlighted. The study identified and overcome possible bottlenecks for 2-PE production. Ultimately, the strains have potential to become efficient microbial platforms for synthesizing 2-PE from agro-industrial waste materials.
Collapse
Affiliation(s)
- Patricia Godoy
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Science, Little Rock, AR, 72205, USA
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain.
| |
Collapse
|
17
|
Han S, Kim D, Kim Y, Yoon SH. Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12. BMC Genomics 2024; 25:63. [PMID: 38229031 DOI: 10.1186/s12864-023-09940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pseudomonas putida S12 is a gram-negative bacterium renowned for its high tolerance to organic solvents and metabolic versatility, making it attractive for various applications, including bioremediation and the production of aromatic compounds, bioplastics, biofuels, and value-added compounds. However, a metabolic model of S12 has yet to be developed. RESULTS In this study, we present a comprehensive and highly curated genome-scale metabolic network model of S12 (iSH1474), containing 1,474 genes, 1,436 unique metabolites, and 2,938 metabolic reactions. The model was constructed by leveraging existing metabolic models and conducting comparative analyses of genomes and phenomes. Approximately 2,000 different phenotypes were measured for S12 and its closely related KT2440 strain under various nutritional and environmental conditions. These phenotypic data, combined with the reported experimental data, were used to refine and validate the reconstruction. Model predictions quantitatively agreed well with in vivo flux measurements and the batch cultivation of S12, which demonstrated that iSH1474 accurately represents the metabolic capabilities of S12. Furthermore, the model was simulated to investigate the maximum theoretical metabolic capacity of S12 growing on toxic organic solvents. CONCLUSIONS iSH1474 represents a significant advancement in our understanding of the cellular metabolism of P. putida S12. The combined results of metabolic simulation and comparative genome and phenome analyses identified the genetic and metabolic determinants of the characteristic phenotypes of S12. This study could accelerate the development of this versatile organism as an efficient cell factory for various biotechnological applications.
Collapse
Affiliation(s)
- Sol Han
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
18
|
Moreno R, Rojo F. What are the signals that control catabolite repression in Pseudomonas? Microb Biotechnol 2024; 17:e14407. [PMID: 38227132 PMCID: PMC10832556 DOI: 10.1111/1751-7915.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Metabolically versatile bacteria exhibit a global regulatory response known as carbon catabolite repression (CCR), which prioritizes some carbon sources over others when all are present in sufficient amounts. This optimizes growth by distributing metabolite fluxes, but can restrict yields in biotechnological applications. The molecular mechanisms and preferred substrates for CCR vary between bacterial groups. Escherichia coli prioritizes glucose whereas Pseudomonas sp. prefer certain organic acids or amino acids. A significant issue in understanding (and potentially bypassing) CCR is the lack of information about the signals that trigger this regulatory response. In E. coli, several key compounds act as flux sensors, governing the flow of metabolites through catabolic pathways and preventing imbalances. These flux sensors can also modulate the CCR response. It has been suggested that the order of substrate preference is determined by carbon uptake flux rather than substrate identity. For Pseudomonas, much less information is available, as the signals that induce CCR are poorly understood. This article briefly discusses the available evidence on the signals that trigger CCR and the questions that remain to be answered in Pseudomonas.
Collapse
Affiliation(s)
- Renata Moreno
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| | - Fernando Rojo
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, CSICMadridSpain
| |
Collapse
|
19
|
Casas-Román A, Lorite MJ, Sanjuán J, Gallegos MT. Two glyceraldehyde-3-phosphate dehydrogenases with distinctive roles in Pseudomonas syringae pv. tomato DC3000. Microbiol Res 2024; 278:127530. [PMID: 37890268 DOI: 10.1016/j.micres.2023.127530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH or Gap) is a ubiquitously distributed enzyme that plays an essential role in the glycolytic and gluconeogenic pathways. However, additional roles have been described unrelated to its enzymatic function in diverse organisms, often linked to its presence in the cell surface or as a secreted protein. Despite being a paradigm among multifunctional/moonlighting proteins, little is known about its possible roles in phytopathogenic bacteria. In the present work we have studied three putative gap paralogous genes identified in the genome of Pseudomonas syringae pv. tomato (Pto) DC3000, an important model in molecular plant pathology, with the aim of determining their physiological and possible non-canonical roles in this bacterium and in the plant infection process. We have established that the Gap1 protein has a predominantly glycolytic activity, whereas the NADPH-dependent Gap2 main activity is gluconeogenic. The third paralogue lacks GAPDH activity in Pto but is indispensable for vitamin B6 metabolism and displays erythrose-4-phosphate dehydrogenase activity, thus referred as epd. Both Gap enzymes exhibit distinct functional characteristics depending on the bacterium physiological state, with Gap1 presenting a substantial role in motility, biosurfactant production and biofilm formation. On the other hand, solely Gap2 appears to be essential for growth on tomato plant. Furthermore, Gap1 and Gap2 present a distinctive transcriptional regulation and both have been identified exported outside the cells with different definite media compositions. This serves as compelling evidence of additional roles beyond their central metabolic functions.
Collapse
Affiliation(s)
- Ariana Casas-Román
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-José Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| |
Collapse
|
20
|
Pause L, Weimer A, Wirth NT, Nguyen AV, Lenz C, Kohlstedt M, Wittmann C, Nikel PI, Lai B, Krömer JO. Anaerobic glucose uptake in Pseudomonas putida KT2440 in a bioelectrochemical system. Microb Biotechnol 2024; 17:e14375. [PMID: 37990843 PMCID: PMC10832537 DOI: 10.1111/1751-7915.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Providing an anodic potential in a bio-electrochemical system to the obligate aerobe Pseudomonas putida enables anaerobic survival and allows the cells to overcome redox imbalances. In this setup, the bacteria could be exploited to produce chemicals via oxidative pathways at high yield. However, the absence of anaerobic growth and low carbon turnover rates remain as obstacles for the application of such an electro-fermentation technology. Growth and carbon turnover start with carbon uptake into the periplasm and cytosol. P. putida KT2440 has three native transporting systems for glucose, each differing in energy and redox demand. This architecture previously led to the hypothesis that internal redox and energy constraints ultimately limit cytoplasmic carbon utilization in a bio-electrochemical system. However, it remains largely unclear which uptake route is predominantly used by P. putida under electro-fermentative conditions. To elucidate this, we created three gene deletion mutants of P. putida KT2440, forcing the cells to exclusively utilize one of the routes. When grown in a bio-electrochemical system, the pathway mutants were heavily affected in terms of sugar consumption, current output and product formation. Surprisingly, however, we found that about half of the acetate formed in the cytoplasm originated from carbon that was put into the system via the inoculation biomass, while the other half came from the consumption of substrate. The deletion of individual sugar uptake routes did not alter significantly the secreted acetate concentrations among different strains even with different carbon sources. This means that the stoichiometry of the sugar uptake routes is not a limiting factor during electro-fermentation and that the low rates might be caused by other reasons, for example energy limitations or a yet-to-be-identified oxygen-dependent regulatory mechanism.
Collapse
Affiliation(s)
- Laura Pause
- Systems Biotechnology groupHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Anna Weimer
- Institute of Systems BiotechnologySaarland UniversitySaarbrückenGermany
| | - Nicolas T. Wirth
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Anh Vu Nguyen
- Systems Biotechnology groupHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Claudius Lenz
- Systems Biotechnology groupHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Michael Kohlstedt
- Institute of Systems BiotechnologySaarland UniversitySaarbrückenGermany
| | | | - Pablo I. Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Bin Lai
- BMBF Junior Research Group BiophotovoltaicsHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Jens O. Krömer
- Systems Biotechnology groupHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
21
|
Vogeleer P, Millard P, Arbulú ASO, Pflüger-Grau K, Kremling A, Létisse F. Metabolic impact of heterologous protein production in Pseudomonas putida: Insights into carbon and energy flux control. Metab Eng 2024; 81:26-37. [PMID: 37918614 DOI: 10.1016/j.ymben.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
For engineered microorganisms, the production of heterologous proteins that are often useless to host cells represents a burden on resources, which have to be shared with normal cellular processes. Within a certain metabolic leeway, this competitive process has no impact on growth. However, once this leeway, or free capacity, is fully utilized, the extra load becomes a metabolic burden that inhibits cellular processes and triggers a broad cellular response, reducing cell growth and often hindering the production of heterologous proteins. In this study, we sought to characterize the metabolic rearrangements occurring in the central metabolism of Pseudomonas putida at different levels of metabolic load. To this end, we constructed a P. putida KT2440 strain that expressed two genes encoding fluorescent proteins, one in the genome under constitutive expression to monitor the free capacity, and the other on an inducible plasmid to probe heterologous protein production. We found that metabolic fluxes are considerably reshuffled, especially at the level of periplasmic pathways, as soon as the metabolic load exceeds the free capacity. Heterologous protein production leads to the decoupling of anabolism and catabolism, resulting in large excess energy production relative to the requirements of protein biosynthesis. Finally, heterologous protein production was found to exert a stronger control on carbon fluxes than on energy fluxes, indicating that the flexible nature of P. putida's central metabolic network is solicited to sustain energy production.
Collapse
Affiliation(s)
- Philippe Vogeleer
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France
| | - Pierre Millard
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France; MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Ana-Sofia Ortega Arbulú
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Katharina Pflüger-Grau
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Andreas Kremling
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Fabien Létisse
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France.
| |
Collapse
|
22
|
Liu H, Chen Y, Wang S, Liu Y, Zhao W, Huo K, Guo H, Xiong W, Wang S, Yang C, Liu R. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose. Int J Biol Macromol 2023; 253:126732. [PMID: 37678685 DOI: 10.1016/j.ijbiomac.2023.126732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Bio-based plastics polyhydroxyalkanoates (PHAs) are considered as a good substitutive to traditional fossil-based plastics because PHAs outcompete chemical plastics in several important properties, such as biodegradability, biocompatibility, and renewability. However, the industrial production of PHA (especially medium-chain-length PHA, mcl-PHA) is greatly restricted by the cost of carbon sources. Currently, xylose and cellobiose derived from lignocellulose are potential substrates for mcl-PHA production. In this study, Pseudomonas putida KTU-U27, a genome-streamlined strain derived from a mcl-PHA producer P. putida KT2440, was used as the optimal chassis for the construction of microbial cell factories with the capacity to efficiently produce mcl-PHA from xylose and cellobiose by introducing the xylose and cellobiose metabolism modules and enhancing the transport of xylose and cellobiose. The lag phases of the xylose- and cellobiose-grown engineered strains were almost completely eliminated and the xylose- and cellobiose-utilizing performance was greatly improved via adaptive laboratory evolution. In shake-flask fermentation, the engineered strain 27A-P13-xylABE-Ptac-tt and 27A-P13-bglC-P13-gts had a mcl-PHA content of 41.67 wt% and 45.18 wt%, respectively, and were able to efficiently utilize xylose or cellobiose as the sole carbon source for cell growth. Herein, microbial production of mcl-PHA using xylose as the sole carbon source has been demonstrated for the first time. Meanwhile, the highest yield of mcl-PHA produced from cellobiose has been obtained in this study. Interestingly, the engineered strains derived from genome-reduced P. putida strains showed higher xylose- and cellobiose-utilizing performance and higher PHA yield than those derived from P. putida KT2440. This study highlights enormous potential of the engineered strains as promising platforms for low-cost production of mcl-PHA from xylose- and cellobiose-rich substrates.
Collapse
Affiliation(s)
- Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
23
|
Volke DC, Gurdo N, Milanesi R, Nikel PI. Time-resolved, deuterium-based fluxomics uncovers the hierarchy and dynamics of sugar processing by Pseudomonas putida. Metab Eng 2023; 79:159-172. [PMID: 37454792 DOI: 10.1016/j.ymben.2023.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Pseudomonas putida, a microbial host widely adopted for metabolic engineering, processes glucose through convergent peripheral pathways that ultimately yield 6-phosphogluconate. The periplasmic gluconate shunt (PGS), composed by glucose and gluconate dehydrogenases, sequentially transforms glucose into gluconate and 2-ketogluconate. Although the secretion of these organic acids by P. putida has been extensively recognized, the mechanism and spatiotemporal regulation of the PGS remained elusive thus far. To address this challenge, we adopted a dynamic 13C- and 2H-metabolic flux analysis strategy, termed D-fluxomics. D-fluxomics demonstrated that the PGS underscores a highly dynamic metabolic architecture in glucose-dependent batch cultures of P. putida, characterized by hierarchical carbon uptake by the PGS throughout the cultivation. Additionally, we show that gluconate and 2-ketogluconate accumulation and consumption can be solely explained as a result of the interplay between growth rate-coupled and decoupled metabolic fluxes. As a consequence, the formation of these acids in the PGS is inversely correlated to the bacterial growth rate-unlike the widely studied overflow metabolism of Escherichia coli and yeast. Our findings, which underline survival strategies of soil bacteria thriving in their natural environments, open new avenues for engineering P. putida towards efficient, sugar-based bioprocesses.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Nicolas Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Riccardo Milanesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
24
|
Wang J, Tian Y, Wei J, Lyu C, Yu H, Song Y. Impacts of dibutyl phthalate on bacterial community composition and carbon and nitrogen metabolic pathways in a municipal wastewater treatment system. ENVIRONMENTAL RESEARCH 2023; 223:115378. [PMID: 36709875 DOI: 10.1016/j.envres.2023.115378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Dibutyl phthalate (DBP) is a typical toxic and hazardous pollutant in pharmaceutical wastewater, affecting the metabolism of microbial flora, leading to decreased treatment efficiency, and deteriorated effluent quality in municipal wastewater treatment plants (WWTPs). This study conducted a long-term experiment with 6 operational stages in a pilot-scale A2O-MBR system, analyzing the effect of DBP on the bacterial community and their carbon and nitrogen metabolic pathways. 16S rRNA gene amplicon sequencing analysis and principal components analysis (PCA) showed that DBP at 8 mg/L significantly influenced the structure of bacterial community (P < 0.05), resulting in reduced bacterial community diversity. Metagenomic analysis was used to explore the embedded carbon and nitrogen metabolic pathways. At the presence of DBP, the metabolism of saccharides, lipids, and aromatic compounds were blocked owing to the vanishment of key enzyme (such as acetylaminohexosyltransferase (EC 2.4.1.92) and UDP-sugar pyro phosphorylase (EC 2.7.7.64)) encoding genes, resulting in weakened carbon metabolism, and thus reduced COD removal performance. The resultant deficiency of the genes such as those encoding hydroxyproline dehydrogenase (EC 1.5.5.3) gave rise to interrupted metabolic pathways of amino acid (arginine, proline, tyrosine, and tryptophan), resulting in declined function of nitrogen metabolism and thus reduced TN removal efficiency. The uncovery of the mechanisms by which DBP affects wastewater treatment system efficiency and microbial metabolism is of theoretical importance for the efficient operation of municipal and pharmaceutical wastewater treatment systems.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yucheng Tian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chunjian Lyu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Bujdoš D, Popelářová B, Volke DC, Nikel PI, Sonnenschein N, Dvořák P. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model. Metab Eng 2023; 75:29-46. [PMID: 36343876 DOI: 10.1016/j.ymben.2022.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Pseudomonas putida KT2440 is an attractive bacterial host for biotechnological production of valuable chemicals from renewable lignocellulosic feedstocks as it can valorize lignin-derived aromatics or glucose obtainable from cellulose. P. putida EM42, a genome-reduced variant of strain KT2440 endowed with advantageous physiological properties, was recently engineered for growth on cellobiose, a major cellooligosaccharide product of enzymatic cellulose hydrolysis. Co-utilization of cellobiose and glucose was achieved in a mutant lacking periplasmic glucose dehydrogenase Gcd (PP_1444). However, the cause of the co-utilization phenotype remained to be understood and the Δgcd strain had a significant growth defect. In this study, we investigated the basis of the simultaneous uptake of the two sugars and accelerated the growth of P. putida EM42 Δgcd mutant for the bioproduction of valuable compounds from glucose and cellobiose. We show that the gcd deletion lifted the inhibition of the exogenous β-glucosidase BglC from Thermobifida fusca exerted by the intermediates of the periplasmic glucose oxidation pathway. The additional deletion of hexR gene, which encodes a repressor of the upper glycolysis genes, failed to restore rapid growth on glucose. The reduced growth rate of the Δgcd mutant was partially compensated by the implantation of heterologous glucose and cellobiose transporters (Glf from Zymomonas mobilis and LacY from Escherichia coli, respectively). Remarkably, this intervention resulted in the accumulation of pyruvate in aerobic P. putida cultures. We demonstrated that the excess of this key metabolic intermediate can be redirected to the enhanced biosynthesis of ethanol and lactate. The pyruvate overproduction phenotype was then unveiled by an upgraded genome-scale metabolic model constrained with proteomic and kinetic data. The model pointed to the saturation of glucose catabolism enzymes due to unregulated substrate uptake and it predicted improved bioproduction of pyruvate-derived chemicals by the engineered strain. This work sheds light on the co-metabolism of cellulosic sugars in an attractive biotechnological host and introduces a novel strategy for pyruvate overproduction in bacterial cultures under aerobic conditions.
Collapse
Affiliation(s)
- Dalimil Bujdoš
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Barbora Popelářová
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| |
Collapse
|
26
|
Geng B, Liu S, Chen Y, Wu Y, Wang Y, Zhou X, Li H, Li M, Yang S. A plasmid-free Zymomonas mobilis mutant strain reducing reactive oxygen species for efficient bioethanol production using industrial effluent of xylose mother liquor. Front Bioeng Biotechnol 2022; 10:1110513. [PMID: 36619397 PMCID: PMC9816438 DOI: 10.3389/fbioe.2022.1110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Genome minimization is an effective way for industrial chassis development. In this study, Zymomonas mobilis ZMNP, a plasmid-free mutant strain of Z. mobilis ZM4 with four native plasmids deleted, was constructed using native type I-F CRISPR-Cas system. Cell growth of ZMNP under different temperatures and industrial effluent of xylose mother liquor were examined to investigate the impact of native plasmid removal. Despite ZMNP grew similarly as ZM4 under different temperatures, ZMNP had better xylose mother liquor utilization than ZM4. In addition, genomic, transcriptomic, and proteomic analyses were applied to unravel the molecular changes between ZM4 and ZMNP. Whole-genome resequencing result indicated that an S267P mutation in the C-terminal of OxyR, a peroxide-sensing transcriptional regulator, probably alters the transcription initiation of antioxidant genes for stress responses. Transcriptomic and proteomic studies illustrated that the reason that ZMNP utilized the toxic xylose mother liquor better than ZM4 was probably due to the upregulation of genes in ZMNP involving in stress responses as well as cysteine biosynthesis to accelerate the intracellular ROS detoxification and nucleic acid damage repair. This was further confirmed by lower ROS levels in ZMNP compared to ZM4 in different media supplemented with furfural or ethanol. The upregulation of stress response genes due to the OxyR mutation to accelerate ROS detoxification and DNA/RNA repair not only illustrates the underlying mechanism of the robustness of ZMNP in the toxic xylose mother liquor, but also provides an idea for the rational design of synthetic inhibitor-tolerant microorganisms for economic lignocellulosic biochemical production.
Collapse
Affiliation(s)
- Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Shuyi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yalun Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Xuan Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Quzhou, Zhejiang, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China,*Correspondence: Shihui Yang,
| |
Collapse
|
27
|
Shah BA, Kasarlawar ST, Phale PS. Glucose-6-Phosphate Dehydrogenase, ZwfA, a Dual Cofactor-Specific Isozyme Is Predominantly Involved in the Glucose Metabolism of Pseudomonas bharatica CSV86 T. Microbiol Spectr 2022; 10:e0381822. [PMID: 36354357 PMCID: PMC9769727 DOI: 10.1128/spectrum.03818-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (Zwf) is an important enzyme in glucose metabolism via the Entner-Doudoroff pathway and the first enzyme in the oxidative pentose-phosphate pathway. It generates NAD(P)H during the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, thus aiding in anabolic processes, energy yield, and oxidative stress responses. Pseudomonas bharatica CSV86T preferentially utilized aromatic compounds over glucose and exhibited a significantly lower growth rate on glucose (0.24 h-1) with a prolonged lag phase (~10 h). In strain CSV86T, glucose was metabolized via the intracellular phosphorylative route only because it lacked an oxidative (gluconate and 2-ketogluconate) route. The genome harbored three genes zwfA, zwfB, and zwfC encoding three Zwf isozymes. The present study aimed to understand gene arrangement, gene expression profiling, and molecular and kinetic properties of the purified enzymes to unveil their physiological significance in the strain CSV86T. The zwfA was found to be a part of the zwfA-pgl-eda operon, which was proximal to other glucose transport and metabolic clusters. The zwfB was found to be arranged as a gnd-zwfB operon, while zwfC was present independently. Among the three, zwfA was transcribed maximally, and the purified ZwfA displayed the highest catalytic efficiency, cooperativity with respect to G6P, and dual cofactor specificity. Isozymes ZwfB and ZwfC were NADP+-preferring and NADP+-specific, respectively. Among other functionally characterized Zwfs, ZwfA from strain CSV86T displayed poor catalytic efficiency and the further absence of oxidative routes of glucose metabolism reflected its lower growth rate on glucose compared to P. putida KT2440 and could be probable reasons for the unique carbon source utilization hierarchy. IMPORTANCE Pseudomonas bharatica CSV86T metabolizes glucose exclusively via the intracellular phosphorylative Entner-Doudoroff pathway leading the entire glucose flux through Zwf as the strain lacks oxidative routes. This may lead to limiting the concentration of downstream metabolic intermediates. The strain CSV86T possesses three isoforms of glucose-6-phosphate dehydrogenase, ZwfA, ZwfB, and ZwfC. The expression profile and kinetic properties of purified enzymes will help to understand glucose metabolism. Isozyme ZwfA dominated in terms of expression and displayed cooperativity with dual cofactor specificity. ZwfB preferred NADP+, and ZwfC was NADP+ specific, which may aid in redox cofactor balance. Such beneficial metabolic flexibility facilitated the regulation of metabolic pathways giving survival/fitness advantages in dynamic environments. Additionally, multiple genes allowed the distribution of function among these isoforms where the primary function was allocated to one of the isoforms.
Collapse
Affiliation(s)
- Bhavik A. Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| | - Sravanti T. Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| |
Collapse
|
28
|
Czajka JJ, Banerjee D, Eng T, Menasalvas J, Yan C, Munoz NM, Poirier BC, Kim YM, Baker SE, Tang YJ, Mukhopadhyay A. Tuning a high performing multiplexed-CRISPRi Pseudomonas putida strain to further enhance indigoidine production. Metab Eng Commun 2022; 15:e00206. [PMID: 36158112 PMCID: PMC9494242 DOI: 10.1016/j.mec.2022.e00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, a 14-gene edited Pseudomonas putida KT2440 strain for heterologous indigoidine production was examined using three distinct omic datasets. Transcriptomic data indicated that CRISPR/dCpf1-interference (CRISPRi) mediated multiplex repression caused global gene expression changes, implying potential undesirable changes in metabolic flux. 13C-metabolic flux analysis (13C-MFA) revealed that the core P. putida flux network after CRISPRi repression was conserved, with moderate reduction of TCA cycle and pyruvate shunt activity along with glyoxylate shunt activation during glucose catabolism. Metabolomic results identified a change in intracellular TCA metabolites and extracellular metabolite secretion profiles (sugars and succinate overflow) in the engineered strains. These omic analyses guided further strain engineering, with a random mutagenesis screen first identifying an optimal ribosome binding site (RBS) for Cpf1 that enabled stronger product-substrate pairing (1.6-fold increase). Then, deletion strains were constructed with excision of the PHA operon (ΔphaAZC-IID) resulting in a 2.2-fold increase in indigoidine titer over the optimized Cpf1-RBS construct at the end of the growth phase (∼6 h). The maximum indigoidine titer (at 72 h) in the ΔphaAZC-IID strain had a 1.5-fold and 1.8-fold increase compared to the optimized Cpf1-RBS construct and the original strain, respectively. Overall, this study demonstrated that integration of omic data types is essential for understanding responses to complex metabolic engineering designs and directly quantified the effect of such modifications on central metabolism.
Collapse
Affiliation(s)
- Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Menasalvas
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chunsheng Yan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nathalie Munoz Munoz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Brenton C Poirier
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Scott E Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
29
|
Wirth NT, Gurdo N, Krink N, Vidal-Verdú À, Donati S, Férnandez-Cabezón L, Wulff T, Nikel PI. A synthetic C2 auxotroph of Pseudomonas putida for evolutionary engineering of alternative sugar catabolic routes. Metab Eng 2022; 74:83-97. [PMID: 36155822 DOI: 10.1016/j.ymben.2022.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022]
Abstract
Acetyl-coenzyme A (AcCoA) is a metabolic hub in virtually all living cells, serving as both a key precursor of essential biomass components and a metabolic sink for catabolic pathways for a large variety of substrates. Owing to this dual role, tight growth-production coupling schemes can be implemented around the AcCoA node. Building on this concept, a synthetic C2 auxotrophy was implemented in the platform bacterium Pseudomonas putida through an in silico-informed engineering approach. A growth-coupling strategy, driven by AcCoA demand, allowed for direct selection of an alternative sugar assimilation route-the phosphoketolase (PKT) shunt from bifidobacteria. Adaptive laboratory evolution forced the synthetic P. putida auxotroph to rewire its metabolic network to restore C2 prototrophy via the PKT shunt. Large-scale structural chromosome rearrangements were identified as possible mechanisms for adjusting the network-wide proteome profile, resulting in improved PKT-dependent growth phenotypes. 13C-based metabolic flux analysis revealed an even split between the native Entner-Doudoroff pathway and the synthetic PKT bypass for glucose processing, leading to enhanced carbon conservation. These results demonstrate that the P. putida metabolism can be radically rewired to incorporate a synthetic C2 metabolism, creating novel network connectivities and highlighting the importance of unconventional engineering strategies to support efficient microbial production.
Collapse
Affiliation(s)
- Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Nicolás Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Nicolas Krink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Calle del Catedràtic Agustin Escardino Benlloch 9, 46980, Paterna, Spain
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Lorena Férnandez-Cabezón
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 220 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
30
|
Kohlstedt M, Weimer A, Weiland F, Stolzenberger J, Selzer M, Sanz M, Kramps L, Wittmann C. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Metab Eng 2022; 72:337-352. [DOI: 10.1016/j.ymben.2022.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
|
31
|
Nitrogen Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Appl Environ Microbiol 2022; 88:e0243021. [PMID: 35285712 DOI: 10.1128/aem.02430-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 has long been studied for its diverse and robust metabolisms, yet many genes and proteins imparting these growth capacities remain uncharacterized. Using pooled mutant fitness assays, we identified genes and proteins involved in the assimilation of 52 different nitrogen containing compounds. To assay amino acid biosynthesis, 19 amino acid drop-out conditions were also tested. From these 71 conditions, significant fitness phenotypes were elicited in 672 different genes including 100 transcriptional regulators and 112 transport-related proteins. We divide these conditions into 6 classes, and propose assimilatory pathways for the compounds based on this wealth of genetic data. To complement these data, we characterize the substrate range of three promiscuous aminotransferases relevant to metabolic engineering efforts in vitro. Furthermore, we examine the specificity of five transcriptional regulators, explaining some fitness data results and exploring their potential to be developed into useful synthetic biology tools. In addition, we use manifold learning to create an interactive visualization tool for interpreting our BarSeq data, which will improve the accessibility and utility of this work to other researchers. IMPORTANCE Understanding the genetic basis of P. putida's diverse metabolism is imperative for us to reach its full potential as a host for metabolic engineering. Many target molecules of the bioeconomy and their precursors contain nitrogen. This study provides functional evidence linking hundreds of genes to their roles in the metabolism of nitrogenous compounds, and provides an interactive tool for visualizing these data. We further characterize several aminotransferases, lactamases, and regulators, which are of particular interest for metabolic engineering.
Collapse
|
32
|
Medić A, Hüttmann N, Lješević M, Risha Y, Berezovski MV, Minić Z, Karadžić I. A study of the flexibility of the carbon catabolic pathways of extremophilic P. aeruginosa san ai exposed to benzoate versus glucose as sole carbon sources by multi omics analytical platform. Microbiol Res 2022; 259:126998. [PMID: 35276454 DOI: 10.1016/j.micres.2022.126998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
Polyextremophilic, hydrocarbonoclastic Pseudomonas aeruginosa san ai can survive under extreme environmental challenges in the presence of a variety of pollutants such as organic solvents and hydrocarbons, particularly aromatics, heavy metals, and high pH. To date, the metabolic plasticity of the extremophilic P. aeruginosa, has not been sufficiently studied in regard to the effect of changing carbon sources. Therefore, the present study explores the carbon metabolic pathways of polyextremophilic P. aeruginosa san ai grown on sodium benzoate versus glucose and its potential for aromatic degradation. P. aeruginosa san ai removed/metabolised nearly 430 mg/L of benzoate for 48 h, demonstrating a high capacity for aromatic degradation. Comparative functional proteomics, targeted metabolomics and genomics analytical approaches were employed to study the carbon metabolism of the P. aeruginosa san ai. Functional proteomic study of selected enzymes participating in the β-ketoadipate and the Entner-Doudoroff pathways revealed a metabolic reconfiguration induced by benzoate compared to glucose. Metabolome analysis implied the existence of both catechol and protocatechuate branches of the β-ketoadipate pathway. Enzymatic study of benzoate grown cultures confirmed the activity of the ortho- catechol branch of the β-ketoadipate pathway. Even high concentrations of benzoate did not show increased stress protein synthesis, testifying to its extremophilic nature capable of surviving in harsh conditions. This ability of Pseudomonas aeruginosa san ai to efficiently degrade benzoate can provide a wide range of use of this strain in environmental and agricultural application.
Collapse
Affiliation(s)
- Ana Medić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia
| | - Nico Hüttmann
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Marija Lješević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Yousef Risha
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Maxim V Berezovski
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Zoran Minić
- University of Ottawa, John L. Holmes Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, K1N 6N5 Ottawa, ON, Canada
| | - Ivanka Karadžić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia.
| |
Collapse
|
33
|
Zou L, Ouyang S, Hu Y, Zheng Z, Ouyang J. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:227. [PMID: 34838093 PMCID: PMC8627035 DOI: 10.1186/s13068-021-02078-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Lignocellulosic biomass is an attractive and sustainable alternative to petroleum-based feedstock for the production of a range of biochemicals, and pretreatment is generally regarded as indispensable for its biorefinery. However, various inhibitors that severely hinder the growth and fermentation of microorganisms are inevitably produced during the pretreatment of lignocellulose. Presently, there are few reports on a single microorganism that can detoxify or tolerate toxic mixtures of pretreated lignocellulose hydrolysate while effectively transforming sugar components into valuable compounds. Alternatively, microbial coculture provides a simpler and more efficacious way to realize this goal by distributing metabolic functions among different specialized strains. RESULTS In this study, a novel synthetic microbial consortium, which is composed of a responsible for detoxification bacterium engineered Pseudomonas putida KT2440 and a lactic acid production specialist Bacillus coagulans NL01, was developed to directly produce lactic acid from highly toxic lignocellulosic hydrolysate. The engineered P. putida with deletion of the sugar metabolism pathway was unable to consume the major fermentable sugars of lignocellulosic hydrolysate but exhibited great tolerance to 10 g/L sodium acetate, 5 g/L levulinic acid, 10 mM furfural and HMF as well as 2 g/L monophenol compound. In addition, the engineered strain rapidly removed diverse inhibitors of real hydrolysate. The degradation rate of organic acids (acetate, levulinic acid) and the conversion rate of furan aldehyde were both 100%, and the removal rate of most monoaromatic compounds remained at approximately 90%. With detoxification using engineered P. putida for 24 h, the 30% (v/v) hydrolysate was fermented to 35.8 g/L lactic acid by B. coagulans with a lactic acid yield of 0.8 g/g total sugars. Compared with that of the single culture of B. coagulans without lactic acid production, the fermentation performance of microbial coculture was significantly improved. CONCLUSIONS The microbial coculture system constructed in this study demonstrated the strong potential of the process for the biosynthesis of valuable products from lignocellulosic hydrolysates containing high concentrations of complex inhibitors by specifically recruiting consortia of robust microorganisms with desirable characteristics and also provided a feasible and attractive method for the bioconversion of lignocellulosic biomass to other value-added biochemicals.
Collapse
Affiliation(s)
- Lihua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shuiping Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yueli Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
34
|
Wohlers K, Wirtz A, Reiter A, Oldiges M, Baumgart M, Bott M. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase. Microb Biotechnol 2021; 14:2592-2604. [PMID: 34437751 PMCID: PMC8601194 DOI: 10.1111/1751-7915.13913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
5-Ketofructose (5-KF) is a promising low-calorie natural sweetener with the potential to reduce health problems caused by excessive sugar consumption. It is formed by periplasmic oxidation of fructose by fructose dehydrogenase (Fdh) of Gluconobacter japonicus, a membrane-bound three-subunit enzyme containing FAD and three haemes c as prosthetic groups. This study aimed at establishing Pseudomonas putida KT2440 as a new cell factory for 5-KF production, as this host offers a number of advantages compared with the established host Gluconobacter oxydans. Genomic expression of the fdhSCL genes from G. japonicus enabled synthesis of functional Fdh in P. putida and successful oxidation of fructose to 5-KF. In a batch fermentation, 129 g l-1 5-KF were formed from 150 g l-1 fructose within 23 h, corresponding to a space-time yield of 5.6 g l-1 h-1 . Besides fructose, also sucrose could be used as substrate for 5-KF production by plasmid-based expression of the invertase gene inv1417 from G. japonicus. In a bioreactor cultivation with pulsed sucrose feeding, 144 g 5-KF were produced from 358 g sucrose within 48 h. These results demonstrate that P. putida is an attractive host for 5-KF production.
Collapse
Affiliation(s)
- Karen Wohlers
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Astrid Wirtz
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Alexander Reiter
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52062Germany
| | - Marco Oldiges
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52062Germany
| | - Meike Baumgart
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Michael Bott
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- The Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülichD‐52425Germany
| |
Collapse
|
35
|
Pedersen BH, Gurdo N, Johansen HK, Molin S, Nikel PI, La Rosa R. High-throughput dilution-based growth method enables time-resolved exo-metabolomics of Pseudomonas putida and Pseudomonas aeruginosa. Microb Biotechnol 2021; 14:2214-2226. [PMID: 34327837 PMCID: PMC8449672 DOI: 10.1111/1751-7915.13905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding metabolism is fundamental to access and harness bacterial physiology. In most bacteria, nutrient utilization is hierarchically optimized according to their energetic potential and their availability in the environment to maximise growth rates. Low-throughput methods have been largely used to characterize bacterial metabolic profiles. However, in-depth analysis of large collections of strains across several conditions is challenging since high-throughput approaches are still limited - especially for non-traditional hosts. Here, we developed a high-throughput dilution-resolved cultivation method for metabolic footprinting of Pseudomonas putida and Pseudomonas aeruginosa. This method was benchmarked against a conventional low-throughput time-resolved cultivation approach using either a synthetic culture medium (where a single carbon source is present) for P. putida or a complex nutrient mixture for P. aeruginosa. Dynamic metabolic footprinting, either by sugar quantification or by targeted exo-metabolomic analyses, revealed overlaps between the bacterial metabolic profiles irrespective of the cultivation strategy, suggesting a certain level of robustness and flexibility of the high-throughput dilution-resolved method. Cultivation of P. putida in microtiter plates imposed a metabolic constraint, dependent on oxygen availability, which altered the pattern of secreted metabolites at the level of sugar oxidation. Deep-well plates, however, constituted an optimal cultivation set-up yielding consistent and comparable metabolic profiles across conditions and strains. Altogether, the results illustrate the usefulness of this technological advance for high-throughput analyses of bacterial metabolism for both biotechnological applications and automation purposes.
Collapse
Affiliation(s)
- Bjarke H. Pedersen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Nicolás Gurdo
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
- Department of Clinical Microbiology, 9301RigshospitaletCopenhagen2100Denmark
- Department of Clinical MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen2200Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. Lyngby2800Denmark
| |
Collapse
|
36
|
Godoy P, García-Franco A, Recio MI, Ramos JL, Duque E. Synthesis of aromatic amino acids from 2G lignocellulosic substrates. Microb Biotechnol 2021; 14:1931-1943. [PMID: 34403199 PMCID: PMC8449653 DOI: 10.1111/1751-7915.13844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida is a highly solvent‐resistant microorganism and useful chassis for the production of value‐added compounds from lignocellulosic residues, in particular aromatic compounds that are made from phenylalanine. The use of these agricultural residues requires a two‐step treatment to release the components of the polysaccharides of cellulose and hemicellulose as monomeric sugars, the most abundant monomers being glucose and xylose. Pan‐genomic studies have shown that Pseudomonas putida metabolizes glucose through three convergent pathways to yield 6‐phosphogluconate and subsequently metabolizes it through the Entner–Doudoroff pathway, but the strains do not degrade xylose. The valorization of both sugars is critical from the point of view of economic viability of the process. For this reason, a P. putida strain was endowed with the ability to metabolize xylose via the xylose isomerase pathway, by incorporating heterologous catabolic genes that convert this C5 sugar into intermediates of the pentose phosphate cycle. In addition, the open reading frame T1E_2822, encoding glucose dehydrogenase, was knocked‐out to avoid the production of the dead‐end product xylonate. We generated a set of DOT‐T1E‐derived strains that metabolized glucose and xylose simultaneously in culture medium and that reached high cell density with generation times of around 100 min with glucose and around 300 min with xylose. The strains grew in 2G hydrolysates from diluted acid and steam explosion pretreated corn stover and sugarcane straw. During growth, the strains metabolized > 98% of glucose, > 96% xylose and > 85% acetic acid. In 2G hydrolysates P. putida 5PL, a DOT‐T1E derivative strain that carries up to five independent mutations to avoid phenylalanine metabolism, accumulated this amino acid in the medium. We constructed P. putida 5PLΔgcd (xylABE) that produced up to 250 mg l−1 of phenylalanine when grown in 2G pretreated corn stover or sugarcane straw. These results support as a proof of concept the potential of P. putida as a chassis for 2G processes.
Collapse
Affiliation(s)
- Patricia Godoy
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Ana García-Franco
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - María-Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain.,BioEnterprise Master Program, School of Pharmacy, University of Granada, Granada, Spain
| | - Juan-Luis Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
37
|
|
38
|
Targeting Bacterial Gyrase with Cystobactamid, Fluoroquinolone, and Aminocoumarin Antibiotics Induces Distinct Molecular Signatures in Pseudomonas aeruginosa. mSystems 2021; 6:e0061021. [PMID: 34254824 PMCID: PMC8407119 DOI: 10.1128/msystems.00610-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The design of novel antibiotics relies on a profound understanding of their mechanism of action. While it has been shown that cellular effects of antibiotics cluster according to their molecular targets, we investigated whether compounds binding to different sites of the same target can be differentiated by their transcriptome or metabolome signatures. The effects of three fluoroquinolones, two aminocoumarins, and two cystobactamids, all inhibiting bacterial gyrase, on Pseudomonas aeruginosa at subinhibitory concentrations could be distinguished clearly by RNA sequencing as well as metabolomics. We observed a strong (2.8- to 212-fold) induction of autolysis-triggering pyocins in all gyrase inhibitors, which correlated with extracellular DNA (eDNA) release. Gyrase B-binding aminocoumarins induced the most pronounced changes, including a strong downregulation of phenazine and rhamnolipid virulence factors. Cystobactamids led to a downregulation of a glucose catabolism pathway. The study implies that clustering cellular mechanisms of action according to the primary target needs to take class-dependent variances into account. IMPORTANCE Novel antibiotics are urgently needed to tackle the growing worldwide problem of antimicrobial resistance. Bacterial pathogens possess few privileged targets for a successful therapy: the majority of existing antibiotics as well as current candidates in development target the complex bacterial machinery for cell wall synthesis, protein synthesis, or DNA replication. An important mechanistic question addressed by this study is whether inhibiting such a complex target at different sites with different compounds has similar or differentiated cellular consequences. Using transcriptomics and metabolomics, we demonstrate that three different classes of gyrase inhibitors can be distinguished by their molecular signatures in P. aeruginosa. We describe the cellular effects of a promising, recently identified gyrase inhibitor class, the cystobactamids, in comparison to those of the established gyrase A-binding fluoroquinolones and the gyrase B-binding aminocoumarins. The study results have implications for mode-of-action discovery approaches based on target-specific reference compounds, as they highlight the intraclass variability of cellular compound effects.
Collapse
|
39
|
Ankenbauer A, Nitschel R, Teleki A, Müller T, Favilli L, Blombach B, Takors R. Micro-aerobic production of isobutanol with engineered Pseudomonas putida. Eng Life Sci 2021; 21:475-488. [PMID: 34257629 PMCID: PMC8258000 DOI: 10.1002/elsc.202000116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida KT2440 is emerging as a promising microbial host for biotechnological industry due to its broad range of substrate affinity and resilience to physicochemical stresses. Its natural tolerance towards aromatics and solvents qualifies this versatile microbe as promising candidate to produce next generation biofuels such as isobutanol. In this study, we scaled-up the production of isobutanol with P. putida from shake flask to fed-batch cultivation in a 30 L bioreactor. The design of a two-stage bioprocess with separated growth and production resulted in 3.35 gisobutanol L-1. Flux analysis revealed that the NADPH expensive formation of isobutanol exceeded the cellular catabolic supply of NADPH finally causing growth retardation. Concomitantly, the cell counteracted to the redox imbalance by increased formation of 2-ketogluconic thereby providing electrons for the respiratory ATP generation. Thus, P. putida partially uncoupled ATP formation from the availability of NADH. The quantitative analysis of intracellular pyridine nucleotides NAD(P)+ and NAD(P)H revealed elevated catabolic and anabolic reducing power during aerobic production of isobutanol. Additionally, the installation of micro-aerobic conditions during production doubled the integral glucose-to-isobutanol conversion yield to 60 mgisobutanol gglucose -1 while preventing undesired carbon loss as 2-ketogluconic acid.
Collapse
Affiliation(s)
- Andreas Ankenbauer
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Robert Nitschel
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Attila Teleki
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Tobias Müller
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Lorenzo Favilli
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Bastian Blombach
- Microbial BiotechnologyCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
40
|
Liang D, Xiao C, Song F, Li H, Liu R, Gao J. Complete Genome Sequence and Function Gene Identify of Prometryne-Degrading Strain Pseudomonas sp. DY-1. Microorganisms 2021; 9:microorganisms9061261. [PMID: 34200754 PMCID: PMC8230428 DOI: 10.3390/microorganisms9061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/02/2022] Open
Abstract
The genus Pseudomonas is widely recognized for its potential for environmental remediation and plant growth promotion. Pseudomonas sp. DY-1 was isolated from the agricultural soil contaminated five years by prometryne, it manifested an outstanding prometryne degradation efficiency and an untapped potential for plant resistance improvement. Thus, it is meaningful to comprehend the genetic background for strain DY-1. The whole genome sequence of this strain revealed a series of environment adaptive and plant beneficial genes which involved in environmental stress response, heavy metal or metalloid resistance, nitrate dissimilatory reduction, riboflavin synthesis, and iron acquisition. Detailed analyses presented the potential of strain DY-1 for degrading various organic compounds via a homogenized pathway or the protocatechuate and catechol branches of the β-ketoadipate pathway. In addition, heterologous expression, and high efficiency liquid chromatography (HPLC) confirmed that prometryne could be oxidized by a Baeyer-Villiger monooxygenase (BVMO) encoded by a gene in the chromosome of strain DY-1. The result of gene knock-out suggested that the sulfate starvation-induced (SSI) genes in this strain might also involve in the process of prometryne degradation. These results would provide the molecular basis for the application of strain DY-1 in various fields and would contribute to the study of prometryne biodegradation mechanism as well.
Collapse
Affiliation(s)
- Dong Liang
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
| | - Changyixin Xiao
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Haitao Li
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
| | - Rongmei Liu
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
- Correspondence: (R.L.); (J.G.); Tel.: +86-133-5999-0992 (J.G.)
| | - Jiguo Gao
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
- Correspondence: (R.L.); (J.G.); Tel.: +86-133-5999-0992 (J.G.)
| |
Collapse
|
41
|
Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. THE ISME JOURNAL 2021; 15:1751-1766. [PMID: 33432138 PMCID: PMC8163872 DOI: 10.1038/s41396-020-00884-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
As a frequent inhabitant of sites polluted with toxic chemicals, the soil bacterium and plant-root colonizer Pseudomonas putida can tolerate high levels of endogenous and exogenous oxidative stress. Yet, the ultimate reason of such phenotypic property remains largely unknown. To shed light on this question, metabolic network-wide routes for NADPH generation-the metabolic currency that fuels redox-stress quenching mechanisms-were inspected when P. putida KT2440 was challenged with a sub-lethal H2O2 dose as a proxy of oxidative conditions. 13C-tracer experiments, metabolomics, and flux analysis, together with the assessment of physiological parameters and measurement of enzymatic activities, revealed a substantial flux reconfiguration in oxidative environments. In particular, periplasmic glucose processing was rerouted to cytoplasmic oxidation, and the cyclic operation of the pentose phosphate pathway led to significant NADPH-forming fluxes, exceeding biosynthetic demands by ~50%. The resulting NADPH surplus, in turn, fueled the glutathione system for H2O2 reduction. These properties not only account for the tolerance of P. putida to environmental insults-some of which end up in the formation of reactive oxygen species-but they also highlight the value of this bacterial host as a platform for environmental bioremediation and metabolic engineering.
Collapse
|
42
|
Eng T, Banerjee D, Lau AK, Bowden E, Herbert RA, Trinh J, Prahl JP, Deutschbauer A, Tanjore D, Mukhopadhyay A. Engineering Pseudomonas putida for efficient aromatic conversion to bioproduct using high throughput screening in a bioreactor. Metab Eng 2021; 66:229-238. [PMID: 33964456 DOI: 10.1016/j.ymben.2021.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Pseudomonas putida KT2440 is an emerging biomanufacturing host amenable for use with renewable carbon streams including aromatics such as para-coumarate. We used a pooled transposon library disrupting nearly all (4,778) non-essential genes to characterize this microbe under common stirred-tank bioreactor parameters with quantitative fitness assays. Assessing differential fitness values by monitoring changes in mutant strain abundance identified 33 gene mutants with improved fitness across multiple stirred-tank bioreactor formats. Twenty-one deletion strains from this subset were reconstructed, including GacA, a regulator, TtgB, an ABC transporter, and PP_0063, a lipid A acyltransferase. Thirteen deletion strains with roles in varying cellular functions were evaluated for conversion of para-coumarate, to a heterologous bioproduct, indigoidine. Several mutants, such as the ΔgacA strain improved fitness in a bioreactor by 35 fold and showed an 8-fold improvement in indigoidine production (4.5 g/L, 0.29 g/g, 23% of maximum theoretical yield) from para-coumarate as the carbon source.
Collapse
Affiliation(s)
- Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Andrew K Lau
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Emily Bowden
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Robin A Herbert
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Jessica Trinh
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Hollis Street, Emeryville, CA, 5885, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Hollis Street, Emeryville, CA, 5885, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA.
| |
Collapse
|
43
|
Enzymes of an alternative pathway of glucose metabolism in obligate methanotrophs. Sci Rep 2021; 11:8795. [PMID: 33888823 PMCID: PMC8062543 DOI: 10.1038/s41598-021-88202-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
Aerobic methanotrophic bacteria utilize methane as a growth substrate but are unable to grow on any sugars. In this study we have shown that two obligate methanotrophs, Methylotuvimicrobium alcaliphilum 20Z and Methylobacter luteus IMV-B-3098, possess functional glucose dehydrogenase (GDH) and gluconate kinase (GntK). The recombinant GDHs from both methanotrophs were homotetrameric and strongly specific for glucose preferring NAD+ over NADP+. GDH from Mtm. alcaliphilum was most active at pH 10 (Vmax = 95 U/mg protein) and demonstrated very high Km for glucose (91.8 ± 3.8 mM). GDH from Mb. luteus was most active at pH 8.5 (Vmax = 43 U/mg protein) and had lower Km for glucose (16 ± 0.6 mM). The cells of two Mtm. alcaliphilum double mutants with deletions either of the genes encoding GDH and glucokinase (gdh─/glk─) or of the genes encoding gluconate kinase and glucokinase (gntk─/glk─) had the lower glycogen level and the higher contents of intracellular glucose and trehalose compared to the wild type strain. The gntk─/glk─ knockout mutant additionally accumulated gluconic acid. These data, along with bioinformatics analysis, demonstrate that glycogen derived free glucose can enter the Entner–Doudoroff pathway or the pentose phosphate cycle in methanotrophs, bypassing glycolysis via the gluconate shunt.
Collapse
|
44
|
Chiniquy D, Barnes EM, Zhou J, Hartman K, Li X, Sheflin A, Pella A, Marsh E, Prenni J, Deutschbauer AM, Schachtman DP, Tringe SG. Microbial Community Field Surveys Reveal Abundant Pseudomonas Population in Sorghum Rhizosphere Composed of Many Closely Related Phylotypes. Front Microbiol 2021; 12:598180. [PMID: 33767674 PMCID: PMC7985074 DOI: 10.3389/fmicb.2021.598180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
While the root-associated microbiome is typically less diverse than the surrounding soil due to both plant selection and microbial competition for plant derived resources, it typically retains considerable complexity, harboring many hundreds of distinct bacterial species. Here, we report a time-dependent deviation from this trend in the rhizospheres of field grown sorghum. In this study, 16S rRNA amplicon sequencing was used to determine the impact of nitrogen fertilization on the development of the root-associated microbiomes of 10 sorghum genotypes grown in eastern Nebraska. We observed that early rhizosphere samples exhibit a significant reduction in overall diversity due to a high abundance of the bacterial genus Pseudomonas that occurred independent of host genotype in both high and low nitrogen fields and was not observed in the surrounding soil or associated root endosphere samples. When clustered at 97% identity, nearly all the Pseudomonas reads in this dataset were assigned to a single operational taxonomic unit (OTU); however, exact sequence variant (ESV)-level resolution demonstrated that this population comprised a large number of distinct Pseudomonas lineages. Furthermore, single-molecule long-read sequencing enabled high-resolution taxonomic profiling revealing further heterogeneity in the Pseudomonas lineages that was further confirmed using shotgun metagenomic sequencing. Finally, field soil enriched with specific carbon compounds recapitulated the increase in Pseudomonas, suggesting a possible connection between the enrichment of these Pseudomonas species and a plant-driven exudate profile.
Collapse
Affiliation(s)
- Dawn Chiniquy
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Department of Energy, Berkeley, CA, United States
| | - Elle M Barnes
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Jinglie Zhou
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Kyle Hartman
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Xiaohui Li
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Department of Energy, Berkeley, CA, United States.,Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States.,Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amy Sheflin
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Allyn Pella
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ellen Marsh
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jessica Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Adam M Deutschbauer
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Susannah G Tringe
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Department of Energy, Berkeley, CA, United States
| |
Collapse
|
45
|
Sun L, Wang D, Sun W, Zhang X, Cui F, Su C, Zhang X, Xu G, Shi J, Xu Z. Characterization of a transcriptional regulator PtxS from Pseudomonas plecoglossicida for regulating 2-ketogluconic acid metabolism. Int J Biol Macromol 2021; 174:330-338. [PMID: 33529626 DOI: 10.1016/j.ijbiomac.2021.01.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Homologs of PtxS are ubiquitous transcriptional regulators controlling the expression of the glucose dehydrogenase and kgu operon to globally regulate the 2-ketogluconic acid (2KGA) metabolism in Pseudomonas. In the present study, a PtxS from a 2KGA industrial producer Pseudomonas plecoglossicida JUIM01 (PpPtxS) was heterologously expressed in E. coli BL21(DE3), then structurally and functionally characterized. The obtained results showed that PpPtxS was a 36.65-kDa LacI-family transcriptional regulator. 2KGA was the sole effector of PpPtxS. Glucose negatively affected the molecular binding of PpPtxS and 2KGA, and gluconic acid inhibited the PpPtxS-2KGA binding reaction. PpPtxS in water solution mainly existed as a dimer and bound to two molecules of 2KGA. The effector 2KGA mainly bound to the region close to the C-terminal of PpPtxS by interacting with the 299th to the 301st amino acids (Ala, Gln, Pro, Thr, Glu and Arg). PpPtxS specifically recognized and bound to a 14-bp palindrome sequence (5'-TGAAACCGGTTTCA-3') due to its conserved HTH motif at the N-terminal. The characterization of PpPtxS in this study would provide a theoretical guidance for the industrial production of 2KGA.
Collapse
Affiliation(s)
- Lei Sun
- The Key Laboratory of Industrial Biotechnology, National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Ministry of Education, Wuxi 214122, PR China
| | - Daming Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Parchn Sodium Isovitamin C Co. Ltd, Dexing 334221, PR China.
| | - Xiaofei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Parchn Sodium Isovitamin C Co. Ltd, Dexing 334221, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Xiaomei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Ministry of Education, Wuxi 214122, PR China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Ministry of Education, Wuxi 214122, PR China.
| |
Collapse
|
46
|
Wang Y, Wondisford FE, Song C, Zhang T, Su X. Metabolic Flux Analysis-Linking Isotope Labeling and Metabolic Fluxes. Metabolites 2020; 10:metabo10110447. [PMID: 33172051 PMCID: PMC7694648 DOI: 10.3390/metabo10110447] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/02/2023] Open
Abstract
Metabolic flux analysis (MFA) is an increasingly important tool to study metabolism quantitatively. Unlike the concentrations of metabolites, the fluxes, which are the rates at which intracellular metabolites interconvert, are not directly measurable. MFA uses stable isotope labeled tracers to reveal information related to the fluxes. The conceptual idea of MFA is that in tracer experiments the isotope labeling patterns of intracellular metabolites are determined by the fluxes, therefore by measuring the labeling patterns we can infer the fluxes in the network. In this review, we will discuss the basic concept of MFA using a simplified upper glycolysis network as an example. We will show how the fluxes are reflected in the isotope labeling patterns. The central idea we wish to deliver is that under metabolic and isotopic steady-state the labeling pattern of a metabolite is the flux-weighted average of the substrates’ labeling patterns. As a result, MFA can tell the relative contributions of converging metabolic pathways only when these pathways make substrates in different labeling patterns for the shared product. This is the fundamental principle guiding the design of isotope labeling experiment for MFA including tracer selection. In addition, we will also discuss the basic biochemical assumptions of MFA, and we will show the flux-solving procedure and result evaluation. Finally, we will highlight the link between isotopically stationary and nonstationary flux analysis.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Fredric E. Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
| | - Chi Song
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
| | - Teng Zhang
- Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA;
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Correspondence: ; Tel.: +1-732-235-5447
| |
Collapse
|
47
|
Tran KN, Jang SH, Lee C. Effect of active-site aromatic residues Tyr or Phe on activity and stability of glucose 6-phosphate dehydrogenase from psychrophilic Arctic bacterium Sphingomonas sp. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140543. [PMID: 32966894 DOI: 10.1016/j.bbapap.2020.140543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022]
Abstract
Cold-adapted enzymes maintain correct conformation at their active sites despite their intrinsically flexible structures. The psychrophilic Arctic bacterium Sphingomonas sp. PAMC 26621 has two glucose 6-phosphate dehydrogenase (G6PD) isozymes, SpG6PD1 involved in the Entner-Doudoroff pathway and SpG6PD2 in the oxidative pentose phosphate pathway. Structural modeling of SpG6PD1 showed that the hydroxyl group of Tyr177 participates in substrate binding by forming a hydrogen bond with the phosphate group of glucose 6-phosphate, whereas in SpG6PD2, a Phe residue is present in the corresponding position of Tyr177. In this study, we investigated how subtle differences in aromatic residues in the substrate-binding pocket of SpG6PD1 affect enzymatic activity and stability. Mutations of Tyr177 to Ala, His, Phe, and Trp caused increases in the rigidity of the SpG6PD1 structure. Particularly, mutants Y177F and Y177W showed increased thermal stabilities compared to wild-type (WT) but 3- and 15-fold lower catalytic efficiencies, respectively. However, mutants Y177A and Y177H became heat-labile at moderate temperatures. These results indicate that an aromatic residue (Tyr or Phe) is necessary for the substrate-binding pocket of SpG6PD1; Tyr with its hydroxyl group is preferred for enzymatic activity, whereas the more hydrophobic Phe is preferred for thermal stability. Substitutions of bulky Trp for Tyr or Phe at this position resulted in substantial loss of activity. Our study suggests that delicate adjustment of aromatic residues can regulate the activity and stability of psychrophilic G6PD isozymes involved in different metabolic pathways.
Collapse
Affiliation(s)
- Kiet N Tran
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea.
| |
Collapse
|
48
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
49
|
Abstract
Metabolic engineering is crucial in the development of production strains for platform chemicals, pharmaceuticals and biomaterials from renewable resources. The central carbon metabolism (CCM) of heterotrophs plays an essential role in the conversion of biomass to the cellular building blocks required for growth. Yet, engineering the CCM ultimately aims toward a maximization of flux toward products of interest. The most abundant dissimilative carbohydrate pathways amongst prokaryotes (and eukaryotes) are the Embden-Meyerhof-Parnas (EMP) and the Entner-Doudoroff (ED) pathways, which build the basics for heterotrophic metabolic chassis strains. Although the EMP is regarded as the textbook example of a carbohydrate pathway owing to its central role in production strains like Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis, it is either modified, complemented or even replaced by alternative carbohydrate pathways in different organisms. The ED pathway also plays key roles in biotechnological relevant bacteria, like Zymomonas mobilis and Pseudomonas putida, and its importance was recently discovered in photoautotrophs and marine microorganisms. In contrast to the EMP, the ED pathway and its variations are not evolutionary optimized for high ATP production and it differs in key principles such as protein cost, energetics and thermodynamics, which can be exploited in the construction of unique metabolic designs. Single ED pathway enzymes and complete ED pathway modules have been used to rewire carbon metabolisms in production strains and for the construction of cell-free enzymatic pathways. This review focuses on the differences of the ED and EMP pathways including their variations and discusses the use of alternative pathway strategies for in vivo and cell-free metabolic engineering.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
50
|
Cardinali-Rezende J, Di Genova A, Nahat RATPS, Steinbüchel A, Sagot MF, Costa RS, Oliveira HC, Taciro MK, Silva LF, Gomez JGC. The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol 2020; 163:240-250. [PMID: 32622773 DOI: 10.1016/j.ijbiomac.2020.06.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil; Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany.
| | - Alex Di Genova
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael A T P S Nahat
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Alexander Steinbüchel
- Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany; Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marie-France Sagot
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; REQUIMTE/LAQV, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Henrique C Oliveira
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Marilda K Taciro
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Luiziana F Silva
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - José Gregório C Gomez
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil.
| |
Collapse
|