1
|
Sant D, Mateen AI, Sullivan RF, Boyd JM, Carabetta VJ, Yadavalli SS, Sun JS. Emerging themes in microbial stress response and mechanistic insights: key findings from the fall 2024 ASM Theobald Smith Society meeting. mSphere 2025; 10:e0100824. [PMID: 39807862 PMCID: PMC11853020 DOI: 10.1128/msphere.01008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The annual fall meeting for the Theobald Smith Society was held in November 2024 on the campus of Rutgers University-New Brunswick. Eighty-six branch members from across New Jersey attended the meeting, composed of undergraduate, graduate, and postdoctoral trainees, faculty members, and government and industry professionals. This report highlights the breadth and diversity of research conducted by American Society for Microbiology members in the Theobald Smith Society and celebrates their groundbreaking discoveries.
Collapse
Affiliation(s)
- Duhita Sant
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Akilah I. Mateen
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, USA
| | - Raymond F. Sullivan
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Srujana S. Yadavalli
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, USA
| | - Jennifer S. Sun
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Martínez-Pérez C, Zweifel ST, Pioli R, Stocker R. Space, the final frontier: The spatial component of phytoplankton-bacterial interactions. Mol Microbiol 2024; 122:331-346. [PMID: 38970428 DOI: 10.1111/mmi.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Microscale interactions between marine phytoplankton and bacteria shape the microenvironment of individual cells, impacting their physiology and ultimately influencing global-scale biogeochemical processes like carbon and nutrient cycling. In dilute environments such as the ocean water column, metabolic exchange between microorganisms likely requires close proximity between partners. However, the biological strategies to achieve this physical proximity remain an understudied aspect of phytoplankton-bacterial associations. Understanding the mechanisms by which these microorganisms establish and sustain spatial relationships and the extent to which spatial proximity is necessary for interactions to occur, is critical to learning how spatial associations influence the ecology of phytoplankton and bacterial communities. Here, we provide an overview of current knowledge on the role of space in shaping interactions among ocean microorganisms, encompassing behavioural and metabolic evidence. We propose that characterising phytoplankton-bacterial interactions from a spatial perspective can contribute to a mechanistic understanding of the establishment and maintenance of these associations and, consequently, an enhanced ability to predict the impact of microscale processes on ecosystem-wide phenomena.
Collapse
Affiliation(s)
- Clara Martínez-Pérez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sophie T Zweifel
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Goetsch AG, Ufearo D, Keiser G, Heiss C, Azadi P, Hershey DM. An exopolysaccharide pathway from a freshwater Sphingomonas isolate. J Bacteriol 2024; 206:e0016924. [PMID: 39007563 PMCID: PMC11340318 DOI: 10.1128/jb.00169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Bacteria embellish their cell envelopes with a variety of specialized polysaccharides. Biosynthesis pathways for these glycans are complex, and final products vary greatly in their chemical structures, physical properties, and biological activities. This tremendous diversity comes from the ability to arrange complex pools of monosaccharide building blocks into polymers with many possible linkage configurations. Due to the complex chemistry of bacterial glycans, very few biosynthetic pathways have been defined in detail. As part of an initiative to characterize novel polysaccharide biosynthesis enzymes, we isolated a bacterium from Lake Michigan called Sphingomonas sp. LM7 that is proficient in exopolysaccharide (EPS) production. We identified genes that contribute to EPS biosynthesis in LM7 by screening a transposon mutant library for colonies displaying altered colony morphology. A gene cluster was identified that appears to encode a complete wzy/wzx-dependent polysaccharide assembly pathway. Deleting individual genes in this cluster caused a non-mucoid phenotype and a corresponding loss of EPS secretion, confirming the role of this gene cluster in polysaccharide production. We extracted EPS from LM7 cultures and determined that it contains a linear chain of 3- and 4-linked glucose, galactose, and glucuronic acid residues. Finally, we show that the EPS pathway in Sphingomonas sp. LM7 diverges from that of sphingan-family EPSs and adhesive polysaccharides such as the holdfast that are present in other Alphaproteobacteria. Our approach of characterizing complete biosynthetic pathways holds promise for engineering polysaccharides with valuable properties. IMPORTANCE Bacteria produce complex polysaccharides that serve a range of biological functions. These polymers often have properties that make them attractive for industrial applications, but they remain woefully underutilized. In this work, we studied a novel polysaccharide called promonan that is produced by Sphingomonas sp. LM7, a bacterium we isolated from Lake Michigan. We extracted promonan from LM7 cultures and identified which sugars are present in the polymer. We also identified the genes responsible for polysaccharide production. Comparing the promonan genes to those of other bacteria showed that promonan is distinct from previously characterized polysaccharides. We conclude by discussing how the promonan pathway could be used to produce new polysaccharides through genetic engineering.
Collapse
Affiliation(s)
- Alexandra G. Goetsch
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Daniel Ufearo
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Tekedar HC, Patel F, Blom J, Griffin MJ, Waldbieser GC, Kumru S, Abdelhamed H, Dharan V, Hanson LA, Lawrence ML. Tad pili contribute to the virulence and biofilm formation of virulent Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1425624. [PMID: 39145307 PMCID: PMC11322086 DOI: 10.3389/fcimb.2024.1425624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Type IV pili (T4P) are versatile proteinaceous protrusions that mediate diverse bacterial processes, including adhesion, motility, and biofilm formation. Aeromonas hydrophila, a Gram-negative facultative anaerobe, causes disease in a wide range of hosts. Previously, we reported the presence of a unique Type IV class C pilus, known as tight adherence (Tad), in virulent Aeromonas hydrophila (vAh). In the present study, we sought to functionalize the role of Tad pili in the pathogenicity of A. hydrophila ML09-119. Through a comprehensive comparative genomics analysis of 170 A. hydrophila genomes, the conserved presence of the Tad operon in vAh isolates was confirmed, suggesting its potential contribution to pathogenicity. Herein, the entire Tad operon was knocked out from A. hydrophila ML09-119 to elucidate its specific role in A. hydrophila virulence. The absence of the Tad operon did not affect growth kinetics but significantly reduced virulence in catfish fingerlings, highlighting the essential role of the Tad operon during infection. Biofilm formation of A. hydrophila ML09-119 was significantly decreased in the Tad operon deletant. Absence of the Tad operon had no effect on sensitivity to other environmental stressors, including hydrogen peroxide, osmolarity, alkalinity, and temperature; however, it was more sensitive to low pH conditions. Scanning electron microscopy revealed that the Tad mutant had a rougher surface structure during log phase growth than the wildtype strain, indicating the absence of Tad impacts the outer surface of vAh during cell division, of which the biological consequences are unknown. These findings highlight the role of Tad in vAh pathogenesis and biofilm formation, signifying the importance of T4P in bacterial infections.
Collapse
Affiliation(s)
- Hasan C. Tekedar
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Fenny Patel
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Matt J. Griffin
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
- Thad Cochran National Warmwater Aquaculture Center, Stoneville, MS, United States
| | | | - Salih Kumru
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Vandana Dharan
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Larry A. Hanson
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Mark L. Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
5
|
Goetsch AG, Ufearo D, Keiser G, Heiss C, Azadi P, Hershey DM. A novel exopolysaccharide pathway from a freshwater Sphingomonas isolate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565537. [PMID: 37961232 PMCID: PMC10635127 DOI: 10.1101/2023.11.03.565537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bacteria embellish their cell envelopes with a variety of specialized polysaccharides. Biosynthesis pathways for these glycans are complex, and final products vary greatly in their chemical structures, physical properties and biological activities. This tremendous diversity comes from the ability to arrange complex pools of monosaccharide building blocks into polymers with many possible linkage configurations. Due to the complex chemistry of bacterial glycans, very few biosynthetic pathways have been defined in detail. To better understand the breadth of polysaccharide production in nature we isolated a bacterium from Lake Michigan called Sphingomonas sp. LM7 that is proficient in exopolysaccharide (EPS) production. We identified genes that contribute to EPS biosynthesis in LM7 by screening a transposon mutant library for colonies displaying altered colony morphology. A gene cluster was identified that appears to encode a complete wzy/wzx-dependent polysaccharide assembly pathway. Deleting individual genes in this cluster caused a non-mucoid phenotype and a corresponding loss of EPS secretion, confirming that LM7 assembles a novel wzy/wzx-dependent polysaccharide. We extracted EPS from LM7 cultures and showed that it contains a linear chain of 3- and 4- linked glucose, galactose, and glucuronic acid residues. Finally, we found that the EPS pathway we identified diverges from those of adhesive polysaccharides such as the holdfast that are conserved in higher Alphaproteobacteria. Our approach of characterizing complete biosynthetic pathways holds promise for engineering of polysaccharides with valuable properties.
Collapse
Affiliation(s)
- Alexandra G. Goetsch
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Daniel Ufearo
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Alakavuklar MA, Fiebig A, Crosson S. The Brucella Cell Envelope. Annu Rev Microbiol 2023; 77:233-253. [PMID: 37104660 PMCID: PMC10787603 DOI: 10.1146/annurev-micro-032521-013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus Brucella exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the Brucella envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the Brucella envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.
Collapse
Affiliation(s)
- Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
7
|
Weber F, Esmaeili N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. BIOFOULING 2023; 39:661-681. [PMID: 37587856 DOI: 10.1080/08927014.2023.2246906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Marine biofouling is a global problem affecting various industries, particularly the shipping industry due to long-distance voyages across various ecosystems. Therein fouled hulls cause increased fuel consumption, greenhouse gas emissions, and the spread of invasive aquatic species. To counteract these issues, biofouling management plans are employed using manual cleaning protocols and protective coatings. This review provides a comprehensive overview of adhesion strategies of marine organisms, and currently available mitigation methods. Further, recent developments and open challenges of antifouling (AF) and fouling release (FR) coatings are discussed with regards to the future regulatory environment. Finally, an overview of the environmental and economic impact of fouling is provided to point out why and when the use of biocidal solutions is beneficial in the overall perspective.
Collapse
Affiliation(s)
- Florian Weber
- Department of Materials and Nanotechnology, SINTEF, Oslo, Norway
| | | |
Collapse
|
8
|
Abstract
Bacteria thrive in environments rich in fluid flow, such as the gastrointestinal tract, bloodstream, aquatic systems, and the urinary tract. Despite the importance of flow, how flow affects bacterial life is underappreciated. In recent years, the combination of approaches from biology, physics, and engineering has led to a deeper understanding of how bacteria interact with flow. Here, we highlight the wide range of bacterial responses to flow, including changes in surface adhesion, motility, surface colonization, quorum sensing, virulence factor production, and gene expression. To emphasize the diversity of flow responses, we focus our review on how flow affects four ecologically distinct bacterial species: Escherichia coli, Staphylococcus aureus, Caulobacter crescentus, and Pseudomonas aeruginosa. Additionally, we present experimental approaches to precisely study bacteria in flow, discuss how only some flow responses are triggered by shear force, and provide perspective on flow-sensitive bacterial signaling.
Collapse
Affiliation(s)
- Gilberto C. Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexander M. Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jessica-Jae S. Palalay
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Berne C, Zappa S, Brun YV. eDNA-stimulated cell dispersion from Caulobacter crescentus biofilms upon oxygen limitation is dependent on a toxin-antitoxin system. eLife 2023; 12:e80808. [PMID: 36475544 PMCID: PMC9851616 DOI: 10.7554/elife.80808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In their natural environment, most bacteria preferentially live as complex surface-attached multicellular colonies called biofilms. Biofilms begin with a few cells adhering to a surface, where they multiply to form a mature colony. When conditions deteriorate, cells can leave the biofilm. This dispersion is thought to be an important process that modifies the overall biofilm architecture and that promotes colonization of new environments. In Caulobacter crescentus biofilms, extracellular DNA (eDNA) is released upon cell death and prevents newborn cells from joining the established biofilm. Thus, eDNA promotes the dispersal of newborn cells and the subsequent colonization of new environments. These observations suggest that eDNA is a cue for sensing detrimental environmental conditions in the biofilm. Here, we show that the toxin-antitoxin system (TAS) ParDE4 stimulates cell death in areas of a biofilm with decreased O2 availability. In conditions where O2 availability is low, eDNA concentration is correlated with cell death. Cell dispersal away from biofilms is decreased when parDE4 is deleted, probably due to the lower local eDNA concentration. Expression of parDE4 is positively regulated by O2 and the expression of this operon is decreased in biofilms where O2 availability is low. Thus, a programmed cell death mechanism using an O2-regulated TAS stimulates dispersal away from areas of a biofilm with decreased O2 availability and favors colonization of a new, more hospitable environment.
Collapse
Affiliation(s)
- Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| |
Collapse
|
10
|
What Glues the Glue to the Cell Surface? J Bacteriol 2022; 204:e0038622. [PMID: 36286485 PMCID: PMC9664948 DOI: 10.1128/jb.00386-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the
Caulobacterales
, a highly adhesive polysaccharide called the holdfast mediates attachment to exogenous surfaces. The mechanism by which this polysaccharide is anchored to the cell envelope is not well defined.
Collapse
|
11
|
HfaE Is a Component of the Holdfast Anchor Complex That Tethers the Holdfast Adhesin to the Cell Envelope. J Bacteriol 2022; 204:e0027322. [PMID: 36165621 PMCID: PMC9664946 DOI: 10.1128/jb.00273-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bacteria use adhesins to colonize different surfaces and form biofilms. The species of the Caulobacterales order use a polar adhesin called holdfast, composed of polysaccharides, proteins, and DNA, to irreversibly adhere to surfaces. In Caulobacter crescentus, a freshwater Caulobacterales species, the holdfast is anchored at the cell pole via the holdfast anchor (Hfa) proteins HfaA, HfaB, and HfaD. HfaA and HfaD colocalize with holdfast and are thought to form amyloid-like fibers that anchor holdfast to the cell envelope. HfaB, a lipoprotein, is required for the translocation of HfaA and HfaD to the cell surface. Deletion of the anchor proteins leads to a severe defect in adherence resulting from holdfast not being properly attached to the cell and shed into the medium. This phenotype is greater in a ΔhfaB mutant than in a ΔhfaA ΔhfaD double mutant, suggesting that HfaB has other functions besides the translocation of HfaA and HfaD. Here, we identify an additional HfaB-dependent holdfast anchoring protein, HfaE, which is predicted to be a secreted protein. HfaE is highly conserved among Caulobacterales species, with no predicted function. In planktonic culture, hfaE mutants produce holdfasts and rosettes similar to those produced by the wild type. However, holdfasts from hfaE mutants bind to the surface but are unable to anchor cells, similarly to other anchor mutants. We showed that fluorescently tagged HfaE colocalizes with holdfast and that HfaE forms an SDS-resistant high-molecular-weight species consistent with amyloid fiber formation. We propose that HfaE is a novel holdfast anchor protein and that HfaE functions to link holdfast material to the cell envelope. IMPORTANCE For surface attachment and biofilm formation, bacteria produce adhesins that are composed of polysaccharides, proteins, and DNA. Species of the Caulobacterales produce a specialized polar adhesin, holdfast, which is required for permanent attachment to surfaces. In this study, we evaluate the role of a newly identified holdfast anchor protein, HfaE, in holdfast anchoring to the cell surface in two different members of the Caulobacterales with drastically different environments. We show that HfaE plays an important role in adhesion and biofilm formation in the Caulobacterales. Our results provide insights into bacterial adhesins and how they interact with the cell envelope and surfaces.
Collapse
|
12
|
Onyeziri MC, Hardy GG, Natarajan R, Xu J, Reynolds IP, Kim J, Merritt PM, Danhorn T, Hibbing ME, Weisberg AJ, Chang JH, Fuqua C. Dual adhesive unipolar polysaccharides synthesized by overlapping biosynthetic pathways in Agrobacterium tumefaciens. Mol Microbiol 2022; 117:1023-1047. [PMID: 35191101 PMCID: PMC9149101 DOI: 10.1111/mmi.14887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
Agrobacterium tumefaciens is a member of the Alphaproteobacteria that pathogenises plants and associates with biotic and abiotic surfaces via a single cellular pole. A. tumefaciens produces the unipolar polysaccharide (UPP) at the site of surface contact. UPP production is normally surface-contact inducible, but elevated levels of the second messenger cyclic diguanylate monophosphate (cdGMP) bypass this requirement. Multiple lines of evidence suggest that the UPP has a central polysaccharide component. Using an A. tumefaciens derivative with elevated cdGMP and mutationally disabled for other dispensable polysaccharides, a series of related genetic screens have identified a large number of genes involved in UPP biosynthesis, most of which are Wzx-Wzy-type polysaccharide biosynthetic components. Extensive analyses of UPP production in these mutants have revealed that the UPP is composed of two genetically, chemically, and spatially discrete forms of polysaccharide, and that each requires a specific Wzy-type polymerase. Other important biosynthetic, processing, and regulatory functions for UPP production are also revealed, some of which are common to both polysaccharides, and a subset of which are specific to each type. Many of the UPP genes identified are conserved among diverse rhizobia, whereas others are more lineage specific.
Collapse
Affiliation(s)
| | - Gail G. Hardy
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ramya Natarajan
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jing Xu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ian P. Reynolds
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jinwoo Kim
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Peter M. Merritt
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Thomas Danhorn
- Department of Biology, Indiana University, Bloomington, IN 47405
| | | | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
13
|
Chepkwony NK, Brun YV. A polysaccharide deacetylase enhances bacterial adhesion in high-ionic-strength environments. iScience 2021; 24:103071. [PMID: 34568792 PMCID: PMC8449245 DOI: 10.1016/j.isci.2021.103071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/19/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Differences in ionic strength, pH, temperature, shear forces, and other environmental factors impact adhesion, and organisms have evolved various strategies to optimize their adhesins for their specific environmental conditions. Many species of Alphaproteobacteria, including members of the order Caulobacterales, use a polar adhesin, called holdfast, for surface attachment and subsequent biofilm formation in both freshwater and marine environments. Hirschia baltica, a marine member of Caulobacterales, produces a holdfast adhesin that tolerates a drastically higher ionic strength than the holdfast produced by its freshwater relative, Caulobacter crescentus. In this work, we show that the holdfast polysaccharide deacetylase HfsH plays an important role in adherence in high-ionic-strength environments. We show that increasing expression of HfsH improves holdfast binding in high-ionic-strength environments. We conclude that HfsH plays a role in modulating holdfast binding at high ionic strength and hypothesize that this modulation occurs through varied deacetylation of holdfast polysaccharides.
Collapse
Affiliation(s)
- Nelson K. Chepkwony
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Yves V. Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
14
|
Abstract
Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus. We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor (fss) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD-dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion.
Collapse
|
15
|
Shyp V, Dubey BN, Böhm R, Hartl J, Nesper J, Vorholt JA, Hiller S, Schirmer T, Jenal U. Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus. Nat Microbiol 2020; 6:59-72. [PMID: 33168988 DOI: 10.1038/s41564-020-00809-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
Bacteria use small signalling molecules such as (p)ppGpp or c-di-GMP to tune their physiology in response to environmental changes. It remains unclear whether these regulatory networks operate independently or whether they interact to optimize bacterial growth and survival. We report that (p)ppGpp and c-di-GMP reciprocally regulate the growth of Caulobacter crescentus by converging on a single small-molecule-binding protein, SmbA. While c-di-GMP binding inhibits SmbA, (p)ppGpp competes for the same binding site to sustain SmbA activity. We demonstrate that (p)ppGpp specifically promotes Caulobacter growth on glucose, whereas c-di-GMP inhibits glucose consumption. We find that SmbA contributes to this metabolic switch and promotes growth on glucose by quenching the associated redox stress. The identification of an effector protein that acts as a central regulatory hub for two global second messengers opens up future studies on specific crosstalk between small-molecule-based regulatory networks.
Collapse
Affiliation(s)
| | | | - Raphael Böhm
- Biozentrum, University of Basel, Basel, Switzerland
| | - Johannes Hartl
- Institute of Microbiology, ETH Zurich, Zürich, Switzerland
| | - Jutta Nesper
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Nyarko A, Singla S, Barton HA, Dhinojwala A. Spectroscopic Identification of Peptide Chemistry in the Caulobacter crescentus Holdfast. Biochemistry 2020; 59:3508-3516. [PMID: 32844640 DOI: 10.1021/acs.biochem.0c00625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterium Caulobacter crescentus is known to attach irreversibly to underwater surfaces by utilizing an adhesive structure called the holdfast, which exhibits the greatest known adhesive strength of any organism. The very small size of the holdfast (∼400 nm wide and ∼40 nm high) has made direct chemical analysis difficult, and its structure remains poorly understood. In this study, we employ spectroscopic techniques, including attenuated total reflection infrared spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy, to probe holdfast chemistry. The data indicate the presence of a peptide signal within the holdfast polymer. By comparing the ATR-IR spectrum of the holdfast to peptidoglycan spectra from other bacterial species, we demonstrate the similarity of the holdfast chemistry to that of peptidoglycan, suggesting peptide cross-linking may play a role in holdfast architecture. To probe the molecular groups at the interface, surface-sensitive sum frequency generation spectroscopy was used to show that aromatic and hydroxyl groups related to this protein content at the adhesive interface could be playing a crucial role in adhesion. On the basis of these results, we propose a model of the holdfast architecture with similarities to the peptide cross-linking observed in the peptidoglycan polymer of the bacterial cell wall. These results not only provide information about the development of adhesives that could be based on holdfast chemical architecture but also reveal a potentially yet unexplored biosynthetic pathway in holdfast synthesis that has not yet been revealed by genetic approaches, thereby opening up a potentially new avenue of research in holdfast synthesis.
Collapse
Affiliation(s)
- Alex Nyarko
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Saranshu Singla
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Hazel A Barton
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
17
|
Role of Caulobacter Cell Surface Structures in Colonization of the Air-Liquid Interface. J Bacteriol 2019; 201:JB.00064-19. [PMID: 31010900 DOI: 10.1128/jb.00064-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023] Open
Abstract
In aquatic environments, Caulobacter spp. can be found at the boundary between liquid and air known as the neuston. I report an approach to study temporal features of Caulobacter crescentus colonization and pellicle biofilm development at the air-liquid interface and have defined the role of cell surface structures in this process. At this interface, C. crescentus initially forms a monolayer of cells bearing a surface adhesin known as the holdfast. When excised from the liquid surface, this monolayer strongly adheres to glass. The monolayer subsequently develops into a three-dimensional structure that is highly enriched in clusters of stalked cells known as rosettes. As this pellicle film matures, it becomes more cohesive and less adherent to a glass surface. A mutant strain lacking a flagellum does not efficiently reach the surface, and strains lacking type IV pili exhibit defects in organization of the three-dimensional pellicle. Strains unable to synthesize the holdfast fail to accumulate at the boundary between air and liquid and do not form a pellicle. Phase-contrast images support a model whereby the holdfast functions to trap C. crescentus cells at the air-liquid boundary. Unlike the holdfast, neither the flagellum nor type IV pili are required for C. crescentus to partition to the air-liquid interface. While it is well established that the holdfast enables adherence to solid surfaces, this study provides evidence that the holdfast has physicochemical properties that allow partitioning of nonmotile mother cells to the air-liquid interface and facilitate colonization of this microenvironment.IMPORTANCE In aquatic environments, the boundary at the air interface is often highly enriched with nutrients and oxygen. Colonization of this niche likely confers a significant fitness advantage in many cases. This study provides evidence that the cell surface adhesin known as a holdfast enables Caulobacter crescentus to partition to and colonize the air-liquid interface. Additional surface structures, including the flagellum and type IV pili, are important determinants of colonization and biofilm formation at this boundary. Considering that holdfast-like adhesins are broadly conserved in Caulobacter spp. and other members of the diverse class Alphaproteobacteria, these surface structures may function broadly to facilitate colonization of air-liquid boundaries in a range of ecological contexts, including freshwater, marine, and soil ecosystems.
Collapse
|
18
|
The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation. J Bacteriol 2019; 201:JB.00071-19. [PMID: 31109992 DOI: 10.1128/jb.00071-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
The holdfast polysaccharide adhesin is crucial for irreversible cell adhesion and biofilm formation in Caulobacter crescentus Holdfast production is tightly controlled via developmental regulators, as well as via environmental and physical signals. Here, we identify a novel mode of regulation of holdfast synthesis that involves chemotaxis proteins. We characterized the two identified chemotaxis clusters of C. crescentus and showed that only the previously characterized major cluster is involved in the chemotactic response toward different carbon sources. However, both chemotaxis clusters encoded in the C. crescentus genome play a role in biofilm formation and holdfast production by regulating the expression of hfiA, the gene encoding the holdfast inhibitor HfiA. We show that CheA and CheB proteins act in an antagonistic manner, as follows: while the two CheA proteins negatively regulate hfiA expression, the CheB proteins are positive regulators, thus providing a modulation of holdfast synthesis and surface attachment.IMPORTANCE Chemosensory systems constitute major signal transduction pathways in bacteria. These systems are involved in chemotaxis and other cell responses to environment conditions, such as the production of adhesins to enable irreversible adhesion to a surface and surface colonization. The C. crescentus genome encodes two complete chemotaxis clusters. Here, we characterized the second novel chemotaxis-like cluster. While only the major chemotaxis cluster is involved in chemotaxis, both chemotaxis systems modulate C. crescentus adhesion by controlling expression of the holdfast synthesis inhibitor HfiA. Here, we identify a new level in holdfast regulation, providing new insights into the control of adhesin production that leads to the formation of biofilms in response to the environment.
Collapse
|