1
|
Śmiga M, Roszkiewicz E, Ślęzak P, Tracz M, Olczak T. cAMP-independent Crp homolog adds to the multi-layer regulatory network in Porphyromonas gingivalis. Front Cell Infect Microbiol 2025; 15:1535009. [PMID: 40308968 PMCID: PMC12040651 DOI: 10.3389/fcimb.2025.1535009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Porphyromonas gingivalis encodes three CRP/FNR superfamily proteins: HcpR, PgRsp, and CrpPg, with CrpPg similar to cAMP-sensing proteins but not classified into known families. This study investigates the role of CrpPg in regulating the expression of factors essential for P. gingivalis virulence in A7436 and ATCC 33277 strains. Methods The role of CrpPg protein in P. gingivalis was determined using the ΔcrpPg mutant strains to characterize their phenotype and to assess the impact of crpPg inactivation on gene expression using RNA-seq and RT-qPCR. Additionally, the CrpPg protein was purified and characterized. Results Key findings in the ΔcrpPg mutant strain include up-regulated mfa1-5 and rgpA genes and down-regulated trxA, soxR, and ustA genes. While crpPg inactivation does not affect growth in liquid culture media, it impairs biofilm formation and enhances adhesion to and invasion of gingival keratinocytes. CrpPg binds directly to its own and mfa promoters without interacting with cyclic nucleotides or di-nucleotides. Its three-dimensional structure, resembling E. coli Crp in complex with cAMP and DNA, suggests that CrpPg functions as a global regulator independently of cAMP binding. The highest crpPg expression in the early exponential growth phase declines as cell density and metabolic conditions change over time, suggesting a regulatory function depending on the CrpPg protein amount. Conclusions By controlling the shift from planktonic to biofilm lifestyle, CrpPg may play a role in pathogenicity. Regulating the expression of virulence factors required for host cell invasion and intracellular replication, CrpPg may help P. gingivalis evade immune responses.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Ewa Roszkiewicz
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Tracz
- Laboratory of Protein Mass Spectrometry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
2
|
James J, Santos RE, Watnick PI. Carbon source, cell density, and the microbial community control inhibition of V. cholerae surface colonization by environmental nitrate. mBio 2025; 16:e0406624. [PMID: 39998205 PMCID: PMC11980369 DOI: 10.1128/mbio.04066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
The intestinal diarrheal pathogen Vibrio cholerae colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, V. cholerae respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here, we show that V. cholerae nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability. V. cholerae nitrate respiration results in extracellular accumulation of nitrite because V. cholerae does not possess the machinery for nitrite reduction. This nitrite inhibits V. cholerae biofilm formation via an as-yet unelucidated mechanism that depends on the high cell density master regulator HapR. The genome of Paracoccus aminovorans, an intestinal microbe identified in the microbiome of cholera patients that has been shown to enhance V. cholerae biofilm accumulation in the neonatal mouse gut, encodes enzymes that reduce nitrite to nitrogen gas. We report that, in nitrate-supplemented co-cultures, P. aminovorans metabolizes the nitrite generated by V. cholerae and, thereby, enhances V. cholerae surface accumulation. We propose that V. cholerae biofilm formation in the host intestine is limited by nitrite production but can be rescued by intestinal microbes such as P. aminovorans that have the capacity to metabolize nitrite. Such microbes increase V. cholerae colonization of the host ileum and predispose to symptomatic infection.IMPORTANCEVibrio cholerae colonizes the terminal ileum where both oxygen and nitrate are available as terminal electron acceptors. V. cholerae biofilm formation is inhibited by nitrate due to its conversion to nitrite during V. cholerae respiration. When co-cultured with a microbe that can further reduce nitrite, V. cholerae surface accumulation in the presence of nitrate is rescued. The contribution of biofilm formation to ileal colonization depends on the composition of the microbiota. We propose that the intestinal microbiota predisposes mammalian hosts to cholera by consuming the nitrite generated by V. cholerae in the terminal ileum. Differences in the intestinal abundance of nitrite-reducing microbes may partially explain the differential susceptibility of humans to cholera and the resistance of non-human mammalian models to intestinal colonization with V. cholerae.
Collapse
Affiliation(s)
- Jamaurie James
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Renato E.R.S. Santos
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Paula I. Watnick
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
James J, Santos RE, Watnick PI. Carbon source, cell density, and the microbial community control inhibition of V. cholerae surface colonization by environmental nitrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630902. [PMID: 39803477 PMCID: PMC11722358 DOI: 10.1101/2024.12.31.630902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The intestinal diarrheal pathogen Vibrio cholerae colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, V. cholerae respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that V. cholerae nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability. V. cholerae nitrate respiration results in extracellular accumulation of nitrite because V. cholerae does not possess the machinery for nitrite reduction. This nitrite inhibits V. cholerae biofilm formation via an as yet unelucidated mechanism that depends on the high cell density master regulator HapR. The genome of Paracoccus aminovorans , an intestinal microbe shown to enhance V. cholerae biofilm accumulation in the neonatal mouse gut and predispose household contacts to cholera, encodes enzymes that reduce nitrite to nitrogen gas. We report that, in nitrate-supplemented co-cultures, P. aminovorans metabolizes the nitrite generated by V. cholerae and, thereby, enhances V. cholerae surface accumulation. We propose that V. cholerae biofilm formation in the host intestine is limited by nitrite production but can be rescued by intestinal microbes such as P. aminovorans that have the capacity to metabolize nitrite. Such microbes increase V. cholerae colonization of the host ileum and predispose to infection. Importance V. cholerae colonizes the terminal ileum where both oxygen and nitrate are available as terminal electron acceptors. V. cholerae biofilm formation is inhibited by nitrate due to its conversion to nitrite during V. cholerae respiration. When co-cultured with a microbe that can further reduce nitrite, V. cholerae surface accumulation in the presence of nitrate is rescued. The contribution of biofilm formation to ileal colonization depends on the composition of the microbiota. We propose that the intestinal microbiota predisposes mammalian hosts to cholera by consuming the nitrite generated by V. cholerae in the terminal ileum. Differences in the intestinal abundance of nitrite-reducing microbes may partially explain the differential susceptibility of humans to cholera and the resistance of non-human mammalian models to intestinal colonization with V. cholerae .
Collapse
|
4
|
Liu L, Li J, Tu M, Gao L, Zhang Y, Rao Y, Rao L, Gui M. Complete genome sequence provides information on quorum sensing related spoilage and virulence of Aeromonas salmonicida GMT3 isolated from spoiled sturgeon. Food Res Int 2024; 196:115039. [PMID: 39614553 DOI: 10.1016/j.foodres.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Foodborne bacteria can pose a threat to the public health due to their spoilage and virulence potential, which can be regulated by quorum sensing (QS) system. In the study, we isolated a spoilage bacteria strain Aeromonas salmonicida GMT3 from refrigerated sturgeon. The complete genome of A. salmonicida GMT3 was sequenced, and the QS related genes were assigned. QS signal molecules N-acyl-homoserine lactones (AHLs) and AI-2 were detected. Genes regulating the spoilage-related metabolic pathways, including protease and lipase secretion, amines metabolism, sulfur metabolism, motility and biofilm formation were analyzed. Furthermore, genes encoding for several virulence factors, e.g. hemolysin, aerolysin, type II secretion system (T2SS), type VI secretion system (T6SS), antibiotic and multidrug resistance were also identified. In addition, the spoilage and virulence phenotypes associated with QS including protease, swimming and swarming activity, biofilm and hemolytic activity were detected. This study provided new insights into spoilage and virulence mechanisms correlated with QS of A. salmonicida GMT3, which might promote development of new approaches for spoilage and virulence control based on QS target.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Jun Li
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China; China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Mingxia Tu
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Liang Gao
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China.
| | - Ying Zhang
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China.
| | - Yu Rao
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Meng Gui
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Freshwaters (Beijing), Beijing, 100068, China.
| |
Collapse
|
5
|
Dong H, Zhang J, Zhang K, Zhang F, Wang S, Wang Q, Xu C, Yin K, Gu L. The cAMP receptor protein from Gardnerella vaginalis is not regulated by ligands. Commun Biol 2024; 7:1233. [PMID: 39354127 PMCID: PMC11445507 DOI: 10.1038/s42003-024-06957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Overgrowth of Gardnerella vaginalis causes an imbalance in vaginal microecology. The pathogenicity of G. vaginalis is directly regulated by the cAMP receptor protein (CRP). In this study, we resolve the crystal structure of CRPGv at a resolution of 2.22 Å and find some significant differences from homologous proteins. The first 23 amino acids of CRPGv are inserted into the ligand binding pocket, creating a strong steric barrier to ligand entry that has not been seen previously in its homologues. In the absence of ligands, the two α helices used by CRPGv to bind oligonucleotide chains are exposed and can specifically bind TGTGA-N6-TCACA sequences. cAMP and other ligands of CRP homologs are not cofactors of CRPGv. There is no coding gene of the adenylate cyclase, and cAMP could not be identified in G. vaginalis by liquid chromatography tandem mass spectrometry. We speculate that CRPGv may achieve fine regulation through a conformational transformation different from that of its homologous proteins, and this conformational transformation is no longer dependent on small molecules, but may be aided by accessory proteins. CRPGv is the first discovered CRP that is not ligand-regulated, and its active conformation provides a structural basis for drug screening.
Collapse
Affiliation(s)
- Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Shuai Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China.
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China.
| |
Collapse
|
6
|
Harkova LG, de Dios R, Rubio-Valle A, Pérez-Pulido AJ, McCarthy RR. Cyclic AMP is a global virulence regulator governing inter and intrabacterial signalling in Acinetobacter baumannii. PLoS Pathog 2024; 20:e1012529. [PMID: 39241032 PMCID: PMC11410210 DOI: 10.1371/journal.ppat.1012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic nosocomial pathogen with high morbidity and mortality rates. Current treatment options for this pathogen are limited due to its increasing resistance to last-resort antibiotics. Despite A. baumannii's leading position in the World Health Organisations priority pathogens list, little is known about its virulence regulation. Through a high-throughput screening approach to identify novel biofilm regulators, we identified a previously uncharacterised predicted adenylate cyclase (AC), CavA, as a central regulator of this phenotype. cAMP is a crucial mediator of various aspects of bacterial physiology in other species but information about its role in A. baumannii is limited. We confirm that CavA AC is functional and synthesizes cAMP in A. baumannii. Using dRNA-seq, we verify that CavA is a negative biofilm formation regulator affecting Csu pili and exopolysaccharide production. We demonstrate for the first time that in A. baumannii, cAMP is atop of a hierarchical signalling cascade controlling inter- and intrabacterial signalling by modulating quorum sensing and cyclic di-GMP systems, ultimately governing virulence in vivo and adaptive antibiotic resistance. In contrast to the well-established paradigm in other bacteria where cAMP and cyclic di-GMP levels are inversely regulated, we uncover that the levels of these second messengers are directly proportional in A. baumannii. Overall, this study uncovers the central role of CavA and cAMP in the pathogenic success of A. baumannii and highlights this signalling cascade as a high potential target for novel therapeutic development.
Collapse
Affiliation(s)
- Lyuboslava G Harkova
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rubén de Dios
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Alejandro Rubio-Valle
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-JA), Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-JA), Universidad Pablo de Olavide, Sevilla, Spain
| | - Ronan R McCarthy
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
7
|
Liu C, Shi R, Jensen MS, Zhu J, Liu J, Liu X, Sun D, Liu W. The global regulation of c-di-GMP and cAMP in bacteria. MLIFE 2024; 3:42-56. [PMID: 38827514 PMCID: PMC11139211 DOI: 10.1002/mlf2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/09/2023] [Indexed: 06/04/2024]
Abstract
Nucleotide second messengers are highly versatile signaling molecules that regulate a variety of key biological processes in bacteria. The best-studied examples are cyclic AMP (cAMP) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which both act as global regulators. Global regulatory frameworks of c-di-GMP and cAMP in bacteria show several parallels but also significant variances. In this review, we illustrate the global regulatory models of the two nucleotide second messengers, compare the different regulatory frameworks between c-di-GMP and cAMP, and discuss the mechanisms and physiological significance of cross-regulation between c-di-GMP and cAMP. c-di-GMP responds to numerous signals dependent on a great number of metabolic enzymes, and it regulates various signal transduction pathways through its huge number of effectors with varying activities. In contrast, due to the limited quantity, the cAMP metabolic enzymes and its major effector are regulated at different levels by diverse signals. cAMP performs its global regulatory function primarily by controlling the transcription of a large number of genes via cAMP receptor protein (CRP) in most bacteria. This review can help us understand how bacteria use the two typical nucleotide second messengers to effectively coordinate and integrate various physiological processes, providing theoretical guidelines for future research.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Rui Shi
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Marcus S. Jensen
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Xiaobo Liu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information TechnologyNanjing University of Science and TechnologyNanjingChina
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
8
|
Tian Z, Xiang F, Peng K, Qin Z, Feng Y, Huang B, Ouyang P, Huang X, Chen D, Lai W, Geng Y. The cAMP Receptor Protein (CRP) of Vibrio mimicus Regulates Its Bacterial Growth, Type II Secretion System, Flagellum Formation, Adhesion Genes, and Virulence. Animals (Basel) 2024; 14:437. [PMID: 38338079 PMCID: PMC10854923 DOI: 10.3390/ani14030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio mimicus is a serious pathogen in aquatic animals, resulting in significant economic losses. The cAMP receptor protein (CRP) often acts as a central regulator in highly pathogenic pathogens. V. mimicus SCCF01 is a highly pathogenic strain isolated from yellow catfish; the crp gene deletion strain (Δcrp) was constructed by natural transformation to determine whether this deletion affects the virulence phenotypes. Their potential molecular connections were revealed by qRT-PCR analysis. Our results showed that the absence of the crp gene resulted in bacterial and colony morphological changes alongside decreases in bacterial growth, hemolytic activity, biofilm formation, enzymatic activity, motility, and cell adhesion. A cell cytotoxicity assay and animal experiments confirmed that crp contributes to V. mimicus pathogenicity, as the LD50 of the Δcrp strain was 73.1-fold lower compared to the WT strain. Moreover, qRT-PCR analysis revealed the inhibition of type II secretion system genes, flagellum genes, adhesion genes, and metalloproteinase genes in the deletion strain. This resulted in the virulence phenotype differences described above. Together, these data demonstrate that the crp gene plays a core regulatory role in V. mimicus virulence and pathogenicity.
Collapse
Affiliation(s)
- Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Fei Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
- Agricultural and Rural Bureau of Zhongjiang County, Deyang 618100, China
| | - Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| |
Collapse
|
9
|
Cancino-Diaz ME, Guerrero-Barajas C, Betanzos-Cabrera G, Cancino-Diaz JC. Nucleotides as Bacterial Second Messengers. Molecules 2023; 28:7996. [PMID: 38138485 PMCID: PMC10745434 DOI: 10.3390/molecules28247996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.
Collapse
Affiliation(s)
- Mario E. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| | - Claudia Guerrero-Barajas
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición y Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla s/n, Pueblo San Juan Tilcuautla, Pachuca Hidalgo 42160, Mexico;
| | - Juan C. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| |
Collapse
|
10
|
Chang CP, Lagitnay RBJS, Li TR, Lai WT, Derilo RC, Chuang DY. Unleashing the Influence of cAMP Receptor Protein: The Master Switch of Bacteriocin Export in Pectobacterium carotovorum subsp. carotovorum. Int J Mol Sci 2023; 24:ijms24119752. [PMID: 37298703 DOI: 10.3390/ijms24119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) is a Gram-negative phytopathogenic bacterium that produces carocin, a low-molecular-weight bacteriocin that can kill related strains in response to factors in the environment such as UV exposure or nutritional deficiency. The function of the catabolite activator protein (CAP), also known as the cyclic AMP receptor protein (CRP), as a regulator of carocin synthesis was examined. The crp gene was knocked out as part of the investigation, and the outcomes were assessed both in vivo and in vitro. Analysis of the DNA sequence upstream of the translation initiation site of carocin S3 revealed two putative binding sites for CRP that were confirmed using a biotinylated probe pull-down experiment. This study revealed that the deletion of crp inhibited genes involved in extracellular bacteriocin export via the flagellar type III secretion system and impacted the production of many low-molecular-weight bacteriocins. The biotinylated probe pull-down test demonstrated that when UV induction was missing, CRP preferentially attached to one of the two CAP sites while binding to both when UV induction was present. In conclusion, our research aimed to simulate the signal transduction system that controls the expression of the carocin gene in response to UV induction.
Collapse
Affiliation(s)
- Chung-Pei Chang
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Ruchi Briam James Sersenia Lagitnay
- College of Arts and Sciences, Bayombong Campus, Nueva Vizcaya State University, Bayombong 3700, Philippines
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
| | - Tzu-Rong Li
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
| | - Wei-Ting Lai
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
| | - Reymund Calanga Derilo
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
- College of Teacher Education, Bambang Campus, Nueva Vizcaya State University, Bambang 3702, Philippines
| | - Duen-Yau Chuang
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
| |
Collapse
|
11
|
Vasconcelos L, Aburjaile F, Andrade L, Cancio AF, Seyffert N, Aguiar ERGR, Ristow P. Genomic insights into the c-di-GMP signaling and biofilm development in the saprophytic spirochete Leptospira biflexa. Arch Microbiol 2023; 205:180. [PMID: 37031284 DOI: 10.1007/s00203-023-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/10/2023]
Abstract
C-di-GMP is a bacterial second messenger with central role in biofilm formation. Spirochete bacteria from Leptospira genus present a wide diversity, with species of medical importance and environmental species, named as saprophytic. Leptospira form biofilms in the rat's reservoir kidneys and in the environment. Here, we performed genomic analyses to identify enzymatic and effector c-di-GMP proteins in the saprophytic biofilm-forming species Leptospira biflexa serovar Patoc. We identified 40 proteins through local alignments. Amongst them, 16 proteins are potentially functional diguanylate cyclases, phosphodiesterases, or hybrid proteins. We also identified nine effectors, including PilZ proteins. Enrichment analyses suggested that c-di-GMP interacts with cAMP signaling system, CsrA system, and flagella assembly regulation during biofilm development of L. biflexa. Finally, we identified eight proteins in the pathogen Leptospira interrogans serovar Copenhageni that share high similarity with L. biflexa c-di-GMP-related proteins. This work revealed proteins related to c-di-GMP turnover and cellular response in Leptospira and their potential roles during biofilm development.
Collapse
Affiliation(s)
- Larissa Vasconcelos
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia Aburjaile
- Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lara Andrade
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Núbia Seyffert
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Eric R G R Aguiar
- Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Paula Ristow
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil.
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Federal University of Bahia, Salvador, Bahia, Brazil.
| |
Collapse
|
12
|
A Class IV Adenylate Cyclase, CyaB, Is Required for Capsule Polysaccharide Production and Biofilm Formation in Vibrio parahaemolyticus. Appl Environ Microbiol 2023; 89:e0187422. [PMID: 36602323 PMCID: PMC9888186 DOI: 10.1128/aem.01874-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP (cAMP) receptor protein (CRP), encoded by crp, is a global regulator that is activated by cAMP, a second messenger synthesized by a class I adenylate cyclase (AC-I) encoded by cyaA in Escherichia coli. cAMP-CRP is required for growth on nonpreferred carbon sources and is a global regulator. We constructed in-frame nonpolar deletions of the crp and cyaA homologs in Vibrio parahaemolyticus and found that the Δcrp mutant did not grow in minimal media supplemented with nonpreferred carbon sources, but the ΔcyaA mutant grew similarly to the wild type. Bioinformatics analysis of the V. parahaemolyticus genome identified a 181-amino-acid protein annotated as a class IV adenylate cyclase (AC-IV) named CyaB, a member of the CYTH protein superfamily. AC-IV phylogeny showed that CyaB was present in Gammaproteobacteria and Alphaproteobacteria as well as Planctomycetes and Archaea. Only the bacterial CyaB proteins contained an N-terminal motif, HFxxxxExExK, indicative of adenylyl cyclase activity. Both V. parahaemolyticus cyaA and cyaB genes functionally complemented an E. coli ΔcyaA mutant. The Δcrp and ΔcyaB ΔcyaA mutants showed defects in growth on nonpreferred carbon sources and in swimming and swarming motility, indicating that cAMP-CRP is an activator. The ΔcyaA and ΔcyaB single mutants had no defects in these phenotypes, indicating that AC-IV complements AC-I. Capsule polysaccharide and biofilm production assays showed significant defects in the Δcrp, ΔcyaBΔcyaA, and ΔcyaB mutants, whereas the ΔcyaA strain behaved similarly to the wild type. This is consistent with a role of cAMP-CRP as an activator of these phenotypes and establishes a cellular role for AC-IV in capsule and biofilm formation, which to date has been unestablished. IMPORTANCE Here, we characterized the roles of CRP and CyaA in V. parahaemolyticus, showing that cAMP-CRP is an activator of metabolism, motility, capsule production, and biofilm formation. These results are in contrast to cAMP-CRP in V. cholerae, which represses capsule and biofilm formation. Previously, only an AC-I CyaA had been identified in Vibrio species. Our data showed that an AC-IV CyaB homolog is present in V. parahaemolyticus and is required for optimal growth. The data demonstrated that CyaB is essential for capsule production and biofilm formation, uncovering a physiological role of AC-IV in bacteria. The data showed that the cyaB gene was widespread among Vibrionaceae species and several other Gammaproteobacteria, but in general, its phylogenetic distribution was limited. Our phylogenetic analysis also demonstrated that in some species the cyaB gene was acquired by horizontal gene transfer.
Collapse
|
13
|
Gibson JA, Gebhardt MJ, Santos RERS, Dove SL, Watnick PI. Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP. Proc Natl Acad Sci U S A 2022; 119:e2210115119. [PMID: 36343262 PMCID: PMC9674212 DOI: 10.1073/pnas.2210115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Although the mechanism by which the cyclic AMP receptor protein (CRP) regulates global gene transcription has been intensively studied for decades, new discoveries remain to be made. Here, we report that, during rapid growth, CRP associates with both the well-conserved, dual-function DNA-binding protein peptidase A (PepA) and the cell membrane. These interactions are not present under nutrient-limited growth conditions, due to post-translational modification of three lysines on a single face of CRP. Although coincident DNA binding is rare, dissociation from CRP results in increased PepA occupancy at many chromosomal binding sites and differential regulation of hundreds of genes, including several encoding cyclic dinucleotide phosphodiesterases. We show that PepA represses biofilm formation and activates motility/chemotaxis. We propose a model in which membrane-bound CRP interferes with PepA DNA binding. Under nutrient limitation, PepA is released. Together, CRP and free PepA activate a transcriptional response that impels the bacterium to seek a more hospitable environment. This work uncovers a function for CRP in the sequestration of a regulatory protein. More broadly, it describes a paradigm of bacterial transcriptome modulation through metabolically regulated association of transcription factors with the cell membrane.
Collapse
Affiliation(s)
- Jacob A. Gibson
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115
| | - Michael J. Gebhardt
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Renato E. R. S. Santos
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Paula I. Watnick
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
14
|
Akçelik N, Akçelik M. What makes another life possible in bacteria? Global regulators as architects of bacterial biofilms. World J Microbiol Biotechnol 2022; 38:236. [PMID: 36229744 DOI: 10.1007/s11274-022-03376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/02/2022] [Indexed: 10/17/2022]
Abstract
Biofilm structures are the main mode of evolutionary reproductive adaptation of bacteria, and even these features alone, are sufficient to make them the focus of genetic and physiological studies. As this life form is a multicellular-like life form coordinated by genetic and physiological programming, it is quite different from the planktonic form. In bacterial biofilms, which are often composed of more than one species in nature, there is a clear division of labor, nutrient channels, and a language (signaling) established between the cells forming the biofilm. On the other hand, biofilms, especially formed by pathogens, cause important industrial and clinical problems due to their high resistance to environmental stress conditions. Obtaining new data on the molecular basis of bacterial evolution and understanding the intra- and inter-species ecosystem relations in this context, as well as finding permanent solutions to the serious problems they create, are directly related to a detailed understanding of the genetic regulation of bacterial biofilm structures. Today, it is becoming increasingly certain that environmental signals effective in the transition from planktonic form to biofilm form and their receptor/response molecules are generally managed by similar systems and global regulator molecules in bacteria. In this sense; Besides the quorum sensing (QS) systems, cyclic adenosine monophosphate-catabolite suppressor protein (cAMP-CRP) and bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP) signaling molecules are of critical importance. In this review article, current information on bacterial biofilms is summarized and interpreted based on this framework.
Collapse
Affiliation(s)
- Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135, Ankara, Turkey.
| | - Mustafa Akçelik
- Department of Biology, Faculty of Science, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
15
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
16
|
Abstract
Marine biofilms are ubiquitous in the marine environment. These complex microbial communities rapidly respond to environmental changes and encompass hugely diverse microbial structures, functions and metabolisms. Nevertheless, knowledge is limited on the microbial community structures and functions of natural marine biofilms and their influence on global geochemical cycles. Microbial cues, including secondary metabolites and microbial structures, regulate interactions between microorganisms, with their environment and with other benthic organisms, which affects their community succession and metamorphosis. Furthermore, marine biofilms are key mediators of marine biofouling, which greatly affect marine industries. In this Review, we discuss marine biofilm dynamics, including their diversity, abundance and functions. We also highlight knowledge gaps, areas for future research and potential biotechnological applications of marine biofilms.
Collapse
|
17
|
Cho JY, Liu R, Hsiao A. Microbiota-Associated Biofilm Regulation Leads to Vibrio cholerae Resistance Against Intestinal Environmental Stress. Front Cell Infect Microbiol 2022; 12:861677. [PMID: 35573801 PMCID: PMC9095495 DOI: 10.3389/fcimb.2022.861677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The commensal microbes of the gut microbiota make important contributions to host defense against gastrointestinal pathogens, including Vibrio cholerae, the etiologic agent of cholera. As interindividual microbiota variation drives individual differences in infection susceptibility, we examined both host and V. cholerae gene expression during infection of suckling mice transplanted with different model human commensal communities, including an infection-susceptible configuration representing communities damaged by recurrent diarrhea and malnutrition in cholera endemic areas and a representative infection-resistant microbiota characteristic of healthy individuals. In comparison to colonization of animals with resistant microbiota, animals bearing susceptible microbiota challenged with V. cholerae downregulate genes associated with generation of reactive oxygen/nitrogen stress, while V. cholerae in these animals upregulates biofilm-associated genes. We show that V. cholerae in susceptible microbe infection contexts are more resistant to oxidative stress and inhibitory bile metabolites generated by the action of commensal microbes and that both phenotypes are dependent on biofilm-associated genes, including vpsL. We also show that susceptible and infection-resistant microbes drive different bile acid compositions in vivo by the action of bile salt hydrolase enzymes. Taken together, these findings provide a better understanding of how the microbiota uses multiple mechanisms to modulate the infection-associated host environment encountered by V. cholerae, leading to commensal-dependent differences in infection susceptibility.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA, United States
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Ansel Hsiao,
| |
Collapse
|
18
|
Liu C, Sun D, Liu J, Chen Y, Zhou X, Ru Y, Zhu J, Liu W. cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors. Nat Commun 2022; 13:1493. [PMID: 35315431 PMCID: PMC8938473 DOI: 10.1038/s41467-022-29240-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. There is evidence of cross-talk between pathways mediated by c-di-GMP and those mediated by the cAMP receptor protein (CRP), but the mechanisms are often unclear. Here, we show that cAMP-CRP modulates biofilm maintenance in Shewanella putrefaciens not only via its known effects on gene transcription, but also through direct interaction with a putative c-di-GMP effector on the inner membrane, BpfD. Binding of cAMP-CRP to BpfD enhances the known interaction of BpfD with protease BpfG, which prevents proteolytic processing and release of a cell surface-associated adhesin, BpfA, thus contributing to biofilm maintenance. Our results provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, and indicate that cAMP-CRP can play regulatory roles at the post-translational level. Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. Here, the authors provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, showing that the cAMP receptor protein (CRP) can play regulatory roles at the post-translational level.
Collapse
|
19
|
Wang TY, Guo R, Hu LL, Liu JJ, Lu HT. Mass Spectrometry-Based Targeted Metabolomics Revealed the Regulatory Roles of Magnesium on Biofilm Formation in Escherichia coli by Targeting Functional Metabolites. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-021-00208-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Homma M, Kojima S. Roles of the second messenger c‐di‐GMP in bacteria: Focusing on the topics of flagellar regulation and
Vibrio
spp. Genes Cells 2022; 27:157-172. [PMID: 35073606 PMCID: PMC9303241 DOI: 10.1111/gtc.12921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Typical second messengers include cyclic AMP (cAMP), cyclic GMP (cGMP), and inositol phosphate. In bacteria, cyclic diguanylate (c‐di‐GMP), which is not used in animals, is widely used as a second messenger for environmental responses. Initially found as a regulator of cellulose synthesis, this small molecule is known to be widely present in bacteria. A wide variety of synthesis and degradation enzymes for c‐di‐GMP exist, and the activities of effector proteins are regulated by changing the cellular c‐di‐GMP concentration in response to the environment. It has been shown well that c‐di‐GMP plays an essential role in pathogenic cycle and is involved in flagellar motility in Vibrio cholerae. In this review, we aim to explain the direct or indirect regulatory mechanisms of c‐di‐GMP in bacteria, focusing on the study of c‐di‐GMP in Vibrio spp. and in flagella, which are our research subjects.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Seiji Kojima
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| |
Collapse
|
21
|
Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol 2021; 57:305-332. [PMID: 34937434 DOI: 10.1080/10409238.2021.2015747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Swetambari Kumari
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| |
Collapse
|
22
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
23
|
Differential Surface Competition and Biofilm Invasion Strategies of Pseudomonas aeruginosa PA14 and PAO1. J Bacteriol 2021; 203:e0026521. [PMID: 34516283 DOI: 10.1128/jb.00265-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa strains PA14 and PAO1 are among the two best-characterized model organisms used to study the mechanisms of biofilm formation while also representing two distinct lineages of P. aeruginosa. Previous work has shown that PA14 and PAO1 use different strategies for surface colonization; they also have different extracellular matrix composition and different propensities to disperse from biofilms back into the planktonic phase surrounding them. We expand on this work here by exploring the consequences of these different biofilm production strategies during direct competition. Using differentially labeled strains and microfluidic culture methods, we show that PAO1 can outcompete PA14 in direct competition during early colonization and subsequent biofilm growth, that they can do so in constant and perturbed environments, and that this advantage is specific to biofilm growth and requires production of the Psl polysaccharide. In contrast, P. aeruginosa PA14 is better able to invade preformed biofilms and is more inclined to remain surface-associated under starvation conditions. These data together suggest that while P. aeruginosa PAO1 and PA14 are both able to effectively colonize surfaces, they do so in different ways that are advantageous under different environmental settings. IMPORTANCE Recent studies indicate that P. aeruginosa PAO1 and PA14 use distinct strategies to initiate biofilm formation. We investigated whether their respective colonization and matrix secretion strategies impact their ability to compete under different biofilm-forming regimes. Our work shows that these different strategies do indeed impact how these strains fair in direct competition: PAO1 dominates during colonization of a naive surface, while PA14 is more effective in colonizing a preformed biofilm. These data suggest that even for very similar microbes there can be distinct strategies to successfully colonize and persist on surfaces during the biofilm life cycle.
Collapse
|
24
|
Liu Y, Liu B, Xu T, Wang Q, Li W, Wu J, Zheng X, Liu B, Liu R, Liu X, Guo X, Feng L, Wang L. A fructose/H + symporter controlled by a LacI-type regulator promotes survival of pandemic Vibrio cholerae in seawater. Nat Commun 2021; 12:4649. [PMID: 34330925 PMCID: PMC8324912 DOI: 10.1038/s41467-021-24971-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterium Vibrio cholerae can colonize the human intestine and cause cholera, but spends much of its life cycle in seawater. The pathogen must adapt to substantial environmental changes when moving between seawater and the human intestine, including different availability of carbon sources such as fructose. Here, we use in vitro experiments as well as mouse intestinal colonization assays to study the mechanisms used by pandemic V. cholerae to adapt to these environmental changes. We show that a LacI-type regulator (FruI) and a fructose/H+ symporter (FruT) are important for fructose uptake at low fructose concentrations, as those found in seawater. FruT is downregulated by FruI, which is upregulated when O2 concentrations are low (as in the intestine) by ArcAB, a two-component system known to respond to changes in oxygen levels. As a result, the bacteria predominantly use FruT for fructose uptake under seawater conditions (low fructose, high O2), and use a known fructose phosphotransferase system (PTS, Fpr) for fructose uptake under conditions found in the intestine. PTS activity leads to reduced levels of intracellular cAMP, which in turn upregulate virulence genes. Our results indicate that the FruT/FruI system may be important for survival of pandemic V. cholerae in seawater.
Collapse
Affiliation(s)
- Yutao Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Tingting Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, P. R. China
| | - Qian Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Wendi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Jialin Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xiaoyu Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Ruiying Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xingmei Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
| | - Lei Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
25
|
Cra and cAMP Receptor Protein Have Opposing Roles in the Regulation of fruB in Vibrio cholerae. J Bacteriol 2021; 203:JB.00044-21. [PMID: 33649152 PMCID: PMC8088597 DOI: 10.1128/jb.00044-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera disease. While current treatments of care are accessible, we still lack an understanding of the molecular mechanisms that allow V. cholerae to survive in both aquatic reservoirs and the human small intestine, where pathogenesis occurs. The Gram-negative bacterium Vibrio cholerae adapts to changes in the environment by selectively producing the necessary machinery to take up and metabolize available carbohydrates. The import of fructose by the fructose-specific phosphoenolpyruvate (PEP) phosphotransferase system (PTS) is of particular interest because of its putative connection to cholera pathogenesis and persistence. Here, we describe the expression and regulation of fruB, which encodes an EIIA-FPr fusion protein as part of the fructose-specific PTS in V. cholerae. Using a series of transcriptional reporter fusions and additional biochemical and genetic assays, we identified Cra (catabolite repressor/activator) and cAMP receptor protein (CRP) as regulators of fruB expression and determined that this regulation is dependent upon the presence or absence of PTS sugars. Cra functions as a repressor, downregulating fruB expression in the absence of fructose when components of PTSFru are not needed. CRP functions as an activator of fruB expression. We also report that Cra and CRP can affect fruB expression independently; however, CRP can modulate cra expression in the presence of fructose and glucose. Evidence from this work provides the foundation for continued investigations into PTSFru and its relationship to the V. cholerae life cycle. IMPORTANCEVibrio cholerae is the causative agent of cholera disease. While current treatments of care are accessible, we still lack an understanding of the molecular mechanisms that allow V. cholerae to survive in both aquatic reservoirs and the human small intestine, where pathogenesis occurs. Central to V. cholerae’s survival is its ability to use available carbon sources. Here, we investigate the regulation of fruB, which encodes a protein central to the import and metabolism of fructose. We show that fruB expression is controlled by the transcriptional regulators Cra and CRP. This work contributes toward a clearer understanding of how carbon source availability impacts the physiology and, potentially, the persistence of the pathogen.
Collapse
|
26
|
Jiang F, Lei T, Wang Z, He M, Zhang J, Wang J, Zeng H, Chen M, Xue L, Ye Q, Pang R, Wu S, Gu Q, Ding Y, Wu Q. A Novel Gene vp0610 Negatively Regulates Biofilm Formation in Vibrio parahaemolyticus. Front Microbiol 2021; 12:656380. [PMID: 33897670 PMCID: PMC8064395 DOI: 10.3389/fmicb.2021.656380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
Vibrio parahaemolyticus is an important foodborne pathogen and its biofilm formation ability facilitates its colonization and persistence in foods by protecting it from stresses including environmental variation and antibiotic exposure. Several important proteins are involved in biofilm formation; however, the identity and function of many remain unknown. In this study, we discovered a hypothetical protein, VP0610 that negatively regulates biofilm formation in Vibrio parahaemolyticus, and we found that the loss of vp0610 typically results in pleiotropic phenotypes that contribute toward promoting biofilm formation, including significantly increased insoluble exopolysaccharide production and swimming motility, decreased soluble exopolysaccharide production, and decreased bis-(3′-5′)-cyclic dimeric guanosine monophosphate production. Pull-down assays revealed that VP0610 can interact with 180 proteins, some of which (Hfq, VP0710, VP0793, and CyaA) participate in biofilm formation. Moreover, deleting vp0610 enhanced the expression of genes responsible for biofilm component (flaE), the sugar phosphotransferase system (PTS) EIIA component (vp0710 and vp0793), and a high-density regulator of quorum sensing (opaR), while reducing the expression of the bis-(3′-5′)-cyclic dimeric guanosine monophosphate degradation protein (CdgC), resulting in faster biofilm formation. Taken together, our results indicate that vp0610 is an integral member of the key biofilm regulatory network of V. parahaemolyticus that functions as a repressor of biofilm formation.
Collapse
Affiliation(s)
- Fufeng Jiang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Min He
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haiyan Zeng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
27
|
Role of DegQ in differential stability of flagellin subunits in Vibrio vulnificus. NPJ Biofilms Microbiomes 2021; 7:32. [PMID: 33833236 PMCID: PMC8032703 DOI: 10.1038/s41522-021-00206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/12/2021] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation of Vibrio vulnificus is initiated by adherence of flagellated cells to surfaces, and then flagellum-driven motility is not necessary during biofilm maturation. Once matured biofilms are constructed, cells become flagellated and swim to disperse from biofilms. As a consequence, timely regulations of the flagellar components’ expression are crucial to complete a biofilm life-cycle. In this study, we demonstrated that flagellins’ production is regulated in a biofilm stage-specific manner, via activities of a protease DegQ and a chaperone FlaJ. Among four flagellin subunits for V. vulnificus filament, FlaC had the highest affinities to hook-associated proteins, and is critical for maturating flagellum, showed the least susceptibility to DegQ due to the presence of methionine residues in its DegQ-sensitive domains, ND1 and CD0. Therefore, differential regulation by DegQ and FlaJ controls the cytoplasmic stability of flagellins, which further determines the motility-dependent, stage-specific development of biofilms.
Collapse
|
28
|
Yoon SH, Waters CM. The ever-expanding world of bacterial cyclic oligonucleotide second messengers. Curr Opin Microbiol 2021; 60:96-103. [PMID: 33640793 DOI: 10.1016/j.mib.2021.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023]
Abstract
Cyclic dinucleotide (cdN) second messengers are essential for bacteria to sense and adapt to their environment. These signals were first discovered with the identification of 3'-5', 3'-5' cyclic di-GMP (c-di-GMP) in 1987, a second messenger that is now known to be the linchpin signaling pathway modulating bacterial motility and biofilm formation. In the past 15 years, three more cdNs were uncovered: 3'-5', 3'-5' cyclic di-AMP (c-di-AMP) and 3'-5', 3'-5' cyclic GMP-AMP (3',3' cGAMP) in bacteria and 2'-5', 3'-5' cyclic GMP-AMP (2',3' cGAMP) in eukaryotes. We now appreciate that bacteria can synthesize many varieties of cdNs from every ribonucleotide, and even cyclic trinucleotide (ctN) second messengers have been discovered. Here we highlight our current understanding of c-di-GMP and c-di-AMP in bacterial physiology and focus on recent advances in 3',3' cGAMP signaling effectors, its role in bacterial phage response, and the diversity of its synthase family.
Collapse
Affiliation(s)
- Soo Hun Yoon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA.
| |
Collapse
|
29
|
Joshi RV, Gunawan C, Mann R. We Are One: Multispecies Metabolism of a Biofilm Consortium and Their Treatment Strategies. Front Microbiol 2021; 12:635432. [PMID: 33584635 PMCID: PMC7876221 DOI: 10.3389/fmicb.2021.635432] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The ecological and medical significance of bacterial biofilms have been well recognized. Biofilms are harder to control than their planktonic free-living counterparts and quite recently, the focus of the study has shifted to the multispecies consortia, which represent the vast majority of real-case infection scenarios. Studies have begun to explore the complex interspecies interactions within these biofilms. However, only little attention is currently given to the role of cellular metabolites in the cell-to-cell communication. The concentration gradients of metabolic substrates and products affect the spatial growth of bacteria in multispecies biofilm. This, if looked into more deeply, can lead to identification of potential therapies targeting the specific metabolites and hence the coordinated protection in the bacterial community. Herein, we review the interspecies communications, including their metabolic cross-talking, in multispecies biofilm, to signify the importance of such interactions on the initial formation and subsequent growth of these biofilms. Multispecies biofilms with their species heterogeneity are more resilient to antimicrobial agents than their single species biofilm counterparts and this characteristic is of particular interest when dealing with pathogenic bacteria. In this Review, we also discuss the treatment options available, to include current and emerging avenues to combat pathogenic multispecies biofilms in the clinical, environmental, as well as industrial settings.
Collapse
Affiliation(s)
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Fang R, Liu H, Zhang X, Dong G, Li J, Tian X, Wu Z, Zhou J, Cao J, Zhou T. Difference in biofilm formation between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae based on analysis of mrkH distribution. Microb Pathog 2021; 152:104743. [PMID: 33484812 DOI: 10.1016/j.micpath.2021.104743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
OBJECT To analyze the difference in biofilm formation between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae based on analysis of mrkH distribution and to further explore the function of mrkH for biofilm formation from the perspective of gene regulation. METHODS 40 imipenem-resistant strains and 40 imipenem-sensitive strains were selected to conduct experiments. Carbapenem (imipenem) susceptibility test was performed by the agar-dilution method. blaKPC resistance gene, type 3 fimbriae-related coding genes (mrkA and mrkD) and regulation gene (mrkH) were screened by PCR. Biofilm formation assay was performed using crystal violet staining method in MHB. The relative expression of genes that critically involved in biofilm formation (mrkA, luxS, pgaA) and carbapenem resistance (ompk35, ompk36, acrB) were measured by quantitative real-time PCR (qRT-PCR). Furthermore, the mrkH cassette was cloned into pGEM-T Easy plasmid to yield pGEM:pmrkH and expressed in Escherichia coli DH5α and K. pneumoniae FK1911, and the biofilm formation assay after transformation was further tested. RESULTS The MICs of imipenem were all more than 16 μg/mL in 40 imipenem-resistant strains and ranged from 0.125 μg/mL to 0.5 μg/mL in 40 imipenem-sensitive strains. Moreover, the blaKPC was identified in the 40 imipenem-resistant K. pneumoniae strains. All 80 K. pneumoniae strains were found to carry mrkA and mrkD genes. Interestingly, the mrkH gene was detected in 43 strains, of which 32 were carbapenem-sensitive strains. The biofilm formation capacity of strains carried mrkH cassette was significantly higher than other 37 strains in MHB media. The relative expression of mrkA in K. pneumoniae carrying mrkH gene was significantly up-regulated. Importantly, the biofilm formation ability of FK1911-pGEM:pmrkH strain was more higher than the strain of FK1911 in MHB medium. CONCLUSIONS Our data demonstrated that MrkH played a crucial role in the regulation of biofilm formation by K. pneumoniae. In contrast to carbapenem-sensitive K. pneumoniae, carbapenem-resistant K. pneumoniae was less likely to have strong biofilm-forming capacity because it does not carry the mrkH gene.
Collapse
Affiliation(s)
- Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiyang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guofeng Dong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xuebin Tian
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenghai Wu
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital of Huangyan, Taizhou, Zhejiang Province, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
31
|
Zhou Y, Lee ZL, Zhu J. On or Off: Life-Changing Decisions Made by Vibrio cholerae Under Stress. INFECTIOUS MICROBES & DISEASES 2020; 2:127-135. [PMID: 38630076 PMCID: PMC7769058 DOI: 10.1097/im9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Vibrio cholerae, the causative agent of the infectious disease, cholera, is commonly found in brackish waters and infects human hosts via the fecal-oral route. V. cholerae is a master of stress resistance as V. cholerae's dynamic lifestyle across different physical environments constantly exposes it to diverse stressful circumstances. Specifically, V. cholerae has dedicated genetic regulatory networks to sense different environmental cues and respond to these signals. With frequent outbreaks costing a tremendous amount of lives and increased global water temperatures providing more suitable aquatic habitats for V. cholerae, cholera pandemics remain a probable catastrophic threat to humanity. Understanding how V. cholerae copes with different environmental stresses broadens our repertoire of measures against infectious diseases and expands our general knowledge of prokaryotic stress responses. In this review, we summarize the regulatory mechanisms of how V. cholerae fights against stresses in vivo and in vitro.
Collapse
|
32
|
Gao H, Ma L, Qin Q, Qiu Y, Zhang J, Li J, Lou J, Diao B, Zhao H, Shi Q, Zhang Y, Kan B. Fur Represses Vibrio cholerae Biofilm Formation via Direct Regulation of vieSAB, cdgD, vpsU, and vpsA-K Transcription. Front Microbiol 2020; 11:587159. [PMID: 33193241 PMCID: PMC7641913 DOI: 10.3389/fmicb.2020.587159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Attached Vibrio cholerae biofilms are essential for environmental persistence and infectivity. The vps loci (vpsU, vpsA-K, and vpsL-Q) are required for mature biofilm formation and are responsible for the synthesis of exopolysaccharide. Transcription of vps genes is activated by the signaling molecule bis-(3'-5')-cyclic di-GMP (c-di-GMP), whose metabolism is controlled by the proteins containing the GGDEF and/or EAL domains. The ferric uptake regulator (Fur) plays key roles in the transcription of many genes involved in iron metabolism and non-iron functions. However, roles for Fur in Vibrio biofilm production have not been documented. In this study, phenotypic assays demonstrated that Fur, independent of iron, decreases in vivo c-di-GMP levels and inhibits in vitro biofilm formation by Vibrio cholerae. The Fur box-like sequences were detected within the promoter-proximal DNA regions of vpsU, vpsA-K, vieSAB, and cdgD, suggesting that transcription of these genes may be under the direct control of Fur. Indeed, the results of luminescence, quantitative PCR (qPCR), electrophoretic mobility shift assay (EMSA), and DNase I footprinting assays demonstrated Fur to bind to the promoter-proximal DNA regions of vpsU, vpsA-K, and cdgD to repress their transcription. In contrast, Fur activates the transcription of vieSAB in a direct manner. The cdgD and vieSAB encode proteins with GGDEF and EAL domains, respectively. Thus, data presented here highlight a new physiological role for Fur wherein it acts as a repressor of V. cholerae biofilm formation mediated by decreasing the production of exopolysaccharide and the intracellular levels of c-di-GMP.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lizhi Ma
- Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qin Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
33
|
Liu C, Sun D, Zhu J, Liu J, Liu W. The Regulation of Bacterial Biofilm Formation by cAMP-CRP: A Mini-Review. Front Microbiol 2020; 11:802. [PMID: 32528421 PMCID: PMC7247823 DOI: 10.3389/fmicb.2020.00802] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Biofilms are communities of microorganisms that live in a self-produced extracellular matrix in order to survive in hostile environments. Second messengers, such as c-di-GMP and cAMP, participate in the regulation of biofilm formation. c-di-GMP is a major molecule that is involved in modulating the bacterial transition between a planktonic lifestyle and biofilm formation. Aside from regulating carbon catabolism repression in most bacteria, cAMP has also been found to mediate biofilm formation in many bacteria. Although the underlying mechanisms of biofilm formation mediated by cAMP-CRP have been well-investigated in several bacteria, the regulatory pathways of cAMP-CRP are still poorly understood compared to those of c-di-GMP. Moreover, some bacteria appear to form biofilm in response to changes in carbon source type or concentration. However, the relationship between the carbon metabolisms and biofilm formation remains unclear. This mini-review provides an overview of the cAMP-CRP-regulated pathways involved in biofilm formation in some bacteria. This information will benefit future investigations of the underlying mechanisms that connect between biofilm formation with nutrient metabolism, as well as the cross-regulation between multiple second messengers.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Di Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingrong Zhu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jiawen Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Weijie Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
34
|
Enomoto G, Kamiya A, Okuda Y, Narikawa R, Ikeuchi M. Tlr0485 is a cAMP-activated c-di-GMP phosphodiesterase in a cyanobacterium Thermosynechococcus. J GEN APPL MICROBIOL 2020; 66:147-152. [PMID: 32224605 DOI: 10.2323/jgam.2020.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Second messenger molecules are crucial components of environmental signaling systems to integrate multiple inputs and elicit physiological responses. Among various kinds of second messengers, cyclic nucleotides cAMP and cyclic di-GMP (c-di-GMP) play pivotal roles in bacterial environmental responses. However, how these signaling systems are interconnected for a concerted regulation of cellular physiology remains elusive. In a thermophilic cyanobacterium Thermosynechococcus vulcanus strain RKN, incident light color is sensed by cyanobacteriochrome photoreceptors to transduce the light information to the levels of c-di-GMP, which induces cellular aggregation probably via cellulose synthase activation. Herein, we identified that Tlr0485, which is composed of a cGMP-specific phosphodiesterases, adenylate cyclases, and FhlA (GAF) domain and an HD-GYP domain, is a cAMP-activated c-di-GMP phosphodiesterase. We also show biochemical evidence that the two class-III nucleotide cyclases, Cya1 and Cya2, are both adenylate cyclases to produce cAMP in T. vulcanus. The prevalence of cAMP-activated c-di-GMP phosphodiesterase genes in cyanobacterial genomes suggests that the direct crosstalk between cAMP and c-di-GMP signaling systems may be crucial for cyanobacterial environmental responses.
Collapse
Affiliation(s)
- Gen Enomoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Institute for Biology III, Faculty of Biology, University of Freiburg
| | - Ayako Kamiya
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo
| | - Yukiko Okuda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo
| | - Rei Narikawa
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency.,Department of Biological Science, Faculty of Science, Shizuoka University
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency.,Faculty of Education and Integrated Arts and Sciences, Waseda University
| |
Collapse
|
35
|
Fong JC, De Guzman BE, Lamborg CH, Sison-Mangus MP. The Mercury-Tolerant Microbiota of the Zooplankton Daphnia Aids in Host Survival and Maintains Fecundity under Mercury Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14688-14699. [PMID: 31747751 DOI: 10.1021/acs.est.9b05305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many aquatic organisms can thrive in polluted environments by having the genetic capability to withstand suboptimal conditions. However, the contributions of microbiomes under these stressful environments are poorly understood. We investigated whether a mercury-tolerant microbiota can extend its phenotype to its host by ameliorating host survival and fecundity under mercury-stress. We isolated microbiota members from various clones of Daphnia magna, screened for the mercury-biotransforming merA gene, and determined their mercury tolerance levels. We then introduced the mercury-tolerant microbiota, Pseudomonas-10, to axenic D. magna and quantified its merA gene expression, mercury reduction capability, and measured its impact on host survival and fecundity. The expression of the merA gene was up-regulated in Pseudomonas-10, both in isolation and in host-association with mercury exposure. Pseudomonas-10 is also capable of significantly reducing mercury concentration in the medium. Notably, mercury-exposed daphnids containing only Pseudomonas-10 exhibited higher survival and fecundity than mercury-exposed daphnids supplemented with parental microbiome. Our study showed that zooplankton, such as Daphnia, naturally harbor microbiome members that are eco-responsive and tolerant to mercury exposure and can aid in host survival and maintain host fecundity in a mercury-contaminated environment. This study further demonstrates that under stressful environmental conditions, the fitness of the host can depend on the genotype and the phenotype of its microbiome.
Collapse
Affiliation(s)
- Jiunn C Fong
- Department of Ocean Sciences and Institute for Marine Sciences , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Brandon E De Guzman
- Department of Ocean Sciences and Institute for Marine Sciences , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Carl H Lamborg
- Department of Ocean Sciences and Institute for Marine Sciences , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Marilou P Sison-Mangus
- Department of Ocean Sciences and Institute for Marine Sciences , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| |
Collapse
|
36
|
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, benefits from a sessile biofilm lifestyle that enhances survival outside the host but also contributes to host colonization and infectivity. The bacterial second messenger c-di-GMP has been identified as a central regulator of biofilm formation, including in V. cholerae; however, our understanding of the pathways that contribute to this process is incomplete. Here, we define a conserved signaling system that controls the stability of large adhesion proteins at the cell surface of V. cholerae, which are important for cell attachment and biofilm formation. Insight into the regulatory circuit underlying biofilm formation may inform targeted strategies to interfere with a process that renders this bacterium remarkably adaptable to changing environments. The dinucleotide second messenger c-di-GMP has emerged as a central regulator of reversible cell attachment during bacterial biofilm formation. A prominent cell adhesion mechanism first identified in pseudomonads combines two c-di-GMP-mediated processes: transcription of a large adhesin and its cell surface display via posttranslational proteolytic control. Here, we characterize an orthologous c-di-GMP effector system and show that it is operational in Vibrio cholerae, where it regulates two distinct classes of adhesins. Through structural analyses, we reveal a conserved autoinhibition mechanism of the c-di-GMP receptor that controls adhesin proteolysis and present a structure of a c-di-GMP-bound receptor module. We further establish functionality of the periplasmic protease controlled by the receptor against the two adhesins. Finally, transcription and functional assays identify physiological roles of both c-di-GMP-regulated adhesins in surface attachment and biofilm formation. Together, our studies highlight the conservation of a highly efficient signaling effector circuit for the control of cell surface adhesin expression and its versatility by revealing strain-specific variations.
Collapse
|
37
|
Sugar-mediated regulation of a c-di-GMP phosphodiesterase in Vibrio cholerae. Nat Commun 2019; 10:5358. [PMID: 31767877 PMCID: PMC6877527 DOI: 10.1038/s41467-019-13353-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023] Open
Abstract
Biofilm formation protects bacteria from stresses including antibiotics and host immune responses. Carbon sources can modulate biofilm formation and host colonization in Vibrio cholerae, but the underlying mechanisms remain unclear. Here, we show that EIIAGlc, a component of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), regulates the intracellular concentration of the cyclic dinucleotide c-di-GMP, and thus biofilm formation. The availability of preferred sugars such as glucose affects EIIAGlc phosphorylation state, which in turn modulates the interaction of EIIAGlc with a c-di-GMP phosphodiesterase (hereafter referred to as PdeS). In a Drosophila model of V. cholerae infection, sugars in the host diet regulate gut colonization in a manner dependent on the PdeS-EIIAGlc interaction. Our results shed light into the mechanisms by which some nutrients regulate biofilm formation and host colonization.
Collapse
|
38
|
Schaffert L, Schneiker-Bekel S, Dymek S, Droste J, Persicke M, Busche T, Brandt D, Pühler A, Kalinowski J. Essentiality of the Maltase AmlE in Maltose Utilization and Its Transcriptional Regulation by the Repressor AmlR in the Acarbose-Producing Bacterium Actinoplanes sp. SE50/110. Front Microbiol 2019; 10:2448. [PMID: 31736895 PMCID: PMC6828939 DOI: 10.3389/fmicb.2019.02448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/11/2019] [Indexed: 11/13/2022] Open
Abstract
Actinoplanes sp. SE50/110 is the wild type of industrial production strains of the fine-chemical acarbose (acarviosyl-maltose), which is used as α-glucosidase inhibitor in the treatment of type II diabetes. Although maltose is an important building block of acarbose, the maltose/maltodextrin metabolism has not been studied in Actinoplanes sp. SE50/110 yet. Bioinformatic analysis located a putative maltase gene amlE (ACSP50_2474, previously named malL; Wendler et al., 2015a), in an operon with an upstream PurR/LacI-type transcriptional regulator gene, named amlR (ACSP50_2475), and a gene downstream (ACSP50_2473) encoding a GGDEF-EAL-domain-containing protein putatively involved in c-di-GMP signaling. Targeted gene deletion mutants of amlE and amlR were constructed by use of the CRISPR/Cas9 technology. By growth experiments and functional assays of ΔamlE, we could show that AmlE is essential for the maltose utilization in Actinoplanes sp. SE50/110. Neither a gene encoding a maltose phosphorylase (MalP) nor MalP enzyme activity were detected in the wild type. By this, the maltose/maltodextrin system appears to be fundamentally different from other described prokaryotic systems. By sequence similarity analysis and functional assays from the species Streptomyces lividans TK23, S. coelicolor A3(2) and S. glaucescens GLA.O, first hints for a widespread lack of MalP and presence of AmlE in the class Actinobacteria were given. Transcription of the aml operon is significantly repressed in the wild type when growing on glucose and repression is absent in an ΔamlR deletion mutant. Although AmlR apparently is a local transcriptional regulator of the aml operon, the ΔamlR strain shows severe growth inhibitions on glucose and – concomitantly – differential transcription of several genes of various functional classes. We ascribe these effects to ACSP50_2473, which is localized downstream of amlE and presumably involved in the metabolism of the second messenger c-di-GMP. It can be assumed, that maltose does not only represent the most important carbon source of Actinoplanes sp. SE50/110, but that its metabolism is coupled to the nucleotide messenger system of c-di-GMP.
Collapse
Affiliation(s)
- Lena Schaffert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Saskia Dymek
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - David Brandt
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
39
|
Xiao Y, Liu H, He M, Nie L, Nie H, Chen W, Huang Q. A crosstalk between c-di-GMP and cAMP in regulating transcription of GcsA, a diguanylate cyclase involved in swimming motility in Pseudomonas putida. Environ Microbiol 2019; 22:142-157. [PMID: 31631503 DOI: 10.1111/1462-2920.14832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). Pseudomonas putida has dozens of DGC/PDE-encoding genes in its genome, but the phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterize function and transcriptional regulation of a P. putida c-di-GMP-metabolizing enzyme, GcsA. GcsA consists of two per-ARNT-sim (PAS) domains, followed by a canonical conserved central sequence pattern (GGDEF) domain and a truncated EAL domain. In vitro analysis confirmed the DGC activity of GcsA. The phenotypic observation revealed that GcsA inhibited swimming motility in an FlgZ-dependent manner. In terms of transcriptional regulation, gcsA was found to be cooperatively regulated by c-di-GMP and cAMP via their effectors, FleQ and Crp respectively. The transcription of gcsA was promoted by c-di-GMP and inhibited by cAMP. In vitro binding analysis revealed that FleQ indirectly regulated the transcription of gcsA, while Crp directly regulated the transcription of gcsA by binding to its promoter. Besides, an inverse relationship between the cellular c-di-GMP and cAMP levels in P. putida was confirmed. These findings provide basic knowledge regarding the function and transcriptional regulation of GcsA and demonstrate a crosstalk between c-di-GMP and cAMP in the regulation of the expression of GcsA in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
40
|
Narendrakumar L, Theresa M, Krishnankutty Chandrika S, Thomas S. Tryptanthrin, a potential biofilm inhibitor against toxigenic Vibrio cholerae, modulating the global quorum sensing regulator, LuxO. BIOFOULING 2019; 35:1093-1103. [PMID: 31825257 DOI: 10.1080/08927014.2019.1696315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Cholera caused by the Gram-negative bacterium Vibrio cholerae still remains a major health burden in developing countries due to its high transmissibility and multidrug resistance. Alternative strategies are in quest to curtail the disease focusing on antivirulent approaches, such as biofilm inhibition, which make bacteria more susceptible to antibiotic therapies. The biofilm state is important for V. cholerae pathogenesis and its persistence in the environment. In the present study, tryptanthrin, a phytochemical, has been identified as possessing strong anti-biofilm activity at sub MIC (2 µg ml-1) against V. cholerae. LuxO was identified as the putative target of tryptanthrin by molecular docking and real time analysis. The phytochemical was identified as safe and possessed synergistic action with ciprofloxacin, a commonly used quinolone antibiotic to treat cholera. Collectively, the study establishes the first report on the anti-biofilm property of tryptanthrin by targeting LuxO, which could serve as a potential antivirulent therapy to combat V. cholerae infections.
Collapse
Affiliation(s)
- Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Mary Theresa
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
41
|
Laganenka L, Sander T, Lagonenko A, Chen Y, Link H, Sourjik V. Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1. mBio 2019; 10:e01884-19. [PMID: 31506310 PMCID: PMC6737242 DOI: 10.1128/mbio.01884-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are highly abundant in the biosphere and have a major impact on microbial populations. Many examples of phage interactions with their hosts, including establishment of dormant lysogenic and active lytic states, have been characterized at the level of the individual cell. However, much less is known about the dependence of these interactions on host metabolism and signal exchange within bacterial communities. In this report, we describe a lysogenic state of the enterobacterial phage T1, previously known as a classical lytic phage, and characterize the underlying regulatory circuitry. We show that the transition from lysogeny to lysis depends on bacterial population density, perceived via interspecies autoinducer 2. Lysis is further controlled by the metabolic state of the cell, mediated by the cyclic-3',5'-AMP (cAMP) receptor protein (CRP) of the host. We hypothesize that such combinations of cell density and metabolic sensing may be common in phage-host interactions.IMPORTANCE The dynamics of microbial communities are heavily shaped by bacterium-bacteriophage interactions. But despite the apparent importance of bacteriophages, our understanding of the mechanisms controlling phage dynamics in bacterial populations, and particularly of the differences between the decisions that are made in the dormant lysogenic and active lytic states, remains limited. In this report, we show that enterobacterial phage T1, previously described as a lytic phage, is able to undergo lysogeny. We further demonstrate that the lysogeny-to-lysis decision occurs in response to changes in the density of the bacterial population, mediated by interspecies quorum-sensing signal AI-2, and in the metabolic state of the cell, mediated by cAMP receptor protein. We hypothesize that this strategy enables the phage to maximize its chances of self-amplification and spreading in bacterial population upon induction of the lytic cycle and that it might be common in phage-host interactions.
Collapse
Affiliation(s)
- Leanid Laganenka
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Timur Sander
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Yu Chen
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
42
|
Cadby IT, Basford SM, Nottingham R, Meek R, Lowry R, Lambert C, Tridgett M, Till R, Ahmad R, Fung R, Hobley L, Hughes WS, Moynihan PJ, Sockett RE, Lovering AL. Nucleotide signaling pathway convergence in a cAMP-sensing bacterial c-di-GMP phosphodiesterase. EMBO J 2019; 38:e100772. [PMID: 31355487 PMCID: PMC6717892 DOI: 10.15252/embj.2018100772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023] Open
Abstract
Bacterial usage of the cyclic dinucleotide c‐di‐GMP is widespread, governing the transition between motile/sessile and unicellular/multicellular behaviors. There is limited information on c‐di‐GMP metabolism, particularly on regulatory mechanisms governing control of EAL c‐di‐GMP phosphodiesterases. Herein, we provide high‐resolution structures for an EAL enzyme Bd1971, from the predatory bacterium Bdellovibrio bacteriovorus, which is controlled by a second signaling nucleotide, cAMP. The full‐length cAMP‐bound form reveals the sensory N‐terminus to be a domain‐swapped variant of the cNMP/CRP family, which in the cAMP‐activated state holds the C‐terminal EAL enzyme in a phosphodiesterase‐active conformation. Using a truncation mutant, we trap both a half‐occupied and inactive apo‐form of the protein, demonstrating a series of conformational changes that alter juxtaposition of the sensory domains. We show that Bd1971 interacts with several GGDEF proteins (c‐di‐GMP producers), but mutants of Bd1971 do not share the discrete phenotypes of GGDEF mutants, instead having an elevated level of c‐di‐GMP, suggesting that the role of Bd1971 is to moderate these levels, allowing “action potentials” to be generated by each GGDEF protein to effect their specific functions.
Collapse
Affiliation(s)
- Ian T Cadby
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sarah M Basford
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Ruth Nottingham
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Richard Meek
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rebecca Lowry
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Carey Lambert
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Matthew Tridgett
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rob Till
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Rashidah Ahmad
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Rowena Fung
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Laura Hobley
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - William S Hughes
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Patrick J Moynihan
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - R Elizabeth Sockett
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Andrew L Lovering
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
43
|
Zuniga-Soto E, Fitzpatrick DA, Doohan FM, Mullins E. Insights into the transcriptomic response of the plant engineering bacterium Ensifer adhaerens OV14 during transformation. Sci Rep 2019; 9:10344. [PMID: 31316079 PMCID: PMC6637203 DOI: 10.1038/s41598-019-44648-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The ability to engineer plant genomes has been primarily driven by the soil bacterium Agrobacterium tumefaciens but recently the potential of alternative rhizobia such as Rhizobium etli and Ensifer adhaerens OV14, the latter of which supports Ensifer Mediated Transformation (EMT) has been reported. Surprisingly, a knowledge deficit exists in regards to understanding the whole genome processes underway in plant transforming bacteria, irrespective of the species. To begin to address the issue, we undertook a temporal RNAseq-based profiling study of E. adhaerens OV14 in the presence/absence of Arabidopsis thaliana tissues. Following co-cultivation with root tissues, 2333 differentially expressed genes (DEGs) were noted. Meta-analysis of the RNAseq data sets identified a clear shift from plasmid-derived gene expression to chromosomal-based transcription within the early stages of bacterium-plant co-cultivation. During this time, the number of differentially expressed prokaryotic genes increased steadily out to 7 days co-cultivation, a time at which optimum rates of transformation were observed. Gene ontology evaluations indicated a role for both chromosomal and plasmid-based gene families linked specifically with quorum sensing, flagellin production and biofilm formation in the process of EMT. Transcriptional evaluation of vir genes, housed on the pCAMBIA 5105 plasmid in E. adhaerens OV14 confirmed the ability of E. adhaerens OV14 to perceive and activate its transcriptome in response to the presence of 200 µM of acetosyringone. Significantly, this is the first study to characterise the whole transcriptomic response of a plant engineering bacterium in the presence of plant tissues and provides a novel insight into prokaryotic genetic processes that support T-DNA transfer.
Collapse
Affiliation(s)
- Evelyn Zuniga-Soto
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Fiona M Doohan
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland.
| |
Collapse
|
44
|
Biofilms: The Microbial "Protective Clothing" in Extreme Environments. Int J Mol Sci 2019; 20:ijms20143423. [PMID: 31336824 PMCID: PMC6679078 DOI: 10.3390/ijms20143423] [Citation(s) in RCA: 490] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial biofilms are communities of aggregated microbial cells embedded in a self-produced matrix of extracellular polymeric substances (EPS). Biofilms are recalcitrant to extreme environments, and can protect microorganisms from ultraviolet (UV) radiation, extreme temperature, extreme pH, high salinity, high pressure, poor nutrients, antibiotics, etc., by acting as "protective clothing". In recent years, research works on biofilms have been mainly focused on biofilm-associated infections and strategies for combating microbial biofilms. In this review, we focus instead on the contemporary perspectives of biofilm formation in extreme environments, and describe the fundamental roles of biofilm in protecting microbial exposure to extreme environmental stresses and the regulatory factors involved in biofilm formation. Understanding the mechanisms of biofilm formation in extreme environments is essential for the employment of beneficial microorganisms and prevention of harmful microorganisms.
Collapse
|
45
|
Fontaine BM, Duggal Y, Weinert EE. Exploring the Links between Nucleotide Signaling and Quorum Sensing Pathways in Regulating Bacterial Virulence. ACS Infect Dis 2018; 4:1645-1655. [PMID: 30381948 DOI: 10.1021/acsinfecdis.8b00255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The survival of all organisms depends on implementation of appropriate phenotypic responses upon perception of relevant environmental stimuli. Sensory inputs are propagated via interconnected biochemical and/or electrical cascades mediated by diverse signaling molecules, including gases, metal cations, lipids, peptides, and nucleotides. These networks often comprise second messenger signaling systems in which a ligand (the primary messenger) binds to an extracellular receptor, thereby altering the intracellular concentration of a second messenger molecule which ultimately modulates gene expression through interaction with various effectors. The identification of intersections of these signaling pathways, such as nucleotide second messengers and quorum sensing, provides new insights into the mechanisms by which bacteria use multiple inputs to regulate cellular metabolism and phenotypes. Further investigations of the overlap between bacterial signaling pathways may yield new targets and methods to control bacterial behavior, such as biofilm formation and virulence.
Collapse
Affiliation(s)
- Benjamin M. Fontaine
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Yashasvika Duggal
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Emily E. Weinert
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
46
|
A Putative Acetylation System in Vibrio cholerae Modulates Virulence in Arthropod Hosts. Appl Environ Microbiol 2018; 84:AEM.01113-18. [PMID: 30143508 DOI: 10.1128/aem.01113-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/19/2018] [Indexed: 12/16/2022] Open
Abstract
Acetylation is a broadly conserved mechanism of covalently modifying the proteome to precisely control protein activity. In bacteria, central metabolic enzymes and regulatory proteins, including those involved in virulence, can be targeted for acetylation. In this study, we directly link a putative acetylation system to metabolite-dependent virulence in the pathogen Vibrio cholerae We demonstrate that the cobB and yfiQ genes, which encode homologs of a deacetylase and an acetyltransferase, respectively, modulate V. cholerae metabolism of acetate, a bacterially derived short-chain fatty acid with important physiological roles in a diversity of host organisms. In Drosophila melanogaster, a model arthropod host for V. cholerae infection, the pathogen consumes acetate within the gastrointestinal tract, which contributes to fly mortality. We show that deletion of cobB impairs growth on acetate minimal medium, delays the consumption of acetate from rich medium, and reduces virulence of V. cholerae toward Drosophila These impacts can be reversed by complementing cobB or by introducing a deletion of yfiQ into the ΔcobB background. We further show that cobB controls the accumulation of triglycerides in the Drosophila midgut, which suggests that cobB directly modulates metabolite levels in vivo In Escherichia coli K-12, yfiQ is upregulated by cAMP-cAMP receptor protein (CRP), and we identified a similar pattern of regulation in V. cholerae, arguing that the system is activated in response to similar environmental cues. In summary, we demonstrate that proteins likely involved in acetylation can modulate the outcome of infection by regulating metabolite exchange between pathogens and their colonized hosts.IMPORTANCE The bacterium Vibrio cholerae causes severe disease in humans, and strains can persist in the environment in association with a wide diversity of host species. By investigating the molecular mechanisms that underlie these interactions, we can better understand constraints affecting the ecology and evolution of this global pathogen. The Drosophila model of Vibrio cholerae infection has revealed that bacterial regulation of acetate and other small metabolites from within the fly gastrointestinal tract is crucial for its virulence. Here, we demonstrate that genes that may modify the proteome of V. cholerae affect virulence toward Drosophila, most likely by modulating central metabolic pathways that control the consumption of acetate as well as other small molecules. These findings further highlight the many layers of regulation that tune bacterial metabolism to alter the trajectory of interactions between bacteria and their hosts.
Collapse
|
47
|
Berne C, Ellison CK, Ducret A, Brun YV. Bacterial adhesion at the single-cell level. Nat Rev Microbiol 2018; 16:616-627. [DOI: 10.1038/s41579-018-0057-5] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
NtrC Adds a New Node to the Complex Regulatory Network of Biofilm Formation and vps Expression in Vibrio cholerae. J Bacteriol 2018; 200:JB.00025-18. [PMID: 29735756 DOI: 10.1128/jb.00025-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
The biofilm growth mode is important in both the intestinal and environmental phases of the Vibrio cholerae life cycle. Regulation of biofilm formation involves several transcriptional regulators and alternative sigma factors. One such factor is the alternative sigma factor RpoN, which positively regulates biofilm formation. RpoN requires bacterial enhancer-binding proteins (bEBPs) to initiate transcription. The V. cholerae genome encodes seven bEBPs (LuxO, VC1522, VC1926 [DctD-1], FlrC, NtrC, VCA0142 [DctD-2], and PgtA) that belong to the NtrC family of response regulators (RRs) of two-component regulatory systems. The contribution of these regulators to biofilm formation is not well understood. In this study, we analyzed biofilm formation and the regulation of vpsL expression by RpoN activators. Mutants lacking NtrC had increased biofilm formation and vpsL expression. NtrC negatively regulates the expression of core regulators of biofilm formation (vpsR, vpsT, and hapR). NtrC from V. cholerae supported growth and activated glnA expression when nitrogen availability was limited. However, the repressive activity of NtrC toward vpsL expression was not affected by the nitrogen sources present. This study unveils the role of NtrC as a regulator of vps expression and biofilm formation in V. choleraeIMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, contributing to both environmental survival and transmission to a human host. Identifying key regulators of V. cholerae biofilm formation is necessary to fully understand how this important growth mode is modulated in response to various signals encountered in the environment and the host. In this study, we characterized the role of RRs that function as coactivators of RpoN in regulating biofilm formation and identified new components in the V. cholerae biofilm regulatory circuitry.
Collapse
|
49
|
Manneh-Roussel J, Haycocks JRJ, Magán A, Perez-Soto N, Voelz K, Camilli A, Krachler AM, Grainger DC. cAMP Receptor Protein Controls Vibrio cholerae Gene Expression in Response to Host Colonization. mBio 2018; 9:e00966-18. [PMID: 29991587 PMCID: PMC6050953 DOI: 10.1128/mbio.00966-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022] Open
Abstract
The bacterium Vibrio cholerae is native to aquatic environments and can switch lifestyles to cause disease in humans. Lifestyle switching requires modulation of genetic systems for quorum sensing, intestinal colonization, and toxin production. Much of this regulation occurs at the level of gene expression and is controlled by transcription factors. In this work, we have mapped the binding of cAMP receptor protein (CRP) and RNA polymerase across the V. cholerae genome. We show that CRP is an integral component of the regulatory network that controls lifestyle switching. Focusing on a locus necessary for toxin transport, we demonstrate CRP-dependent regulation of gene expression in response to host colonization. Examination of further CRP-targeted genes reveals that this behavior is commonplace. Hence, CRP is a key regulator of many V. cholerae genes in response to lifestyle changes.IMPORTANCE Cholera is an infectious disease that is caused by the bacterium Vibrio cholerae Best known for causing disease in humans, the bacterium is most commonly found in aquatic ecosystems. Hence, humans acquire cholera following ingestion of food or water contaminated with V. cholerae Transition between an aquatic environment and a human host triggers a lifestyle switch that involves reprogramming of V. cholerae gene expression patterns. This process is controlled by a network of transcription factors. In this paper, we show that the cAMP receptor protein (CRP) is a key regulator of V. cholerae gene expression in response to lifestyle changes.
Collapse
Affiliation(s)
- Jainaba Manneh-Roussel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - James R J Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrés Magán
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Nicolas Perez-Soto
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kerstin Voelz
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Tufts University, Boston, Massachusetts, USA
| | - Anne-Marie Krachler
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - David C Grainger
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
50
|
Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc Natl Acad Sci U S A 2018; 115:E6048-E6055. [PMID: 29891656 PMCID: PMC6042076 DOI: 10.1073/pnas.1801233115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Second messengers are employed by all organisms to regulate fundamental behaviors, including biofilm formation, motility, metabolism, and pathogenesis in bacteria. We have identified a phospholipase in the El Tor Vibrio cholerae biotype, responsible for the current cholera pandemic, that is directly activated by the second messenger 3′, 3′-cyclic GMP-AMP (cGAMP). Discovery of this proteinaceous bacterial cGAMP effector sheds light on the functions and basic principles of cGAMP signaling. Both this phospholipase and the cGAMP synthase are encoded within the VSP-1 pathogenicity island, unique to the El Tor biotype, and our findings assign a biochemical function to VSP-1 that may contribute to the epidemiological success of El Tor V. cholerae. Sensing and responding to environmental changes is essential for bacteria to adapt and thrive, and nucleotide-derived second messengers are central signaling systems in this process. The most recently identified bacterial cyclic dinucleotide second messenger, 3′, 3′-cyclic GMP-AMP (cGAMP), was first discovered in the El Tor biotype of Vibrio cholerae. The cGAMP synthase, DncV, is encoded on the VSP-1 pathogenicity island, which is found in all El Tor isolates that are responsible for the current seventh pandemic of cholera but not in the classical biotype. We determined that unregulated production of DncV inhibits growth in El Tor V. cholerae but has no effect on the classical biotype. This cGAMP-dependent phenotype can be suppressed by null mutations in vc0178 immediately 5′ of dncV in VSP-1. VC0178 [renamed as cGAMP-activated phospholipase in Vibrio (CapV)] is predicted to be a patatin-like phospholipase, and coexpression of capV and dncV is sufficient to induce growth inhibition in classical V. cholerae and Escherichia coli. Furthermore, cGAMP binds to CapV and directly activates its hydrolase activity in vitro. CapV activated by cGAMP in vivo degrades phospholipids in the cell membrane, releasing 16:1 and 18:1 free fatty acids. Together, we demonstrate that cGAMP activates CapV phospholipase activity to target the cell membrane and suggest that acquisition of this second messenger signaling pathway may contribute to the emergence of the El Tor biotype as the etiological agent behind the seventh cholera pandemic.
Collapse
|