1
|
Modi M, Thambiraja M, Cherukat A, Yennamalli RM, Priyadarshini R. Structure predictions and functional insights into Amidase_3 domain containing N-acetylmuramyl-L-alanine amidases from Deinococcus indicus DR1. BMC Microbiol 2024; 24:101. [PMID: 38532329 DOI: 10.1186/s12866-024-03225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND N-acetylmuramyl-L-alanine amidases are cell wall modifying enzymes that cleave the amide bond between the sugar residues and stem peptide in peptidoglycan. Amidases play a vital role in septal cell wall cleavage and help separate daughter cells during cell division. Most amidases are zinc metalloenzymes, and E. coli cells lacking amidases grow as chains with daughter cells attached to each other. In this study, we have characterized two amidase enzymes from Deinococcus indicus DR1. D. indicus DR1 is known for its high arsenic tolerance and unique cell envelope. However, details of their cell wall biogenesis remain largely unexplored. RESULTS We have characterized two amidases Ami1Di and Ami2Di from D. indicus DR1. Both Ami1Di and Ami2Di suppress cell separation defects in E. coli amidase mutants, suggesting that these enzymes are able to cleave septal cell wall. Ami1Di and Ami2Di proteins possess the Amidase_3 catalytic domain with conserved -GHGG- motif and Zn2+ binding sites. Zn2+- binding in Ami1Di is crucial for amidase activity. AlphaFold2 structures of both Ami1Di and Ami2Di were predicted, and Ami1Di was a closer homolog to AmiA of E. coli. CONCLUSION Our results indicate that Ami1Di and Ami2Di enzymes can cleave peptidoglycan, and structural prediction studies revealed insights into the activity and regulation of these enzymes in D. indicus DR1.
Collapse
Affiliation(s)
- Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Menaka Thambiraja
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Archana Cherukat
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
- Department of Biology, Graduate School of Arts and Sciences, Wake Forest University, 1834 Wake Forest Rd, Winston-Salem, USA
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
2
|
Harris-Jones TN, Pérez Medina KM, Hackett KT, Schave MA, Klimowicz AK, Schaub RE, Dillard JP. Mutation of mltG increases peptidoglycan fragment release, cell size, and antibiotic susceptibility in Neisseria gonorrhoeae. J Bacteriol 2023; 205:e0027723. [PMID: 38038461 PMCID: PMC10729727 DOI: 10.1128/jb.00277-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Neisseria gonorrhoeae is unusual in that the bacteria release larger amounts of cell wall material as they grow as compared to related bacteria, and the released cell wall fragments induce inflammation that leads to tissue damage in infected people. The study of MltG revealed the importance of this enzyme for controlling cell wall growth, cell wall fragment production, and bacterial cell size and suggests a role for MltG in a cell wall synthesis and degradation complex. The increased antibiotic sensitivities of mltG mutants suggest that an antimicrobial drug inhibiting MltG would be useful in combination therapy to restore the sensitivity of the bacteria to cell wall targeting antibiotics to which the bacteria are currently resistant.
Collapse
Affiliation(s)
- Tiffany N. Harris-Jones
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Krizia M. Pérez Medina
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Melanie A. Schave
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amy K. Klimowicz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Harris-Jones TN, Medina KMP, Hackett KT, Schave MA, Schaub RE, Dillard JP. Mutation of mltG increases peptidoglycan fragment release, cell size, and antibiotic susceptibility in Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554517. [PMID: 37662418 PMCID: PMC10473753 DOI: 10.1101/2023.08.23.554517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Infection with the Gram-negative species Neisseria gonorrhoeae leads to inflammation that is responsible for the disease symptoms of gonococcal urethritis, cervicitis, and pelvic inflammatory disease. During growth these bacteria release significant amounts of peptidoglycan (PG) fragments which elicit inflammatory responses in the human host. To better understand the mechanisms involved in PG synthesis and breakdown in N. gonorrhoeae, we characterized the effects of mutation of mltG. MltG has been identified in other bacterial species as a terminase that stops PG strand growth by cleaving the growing glycan. Mutation of mltG in N. gonorrhoeae did not affect bacterial growth rate but resulted in increased PG turnover, more cells of large size, decreased autolysis under non-growth conditions, and increased sensitivity to antibiotics that affect PG crosslinking. An mltG mutant released greatly increased amounts of PG monomers, PG dimers, and larger oligomers. In the mltG background, mutation of either ltgA or ltgD, encoding the lytic transglycosylases responsible for PG monomer liberation, resulted in wild-type levels of PG monomer release. Bacterial two-hybrid assays identified positive interactions of MltG with synthetic penicillin-binding proteins PBP1 and PBP2 and the PG-degrading endopeptidase PBP4 (PbpG). These data are consistent with MltG acting as a terminase in N. gonorrhoeae and suggest that absence of MltG activity results in excessive PG growth and extra PG in the sacculus that must be degraded by lytic transglycosylases including LtgA and LtgD. Furthermore, absence of MltG causes a cell wall defect that is manifested as large cell size and antibiotic sensitivity.
Collapse
Affiliation(s)
- Tiffany N. Harris-Jones
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Krizia M. Pérez Medina
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Melanie A. Schave
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health
| |
Collapse
|
4
|
Weaver A, Taguchi A, Dörr T. Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth. J Bacteriol 2023; 205:e0042822. [PMID: 36757204 PMCID: PMC10029718 DOI: 10.1128/jb.00428-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The dynamic composition of the peptidoglycan cell wall has been the subject of intense research for decades, yet how bacteria coordinate the synthesis of new peptidoglycan with the turnover and remodeling of existing peptidoglycan remains elusive. Diversity and redundancy within peptidoglycan synthases and peptidoglycan autolysins, enzymes that degrade peptidoglycan, have often made it challenging to assign physiological roles to individual enzymes and determine how those activities are regulated. For these reasons, peptidoglycan glycosidases, which cleave within the glycan strands of peptidoglycan, have proven veritable masters of misdirection over the years. Unlike many of the broadly conserved peptidoglycan synthetic complexes, diverse bacteria can employ unrelated glycosidases to achieve the same physiological outcome. Additionally, although the mechanisms of action for many individual enzymes have been characterized, apparent conserved homologs in other organisms can exhibit an entirely different biochemistry. This flexibility has been recently demonstrated in the context of three functions critical to vegetative growth: (i) release of newly synthesized peptidoglycan strands from their membrane anchors, (ii) processing of peptidoglycan turned over during cell wall expansion, and (iii) removal of peptidoglycan fragments that interfere with daughter cell separation during cell division. Finally, the regulation of glycosidase activity during these cell processes may be a cumulation of many factors, including protein-protein interactions, intrinsic substrate preferences, substrate availability, and subcellular localization. Understanding the true scope of peptidoglycan glycosidase activity will require the exploration of enzymes from diverse organisms with equally diverse growth and division strategies.
Collapse
Affiliation(s)
- Anna Weaver
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Atsushi Taguchi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Chan JM, Hackett KT, Woodhams KL, Schaub RE, Dillard JP. The AmiC/NlpD Pathway Dominates Peptidoglycan Breakdown in Neisseria meningitidis and Affects Cell Separation, NOD1 Agonist Production, and Infection. Infect Immun 2022; 90:e0048521. [PMID: 35225652 PMCID: PMC8929373 DOI: 10.1128/iai.00485-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
The human-restricted pathogen Neisseria meningitidis, which is best known for causing invasive meningococcal disease, has a nonpathogenic lifestyle as an asymptomatic colonizer of the human naso- and oropharyngeal space. N. meningitidis releases small peptidoglycan (PG) fragments during growth. It was demonstrated previously that N. meningitidis releases low levels of tripeptide PG monomer, which is an inflammatory molecule recognized by the human intracellular innate immune receptor NOD1. In the present study, we demonstrated that N. meningitidis released more PG-derived peptides than PG monomers. Using a reporter cell line overexpressing human NOD1, we showed that N. meningitidis activates NOD1 using PG-derived peptides. The generation of such peptides required the presence of the periplasmic N-acetylmuramyl-l-alanine amidase AmiC and the outer membrane lipoprotein NlpD. AmiC and NlpD were found to function in cell separation, and mutation of either amiC or nlpD resulted in large clumps of unseparated N. meningitidis cells instead of the characteristic diplococci. Using stochastic optical reconstruction microscopy, we demonstrated that FLAG epitope-tagged NlpD localized to the septum, while similarly tagged AmiC was found at the septum in some diplococci but was distributed around the cell in most cases. In a human whole-blood infection assay, an nlpD mutant was severely attenuated and showed particular sensitivity to complement. Thus, in N. meningitidis, the cell separation proteins AmiC and NlpD are necessary for NOD1 stimulation and survival during infection of human blood.
Collapse
Affiliation(s)
- Jia Mun Chan
- University of Wisconsin—Madison, Department of Medical Microbiology and Immunology, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathleen T. Hackett
- University of Wisconsin—Madison, Department of Medical Microbiology and Immunology, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Katelynn L. Woodhams
- University of Wisconsin—Madison, Department of Medical Microbiology and Immunology, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ryan E. Schaub
- University of Wisconsin—Madison, Department of Medical Microbiology and Immunology, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joseph P. Dillard
- University of Wisconsin—Madison, Department of Medical Microbiology and Immunology, School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Transcriptional and Translational Responsiveness of the Neisseria gonorrhoeae Type IV Secretion System to Conditions of Host Infections. Infect Immun 2021; 89:e0051921. [PMID: 34581604 DOI: 10.1128/iai.00519-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD, the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. The data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.
Collapse
|
7
|
Figueroa-Cuilan WM, Randich AM, Dunn CM, Santiago-Collazo G, Yowell A, Brown PJB. Diversification of LytM Protein Functions in Polar Elongation and Cell Division of Agrobacterium tumefaciens. Front Microbiol 2021; 12:729307. [PMID: 34489918 PMCID: PMC8416486 DOI: 10.3389/fmicb.2021.729307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022] Open
Abstract
LytM-domain containing proteins are LAS peptidases (lysostaphin-type enzymes, D-Ala-D-Ala metallopeptidases, and sonic hedgehog) and are known to play diverse roles throughout the bacterial cell cycle through direct or indirect hydrolysis of the bacterial cell wall. A subset of the LytM factors are catalytically inactive but regulate the activity of other cell wall hydrolases and are classically described as cell separation factors NlpD and EnvC. Here, we explore the function of four LytM factors in the alphaproteobacterial plant pathogen Agrobacterium tumefaciens. An LmdC ortholog (Atu1832) and a MepM ortholog (Atu4178) are predicted to be catalytically active. While Atu1832 does not have an obvious function in cell growth or division, Atu4178 is essential for polar growth and likely functions as a space-making endopeptidase that cleaves amide bonds in the peptidoglycan cell wall during elongation. The remaining LytM factors are degenerate EnvC and NlpD orthologs. Absence of these proteins results in striking phenotypes indicative of misregulation of cell division and growth pole establishment. The deletion of an amidase, AmiC, closely phenocopies the deletion of envC suggesting that EnvC might regulate AmiC activity. The NlpD ortholog DipM is unprecedently essential for viability and depletion results in the misregulation of early stages of cell division, contrasting with the canonical view of DipM as a cell separation factor. Finally, we make the surprising observation that absence of AmiC relieves the toxicity induced by dipM overexpression. Together, these results suggest EnvC and DipM may function as regulatory hubs with multiple partners to promote proper cell division and establishment of polarity.
Collapse
Affiliation(s)
| | - Amelia M. Randich
- Department of Biology, University of Scranton, Scranton, PA, United States
| | - Caroline M. Dunn
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Gustavo Santiago-Collazo
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Molecular Pathogenesis and Therapeutics Graduate Program, University of Missouri, Columbia, MO, United States
| | - Andrew Yowell
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Dörr T. Understanding tolerance to cell wall-active antibiotics. Ann N Y Acad Sci 2021; 1496:35-58. [PMID: 33274447 PMCID: PMC8359209 DOI: 10.1111/nyas.14541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic tolerance-the ability of bacteria to survive for an extended time in the presence of bactericidal antibiotics-is an understudied contributor to antibiotic treatment failure. Herein, I review the manifestations, mechanisms, and clinical relevance of tolerance to cell wall-active (CWA) antibiotics, one of the most important groups of antibiotics at the forefront of clinical use. I discuss definitions of tolerance and assays for tolerance detection, comprehensively discuss the mechanism of action of β-lactams and other CWA antibiotics, and then provide an overview of how cells mitigate the potentially lethal effects of CWA antibiotic-induced cell damage to become tolerant. Lastly, I discuss evidence for a role of CWA antibiotic tolerance in clinical antibiotic treatment failure.
Collapse
Affiliation(s)
- Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Department of Microbiology, and Cornell Institute of Host–Pathogen Interactions and DiseaseCornell UniversityIthacaNew York
| |
Collapse
|
9
|
Discovering the Molecular Determinants of Phaeobacter inhibens Susceptibility to Phaeobacter Phage MD18. mSphere 2020; 5:5/6/e00898-20. [PMID: 33148823 PMCID: PMC7643831 DOI: 10.1128/msphere.00898-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteriophages have immense potential as antibiotic therapies and in genetic engineering. Understanding the mechanisms that bacteriophages implement to infect their hosts will allow researchers to manipulate these systems and adapt them to specific bacterial targets. In this study, we isolated a bacteriophage capable of infecting the marine alphaproteobacterium Phaeobacter inhibens and determined its mechanism of infection. Phaeobacter virus MD18, a novel species of bacteriophage isolated in Woods Hole, MA, exhibits potent lytic ability against P. inhibens and appears to be of the Siphoviridae morphotype. The genomic sequence of MD18 displayed significant similarity to another siphophage, the recently discovered Roseobacter phage DSS3P8, but genomic and phylogenetic analyses, assessing host range and a search of available metagenomes are all consistent with the conclusion that Phaeobacter phage MD18 is a novel lytic phage. We incubated MD18 with a library of barcoded P. inhibens transposon insertion mutants and identified 22 genes that appear to be required for phage predation of this host. Network analysis of these genes using genomic position, Gene Ontology (GO) term enrichment, and protein associations revealed that these genes are enriched for roles in assembly of a type IV pilus (T4P) and regulators of cellular morphology. Our results suggest that T4P serve as receptors for a novel marine virus that targets P. inhibens. IMPORTANCE Bacteriophages are useful nonantibiotic therapeutics for bacterial infections as well as threats to industries utilizing bacterial agents. This study identified Phaeobacter virus MD18, a phage antagonist of Phaeobacter inhibens, a bacterium with promising use as a probiotic for aquatic farming industries. Genomic analysis suggested that Phaeobacter phage MD18 has evolved to enhance its replication in P. inhibens by adopting favorable tRNA genes as well as through genomic sequence adaptation to resemble host codon usage. Lastly, a high-throughput analysis of P. inhibens transposon insertion mutants identified genes that modulate host susceptibility to phage MD18 and implicated the type IV pilus as the likely receptor recognized for adsorption. This study marks the first characterization of the relationship between P. inhibens and an environmentally sampled phage, which informs our understanding of natural threats to the bacterium and may promote the development of novel phage technologies for genetic manipulation of this host.
Collapse
|
10
|
Miao J, Liu H, Qu Y, Fu W, Qi K, Zang S, He J, Zhao S, Chen S, Jiang T. Effect of peptidoglycan amidase MSMEG_6281 on fatty acid metabolism in Mycobacterium smegmatis. Microb Pathog 2019; 140:103939. [PMID: 31870758 DOI: 10.1016/j.micpath.2019.103939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
Mycobacterium smegmatis MSMEG_6281, a peptidoglycan (PG) amidase, is essential in maintaining cell wall integrity. To address the potential roles during the MSMEG_6281-mediated biological process, we compared proteomes from wild-type M.smegmatis and MSMEG_6281 gene knockout strain (M.sm-ΔM_6281) using LC-MS/MS analysis. Peptide analysis revealed that 851 proteins were differentially produced with at least 1.2-fold changes, including some proteins involved in fatty acid metabolism such as acyl-CoA synthase, acyl-CoA dehydrogenase, MCE-family proteins, ATP-binding cassette (ABC) transporters, and MmpL4. Some proteins related to fatty acid degradation were enriched through protein-protein interaction analysis. Therefore, proteomic data showed that a lack of MSMEG_6281 affected fatty acid metabolism. Mycobacteria can produce diverse lipid molecules ranging from single fatty acids to highly complex mycolic acids, and mycobacterial surface-exposed lipids may impact biofilm formation. In this study, we also assessed the effects of MSMEG_6281 on biofilm phenotype using semi-quantitative and morphology analysis methods. These results found that M.sm-ΔM_6281 exhibited a delayed biofilm phenotype compared to that of the wild-type M.smegmatis, and the changes were recovered when PG amidase was rescued in a ΔM_6281::Rv3717 strain. Our results demonstrated that MSMEG_6281 impacts fatty acid metabolism and further interferes with biofilm formation. These results provide a clue to study the effects of PG amidase on mycobacterial pathogenicity.
Collapse
Affiliation(s)
- Jiatong Miao
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Hanrui Liu
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Yushan Qu
- Business School, Rutgers, The State University of New Jersey, Piscataway, 08854, NJ, USA
| | - Weizhe Fu
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Kangwei Qi
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Shizhu Zang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Jiajia He
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Shijia Zhao
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | - Shixing Chen
- Key Laboratory of Science and Technology on Microsystem, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China
| | - Tao Jiang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
11
|
Kim WJ, Higashi D, Goytia M, Rendón MA, Pilligua-Lucas M, Bronnimann M, McLean JA, Duncan J, Trees D, Jerse AE, So M. Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell Host Microbe 2019; 26:228-239.e8. [PMID: 31378677 DOI: 10.1016/j.chom.2019.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
The mucosa is colonized with commensal Neisseria. Some of these niches are sites of infection for the STD pathogen Neisseria gonorrhoeae (Ngo). Given the antagonistic behavior of commensal bacteria toward their pathogenic relatives, we hypothesized that commensal Neisseria may negatively affect Ngo colonization. Here, we report that commensal species of Neisseria kill Ngo through a mechanism based on genetic competence and DNA methylation state. Specifically, commensal-triggered killing occurs when the pathogen takes up commensal DNA containing a methylation pattern that it does not recognize. Indeed, any DNA will kill Ngo if it can enter the cell, is differentially methylated, and has homology to the pathogen genome. Consistent with these findings, commensal Neisseria elongata accelerates Ngo clearance from the mouse in a DNA-uptake-dependent manner. Collectively, we propose that commensal Neisseria antagonizes Ngo infection through a DNA-mediated mechanism and that DNA is a potential microbicide against this highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Won Jong Kim
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Dustin Higashi
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Maira Goytia
- Department of Biology, Spelman College, Atlanta, GA 30314, USA
| | - Maria A Rendón
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Michelle Pilligua-Lucas
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Matthew Bronnimann
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Jeanine A McLean
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joseph Duncan
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Trees
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Magdalene So
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
12
|
Heydarian M, Yang T, Schweinlin M, Steinke M, Walles H, Rudel T, Kozjak-Pavlovic V. Biomimetic Human Tissue Model for Long-Term Study of Neisseria gonorrhoeae Infection. Front Microbiol 2019; 10:1740. [PMID: 31417529 PMCID: PMC6685398 DOI: 10.3389/fmicb.2019.01740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Gonorrhea is the second most common sexually transmitted infection in the world and is caused by Gram-negative diplococcus Neisseria gonorrhoeae. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are only of limited use. Therefore, a suitable in vitro cell culture model for studying the complete infection including adhesion, transmigration and transport to deeper tissue layers is required. In the present study, we generated three independent 3D tissue models based on porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. Functional analyses such as transepithelial electrical resistance (TEER) and FITC-dextran assay indicated the high barrier integrity of the created monolayer. The histological, immunohistochemical, and ultra-structural analyses showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in human host including the epithelial monolayer, the underlying connective tissue, mucus production, tight junction, and microvilli formation. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results indicated that the disruption of tight junctions and increase in interleukin production in response to the infection is strain and cell type-dependent. In addition, the models supported bacterial survival and proved to be better suitable for studying infection over the course of several days in comparison to commonly used Transwell® models. This was primarily due to increased resilience of the SIS scaffold models to infection in terms of changes in permeability, cell destruction and bacterial transmigration. In summary, the SIS scaffold-based 3D tissue models of human mucosal tissues represent promising tools for investigating N. gonorrhoeae infections under close-to-natural conditions.
Collapse
Affiliation(s)
| | - Tao Yang
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Matthias Schweinlin
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike Walles
- Research Center "Dynamic Systems: Systems Engineering" (CDS), Otto von-Guericke-University, Magdeburg, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
13
|
Young BF, Roth BM, Davies C. 1H, 13C, and 15N resonance assignments of N-acetylmuramyl-L-alanine amidase (AmiC) N-terminal domain (NTD) from Neisseria gonorrhoeae. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:63-66. [PMID: 30276628 PMCID: PMC6440844 DOI: 10.1007/s12104-018-9852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Gonorrhea infections are becoming more difficult to treat due to the prevalence of strains exhibiting resistance to antibiotics and new therapeutic approaches are needed. N-acetylmuramyl-L-alanine amidase (AmiC) from Neisseria gonorrhoeae is a hydrolase that functions during cell division by cleaving the bond between the N-acetylmuramyl and L-alanine moieties of peptidoglycan. Inhibiting this enzyme offers the prospect of restoring the efficacy of existing antibiotics as treatments against N. gonorrhoeae. Of its two domains, the C-terminal domain catalyses the hydrolysis reaction and the N-terminal domain (NTD) is believed to target AmiC to its peptidoglycan substrate. Here, we report the 1H, 13C, and 15N resonance assignments of a 131 amino acid NTD construct of AmiC by heteronuclear NMR spectroscopy. The assignments represent the first for N. gonorrhoeae AmiC-NTD, laying the groundwork for detailed examination of its structure and dynamics, and providing a platform for new drug discovery efforts to address antimicrobial-resistant N. gonorrhoeae.
Collapse
Affiliation(s)
- Brandon F Young
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Braden M Roth
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
14
|
Sigurlásdóttir S, Wassing GM, Zuo F, Arts M, Jonsson AB. Deletion of D-Lactate Dehydrogenase A in Neisseria meningitidis Promotes Biofilm Formation Through Increased Autolysis and Extracellular DNA Release. Front Microbiol 2019; 10:422. [PMID: 30891026 PMCID: PMC6411758 DOI: 10.3389/fmicb.2019.00422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterium that asymptomatically colonizes the human nasopharyngeal mucosa. Pilus-mediated initial adherence of N. meningitidis to the epithelial mucosa is followed by the formation of three-dimensional aggregates, called microcolonies. Dispersal from microcolonies contributes to the transmission of N. meningitidis across the epithelial mucosa. We have recently discovered that environmental concentrations of host cell-derived lactate influences N. meningitidis microcolony dispersal. Here, we examined the ability of N. meningitidis mutants deficient in lactate metabolism to form biofilms. A lactate dehydrogenease A (ldhA) mutant had an increased level of biofilm formation. Deletion of ldhA increased the N. meningitidis cell surface hydrophobicity and aggregation. In this study, we used FAM20, which belongs to clonal complex ST-11 that forms biofilms independently of extracellular DNA (eDNA). However, treatment with DNase I abolished the increased biofilm formation and aggregation of the ldhA-deficient mutant, suggesting a critical role for eDNA. Compared to wild-type, the ldhA-deficient mutant exhibited an increased autolytic rate, with significant increases in the eDNA concentrations in the culture supernatants and in biofilms. Within the ldhA mutant biofilm, the transcription levels of the capsule, pilus, and bacterial lysis genes were downregulated, while norB, which is associated with anaerobic respiration, was upregulated. These findings suggest that the absence of ldhA in N. meningitidis promotes biofilm formation and aggregation through autolysis-mediated DNA release.
Collapse
Affiliation(s)
- Sara Sigurlásdóttir
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fanglei Zuo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melanie Arts
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
15
|
Schaub RE, Dillard JP. The Pathogenic Neisseria Use a Streamlined Set of Peptidoglycan Degradation Proteins for Peptidoglycan Remodeling, Recycling, and Toxic Fragment Release. Front Microbiol 2019; 10:73. [PMID: 30766523 PMCID: PMC6365954 DOI: 10.3389/fmicb.2019.00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis release peptidoglycan (PG) fragments from the cell as the bacteria grow. For N. gonorrhoeae these PG fragments are known to cause damage to human Fallopian tube tissue in organ culture that mimics the damage seen in patients with pelvic inflammatory disease. N. meningitidis also releases pro-inflammatory PG fragments, but in smaller amounts than those from N. gonorrhoeae. It is not yet known if PG fragment release contributes to the highly inflammatory conditions of meningitis and meningococcemia caused by N. meningitidis. Examination of the mechanisms of PG degradation and recycling identified proteins required for these processes. In comparison to the model organism E. coli, the pathogenic Neisseria have far fewer PG degradation proteins, and some of these proteins show differences in subcellular localization compared to their E. coli homologs. In particular, some N. gonorrhoeae PG degradation proteins were demonstrated to be in the outer membrane while their homologs in E. coli were found free in the periplasm or in the cytoplasm. The localization of two of these proteins was demonstrated to affect PG fragment release. Another major factor for PG fragment release is the allele of ampG. Gonococcal AmpG was found to be slightly defective compared to related PG fragment permeases, thus leading to increased release of PG. A number of additional PG-related factors affect other virulence functions in Neisseria. Endopeptidases and carboxypeptidases were found to be required for type IV pilus production and resistance to hydrogen peroxide. Also, deacetylation of PG was required for virulence of N. meningitidis as well as normal cell size. Overall, we describe the processes involved in PG degradation and recycling and how certain characteristics of these proteins influence the interactions of these pathogens with their host.
Collapse
Affiliation(s)
- Ryan E Schaub
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
16
|
Neisseria gonorrhoeae PBP3 and PBP4 Facilitate NOD1 Agonist Peptidoglycan Fragment Release and Survival in Stationary Phase. Infect Immun 2019; 87:IAI.00833-18. [PMID: 30510100 DOI: 10.1128/iai.00833-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 01/16/2023] Open
Abstract
Neisseria gonorrhoeae releases peptidoglycan fragments during growth, and these molecules induce an inflammatory response in the human host. The proinflammatory molecules include peptidoglycan monomers, peptidoglycan dimers, and free peptides. These molecules can be released by the actions of lytic transglycosylases or an amidase. However, >40% of the gonococcal cell wall is cross-linked, where the peptide stem on one peptidoglycan strand is linked to the peptide stem on a neighboring strand, suggesting that endopeptidases may be required for the release of many peptidoglycan fragments. Therefore, we characterized mutants with individual or combined mutations in genes for the low-molecular-mass penicillin-binding proteins PBP3 and PBP4. Mutations in either dacB, encoding PBP3, or pbpG, encoding PBP4, did not significantly reduce the release of peptidoglycan monomers or free peptides. A mutation in dacB caused the appearance of a larger-sized peptidoglycan monomer, the pentapeptide monomer, and an increased release of peptidoglycan dimers, suggesting the involvement of this enzyme in both the removal of C-terminal d-Ala residues from stem peptides and the cleavage of cross-linked peptidoglycan. Mutation of both dacB and pbpG eliminated the release of tripeptide-containing peptidoglycan fragments concomitantly with the appearance of pentapeptide and dipeptide peptidoglycan fragments and higher-molecular-weight peptidoglycan dimers. In accord with the loss of tripeptide peptidoglycan fragments, the level of human NOD1 activation by the dacB pbpG mutants was significantly lower than that by the wild type. We conclude that PBP3 and PBP4 overlap in function for cross-link cleavage and that these endopeptidases act in the normal release of peptidoglycan fragments during growth.
Collapse
|
17
|
He J, Fu W, Zhao S, Zhang C, Sun T, Jiang T. Lack of MSMEG_6281, a peptidoglycan amidase, affects cell wall integrity and virulence of Mycobacterium smegmatis. Microb Pathog 2019; 128:405-413. [PMID: 30685363 DOI: 10.1016/j.micpath.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
Mycolyl-arabinogalactan-peptidoglycan (mAGP) is the major content of the mycobacterium cell wall structure and essential for mycobacterial survival. Peptidoglycan (PG) plays an important role in maintenance of cell division, cell wall integrity and pathogenesis. Mycobacterium smegmatis MSMEG_6281, a peptidoglycan amidase, is vital for mycobacterial cell division. However, the effects of MSMEG_6281on cell wall integrity and mycobacterial virulence remain unknown. In the current study, we demonstrate that MSMEG_6281gene knockout in M.smegmatis alters the microbiological characteristics. Our results revealed that MSMEG_6281gene knockout bacteria (M. sm-ΔM_6281) lost their acid-fastness, increased their sensitivity to lipophilic compounds and presented an abnormal morphology. Our results revealed that MSMEG_6281was related to maintaining the cell wall integrity. Furthermore, we investigated the effects of MSMEG_6281 inactivation on mycobacterial virulence using mice models infected by different M.smegmatis strains. MSMEG_6281 inactivation in the M sm-ΔM_6281 infected group caused less mycobacterial colonization, reduced pathological signs, decreased the anti-microbial enzymes production including iNOS and β-defensins in mouse lungs. Moreover, IL-1β and TLR2 expression were significantly down-regulated, while the production of IFN-γ and TNF-α was up-regulated. These findings indicated the diversity of host immune responses induced by different strains of M.smegmatis, suggesting that MSMEG_6281 inactivation impact mycobacterial virulence. In conclusion, the MSMEG_6281 protein plays important roles in maintaining cell wall integrity and mycobacterial virulence.
Collapse
Affiliation(s)
- Jiajia He
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Weizhe Fu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shijia Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cuili Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Tieying Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Tao Jiang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
18
|
Choi KM, Joo MS, Cho DH, Bae JS, Jung JM, Hwang JY, Kwon MG, Seo JS, Hwang SD, Jee BY, Kim DH, Park CI. Characterization of gene expression profiles and functional analysis of peptidoglycan recognition protein 2 from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2019; 84:1068-1074. [PMID: 30439496 DOI: 10.1016/j.fsi.2018.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/18/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Peptidoglycan recognition protein 2 (PGRP2) is a Zn2+-dependent peptidase that plays important roles in binding to microbial components of the cell membrane, inducing phagocytosis and antimicrobial activity. Rock bream (Oplegnathus fasciatus) PGRP2 (RbPGRP2) was identified in the intestine by next generation sequencing (NGS) analysis. The open reading frame (ORF) the RbPGRP2 cDNA (470 amino acid residues) contains a peptidoglycan recognition protein domain (residues 300 to 446). Alignment analysis revealed that RbPGRP2 shares 37.6-53.5% overall sequence identity with the PGRP2s of other species. Phylogenetic analysis revealed that RbPGRP2 clustered together with PGRP2s from teleosts. In healthy rock bream, RbPGRP2 was found to be ubiquitously expressed in all of the examined tissues, especially in the liver. RbPGRP2 expression was significantly upregulated in all of the examined tissues of rock bream after infection with Edwardsiella piscicida, Streptococcus iniae and red sea bream iridovirus (RSIV) compared with the control. Purified rRbPGRP2 interactions with bacteria and inhibited the growth of bacteria in the presence of Zn2+. These results indicate that RbPGRP2 plays an important role in the innate immune response against bacterial infection.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong Hee Cho
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jin-Sol Bae
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ji-Min Jung
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jee Youn Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mun-Gyeong Kwon
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jung Soo Seo
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Seong Don Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Bo-Yeong Jee
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea.
| | - Chan-Il Park
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
19
|
Ishida T. Antibacterial mechanism of Ag+ ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/mojt.2018.04.00125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Antibiotic Targets in Gonococcal Cell Wall Metabolism. Antibiotics (Basel) 2018; 7:antibiotics7030064. [PMID: 30037076 PMCID: PMC6164560 DOI: 10.3390/antibiotics7030064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
The peptidoglycan cell wall that encloses the bacterial cell and provides structural support and protection is remodeled by multiple enzymes that synthesize and cleave the polymer during growth. This essential and dynamic structure has been targeted by multiple antibiotics to treat gonococcal infections. Up until now, antibiotics have been used against the biosynthetic machinery and the therapeutic potential of inhibiting enzymatic activities involved in peptidoglycan breakdown has not been explored. Given the major antibiotic resistance problems we currently face, it is crucial to identify other possible targets that are key to maintaining cell integrity and contribute to disease development. This article reviews peptidoglycan as an antibiotic target, how N. gonorrhoeae has developed resistance to currently available antibiotics, and the potential of continuing to target this essential structure to combat gonococcal infections by attacking alternative enzymatic activities involved in cell wall modification and metabolism.
Collapse
|
21
|
Li X, He J, Fu W, Cao P, Zhang S, Jiang T. Effect of Mycobacterium tuberculosis Rv3717 on cell division and cell adhesion. Microb Pathog 2018; 117:184-190. [PMID: 29462697 DOI: 10.1016/j.micpath.2018.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 01/13/2023]
Abstract
Mycobacterium tuberculosis Rv3717 has been identified as a zinc-dependent amidase which can hydrolyze peptidoglycan (PG). To demonstrate the relationship of Rv3717 and cell division, in this study, Rv3717 gene was first amplified and expressed and the resulting protein was purified by using a His-tagged approach. M. smegmatis mc2155, a fast-growing and nonpathogenic mycobacterium was used to evaluate the effect of Rv3717 on cell division. Scan electron microscope (SEM) results indicated that M. smegmatis with division site was more exhibited and some of the cells turned larger in size after Rv3717 treatment. Transmission electron microscope (TEM) results revealed that MSMEG_6281 gene knockout strain named M sm-ΔM_6281 (MSMEG_6281 in M. smegmatis mc2155 is the homologous gene of Rv3717) tended to have a division defect with a severely abnormal morphology, and division septa were distorted. Gene expression analysis indicated also that the gene involved in cell division such as M. smegmatis ftsZ was significantly up-regulated with treatment time. The findings demonstrated that physiological role of Rv3717 was related to cell division and regulated possibly division septum formation. Further, fibronectin (Fn) binding ability of Rv3717 was evaluated by protein binding experiment, and the results confirmed the interaction of Rv3717 with Fn in a dose dependent manner. We found also that the invasion rate of M. sm-ΔM_6281 to A549 cells was reduced by 59% compared to the control strain, and the invasion defect could be rescued by Rv3717 addition. RT-PCR results showed that M. smegmatis fbpC were up-regulated after Rv3717 addition. These clues may be significant to explore roles of Rv3717 in growth and colonization of mycobacteria.
Collapse
Affiliation(s)
- Xin Li
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Jiajia He
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Weizhe Fu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Pingping Cao
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Siyi Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Tao Jiang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
22
|
Amidase activity is essential for medial localization of AmiC in Caulobacter crescentus. Curr Genet 2017; 64:661-675. [PMID: 29167986 DOI: 10.1007/s00294-017-0781-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023]
Abstract
Bacterial cell division is a complex process brought about by the coordinated action of multiple proteins. Separation of daughter cells during the final stages of division involves cleavage of new cell wall laid down at the division septum. In E. coli, this process is governed by the action of N-acetylmuramoyl-L-alanine amidases AmiA/B/C, which are regulated by their LytM activators EnvC and NlpD. While much is known about the regulation of septum cleavage in E. coli, the mechanism of daughter cell separation is not clear in Caulobacter crescentus, a dimorphic crescent-shaped bacterium. In this work, we characterized the role of AmiC, the only annotated amidase in C. crescentus. AmiC from C. crescentus is functional in E. coli and restores cell separation defects seen in E. coli amidase mutants, suggesting that AmiC has septum splitting activity. The medial localization of AmiC was independent of DipM, an LytM domain-containing endopeptidase. Our results indicate that enzymatic activity is essential for medial recruitment of AmiC. Overexpression of AmiC causes cell separation defects and formation of chains. Finally, overexpression of AmiC in cells inhibited for cell division leads to lysis. Collectively, our findings reveal that regulation of daughter cell separation in C. crescentus differs from that of E. coli and can serve as a model system to study bacterial cytokinesis.
Collapse
|
23
|
Lenz JD, Hackett KT, Dillard JP. A Single Dual-Function Enzyme Controls the Production of Inflammatory NOD Agonist Peptidoglycan Fragments by Neisseria gonorrhoeae. mBio 2017; 8:e01464-17. [PMID: 29042497 PMCID: PMC5646250 DOI: 10.1128/mbio.01464-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023] Open
Abstract
Neisseria gonorrhoeae gonococcus (GC) is a Gram-negative betaproteobacterium and causative agent of the sexually transmitted infection gonorrhea. During growth, GC releases lipooligosaccharide (LOS) and peptidoglycan (PG) fragments, which contribute significantly to the inflammatory damage observed during human infection. In ascending infection of human Fallopian tubes, inflammation leads to increased risk of ectopic pregnancy, pelvic inflammatory disease, and sterility. Of the PG fragments released by GC, most are disaccharide peptide monomers, and of those, 80% have tripeptide stems despite the observation that tetrapeptide stems make up 80% of the assembled cell wall. We identified a serine-protease l,d-carboxypeptidase, NGO1274 (LdcA), as the enzyme responsible for converting cell wall tetrapeptide-stem PG to released tripeptide-stem PG. Unlike characterized cytoplasmic LdcA homologs in gammaproteobacteria, LdcA in GC is exported to the periplasm, and its localization is critical for its activity in modifying PG fragments for release. Distinct among other characterized l,d-carboxypeptidases, LdcA from GC is also capable of catalyzing the cleavage of specific peptide cross-bridges (endopeptidase activity). To define the role of ldcA in pathogenesis, we demonstrate that ldcA disruption results in both loss of NOD1-dependent NF-κB activation and decreased NOD2-dependent NF-κB activation while not affecting Toll-like receptor (TLR) agonist release. Since the human intracellular peptidoglycan receptor NOD1 (hNOD1) specifically recognizes PG fragments with a terminal meso-DAP rather than d-alanine, we conclude that LdcA is required for GC to provoke NOD1-dependent responses in cells of the human host.IMPORTANCE The macromolecular meshwork of peptidoglycan serves essential functions in determining bacterial cell shape, protecting against osmotic lysis, and defending cells from external assaults. The conserved peptidoglycan structure, however, is also recognized by eukaryotic pattern recognition receptors, which can trigger immune responses against bacteria. Many bacteria can induce an inflammatory response through the intracellular peptidoglycan receptor NOD1, but Neisseria gonorrhoeae serves as an extreme example, releasing fragments of peptidoglycan into the environment during growth that specifically antagonize human NOD1. Understanding the peptidoglycan breakdown mechanisms that allow Neisseria to promote NOD1 activation, rather than avoiding or suppressing immune detection, is critical to understanding the pathogenesis of this increasingly drug-resistant organism. We identify a peptidoglycan l,d-carboxypeptidase responsible for converting liberated peptidoglycan fragments into the human NOD1 agonist and find that the same enzyme has endopeptidase activity on certain peptidoglycan cross-links, the first described combination of those two activities in a single enzyme.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kathleen T Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Chan JM, Dillard JP. Attention Seeker: Production, Modification, and Release of Inflammatory Peptidoglycan Fragments in Neisseria Species. J Bacteriol 2017; 199:e00354-17. [PMID: 28674065 PMCID: PMC5637178 DOI: 10.1128/jb.00354-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Maintenance of the structural macromolecule peptidoglycan (PG), which involves regulated cycles of PG synthesis and PG degradation, is pivotal for cellular integrity and survival. PG fragments generated from the degradation process are usually efficiently recycled by Gram-negative bacteria. However, Neisseria gonorrhoeae and a limited number of Gram-negative bacteria release PG fragments in amounts sufficient to induce host tissue inflammation and damage during an infection. Due to limited redundancy in PG-modifying machineries and genetic tractability, N. gonorrhoeae serves as a great model organism for the study of biological processes related to PG. This review summarizes the generation, modification, and release of inflammatory PG molecules by N. gonorrhoeae and related species and discusses these findings in the context of understanding bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Jia Mun Chan
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P Dillard
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Complete genome sequence of Halomonas ventosae virulent halovirus QHHSV-1. Arch Virol 2017; 162:3215-3219. [PMID: 28608126 DOI: 10.1007/s00705-017-3415-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
A virulent halovirus QHHSV-1 which lyses Halomonas ventosae QH52-2 originating from the Qiaohou salt mine in Yunnan, Southwest China was characterized. The complete genome of QHHSV-1 is composed of a circular double-stranded DNA of 37,270 base pairs in length, with 66.8% G+C content and 69 putative open reading frames (ORFs), which were classified into five functional groups, including morphogenesis, replication/regulation, packaging, lysis and lysogeny. A putative Cro repressor gene and an integrase gene were found in the genome, showing that QHHSV-1 may utilize a lambda-like repression system under unfavorable conditions. QHHSV-1 is the first report of the whole genome sequence of the virulent Halomonas phage belonging to the family Siphoviridae.
Collapse
|
26
|
An Amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase is required for mycobacterial cell division. Sci Rep 2017; 7:1140. [PMID: 28442758 PMCID: PMC5430687 DOI: 10.1038/s41598-017-01184-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/23/2017] [Indexed: 12/02/2022] Open
Abstract
Mycobacteria possess a multi-layered cell wall that requires extensive remodelling during cell division. We investigated the role of an amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase, a peptidoglycan remodelling enzyme implicated in cell division. We demonstrated that deletion of MSMEG_6281 (Ami1) in Mycobacterium smegmatis resulted in the formation of cellular chains, illustrative of cells that were unable to complete division. Suprisingly, viability in the Δami1 mutant was maintained through atypical lateral branching, the products of which proceeded to form viable daughter cells. We showed that these lateral buds resulted from mislocalization of DivIVA, a major determinant in facilitating polar elongation in mycobacterial cells. Failure of Δami1 mutant cells to separate also led to dysregulation of FtsZ ring bundling. Loss of Ami1 resulted in defects in septal peptidoglycan turnover with release of excess cell wall material from the septum or newly born cell poles. We noted signficant accumulation of 3-3 crosslinked muropeptides in the Δami1 mutant. We further demonstrated that deletion of ami1 leads to increased cell wall permeability and enhanced susceptiblity to cell wall targeting antibiotics. Collectively, these data provide novel insight on cell division in actinobacteria and highlights a new class of potential drug targets for mycobacterial diseases.
Collapse
|
27
|
Lenz JD, Stohl EA, Robertson RM, Hackett KT, Fisher K, Xiong K, Lee M, Hesek D, Mobashery S, Seifert HS, Davies C, Dillard JP. Amidase Activity of AmiC Controls Cell Separation and Stem Peptide Release and Is Enhanced by NlpD in Neisseria gonorrhoeae. J Biol Chem 2016; 291:10916-33. [PMID: 26984407 DOI: 10.1074/jbc.m116.715573] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
The human-restricted pathogen Neisseria gonorrhoeae encodes a single N-acetylmuramyl-l-alanine amidase involved in cell separation (AmiC), as compared with three largely redundant cell separation amidases found in Escherichia coli (AmiA, AmiB, and AmiC). Deletion of amiC from N. gonorrhoeae results in severely impaired cell separation and altered peptidoglycan (PG) fragment release, but little else is known about how AmiC functions in gonococci. Here, we demonstrated that gonococcal AmiC can act on macromolecular PG to liberate cross-linked and non-cross-linked peptides indicative of amidase activity, and we provided the first evidence that a cell separation amidase can utilize a small synthetic PG fragment as substrate (GlcNAc-MurNAc(pentapeptide)-GlcNAc-MurNAc(pentapeptide)). An investigation of two residues in the active site of AmiC revealed that Glu-229 is critical for both normal cell separation and the release of PG fragments by gonococci during growth. In contrast, Gln-316 has an autoinhibitory role, and its mutation to lysine resulted in an AmiC with increased enzymatic activity on macromolecular PG and on the synthetic PG derivative. Curiously, the same Q316K mutation that increased AmiC activity also resulted in cell separation and PG fragment release defects, indicating that activation state is not the only factor determining normal AmiC activity. In addition to displaying high basal activity on PG, gonococcal AmiC can utilize metal ions other than the zinc cofactor typically used by cell separation amidases, potentially protecting its ability to function in zinc-limiting environments. Thus gonococcal AmiC has distinct differences from related enzymes, and these studies revealed parameters for how AmiC functions in cell separation and PG fragment release.
Collapse
Affiliation(s)
- Jonathan D Lenz
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Elizabeth A Stohl
- the Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Rosanna M Robertson
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Kathleen T Hackett
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kathryn Fisher
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kalia Xiong
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mijoon Lee
- the Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46556
| | - Dusan Hesek
- the Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46556
| | - Shahriar Mobashery
- the Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46556
| | - H Steven Seifert
- the Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Christopher Davies
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Joseph P Dillard
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| |
Collapse
|
28
|
The Gonococcal NlpD Protein Facilitates Cell Separation by Activating Peptidoglycan Cleavage by AmiC. J Bacteriol 2015; 198:615-22. [PMID: 26574512 DOI: 10.1128/jb.00540-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Key steps in bacterial cell division are the synthesis and subsequent hydrolysis of septal peptidoglycan (PG), which allow efficient separation of daughter cells. Extensive studies in the Gram-negative, rod-shaped bacterium Escherichia coli have revealed that this hydrolysis is highly regulated spatially and temporally. Neisseria gonorrhoeae is an obligate Gram-negative, diplococcal pathogen and is the only causative agent of the sexually transmitted infection gonorrhea. We investigated how cell separation proceeds in this diplococcal organism. We demonstrated that deletion of the nlpD gene in strain FA1090 leads to poor growth and to an altered colony and cell morphology. An isopropyl-beta-d-galactopyranoside (IPTG)-regulated nlpD complemented construct can restore these defects only when IPTG is supplied in the growth medium. Thin-section transmission electron microscopy (TEM) revealed that the nlpD mutant strain grew in large clumps containing live and dead bacteria, which was consistent with deficient cell separation. Biochemical analyses of purified NlpD protein showed that it was able to bind purified PG. Finally, we showed that, although NlpD has no hydrolase activity itself, NlpD potentiates the hydrolytic activity of AmiC. These results indicate that N. gonorrhoeae NlpD is required for proper cell growth and division through its interactions with the amidase AmiC. IMPORTANCE N. gonorrhoeae is the sole causative agent of the sexually transmitted infection gonorrhea. The incidence of antibiotic-resistant gonococcal infections has risen sharply in recent years, and N. gonorrhoeae has been classified as a "superbug" by the CDC. Since there is a dearth of new antibiotics to combat gonococcal infections, elucidating the essential cellular process of N. gonorrhoeae may point to new targets for antimicrobial therapies. Cell division and separation is one such essential process. We identified and characterized the gonococcal nlpD gene and showed that it is essential for cell separation. In contrast to other pathogenic bacteria, the gonococcal system is streamlined and does not appear to have any redundancies.
Collapse
|
29
|
Lee JB, Byeon JH, Jang HA, Kim JK, Yoo JW, Kikuchi Y, Lee BL. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut. FEBS Lett 2015; 589:2784-90. [PMID: 26318755 DOI: 10.1016/j.febslet.2015.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont.
Collapse
Affiliation(s)
- Jun Beom Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Jin Hee Byeon
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Ho Am Jang
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, Kosin University College of Medicine, Busan 602-703, South Korea
| | - Jin Wook Yoo
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea.
| |
Collapse
|
30
|
Yakhnina AA, McManus HR, Bernhardt TG. The cell wall amidase AmiB is essential for Pseudomonas aeruginosa cell division, drug resistance and viability. Mol Microbiol 2015; 97:957-73. [PMID: 26032134 DOI: 10.1111/mmi.13077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/17/2022]
Abstract
The physiological function of cell wall amidases has been investigated in several proteobacterial species. In all cases, they have been implicated in the cleavage of cell wall material synthesized by the cytokinetic ring. Although typically non-essential, this activity is critical for daughter cell separation and outer membrane invagination during division. In Escherichia coli, proteins with LytM domains also participate in cell separation by stimulating amidase activity. Here, we investigated the function of amidases and LytM proteins in the opportunistic pathogen Pseudomonas aeruginosa. In agreement with studies in other organisms, (Pa) AmiB and three LytM proteins were found to play crucial roles in P. aeruginosa cell separation, envelope integrity and antibiotic resistance. Importantly, the phenotype of amidase-defective P. aeruginosa cells also differed in informative ways from the E. coli paradigm; (Pa) AmiB was found to be essential for viability and the successful completion of cell constriction. Our results thus reveal a key role for amidase activity in cytokinetic ring contraction. Furthermore, we show that the essential function of (Pa) AmiB can be bypassed in mutants activated for a Cpx-like envelope stress response, suggesting that this signaling system may elicit the repair of division machinery defects in addition to general envelope damage.
Collapse
Affiliation(s)
- Anastasiya A Yakhnina
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Heather R McManus
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
31
|
Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection. PLoS One 2014; 9:e114208. [PMID: 25460012 PMCID: PMC4252111 DOI: 10.1371/journal.pone.0114208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/31/2014] [Indexed: 01/03/2023] Open
Abstract
The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.
Collapse
|
32
|
Cell separation in Vibrio cholerae is mediated by a single amidase whose action is modulated by two nonredundant activators. J Bacteriol 2014; 196:3937-48. [PMID: 25182499 DOI: 10.1128/jb.02094-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synthesis and hydrolysis of septal peptidoglycan (PG) are critical processes at the conclusion of cell division that enable separation of daughter cells. Cleavage of septal PG is mediated by PG amidases, hydrolytic enzymes that release peptide side chains from the glycan strand. Most gammaproteobacteria, including Escherichia coli, encode several functionally redundant periplasmic amidases. However, members of the Vibrio genus, including the enteric pathogen Vibrio cholerae, encode only a single PG amidase, AmiB. Here, we show that V. cholerae AmiB is crucial for cell division and growth. Genetic and biochemical analyses indicated that AmiB is regulated by two activators, EnvC and NlpD, at least one of which is required for AmiB's localization to the cell division site. Localization of the activators (and thus of AmiB) is dependent upon the cell division protein FtsN. These factors mediate septal PG cleavage in E. coli as well; however, their precise roles vary between the two organisms in a number of ways. Notably, even though V. cholerae EnvC and NlpD appear to be functionally redundant under most growth conditions tested, NlpD is specifically required for intestinal colonization in the infant mouse model of cholera and for V. cholerae resistance against bile salts, perhaps due to environmental regulation of AmiB or its activators. Collectively, our findings reveal that although the cellular components that enable cleavage of septal PG appear to be generally conserved between E. coli and V. cholerae, they can be combined into diverse functional regulatory networks.
Collapse
|
33
|
The twin arginine translocation system is essential for aerobic growth and full virulence of Burkholderia thailandensis. J Bacteriol 2013; 196:407-16. [PMID: 24214943 DOI: 10.1128/jb.01046-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some β-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated.
Collapse
|
34
|
Abstract
Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many--and quite possibly all--bacteria, the peptidoglycan fragments are recovered and recycled. Although cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall-targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall-recycling inhibitors.
Collapse
Affiliation(s)
- Jarrod W Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
35
|
Chan YA, Hackett KT, Dillard JP. The lytic transglycosylases of Neisseria gonorrhoeae. Microb Drug Resist 2012; 18:271-9. [PMID: 22432703 DOI: 10.1089/mdr.2012.0001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Neisseria gonorrhoeae encodes five lytic transglycosylases (LTs) in the core genome, and most gonococcal strains also carry the gonococcal genetic island that encodes one or two additional LTs. These peptidoglycan (PG)-degrading enzymes are required for a number of processes that are either involved in the normal growth of the bacteria or affect the pathogenesis and gene transfer aspects of this species that make N. gonorrhoeae highly inflammatory and highly genetically variable. Systematic mutagenesis determined that two LTs are involved in producing the 1,6-anhydro PG monomers that cause the death of ciliated cells in Fallopian tubes. Here, we review the information available on these enzymes and discuss their roles in bacterial growth, cell separation, autolysis, type IV secretion, and pathogenesis.
Collapse
Affiliation(s)
- Yolande A Chan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
36
|
CpsY influences Streptococcus iniae cell wall adaptations important for neutrophil intracellular survival. Infect Immun 2012; 80:1707-15. [PMID: 22354020 DOI: 10.1128/iai.00027-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of a pathogen to evade neutrophil phagocytic killing mechanisms is critically important for dissemination and establishment of a systemic infection. Understanding how pathogens overcome these innate defenses is essential for the development of optimal therapeutic strategies for invasive infections. CpsY is a conserved transcriptional regulator previously identified as an important virulence determinant for systemic infection of Streptococcus iniae. While orthologs of CpsY have been associated with the regulation of methionine metabolism and uptake pathways, CpsY additionally functions in protection from neutrophil-mediated killing. S. iniae does not alter neutrophil phagosomal maturation but instead is able to adapt to the extreme bactericidal environment of a mature neutrophil phagosome, a property dependent upon CpsY. This CpsY-dependent adaptation appears to involve stabilization of the cell wall through peptidoglycan O-acetylation and repression of cellular autolysins. Furthermore, S. iniae continues to be a powerful model for investigation of bacterial adaptations during systemic streptococcal infection.
Collapse
|
37
|
Stohl EA, Chan YA, Hackett KT, Kohler PL, Dillard JP, Seifert HS. Neisseria gonorrhoeae virulence factor NG1686 is a bifunctional M23B family metallopeptidase that influences resistance to hydrogen peroxide and colony morphology. J Biol Chem 2012; 287:11222-33. [PMID: 22334697 DOI: 10.1074/jbc.m111.338830] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Symptomatic gonococcal infection, caused exclusively by the human-specific pathogen Neisseria gonorrhoeae (the gonococcus), is characterized by the influx of polymorphonuclear leukocytes (PMNs) to the site of infection. Although PMNs possess a potent antimicrobial arsenal comprising both oxidative and non-oxidative killing mechanisms, gonococci survive this interaction, suggesting that the gonococcus has evolved many defenses against PMN killing. We previously identified the NG1686 protein as a gonococcal virulence factor that protects against both non-oxidative PMN-mediated killing and oxidative killing by hydrogen peroxide. In this work, we show that deletion of ng1686 affects gonococcal colony morphology but not cell morphology and that overexpression of ng1686 does not confer enhanced survival to hydrogen peroxide on gonococci. NG1686 contains M23B endopeptidase active sites found in proteins that cleave bacterial cell wall peptidoglycan. Strains of N. gonorrhoeae expressing mutant NG1686 proteins with substitutions in many, but not all, conserved metallopeptidase active sites recapitulated the hydrogen peroxide sensitivity and altered colony morphology of the Δng1686 mutant strain. We showed that purified NG1686 protein degrades peptidoglycan in vitro and that mutations in many conserved active site residues abolished its degradative activity. Finally, we demonstrated that NG1686 possesses both dd-carboxypeptidase and endopeptidase activities. We conclude that the NG1686 protein is a M23B peptidase with dual activities that targets the cell wall to affect colony morphology and resistance to hydrogen peroxide and PMN-mediated killing.
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Department of Microbiology-Immunology, Northwestern Medical School Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Uehara T, Bernhardt TG. More than just lysins: peptidoglycan hydrolases tailor the cell wall. Curr Opin Microbiol 2011; 14:698-703. [PMID: 22055466 DOI: 10.1016/j.mib.2011.10.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 11/15/2022]
Abstract
Enzymes that degrade the peptidoglycan (PG) cell wall layer called PG hydrolases or autolysins are often thought of as destructive forces. Phages employ them to lyse their host for the release of virion particles and some bacteria secrete them to eliminate (lyse) their competition. However, bacteria also harness the activity of PG hydrolases for important aspects of growth, division, and development. Of course, using PG hydrolases in this capacity requires that they be tightly regulated. While this has been appreciated for some time, we are only just beginning to understand the mechanisms governing the activities of these 'tailoring' enzymes. This review will focus on recent advances in this area with an emphasis on the regulation of PG hydrolases involved in cell division.
Collapse
Affiliation(s)
- Tsuyoshi Uehara
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | | |
Collapse
|
39
|
Lehner J, Zhang Y, Berendt S, Rasse TM, Forchhammer K, Maldener I. The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol Microbiol 2011; 79:1655-69. [DOI: 10.1111/j.1365-2958.2011.07554.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Poggio S, Takacs CN, Vollmer W, Jacobs-Wagner C. A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains. Mol Microbiol 2010; 77:74-89. [PMID: 20497503 PMCID: PMC2907422 DOI: 10.1111/j.1365-2958.2010.07223.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During division of Gram-negative bacteria, invagination of the cytoplasmic membrane and inward growth of the peptidoglycan (PG) are followed by the cleavage of connective septal PG to allow cell separation. This PG splitting process requires temporal and spatial regulation of cell wall hydrolases. In Escherichia coli, LytM factors play an important role in PG splitting. Here we identify and characterize a member of this family (DipM) in Caulobacter crescentus. Unlike its E. coli counterparts, DipM is essential for viability under fast-growth conditions. Under slow-growth conditions, the DeltadipM mutant displays severe defects in cell division and FtsZ constriction. Consistent with its function in division, DipM colocalizes with the FtsZ ring during the cell cycle. Mutagenesis suggests that the LytM domain of DipM is essential for protein function, despite being non-canonical. DipM also carries two tandems of the PG-binding LysM domain that are sufficient for FtsZ ring localization. Localization and fluorescence recovery after photobleaching microscopy experiments suggest that DipM localization is mediated, at least in part, by the ability of the LysM tandems to distinguish septal, multilayered PG from non-septal, monolayered PG.
Collapse
Affiliation(s)
- Sebastian Poggio
- Department of Molecular, Cellular and Developmental Biology,Yale University, New Haven, CT 06511, USA
| | - Constantin N. Takacs
- Department of Molecular, Cellular and Developmental Biology,Yale University, New Haven, CT 06511, USA
| | - Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christine Jacobs-Wagner
- Department of Molecular, Cellular and Developmental Biology,Yale University, New Haven, CT 06511, USA
- Section of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06520, USA
- The Howard Hughes Medical Institute, New Haven, CT 06520, USA
| |
Collapse
|
41
|
LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 2009; 191:5094-107. [PMID: 19525345 DOI: 10.1128/jb.00505-09] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacterial cytokinesis is coupled to the localized synthesis of new peptidoglycan (PG) at the division site. This newly generated septal PG is initially shared by the daughter cells. In Escherichia coli and other gram-negative bacteria, it is split shortly after it is made to promote daughter cell separation and allow outer membrane constriction to closely follow that of the inner membrane. We have discovered that the LytM (lysostaphin)-domain containing factors of E. coli (EnvC, NlpD, YgeR, and YebA) are absolutely required for septal PG splitting and daughter cell separation. Mutants lacking all LytM factors form long cell chains with septa containing a layer of unsplit PG. Consistent with these factors playing a direct role in septal PG splitting, both EnvC-mCherry and NlpD-mCherry fusions were found to be specifically recruited to the division site. We also uncovered a role for the LytM-domain factors in the process of beta-lactam-induced cell lysis. Compared to wild-type cells, mutants lacking LytM-domain factors were delayed in the onset of cell lysis after treatment with ampicillin. Moreover, rather than lysing from midcell lesions like wild-type cells, LytM(-) cells appeared to lyse through a gradual loss of cell shape and integrity. Overall, the phenotypes of mutants lacking LytM-domain factors bear a striking resemblance to those of mutants defective for the N-acetylmuramyl-l-alanine amidases: AmiA, AmiB, and AmiC. E. coli thus appears to rely on two distinct sets of putative PG hydrolases to promote proper cell division.
Collapse
|
42
|
Abstract
Neisseria meningitidis is the etiologic agent of meningococcal meningitis. Carriage of the organism is approximately 10% while active disease occurs at a rate of 1:100,000. Recent publications demonstrate that N. meningitidis has the ability to form biofilms on glass, plastic or cultured human bronchial epithelial cells. Microcolony-like structures are also observed in histological sections from patients with active meningococcal disease. This review investigates the possible role of meningococcal biofilms in carriage and active disease, based on the laboratory and clinical aspects of the disease.
Collapse
Affiliation(s)
- R Brock Neil
- University of Iowa, Hygienic Laboratory, 102 Oakdale Campus, H101 OH, Iowa City, IA 52242-5002, USA, Tel.: +1 319 335 4380; Fax: +1 319 335 4555
| | - Michael A Apicella
- Department of Microbiology, 3–401 BSB, University of Iowa, Iowa City, IA 52242, USA, Tel.: +1 319 335 7807; Fax: +1 319 335 9006
| |
Collapse
|
43
|
Humann J, Lenz LL. Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection. J Innate Immun 2009; 1:88-97. [PMID: 19319201 PMCID: PMC2659621 DOI: 10.1159/000181181] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/09/2008] [Indexed: 01/01/2023] Open
Abstract
Peptidoglycan (PGN) is a major component of the bacterial cell envelope in both Gram-positive and Gram-negative bacteria. These muropeptides can be produced or modified by the activity of bacterial glycolytic and peptidolytic enzymes referred to as PGN hydrolases and autolysins. Some of these bacterial enzymes are crucial for bacterial pathogenicity and have been shown to modulate muropeptide release and/or host innate immune responses. The ability of muropeptides to modulate host responses is due to the fact that eukaryotes do not produce PGN and have instead evolved numerous strategies to detect intact PGN and PGN fragments (muropeptides). Here we review the structure of PGN and introduce the various bacterial enzymes known to degrade or modify bacterial PGN. Host factors involved in PGN and muropeptide detection are also briefly discussed, as are examples of how specific bacterial pathogens use PGN degradation and modification to subvert host innate immunity.
Collapse
Affiliation(s)
| | - Laurel L. Lenz
- University of Colorado – Denver, USA
- Integrated Department of Immunology, National Jewish Health, Denver, Colo., USA
| |
Collapse
|
44
|
Neisseria gonorrhoeae uses two lytic transglycosylases to produce cytotoxic peptidoglycan monomers. J Bacteriol 2008; 190:5989-94. [PMID: 18567658 DOI: 10.1128/jb.00506-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan fragments released by Neisseria gonorrhoeae contribute to the inflammation and ciliated cell death associated with gonorrhea and pelvic inflammatory disease. However, little is known about the production and release of these fragments during bacterial growth. Previous studies demonstrated that one lytic transglycosylase, LtgA, was responsible for the production of approximately half of the released peptidoglycan monomers. Systematic mutational analysis of other putative lytic transglycosylase genes identified lytic transglycosylase D (LtgD) as responsible for release of peptidoglycan monomers from gonococci. An ltgA ltgD double mutant was found not to release peptidoglycan monomers and instead released large, soluble peptidoglycan fragments. In pulse-chase experiments, recycled peptidoglycan was not found in cytoplasmic extracts from the ltgA ltgD mutant as it was for the wild-type strain, indicating that generation of anhydro peptidoglycan monomers by lytic transglycosylases facilitates peptidoglycan recycling. The ltgA ltgD double mutant showed no growth abnormalities or cell separation defects, suggesting that these enzymes are involved in pathogenesis but not necessary for normal growth.
Collapse
|
45
|
Garcia DL, Dillard JP. Mutations in ampG or ampD affect peptidoglycan fragment release from Neisseria gonorrhoeae. J Bacteriol 2008; 190:3799-807. [PMID: 18390650 PMCID: PMC2395056 DOI: 10.1128/jb.01194-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 03/26/2008] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae releases peptidoglycan fragments during growth. The majority of the fragments released are peptidoglycan monomers, molecules known to increase pathogenesis through the induction of proinflammatory cytokines and responsible for the killing of ciliated epithelial cells. In other gram-negative bacteria such as Escherichia coli, these peptidoglycan fragments are efficiently degraded and recycled. Peptidoglycan fragments enter the cytoplasm from the periplasm via the AmpG permease. The amidase AmpD degrades peptidoglycan monomers by removing the disaccharide from the peptide. The disaccharide and the peptide are further degraded and are then used for new peptidoglycan synthesis or general metabolism. We examined the possibility that peptidoglycan fragment release by N. gonorrhoeae results from defects in peptidoglycan recycling. The deletion of ampG caused a large increase in peptidoglycan monomer release. Analysis of cytoplasmic material showed peptidoglycan fragments as recycling intermediates in the wild-type strain but absent from the ampG mutant. An ampD deletion reduced the release of all peptidoglycan fragments and nearly eliminated the release of free disaccharide. The ampD mutant also showed a large buildup of peptidoglycan monomers in the cytoplasm. The introduction of an ampG mutation in the ampD background restored peptidoglycan fragment release, indicating that events in the cytoplasm (metabolic or transcriptional regulation) affect peptidoglycan fragment release. The ampD mutant showed increased metabolism of exogenously added free disaccharide derived from peptidoglycan. These results demonstrate that N. gonorrhoeae has an active peptidoglycan recycling pathway and can regulate peptidoglycan fragment metabolism, dependent on the intracellular concentration of peptidoglycan fragments.
Collapse
Affiliation(s)
- Daniel L Garcia
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
46
|
Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ. Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 2008; 104:1-13. [PMID: 18171378 DOI: 10.1111/j.1365-2672.2007.03498.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Extensive research has been conducted on the development of three groups of naturally occurring antimicrobials as novel alternatives to antibiotics: bacteriophages (phages), bacterial cell wall hydrolases (BCWH), and antimicrobial peptides (AMP). Phage therapies are highly efficient, highly specific, and relatively cost-effective. However, precautions have to be taken in the selection of phage candidates for therapeutic applications as some phages may encode toxins and others may, when integrated into host bacterial genome and converted to prophages in a lysogenic cycle, lead to bacterial immunity and altered virulence. BCWH are divided into three groups: lysozymes, autolysins, and virolysins. Among them, virolysins are the most promising candidates as they are highly specific and have the capability to rapidly lyse antibiotic-resistant bacteria on a generally species-specific basis. Finally, AMP are a family of natural proteins produced by eukaryotic and prokaryotic organisms or encoded by phages. AMP are of vast diversity in term of size, structure, mode of action, and specificity and have a high potential for clinical therapeutic applications.
Collapse
Affiliation(s)
- A Parisien
- Department of Chemical Engineering, University of Ottawa, Ottawa, Canada
| | | | | | | | | |
Collapse
|
47
|
Rice KC, Bayles KW. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 2008; 72:85-109, table of contents. [PMID: 18322035 PMCID: PMC2268280 DOI: 10.1128/mmbr.00030-07] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of bacterial cell death and lysis has been studied for over 100 years, the contribution of these important processes to bacterial physiology and development has only recently been recognized. Contemporary study of cell death and lysis in a number of different bacteria has revealed that these processes, once thought of as being passive and unregulated, are actually governed by highly complex regulatory systems. An emerging paradigm in this field suggests that, analogous to programmed cell death in eukaryotes, regulated cell death and lysis in bacteria play an important role in both developmental processes, such as competence and biofilm development, and the elimination of damaged cells, such as those irreversibly injured by environmental or antibiotic stress. Further study in this exciting field of bacterial research may provide new insight into the potential evolutionary link between control of cell death in bacteria and programmed cell death (apoptosis) in eukaryotes.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology and Pathology, University of Nebraska Medical Center, 668 S. 41st St., PYH4014, Omaha, NE 68198-6245, USA
| | | |
Collapse
|
48
|
Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32:259-86. [PMID: 18266855 DOI: 10.1111/j.1574-6976.2007.00099.x] [Citation(s) in RCA: 647] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most bacteria have multiple peptidoglycan hydrolases capable of cleaving covalent bonds in peptidoglycan sacculi or its fragments. An overview of the different classes of peptidoglycan hydrolases and their cleavage sites is provided. The physiological functions of these enzymes include the regulation of cell wall growth, the turnover of peptidoglycan during growth, the separation of daughter cells during cell division and autolysis. Specialized hydrolases enlarge the pores in the peptidoglycan for the assembly of large trans-envelope complexes (pili, flagella, secretion systems), or they specifically cleave peptidoglycan during sporulation or spore germination. Moreover, peptidoglycan hydrolases are involved in lysis phenomena such as fratricide or developmental lysis occurring in bacterial populations. We will also review the current view on the regulation of autolysins and on the role of cytoplasm hydrolases in peptidoglycan recycling and induction of beta-lactamase.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|