1
|
Vu HM, Moran TE, Liang Z, Bao YJ, Carles PG, Keane JC, Cerney MG, Dahnke CN, Flores-Mireles AL, Ploplis VA, Castellino FJ, Lee SW. Group a Streptococcus remains viable inside fibrin clots and gains access to human plasminogen for subsequent fibrinolysis and dissemination. Microbiol Spectr 2025; 13:e0260724. [PMID: 39804237 PMCID: PMC11792473 DOI: 10.1128/spectrum.02607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 02/05/2025] Open
Abstract
Group A Streptococcus (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape. A major unresolved question regards the temporal dynamics of how GAS enmeshed in a fibrin clot can access plasminogen for clot dissolution and eventual dissemination. Here, we reveal through live imaging studies that GAS trapped inside a fibrin clot can remain viable in a latent state, until access to plasminogen activates fibrinolysis and dissemination. RNA-sequencing (RNA-seq) analysis shows marked changes in the wild-type (WT)-GAS transcriptome from the time bacteria were enmeshed inside the clot (4 h) to when dissemination was initiated (8 h). To gain a more fully realized model of how GAS trapped in fibrin clots can disseminate in the blood system, we utilized a novel 3D endothelial microfluidic device to demonstrate that GAS is fully capable of fibrinolysis in an endothelial environment, revealing a major underappreciated route by which GAS may cause more invasive outcomes. Our findings reveal for the first time that GAS can engage a latent, growth-suspended phase whereby physical structures such as fibrin clots that immobilize an invading pathogen allow bacteria to remain viable until sufficient access to plasminogen allows it to initiate fibrinolysis and escape into surrounding blood system and tissues. IMPORTANCE Group A Streptococcus (GAS) is a human-specific bacterial pathogen that causes infections ranging in severity from mild to severe infections that can often be fatal. To protect the host, the innate immune system creates fibrin clots to trap bacteria and prevent deeper spread. GAS produces several factors that can initiate the dissolution of these fibrin clots to spread to deeper tissues, but we lack specific understanding of the timing of these events. Our studies demonstrate for the first time that GAS can delay their escape from fibrin clots to gain access to deeper tissues during infection, suggesting a key strategy that GAS utilize to cause more invasive disease.
Collapse
Affiliation(s)
- Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Berthiamue Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yun-Juan Bao
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paulina G. Carles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica C. Keane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Madelyn G. Cerney
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Caitlyn N. Dahnke
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Berthiamue Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Coppolino F, Romeo L, Pietrocola G, Lentini G, De Gaetano GV, Teti G, Galbo R, Beninati C. Lysine Residues in the MK-Rich Region Are Not Required for Binding of the PbsP Protein From Group B Streptococci to Plasminogen. Front Cell Infect Microbiol 2021; 11:679792. [PMID: 34568085 PMCID: PMC8455988 DOI: 10.3389/fcimb.2021.679792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Binding to plasminogen (Plg) enables bacteria to associate with and invade host tissues. The cell wall protein PbsP significantly contributes to the ability of group B streptococci, a frequent cause of invasive infection, to bind Plg. Here we sought to identify the molecular regions involved in the interactions between Plg and PbsP. The K4 Kringle domain of the Plg molecule was required for binding of Plg to whole PbsP and to a PbsP fragment encompassing a region rich in methionine and lysine (MK-rich domain). These interactions were inhibited by free L-lysine, indicating the involvement of lysine binding sites in the Plg molecule. However, mutation to alanine of all lysine residues in the MK-rich domain did not decrease its ability to bind Plg. Collectively, our data identify a novel bacterial sequence that can interact with lysine binding sites in the Plg molecule. Notably, such binding did not require the presence of lysine or other positively charged amino acids in the bacterial receptor. These data may be useful for developing alternative therapeutic strategies aimed at blocking interactions between group B streptococci and Plg.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Letizia Romeo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | | | - Roberta Galbo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
3
|
Vu HM, Hammers DE, Liang Z, Nguyen GL, Benz ME, Moran TE, Higashi DL, Park CJ, Ayinuola YA, Donahue DL, Flores-Mireles AL, Ploplis VA, Castellino FJ, Lee SW. Group A Streptococcus-Induced Activation of Human Plasminogen Is Required for Keratinocyte Wound Retraction and Rapid Clot Dissolution. Front Cardiovasc Med 2021; 8:667554. [PMID: 34179133 PMCID: PMC8230121 DOI: 10.3389/fcvm.2021.667554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Invasive outcomes of Group A Streptococcus (GAS) infections that involve damage to skin and other tissues are initiated when these bacteria colonize and disseminate via an open wound to gain access to blood and deeper tissues. Two critical GAS virulence factors, Plasminogen-Associated M-Protein (PAM) and streptokinase (SK), work in concert to bind and activate host human plasminogen (hPg) in order to create a localized proteolytic environment that alters wound-site architecture. Using a wound scratch assay with immortalized epithelial cells, real-time live imaging (RTLI) was used to examine dynamic effects of hPg activation by a PAM-containing skin-trophic GAS isolate (AP53R+S-) during the course of infection. RTLI of these wound models revealed that retraction of the epithelial wound required both GAS and hPg. Isogenic AP53R+S- mutants lacking SK or PAM highly attenuated the time course of retraction of the keratinocyte wound. We also found that relocalization of integrin β1 from the membrane to the cytoplasm occurred during the wound retraction event. We devised a combined in situ-based cellular model of fibrin clot-in epithelial wound to visualize the progress of GAS pathogenesis by RTLI. Our findings showed GAS AP53R+S- hierarchically dissolved the fibrin clot prior to the retraction of keratinocyte monolayers at the leading edge of the wound. Overall, our studies reveal that localized activation of hPg by AP53R+S- via SK and PAM during infection plays a critical role in dissemination of bacteria at the wound site through both rapid dissolution of the fibrin clot and retraction of the keratinocyte wound layer.
Collapse
Affiliation(s)
- Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Gabrielle L. Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Mary E. Benz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Dustin L. Higashi
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Claudia J. Park
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Yetunde A. Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L. Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
4
|
Schormann N, Campos J, Motamed R, Hayden KL, Gould JR, Green TJ, Senkovich O, Banerjee S, Ulett GC, Chattopadhyay D. Chlamydia trachomatis glyceraldehyde 3-phosphate dehydrogenase: Enzyme kinetics, high-resolution crystal structure, and plasminogen binding. Protein Sci 2020; 29:2446-2458. [PMID: 33058314 DOI: 10.1002/pro.3975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an evolutionarily conserved essential enzyme in the glycolytic pathway. GAPDH is also involved in a wide spectrum of non-catalytic cellular 'moonlighting' functions. Bacterial surface-associated GAPDHs engage in many host interactions that aid in colonization, pathogenesis, and virulence. We have structurally and functionally characterized the recombinant GAPDH of the obligate intracellular bacteria Chlamydia trachomatis, the leading cause of sexually transmitted bacterial and ocular infections. Contrary to earlier speculations, recent data confirm the presence of glucose-catabolizing enzymes including GAPDH in both stages of the biphasic life cycle of the bacterium. The high-resolution crystal structure described here provides a close-up view of the enzyme's active site and surface topology and reveals two chemically modified cysteine residues. Moreover, we show for the first time that purified C. trachomatis GAPDH binds to human plasminogen and plasmin. Based on the versatility of GAPDH's functions, data presented here emphasize the need for investigating the Chlamydiae GAPDH's involvement in biological functions beyond energy metabolism.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Campos
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Rachael Motamed
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Katherine L Hayden
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Joseph R Gould
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga Senkovich
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, Arizona, USA
| | - Surajit Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Illinois, USA
| | - Glen C Ulett
- School of Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands, Australia
| | | |
Collapse
|
5
|
Moraes CTP, Longo J, Silva LB, Pimenta DC, Carvalho E, Morone MSLC, da Rós N, Serrano SMT, Santos ACM, Piazza RMF, Barbosa AS, Elias WP. Surface Protein Dispersin of Enteroaggregative Escherichia coli Binds Plasminogen That Is Converted Into Active Plasmin. Front Microbiol 2020; 11:1222. [PMID: 32625178 PMCID: PMC7315649 DOI: 10.3389/fmicb.2020.01222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/14/2020] [Indexed: 01/24/2023] Open
Abstract
Dispersin is a 10.2 kDa-immunogenic protein secreted by enteroaggregative Escherichia coli (EAEC). In the prototypical EAEC strain 042, dispersin is non-covalently bound to the outer membrane, assisting dispersion across the intestinal mucosa by overcoming electrostatic attraction between the AAF/II fimbriae and the bacterial surface. Also, dispersin facilitates penetration of the intestinal mucus layer. Initially characterized in EAEC, dispersin has been detected in other E. coli pathotypes, including those isolated from extraintestinal sites. In this study we investigated the binding capacity of purified dispersin to extracellular matrix (ECM), since dispersin is exposed on the bacterial surface and is involved in intestinal colonization. Binding to plasminogen was also investigated due to the presence of conserved carboxy-terminal lysine residues in dispersin sequences, which are involved in plasminogen binding in several bacterial proteins. Moreover, some E. coli components can interact with this host protease, as well as with tissue plasminogen activator, leading to plasmin production. Recombinant dispersin was produced and used in binding assays with ECM molecules and coagulation cascade compounds. Purified dispersin bound specifically to laminin and plasminogen. Interaction with plasminogen occurred in a dose-dependent and saturable manner. In the presence of plasminogen activator, bound plasminogen was converted into plasmin, its active form, leading to fibrinogen and vitronectin cleavage. A collection of E. coli strains isolated from human bacteremia was screened for the presence of aap, the dispersin-encoding gene. Eight aap-positive strains were detected and dispersin production could be observed in four of them. Our data describe new attributes for dispersin and points out to possible roles in mechanisms of tissue adhesion and dissemination, considering the binding capacity to laminin, and the generation of dispersin-bound plasmin(ogen), which may facilitate E. coli spread from the colonization site to other tissues and organs. The cleavage of fibrinogen in the bloodstream, may also contribute to the pathogenesis of sepsis caused by dispersin-producing E. coli.
Collapse
Affiliation(s)
| | - Jonathan Longo
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Ludmila B Silva
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Mariana S L C Morone
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Nancy da Rós
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Ana Carolina M Santos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Angela S Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Waldir P Elias
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
6
|
Yuan Y, Ayinuola YA, Singh D, Ayinuola O, Mayfield JA, Quek A, Whisstock JC, Law RHP, Lee SW, Ploplis VA, Castellino FJ. Solution structural model of the complex of the binding regions of human plasminogen with its M-protein receptor from Streptococcus pyogenes. J Struct Biol 2019; 208:18-29. [PMID: 31301349 PMCID: PMC6983471 DOI: 10.1016/j.jsb.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
VEK50 is a truncated peptide from a Streptococcal pyogenes surface human plasminogen (hPg) binding M-protein (PAM). VEK50 contains the full A-domain of PAM, which is responsible for its low nanomolar binding to hPg. The interaction of VEK50 with kringle 2, the PAM-binding domain in hPg (K2hPg), has been studied by high-resolution NMR spectroscopy. The data show that each VEK50 monomer in solution contains two tight binding sites for K2hPg, one each in the a1- (RH1; R17H18) and a2- (RH2; R30H31) repeats within the A-domain of VEK50. Two mutant forms of VEK50, viz., VEK50[RH1/AA] (VEK50ΔRH1) and VEK50[RH2/AA] (VEK50ΔRH2), were designed by replacing each RH with AA, thus eliminating one of the K2hPg binding sites within VEK50, and allowing separate study of each binding site. Using 13C- and 15N-labeled peptides, NMR-derived solution structures of VEK50 in its complex with K2hPg were solved. We conclude that the A-domain of PAM can accommodate two molecules of K2hPg docked within a short distance of each other, and the strength of the binding is slightly different for each site. The solution structure of the VEK50/K2hPg, complex, which is a reductionist model of the PAM/hPg complex, provides insights for the binding mechanism of PAM to a host protein, a process that is critical to S. pyogenes virulence.
Collapse
Affiliation(s)
- Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Damini Singh
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Olawole Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeffrey A Mayfield
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Adam Quek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
7
|
Wang B, Cleary PP. Intracellular Invasion by Streptococcus pyogenes: Invasins, Host Receptors, and Relevance to Human Disease. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0049-2018. [PMID: 31267891 PMCID: PMC10957197 DOI: 10.1128/microbiolspec.gpp3-0049-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
The human oral-nasal mucosa is the primary reservoir for Streptococcus pyogenes infections. Although the most common infection of consequence in temperate climates is pharyngitis, the past 25 years have witnessed a dramatic increase in invasive disease in many regions of the world. Historically, S. pyogenes has been associated with sepsis and fulminate systemic infections, but the mechanism by which these streptococci traverse mucosal or epidermal barriers is not understood. The discovery that S. pyogenes can be internalized by mammalian epithelial cells at high frequencies (1-3) and/or open tight junctions to pass between cells (4) provides potential explanations for changes in epidemiology and the ability of this species to breach such barriers. In this article, the invasins and pathways that S. pyogenes uses to reach the intracellular state are reviewed, and the relationship between intracellular invasion and human disease is discussed.
Collapse
Affiliation(s)
- Beinan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing China
| | - P Patrick Cleary
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
8
|
Qiu C, Yuan Y, Zajicek J, Liang Z, Balsara RD, Brito-Robionson T, Lee SW, Ploplis VA, Castellino FJ. Contributions of different modules of the plasminogen-binding Streptococcus pyogenes M-protein that mediate its functional dimerization. J Struct Biol 2018; 204:151-164. [PMID: 30071314 PMCID: PMC6544907 DOI: 10.1016/j.jsb.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
Group A Streptococcus pyogenes (GAS) is a causative agent of pharyngeal and dermal infections in humans. A major virulence determinant of GAS is its dimeric signature fibrillar M-protein (M-Prt), which is evolutionarily designed in modules, ranging from a hypervariable extracellular N-terminal region to a progressively more highly conserved C-terminus that is covalently anchored to the cell wall. Of the >250 GAS isolates classified, only the subset of skin-trophic Pattern D strains expresses a specific serotype of M-Prt, PAM, that directly binds to host human plasminogen (hPg) via its extracellular NH2-terminal variable A-domain region. This interaction allows these GAS strains to accumulate components of the host fibrinolytic system on their surfaces to serve extracellular functions. While structure-function studies have been accomplished on M-Prts from Pattern A-C GAS isolates with different direct ligand binding properties compared to PAM, much less is known regarding the structure-function relationships of PAM-type M-Prts, particularly their dimerization determinants. To examine these questions, PAMs from seven GAS strains with sequence variations in the NH2-terminal ligand binding domains, as well as truncated versions of PAM, were designed and studied. The results from bioinformatic and biophysical analyses show that the different domains of PAM are disparately engaged in dimerization. From these data, we propose an experimentally-based model for PAM secondary and quaternary structures that is highly dependent on the conserved helical C-terminal C-D-domains. In addition, while the N-terminal regions of PAMs are variable in sequence, the binding properties of hPg and its activated product, plasmin, to the A-domain, remain intact.
Collapse
Affiliation(s)
- Cunjia Qiu
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jaroslav Zajicek
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Rashna D Balsara
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Teresa Brito-Robionson
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shaun W Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
9
|
Nguyen NTT, Röttgerding F, Devraj G, Lin YP, Koenigs A, Kraiczy P. The Complement Binding and Inhibitory Protein CbiA of Borrelia miyamotoi Degrades Extracellular Matrix Components by Interacting with Plasmin(ogen). Front Cell Infect Microbiol 2018; 8:23. [PMID: 29456970 PMCID: PMC5801413 DOI: 10.3389/fcimb.2018.00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
The emerging relapsing fever spirochete Borrelia (B.) miyamotoi is transmitted by ixodid ticks and causes the so-called hard tick-borne relapsing fever or B. miyamotoi disease (BMD). More recently, we identified a surface-exposed molecule, CbiA exhibiting complement binding and inhibitory capacity and rendering spirochetes resistant to complement-mediated lysis. To gain deeper insight into the molecular principles of B. miyamotoi-host interaction, we examined CbiA as a plasmin(ogen) receptor that enables B. miyamotoi to interact with the serine protease plasmin(ogen). Recombinant CbiA was able to bind plasminogen in a dose-dependent fashion. Moreover, lysine residues appear to play a crucial role in the protein-protein interaction as binding of plasminogen was inhibited by the lysine analog tranexamic acid as well as increasing ionic strength. Of relevance, plasminogen bound to CbiA can be converted by urokinase-type plasminogen activator (uPa) to active plasmin which cleaved both, the chromogenic substrate S-2251 and its physiologic substrate fibrinogen. Concerning the involvement of specific amino acids in the interaction with plasminogen, lysine residues located at the C-terminus are frequently involved in the binding as reported for various other plasminogen-interacting proteins of Lyme disease spirochetes. Lysine residues located within the C-terminal domain were substituted with alanine to generate single, double, triple, and quadruple point mutants. However, binding of plasminogen to the mutated CbiA proteins was not affected, suggesting that lysine residues distant from the C-terminus might be involved in the interaction.
Collapse
Affiliation(s)
- Ngoc T T Nguyen
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Gayatri Devraj
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, NY, United States
| | - Arno Koenigs
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany.,VIROTECH Diagnostics GmbH, Rüsselsheim, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Rahi A, Dhiman A, Singh D, Lynn AM, Rehan M, Bhatnagar R. Exploring the interaction between Mycobacterium tuberculosis enolase and human plasminogen using computational methods and experimental techniques. J Cell Biochem 2018; 119:2408-2417. [PMID: 28888036 DOI: 10.1002/jcb.26403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
Abstract
Surface localized microbial enolases' binding with human plasminogen has been increasingly proven to have an important role in initial infection cycle of several human pathogens. Likewise, surface localized Mycobacterium tuberculosis (Mtb) enolase also binds to human plasminogen, and this interaction may entail crucial consequences for granuloma stability. The current study is the first attempt to explore the plasminogen interacting residues of enolase from Mtb. Beginning with the structural modeling of Mtb enolase, the binding pose of Mtb enolase and human plasminogen was predicted using protein-protein docking simulations. The binding pose revealed the interface region with interacting residues and molecular interactions. Next, the interacting residues were refined and ranked by using various criteria. Finally, the selected interacting residues were tested experimentally for their involvement in plasminogen binding. The two consecutive lysine residues, Lys-193 and Lys-194, turned out to be active residues for plasminogen binding. These residues when substituted for alanine along with the most active residue Lys-429, that is, the triple mutant (K193A + K194A + K429A) Mtb enolase, exhibited 40% reduction in plasminogen binding. It is worth noting that Mtb enolase lost nearly half of the plasminogen binding activity with only three simultaneous substitutions, without any significant secondary structure perturbation. Further, the sequence comparison between Mtb and human enolase isoforms suggests the possibility of selective targeting of Mtb enolase to obstruct binding of human plasminogen.
Collapse
Affiliation(s)
- Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alisha Dhiman
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Damini Singh
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Andrew M Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Rehan
- King, Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Rox K, Jansen R, Loof TG, Gillen CM, Bernecker S, Walker MJ, Chhatwal GS, Müller R. Linoleic and palmitoleic acid block streptokinase-mediated plasminogen activation and reduce severity of invasive group A streptococcal infection. Sci Rep 2017; 7:11798. [PMID: 28924140 PMCID: PMC5603603 DOI: 10.1038/s41598-017-11276-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023] Open
Abstract
In contrast to mild infections of Group A Streptococcus (GAS) invasive infections of GAS still pose a serious health hazard: GAS disseminates from sterile sites into the blood stream or deep tissues and causes sepsis or necrotizing fasciitis. In this case antibiotics do not provide an effective cure as the bacteria are capable to hide from them very quickly. Therefore, new remedies are urgently needed. Starting from a myxobacterial natural products screening campaign, we identified two fatty acids isolated from myxobacteria, linoleic and palmitoleic acid, specifically blocking streptokinase-mediated activation of plasminogen and thereby preventing streptococci from hijacking the host’s plasminogen/plasmin system. This activity is not inherited by other fatty acids such as oleic acid and is not attributable to the killing of streptococci. Moreover, both fatty acids are superior in their inhibitory properties compared to two clinically used drugs (tranexamic or ε-amino caproic acid) as they show 500–1000 fold lower IC50 values. Using a humanized plasminogen mouse model mimicking the clinical situation of a local GAS infection that becomes systemic, we demonstrate that these fatty acids ameliorate invasive GAS infection significantly. Consequently, linoleic and palmitoleic acid are possible new options to combat GAS invasive diseases.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Central facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Hannover, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Hannover, Germany
| | - Torsten G Loof
- Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Infection Immunology Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christine M Gillen
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Steffen Bernecker
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Hannover, Germany
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Gursharan Singh Chhatwal
- Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Hannover, Germany.
| |
Collapse
|
12
|
Blood Group Antigen Recognition via the Group A Streptococcal M Protein Mediates Host Colonization. mBio 2017; 8:mBio.02237-16. [PMID: 28119471 PMCID: PMC5263248 DOI: 10.1128/mbio.02237-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]) is responsible for over 500,000 deaths worldwide each year. The highly virulent M1T1 GAS clone is one of the most frequently isolated serotypes from streptococcal pharyngitis and invasive disease. The oral epithelial tract is a niche highly abundant in glycosylated structures, particularly those of the ABO(H) blood group antigen family. Using a high-throughput approach, we determined that a strain representative of the globally disseminated M1T1 GAS clone 5448 interacts with numerous, structurally diverse glycans. Preeminent among GAS virulence factors is the surface-expressed M protein. M1 protein showed high affinity for several terminal galactose blood group antigen structures. Deletion mutagenesis shows that M1 protein mediates glycan binding via its B repeat domains. Association of M1T1 GAS with oral epithelial cells varied significantly as a result of phenotypic differences in blood group antigen expression, with significantly higher adherence to those cells expressing H antigen structures compared to cells expressing A, B, or AB antigen structures. These data suggest a novel mechanism for GAS attachment to host cells and propose a link between host blood group antigen expression and M1T1 GAS colonization. IMPORTANCE There has been a resurgence in group A streptococcal (GAS) invasive disease, which has been paralleled by the emergence of the highly virulent M1T1 GAS clone. Intensive research has focused on mechanisms that contribute to the invasive nature of this serotype, while the mechanisms that contribute to host susceptibility to disease and bacterial colonization and persistence are still poorly understood. The M1T1 GAS clone is frequently isolated from the throat, an environment highly abundant in blood group antigen structures. This work examined the interaction of the M1 protein, the preeminent GAS surface protein, against a wide range of host-expressed glycan structures. Our data suggest that susceptibility to infection by GAS in the oral tract may correlate with phenotypic differences in host blood group antigen expression. Thus, variations in host blood group antigen expression may serve as a selective pressure contributing to the dissemination and overrepresentation of M1T1 GAS.
Collapse
|
13
|
Davis RW, Eggleston H, Johnson F, Nahrendorf M, Bock PE, Peterson T, Panizzi P. In Vivo Tracking of Streptococcal Infections of Subcutaneous Origin in a Murine Model. Mol Imaging Biol 2016; 17:793-801. [PMID: 25921659 DOI: 10.1007/s11307-015-0856-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Generation of plasmin in vivo by Streptococcus pyogenes is thought to localize the active protease complexes to the pathogen surface to aid in tissue dissemination. Here, we chose to follow cutaneous streptococcal infections by the use of non-invasive bioluminescence imaging to determine if this pathogen can be followed by this approach and the extent of bacterial spread in the absence of canonical plasminogen activation by streptokinase. PROCEDURES Mice were injected subcutaneously with either bioluminescent strains of streptococci, namely Xen20 and Xen10 or S. pyogenes ALAB49. Bioluminescence imaging was performed daily and results were correlated with microbiological and histological analyses. RESULTS Comparative analysis of chronologic non-invasive datasets indicated that Xen20 did not disseminate from the initial infection site. Contrary to this, microbiological and histological analyses of Xen20 mice for total bacterial burden indicated sepsis and widespread pathogen involvement. CONCLUSIONS The use of bioluminescence in microbe-based studies requires genomic and pathologic characterization to correlate imaging results with underlying pathology.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Heather Eggleston
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Frances Johnson
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St., Boston, MA, 02114, USA
| | - Paul E Bock
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tiffany Peterson
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| |
Collapse
|
14
|
Kylväjä R, Ojalehto T, Kainulainen V, Virkola R, Westerlund-Wikström B. Penicillin binding protein 3 of Staphylococcus aureus NCTC 8325-4 binds and activates human plasminogen. BMC Res Notes 2016; 9:389. [PMID: 27488131 PMCID: PMC4972960 DOI: 10.1186/s13104-016-2190-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022] Open
Abstract
Background Staphylococcus aureus is a versatile pathogen expressing a number of virulence-associated adhesive molecules. In a previous study, we generated in a secretion-competent Escherichia coli strain a library of random FLAG-tag positive (FTP) polypeptides of S. aureus. To identify adhesive proteins and gain additional knowledge on putative virulence factors of S. aureus, we here screened the FTP library against human serum proteins. Findings Staphylococcus aureus NCTC 8325-4, origin of the FTP library, adhered to immobilized plasminogen in vitro. In an enzyme-linked immunoassay a C-terminal part of penicillin binding protein 3 (PBP3), included in the FTP library, bound to immobilized plasminogen. We expressed and purified full-length PBP3 and its C-terminal fragments as recombinant proteins. In a time-resolved fluorometry—based assay the PBP3 polypeptides bound to immobilized plasminogen. The polypeptides enhanced formation of plasmin from plasminogen as analyzed by cleavage of a chromogenic plasmin substrate. Conclusions The present findings, although preliminary, demonstrate reliably that S. aureus NCTC 8325-4 adheres to immobilized plasminogen in vitro and that the adhesion may be mediated by a C-terminal fragment of the PBP3 protein. The full length PBP3 and the penicillin binding C-terminal domain of PBP3 expressed as recombinant proteins bound plasminogen and activated plasminogen to plasmin. These phenomena were inhibited by the lysine analogue ε-aminocaproic acid suggesting that the binding is mediated by lysine residues. A detailed molecular description of surface molecules enhancing the virulence of S. aureus will aid in understanding of its pathogenicity and help in design of antibacterial drugs in the future. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2190-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riikka Kylväjä
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland.,Thermo Fisher Scientific, Ratastie 2, 01620, Vantaa, Finland
| | - Tuomas Ojalehto
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland.,Orion Diagnostica, Koivu-Mankkaan tie 6, 02200, Espoo, Finland
| | - Veera Kainulainen
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland.,Pharmacology, Faculty of Medicine, University of Helsinki, P.O.Box 63, FI-00014, University of Helsinki, Helsinki, Finland
| | - Ritva Virkola
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland
| | - Benita Westerlund-Wikström
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Acosta H, Rondón-Mercado R, Avilán L, Concepción JL. Interaction of Trypanosoma evansi with the plasminogen-plasmin system. Vet Parasitol 2016; 226:189-97. [DOI: 10.1016/j.vetpar.2016.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 01/08/2023]
|
16
|
Pietrocola G, Nobile G, Gianotti V, Zapotoczna M, Foster TJ, Geoghegan JA, Speziale P. Molecular Interactions of Human Plasminogen with Fibronectin-binding Protein B (FnBPB), a Fibrinogen/Fibronectin-binding Protein from Staphylococcus aureus. J Biol Chem 2016; 291:18148-62. [PMID: 27387503 DOI: 10.1074/jbc.m116.731125] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a commensal bacterium that has the ability to cause superficial and deep-seated infections. Like several other invasive pathogens, S. aureus can capture plasminogen from the human host where it can be converted to plasmin by host plasminogen activators or by endogenously expressed staphylokinase. This study demonstrates that sortase-anchored cell wall-associated proteins are responsible for capturing the bulk of bound plasminogen. Two cell wall-associated proteins, the fibrinogen- and fibronectin-binding proteins A and B, were found to bind plasminogen, and one of them, FnBPB, was studied in detail. Plasminogen captured on the surface of S. aureus- or Lactococcus lactis-expressing FnBPB could be activated to the potent serine protease plasmin by staphylokinase and tissue plasminogen activator. Plasminogen bound to recombinant FnBPB with a KD of 0.532 μm as determined by surface plasmon resonance. Plasminogen binding did not to occur by the same mechanism through which FnBPB binds to fibrinogen. Indeed, FnBPB could bind both ligands simultaneously indicating that their binding sites do not overlap. The N3 subdomain of FnBPB contains the full plasminogen-binding site, and this includes, at least in part, two conserved patches of surface-located lysine residues that were recognized by kringle 4 of the host protein.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Giulia Nobile
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Valentina Gianotti
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Marta Zapotoczna
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Timothy J Foster
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Joan A Geoghegan
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Pietro Speziale
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| |
Collapse
|
17
|
Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. Streptococcus pyogenes adhesion and colonization. FEBS Lett 2016; 590:3739-3757. [PMID: 27312939 DOI: 10.1002/1873-3468.12254] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a human-adapted pathogen responsible for a wide spectrum of disease. GAS can cause relatively mild illnesses, such as strep throat or impetigo, and less frequent but severe life-threatening diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS is an important public health problem causing significant morbidity and mortality worldwide. The main route of GAS transmission between humans is through close or direct physical contact, and particularly via respiratory droplets. The upper respiratory tract and skin are major reservoirs for GAS infections. The ability of GAS to establish an infection in the new host at these anatomical sites primarily results from two distinct physiological processes, namely bacterial adhesion and colonization. These fundamental aspects of pathogenesis rely upon a variety of GAS virulence factors, which are usually under strict transcriptional regulation. Considerable progress has been made in better understanding these initial infection steps. This review summarizes our current knowledge of the molecular mechanisms of GAS adhesion and colonization.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre For Infection Research, Braunschweig, Germany
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
18
|
Sumitomo T, Nakata M, Higashino M, Yamaguchi M, Kawabata S. Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions. Sci Rep 2016; 7:20069. [PMID: 26822058 PMCID: PMC4731814 DOI: 10.1038/srep20069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/14/2015] [Indexed: 11/09/2022] Open
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miharu Higashino
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Gonzalez T, Gaultney RA, Floden AM, Brissette CA. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain. Front Microbiol 2015; 6:1095. [PMID: 26500634 PMCID: PMC4595779 DOI: 10.3389/fmicb.2015.01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli lipoprotein (Lpp) is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysinses in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen (Plg), a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to Plg, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-Plg interactions were examined. Additionally, the ability of Lpp-bound Plg to be converted to active plasmin was analyzed. We determined that Lpp binds Plg via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that Plg bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding Plg are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.
Collapse
Affiliation(s)
- Tammy Gonzalez
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| | - Robert A Gaultney
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| | - Angela M Floden
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| | - Catherine A Brissette
- Brissette Laboratory, Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND, USA
| |
Collapse
|
20
|
Raymond BBA, Djordjevic S. Exploitation of plasmin(ogen) by bacterial pathogens of veterinary significance. Vet Microbiol 2015; 178:1-13. [PMID: 25937317 DOI: 10.1016/j.vetmic.2015.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/31/2023]
Abstract
The plasminogen (Plg) system plays an important homeostatic role in the degradation of fibrin clots, extracellular matrices and tissue barriers important for cellular migration, as well as the promotion of neurotransmitter release. Plg circulates in plasma at physiologically high concentrations (150-200μg ml(-1)) as an inactive proenzyme. Proteins enriched in lysine and other positively charged residues (histidine and arginine) as well as glycosaminoglycans and gangliosides bind Plg. The binding interaction initiates a structural adjustment to the bound Plg that facilitates cleavage by proteases (plasminogen activators tPA and uPA) that activate Plg to the active serine protease plasmin. Both pathogenic and commensal bacteria capture Plg onto their cell surface and promote its conversion to plasmin. Many microbial Plg-binding proteins have been described underpinning the importance this process plays in how bacteria interact with their hosts. Bacteria exploit the proteolytic capabilities of plasmin by (i) targeting the mammalian fibrinolytic system and degrading fibrin clots, (ii) remodeling the extracellular matrix and generating bioactive cleavage fragments of the ECM that influence signaling pathways, (iii) activating matrix metalloproteinases that assist in the destruction of tissue barriers and promote microbial metastasis and (iv) destroying immune effector molecules. There has been little focus on the exploitation of the fibrinolytic system by veterinary pathogens. Here we describe several pathogens of veterinary significance that possess adhesins that bind plasmin(ogen) onto their cell surface and promote its activation to plasmin. Cumulative data suggests that these attributes provide pathogenic and commensal bacteria with a means to colonize and persist within the host environment.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven Djordjevic
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
21
|
Martin WJ, Steer AC, Smeesters PR, Keeble J, Inouye M, Carapetis J, Wicks IP. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun Rev 2015; 14:710-25. [PMID: 25891492 DOI: 10.1016/j.autrev.2015.04.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
There is a pressing need to reduce the high global disease burden of rheumatic heart disease (RHD) and its harbinger, acute rheumatic fever (ARF). ARF is a classical example of an autoimmune syndrome and is of particular immunological interest because it follows a known antecedent infection with group A streptococcus (GAS). However, the poorly understood immunopathology of these post-infectious diseases means that, compared to much progress in other immune-mediated diseases, we still lack useful biomarkers, new therapies or an effective vaccine in ARF and RHD. Here, we summarise recent literature on the complex interaction between GAS and the human host that culminates in ARF and the subsequent development of RHD. We contrast ARF with other post-infectious streptococcal immune syndromes - post-streptococcal glomerulonephritis (PSGN) and the still controversial paediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS), in order to highlight the potential significance of variations in the host immune response to GAS. We discuss a model for the pathogenesis of ARF and RHD in terms of current immunological concepts and the potential for application of in depth "omics" technologies to these ancient scourges.
Collapse
Affiliation(s)
- William John Martin
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Andrew C Steer
- Centre for International Child Health, Department of Pediatrics, University of Melbourne and Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia; Group A Streptococcus Laboratory, Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia
| | - Pierre Robert Smeesters
- Centre for International Child Health, Department of Pediatrics, University of Melbourne and Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia; Group A Streptococcus Laboratory, Murdoch Childrens Research Institute, Parkville, VIC 3052, Australia
| | - Joanne Keeble
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology and Immunology, University of Melbourne, VIC 3010, Australia
| | | | - Ian P Wicks
- Inflammation Division, Water and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Rheumatology Unit, Royal Melbourne Hospital, Parkville, VIC 3052, Australia.
| |
Collapse
|
22
|
Al-Horani RA, Desai UR. Recent advances on plasmin inhibitors for the treatment of fibrinolysis-related disorders. Med Res Rev 2014; 34:1168-1216. [PMID: 24659483 PMCID: PMC8788159 DOI: 10.1002/med.21315] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Growing evidence suggests that plasmin is involved in a number of physiological processes in addition to its key role in fibrin cleavage. Plasmin inhibition is critical in preventing adverse consequences arising from plasmin overactivity, e.g., blood loss that may follow cardiac surgery. Aprotinin was widely used as an antifibrinolytic drug before its discontinuation in 2008. Tranexamic acid and ε-aminocaproic acid, two small molecule plasmin inhibitors, are currently used in the clinic. Several molecules have been designed utilizing covalent, but reversible, chemistry relying on reactive cyclohexanones, nitrile warheads, and reactive aldehyde peptidomimetics. Other major classes of plasmin inhibitors include the cyclic peptidomimetics and polypeptides of the Kunitz and Kazal-type. Allosteric inhibitors of plasmin have also been designed including small molecule lysine analogs that bind to plasmin's kringle domain(s) and sulfated glycosaminoglycan mimetics that bind to plasmin's catalytic domain. Plasmin inhibitors have also been explored for resolving other disease states including cell metastasis, cell proliferation, angiogenesis, and embryo implantation. This review highlights functional and structural aspects of plasmin inhibitors with the goal of advancing their design.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia
| | | |
Collapse
|
23
|
Sanderson-Smith M, De Oliveira DMP, Guglielmini J, McMillan DJ, Vu T, Holien JK, Henningham A, Steer AC, Bessen DE, Dale JB, Curtis N, Beall BW, Walker MJ, Parker MW, Carapetis JR, Van Melderen L, Sriprakash KS, Smeesters PR. A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J Infect Dis 2014; 210:1325-38. [PMID: 24799598 PMCID: PMC6083926 DOI: 10.1093/infdis/jiu260] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/25/2014] [Indexed: 11/12/2022] Open
Abstract
Streptococcus pyogenes ranks among the main causes of mortality from bacterial infections worldwide. Currently there is no vaccine to prevent diseases such as rheumatic heart disease and invasive streptococcal infection. The streptococcal M protein that is used as the substrate for epidemiological typing is both a virulence factor and a vaccine antigen. Over 220 variants of this protein have been described, making comparisons between proteins difficult, and hindering M protein-based vaccine development. A functional classification based on 48 emm-clusters containing closely related M proteins that share binding and structural properties is proposed. The need for a paradigm shift from type-specific immunity against S. pyogenes to emm-cluster based immunity for this bacterium should be further investigated. Implementation of this emm-cluster-based system as a standard typing scheme for S. pyogenes will facilitate the design of future studies of M protein function, streptococcal virulence, epidemiological surveillance, and vaccine development.
Collapse
Affiliation(s)
- Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Australia
| | - David M. P. De Oliveira
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Australia
| | - Julien Guglielmini
- Microbial Evolutionary Genomics, Département Génomes et Génétique, Institut Pasteur
- CNRS, UMR3525, Paris, France
| | - David J. McMillan
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, Brisbane
- Inflammation and Healing Research Cluster, School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Australia
| | - Therese Vu
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, Brisbane
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jessica K. Holien
- Biota Structural Biology Laboratory, ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Andrew C. Steer
- Murdoch Children Research Institute
- Centre for International Child Health, The University of Melbourne
- Department of General Medicine, Royal Children's Hospital Melbourne, Australia
| | - Debra E. Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla
| | - James B. Dale
- Department of Medicine, The University of Tennessee Health Science Center
- Department of Veterans Affairs Medical Center, and
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis
| | - Nigel Curtis
- Murdoch Children Research Institute
- Infectious Diseases Unit, Royal Children's Hospital Melbourne
- Department of Paediatrics, The University of Melbourne, Australia
| | - Bernard W. Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Michael W. Parker
- Biota Structural Biology Laboratory, ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne
| | - Jonathan R. Carapetis
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth
| | - Laurence Van Melderen
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Kadaba S. Sriprakash
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, Brisbane
| | - Pierre R. Smeesters
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
- Murdoch Children Research Institute
| |
Collapse
|
24
|
Henningham A, Yamaguchi M, Aziz RK, Kuipers K, Buffalo CZ, Dahesh S, Choudhury B, Van Vleet J, Yamaguchi Y, Seymour LM, Ben Zakour NL, He L, Smith HV, Grimwood K, Beatson SA, Ghosh P, Walker MJ, Nizet V, Cole JN. Mutual exclusivity of hyaluronan and hyaluronidase in invasive group A Streptococcus. J Biol Chem 2014; 289:32303-32315. [PMID: 25266727 PMCID: PMC4231703 DOI: 10.1074/jbc.m114.602847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Masaya Yamaguchi
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Ramy K Aziz
- Systems Biology Research Group, University of California San Diego, La Jolla, California 92093; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Kirsten Kuipers
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HC Nijmegen, The Netherlands
| | - Cosmo Z Buffalo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093
| | - Jeremy Van Vleet
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093
| | - Yuka Yamaguchi
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Lisa M Seymour
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nouri L Ben Zakour
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lingjun He
- Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182
| | - Helen V Smith
- Queensland Health Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - Keith Grimwood
- Queensland Children's Medical Research Institute, Herston, Queensland 4029, Australia, and
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Skaggs School of Pharmacy and Pharmaceutical Sciences, and University of California San Diego, La Jolla, California 92093; Rady Children's Hospital, San Diego, California 92123
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia,.
| |
Collapse
|
25
|
Bhattacharya S, Liang Z, Quek AJ, Ploplis VA, Law R, Castellino FJ. Dimerization is not a determining factor for functional high affinity human plasminogen binding by the group A streptococcal virulence factor PAM and is mediated by specific residues within the PAM a1a2 domain. J Biol Chem 2014; 289:21684-93. [PMID: 24962580 DOI: 10.1074/jbc.m114.570218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A emm53 subclass of Group A Streptococcus pyogenes (GAS) interacts tightly with human plasma plasminogen (hPg) and plasmin (hPm) via the kringle 2 (K2hPg) domain of hPg/hPm and the N-terminal a1a2 regions of a GAS coiled-coil M-like protein (PAM). Previous studies have shown that a monomeric PAM fragment, VEK30 (residues 97-125 + Tyr), interacted specifically with isolated K2hPg. However, the binding strength of VEK30 (KD = 56 nm) was ∼60-fold weaker than that of full-length dimeric PAM (KD = 1 nm). To assess whether this attenuated binding was due to the inability of VEK30 to dimerize, we defined the minimal length of PAM required to dimerize using a series of peptides with additional PAM residues placed at the NH2 and COOH termini of VEK30. VEK64 (PAM residues 83-145 + Tyr) was found to be the smallest peptide that adopted an α-helical dimer, and was bound to K2hPg with nearly the same affinity as PAM (KD = 1-2 nm). However, addition of two PAM residues (Arg(126)-His(127)) to the COOH terminus of VEK30 (VEK32) maintained a monomeric peptidic structure, but exhibited similar K2hPg binding affinity as full-length dimeric PAM. We identified five residues in a1a2 (Arg(113), His(114), Glu(116), Arg(126), His(127)), mutation of which reduced PAM binding affinity for K2hPg by ∼ 1000-fold. Replacement of these critical residues by Ala in the GAS genome resulted in reduced virulence, similar to the effects of inactivating the PAM gene entirely. We conclude that rather than dimerization of PAM, the five key residues in the binding domain of PAM are essential to mediate the high affinity interaction with hPg, leading to increased GAS virulence.
Collapse
Affiliation(s)
- Sarbani Bhattacharya
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Zhong Liang
- From the W. M. Keck Center for Transgene Research and
| | - Adam J Quek
- the Department of Biochemistry and Molecular Biology, Monash University, 3800, Victoria, Australia
| | - Victoria A Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Ruby Law
- the Department of Biochemistry and Molecular Biology, Monash University, 3800, Victoria, Australia
| | - Francis J Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| |
Collapse
|
26
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
27
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 612] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
28
|
Crystal structure of PfbA, a surface adhesin of Streptococcus pneumoniae, provides hints into its interaction with fibronectin. Int J Biol Macromol 2013; 64:168-73. [PMID: 24321492 DOI: 10.1016/j.ijbiomac.2013.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 12/27/2022]
Abstract
PfbA is a surface adhesin and invasin of Streptococcus pneumoniae that binds to human fibronectin and plasminogen of the host extracellular matrix. It is a virulence factor for its pathogenesis. The crystal structure of recombinant PfbA150-607 from S. pneumoniae strain R6, was determined using multiwavelength anomalous dispersion (MAD) method and refined to 1.90Å resolution. The structure of rPfbA150-607 revealed that residues Thr150 to Lys570 form a rigid parallel beta helix, followed by a short disordered region (571-607) that consists of beta hairpins. The structural organization of the beta helix resembles that of polysaccharide-modifying enzymes. The structural and sequence features essential for fibronectin-binding observed in the well characterized fibronectin-binding proteins such as FnBPA of Staphylococcus aureus, SfbI of Streptococcus pyogenes and BBK32 of Borrelia burgdorferi has been found in rPfbA150-607. Based on this, it is predicted that the disordered region following the beta helix could be the fibronectin-binding region in PfbA. PfbA150-607 contains relatively high number of surface exposed lysines and these residues are probably involved in binding plasmin(ogen) as observed in other plasminogen-binding proteins.
Collapse
|
29
|
Zipfel PF, Hallström T, Riesbeck K. Human complement control and complement evasion by pathogenic microbes – Tipping the balance. Mol Immunol 2013; 56:152-60. [DOI: 10.1016/j.molimm.2013.05.222] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Fulde M, Steinert M, Bergmann S. Interaction of streptococcal plasminogen binding proteins with the host fibrinolytic system. Front Cell Infect Microbiol 2013; 3:85. [PMID: 24319673 PMCID: PMC3837353 DOI: 10.3389/fcimb.2013.00085] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/06/2013] [Indexed: 11/13/2022] Open
Abstract
The ability to take advantage of plasminogen and its activated form plasmin is a common mechanism used by commensal as well as pathogenic bacteria in interaction with their respective host. Hence, a huge variety of plasminogen binding proteins and activation mechanisms exist. This review solely focuses on the genus Streptococcus and, in particular, on the so-called non-activating plasminogen binding proteins. Based on structural and functional differences, as well as on their mode of surface linkaging, three groups can be assigned: M-(like) proteins, surface displayed cytoplasmatic proteins with enzymatic activities (“moonlighting proteins”) and other surface proteins. Here, the plasminogen binding sites and the interaction mechanisms are compared. Recent findings on the functional consequences of these interactions on tissue degradation and immune evasion are summarized.
Collapse
Affiliation(s)
- Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School Hannover, Germany
| | | | | |
Collapse
|
31
|
Non-immune binding of human IgG to M-related proteins confers resistance to phagocytosis of group A streptococci in blood. PLoS One 2013; 8:e78719. [PMID: 24205299 PMCID: PMC3808296 DOI: 10.1371/journal.pone.0078719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/20/2013] [Indexed: 12/04/2022] Open
Abstract
The non-immune binding of immunoglobulins by bacteria is thought to contribute to the pathogenesis of infections. M-related proteins (Mrp) are group A streptococcal (GAS) receptors for immunoglobulins, but it is not known if this binding has any impact on virulence. To further investigate the binding of immunoglobulins to Mrp, we engineered mutants of an M type 4 strain of GAS by inactivating the genes for mrp, emm, enn, sof, and sfbX and tested these mutants in IgG-binding assays. Inactivation of mrp dramatically decreased the binding of human IgG, whereas inactivation of emm, enn, sof, and sfbx had only minor effects, indicating that Mrp is a major IgG-binding protein. Binding of human immunoglobulins to a purified, recombinant form of Mrp indicated that it selectively binds to the Fc domain of human IgG, but not IgA or IgM and that it preferentially bound subclasses IgG1>IgG4>IgG2>IgG3. Recombinant proteins encompassing different regions of Mrp were engineered and used to map its IgG-binding domain to its A-repeat region and a recombinant protein with 3 A-repeats was a better inhibitor of IgG binding than one with a single A-repeat. A GAS mutant expressing Mrp with an in-frame deletion of DNA encoding the A-repeats had a dramatically reduced ability to bind human IgG and to grow in human blood. Mrp exhibited host specificity in binding IgG; human IgG was the best inhibitor of the binding of IgG followed by pig, horse, monkey, and rabbit IgG. IgG from goat, mouse, rat, cow, donkey, chicken, and guinea pig were poor inhibitors of binding. These findings indicate that Mrp preferentially binds human IgG and that this binding contributes to the ability of GAS to resist phagocytosis and may be a factor in the restriction of GAS infections to the human host.
Collapse
|
32
|
Cooperative plasminogen recruitment to the surface of Streptococcus canis via M protein and enolase enhances bacterial survival. mBio 2013; 4:e00629-12. [PMID: 23481605 PMCID: PMC3604778 DOI: 10.1128/mbio.00629-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Streptococcus canis is a zoonotic pathogen capable of causing serious invasive diseases in domestic animals and humans. Surface-exposed M proteins and metabolic enzymes have been characterized as major virulence determinants in various streptococcal species. Recently, we have identified SCM, the M-like protein of S. canis, as the major receptor for miniplasminogen localized on the bacterial surface. The present study now characterizes the glycolytic enzyme enolase as an additional surface-exposed plasminogen-binding protein. According to its zoonotic properties, purified S. canis enolase binds to both human and canine plasminogen and facilitates degradation of aggregated fibrin matrices after activation with host-derived urokinase-type plasminogen activator (uPA). Unlike SCM, which binds to the C terminus of human plasminogen, the S. canis enolase interacts N terminally with the first four kringle domains of plasminogen, representing angiostatin. Radioactive binding analyses confirmed cooperative plasminogen recruitment to both surface-exposed enolase and SCM. Furthermore, despite the lack of surface protease activity via SpeB in S. canis, SCM is released and reassociated homophilically to surface-anchored SCM and heterophilically to surface-bound plasminogen. In addition to plasminogen-mediated antiphagocytic activity, reassociation of SCM to the bacterial surface significantly enhanced bacterial survival in phagocytosis analyses using human neutrophils. IMPORTANCE Streptococcal infections are a major issue in medical microbiology due to the increasing spread of antibiotic resistances and the limited availability of efficient vaccines. Surface-exposed glycolytic enzymes and M proteins have been characterized as major virulence factors mediating pathogen-host interaction. Since streptococcal infection mechanisms exert a subset of multicombinatorial processes, the investigation of synergistic activities mediated via different virulence factors has become a high priority. Our data clearly demonstrate that plasminogen recruitment to the Streptococcus canis surface via SCM and enolase in combination with SCM reassociation enhances bacterial survival by protecting against phagocytic killing. These data propose a new cooperative mechanism for prevention of phagocytic killing based on the synergistic activity of homophilic and heterophilic SCM binding in the presence of human plasminogen.
Collapse
|
33
|
Zhang Y, Liang Z, Hsueh HT, Ploplis VA, Castellino FJ. Characterization of streptokinases from group A Streptococci reveals a strong functional relationship that supports the coinheritance of plasminogen-binding M protein and cluster 2b streptokinase. J Biol Chem 2012; 287:42093-103. [PMID: 23086939 PMCID: PMC3516755 DOI: 10.1074/jbc.m112.417808] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Group Astreptococcus (GAS) strains secrete the protein streptokinase (SK), which functions by activating host human plasminogen (hPg) to plasmin (hPm), thus providing a proteolytic framework for invasive GAS strains. The types of SK secreted by GAS have been grouped into two clusters (SK1 and SK2) and one subcluster (SK2a and SK2b). SKs from cluster 1 (SK1) and cluster 2b (SK2b) display significant evolutionary and functional differences, and attempts to relate these properties to GAS skin or pharynx tropism and invasiveness are of great interest. In this study, using four purified SKs from each cluster, new relationships between plasminogen-binding group A streptococcal M (PAM) protein and SK2b have been revealed. All SK1 proteins efficiently activated hPg, whereas all subclass SK2b proteins only weakly activated hPg in the absence of PAM. Surface plasmon resonance studies revealed that the lower affinity of SK2b to hPg served as the basis for the attenuated activation of hPg by SK2b. Binding of hPg to either human fibrinogen (hFg) or PAM greatly enhanced activation of hPg by SK2b but minimally influenced the already effective activation of hPg by SK1. Activation of hPg in the presence of GAS cells containing PAM demonstrated that PAM is the only factor on the surface of SK2b-expressing cells that enabled the direct activation of hPg by SK2b. As the binding of hPg to PAM is necessary for hPg activation by SK2b, this dependence explains the coinherant relationship between PAM and SK2b and the ability of these particular strains to generate the proteolytic activity that disrupts the innate barriers that limit invasiveness.
Collapse
Affiliation(s)
- Yueling Zhang
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | | | |
Collapse
|
34
|
Bacterial plasminogen receptors: mediators of a multifaceted relationship. J Biomed Biotechnol 2012; 2012:272148. [PMID: 23118502 PMCID: PMC3478875 DOI: 10.1155/2012/272148] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022] Open
Abstract
Multiple species of bacteria are able to sequester the host zymogen plasminogen to the cell surface. Once localised to the bacterial surface, plasminogen can act as a cofactor in adhesion, or, following activation to plasmin, provide a source of potent proteolytic activity. Numerous bacterial plasminogen receptors have been identified, and the mechanisms by which they interact with plasminogen are diverse. Here we provide an overview of bacterial plasminogen receptors and discuss the diverse role bacterial plasminogen acquisition plays in the relationship between bacteria and the host.
Collapse
|
35
|
Characterization of cleavage events in the multifunctional cilium adhesin Mhp684 (P146) reveals a mechanism by which Mycoplasma hyopneumoniae regulates surface topography. mBio 2012; 3:mBio.00282-11. [PMID: 22493032 PMCID: PMC3322551 DOI: 10.1128/mbio.00282-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mycoplasma hyopneumoniae causes enormous economic losses to swine production worldwide by colonizing the ciliated epithelium in the porcine respiratory tract, resulting in widespread damage to the mucociliary escalator, prolonged inflammation, reduced weight gain, and secondary infections. Protein Mhp684 (P146) comprises 1,317 amino acids, and while the N-terminal 400 residues display significant sequence identity to the archetype cilium adhesin P97, the remainder of the molecule is novel and displays unusual motifs. Proteome analysis shows that P146 preprotein is endogenously cleaved into three major fragments identified here as P50P146, P40P146, and P85P146 that reside on the cell surface. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) identified a semitryptic peptide that delineated a major cleavage site in Mhp684. Cleavage occurred at the phenylalanine residue within sequence 672ATEF↓QQ677, consistent with a cleavage motif resembling S/T-X-F↓X-D/E recently identified in Mhp683 and other P97/P102 family members. Biotinylated surface proteins recovered by avidin chromatography and separated by two-dimensional gel electrophoresis (2-D GE) showed that more-extensive endoproteolytic cleavage of P146 occurs. Recombinant fragments F1P146-F3P146 that mimic P50P146, P40P146, and P85P146 were constructed and shown to bind porcine epithelial cilia and biotinylated heparin with physiologically relevant affinity. Recombinant versions of F3P146 generated from M. hyopneumoniae strain J and 232 sequences strongly bind porcine plasminogen, and the removal of their respective C-terminal lysine and arginine residues significantly reduces this interaction. These data reveal that P146 is an extensively processed, multifunctional adhesin of M. hyopneumoniae. Extensive cleavage coupled with variable cleavage efficiency provides a mechanism by which M. hyopneumoniae regulates protein topography. Vaccines used to control Mycoplasma hyopneumoniae infection provide only partial protection. Proteins of the P97/P102 families are highly expressed, functionally redundant molecules that are substrates of endoproteases that generate multifunctional adhesin fragments on the cell surface. We show that P146 displays a chimeric structure consisting of an N terminus, which shares sequence identity with P97, and novel central and C-terminal regions. P146 is endoproteolytically processed at multiple sites, generating at least nine fragments on the surface of M. hyopneumoniae. Dominant cleavage events occurred at S/T-X-F↓X-D/E-like sites generating P50P146, P40P146, and P85P146. Recombinant proteins designed to mimic the major cleavage fragments bind porcine cilia, heparin, and plasminogen. P146 undergoes endoproteolytic processing events at multiple sites and with differential processing efficiency, generating combinatorial diversity on the surface of M. hyopneumoniae.
Collapse
|
36
|
Shannon O, Herwald H, Oehmcke S. Modulation of the coagulation system during severe streptococcal disease. Curr Top Microbiol Immunol 2012; 368:189-205. [PMID: 23224709 DOI: 10.1007/82_2012_283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Haemostasis is maintained by a tightly regulated coagulation system that comprises platelets, procoagulant proteins, and anticoagulant proteins. During the local and systemic response to bacterial infection, the coagulation system becomes activated, and contributes to the pathophysiological response to infection. The significant human pathogen, Streptococcus pyogenes has multiple strategies to modulate coagulation. This can range from systemic activation of the intrinsic and extrinsic pathway of coagulation to local stimulation of fibrinolysis. Such diverse effects on this host system imply a finely tuned host-bacteria interaction. The molecular mechanisms that underlie this modulation of the coagulation system are discussed in this review.
Collapse
Affiliation(s)
- Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Biomedical Centre, B14, Lund University, Sweden.
| | | | | |
Collapse
|
37
|
Seymour LM, Jenkins C, Deutscher AT, Raymond BBA, Padula MP, Tacchi JL, Bogema DR, Eamens GJ, Woolley LK, Dixon NE, Walker MJ, Djordjevic SP. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface. Cell Microbiol 2011; 14:81-94. [PMID: 21951786 DOI: 10.1111/j.1462-5822.2011.01702.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycoplasma hyopneumoniae is a major, economically damaging respiratory pathogen. Although M. hyopneumoniae cells bind plasminogen, the identification of plasminogen-binding surface proteins and the biological ramifications of acquiring plasminogen requires further investigation. mhp182 encodes a highly expressed 102 kDa protein (P102) that undergoes proteolytic processing to generate surface-located N-terminal 60 kDa (P60) and C-terminal 42 kDa (P42) proteins of unknown function. We show that recombinant P102 (rP102) binds plasminogen at physiologically relevant concentrations (K(D) ~ 76 nM) increasing the susceptibility of plasmin(ogen) to activation by tissue-specific plasminogen activator (tPA). Recombinant proteins constructed to mimic P60 (rP60) and P42 (rP42) also bound plasminogen at physiologically significant levels. M. hyopneumoniae surface-bound plasminogen was activated by tPA and is able to degrade fibrinogen, demonstrating the biological functionality of M. hyopneumoniae-bound plasmin(ogen) upon activation. Plasmin(ogen) was readily detected in porcine ciliated airways and plasmin levels were consistently higher in bronchoalveolar lavage fluid from M. hyopneumoniae-infected animals. Additionally, rP102 and rP42 bind fibronectin with K(D) s of 26 and 33 nM respectively and recombinant P102 proteins promote adherence to porcine kidney epithelial-like cells. The multifunctional binding ability of P102 and activation of M. hyopneumoniae-sequestered plasmin(ogen) by an exogenous activator suggests P102 plays an important role in virulence.
Collapse
Affiliation(s)
- Lisa M Seymour
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bencurova E, Mlynarcik P, Bhide M. An insight into the ligand-receptor interactions involved in the translocation of pathogens across blood-brain barrier. ACTA ACUST UNITED AC 2011; 63:297-318. [PMID: 22092557 DOI: 10.1111/j.1574-695x.2011.00867.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/09/2011] [Accepted: 09/02/2011] [Indexed: 01/01/2023]
Abstract
Traversal of pathogen across the blood-brain barrier (BBB) is an essential step for central nervous system (CNS) invasion. Pathogen traversal can occur paracellularly, transcellularly, and/or in infected phagocytes (Trojan horse mechanism). To trigger the translocation processes, mainly through paracellular and transcellular ways, interactions between protein molecules of pathogen and BBB are inevitable. Simply, it takes two to tango: both host receptors and pathogen ligands. Underlying molecular basis of BBB translocation of various pathogens has been revealed in the last decade, and a plethora of experimental data on protein-protein interactions has been created. This review compiles these data and should give insights into the ligand-receptor interactions that occur during BBB translocation. Further, it sheds light on cell signaling events triggered in response to ligand-receptor interaction. Understanding of the molecular principles of pathogen-host interactions that are involved in traversal of the BBB should contribute to develop new vaccine and drug strategies to prevent CNS infections.
Collapse
Affiliation(s)
- Elena Bencurova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | | | | |
Collapse
|
39
|
Sun H. Exploration of the host haemostatic system by group A streptococcus: implications in searching for novel antimicrobial therapies. J Thromb Haemost 2011; 9 Suppl 1:189-94. [PMID: 21781255 PMCID: PMC3151011 DOI: 10.1111/j.1538-7836.2011.04316.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The haemostatic system is heavily involved in the host response to infection. A number of host haemostatic factors, notably plasminogen and fibrinogen have been reported to bind and interact with various bacterial proteins. This review summarises the roles of host haemostatic factors such as plasminogen, factor V and fibrinogen in host defence against group A streptococcus infection and discusses the potential of targeting the host haemostatic system for therapeutic intervention against infectious diseases.
Collapse
Affiliation(s)
- H Sun
- Department of Internal Medicine, University of Missouri Hospital and Clinics, Columbia, MO, USA.
| |
Collapse
|
40
|
Siemens N, Patenge N, Otto J, Fiedler T, Kreikemeyer B. Streptococcus pyogenes M49 plasminogen/plasmin binding facilitates keratinocyte invasion via integrin-integrin-linked kinase (ILK) pathways and protects from macrophage killing. J Biol Chem 2011; 286:21612-22. [PMID: 21521694 DOI: 10.1074/jbc.m110.202671] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The entry into epithelial cells and the prevention of primary immune responses are a prerequisite for a successful colonization and subsequent infection of the human host by Streptococcus pyogenes (group A streptococci, GAS). Here, we demonstrate that interaction of GAS with plasminogen promotes an integrin-mediated internalization of the bacteria into keratinocytes, which is independent from the serine protease activity of potentially generated plasmin. α(1)β(1)- and α(5)β(1)-integrins were identified as the major keratinocyte receptors involved in this process. Inhibition of integrin-linked kinase (ILK) expression by siRNA silencing or blocking of PI3K and Akt with specific inhibitors, reduced the GAS M49-plasminogen/plasmin-mediated invasion of keratinocytes. In addition, blocking of actin polymerization significantly reduced GAS internalization into keratinocytes. Altogether, these results provide a first model of plasminogen-mediated GAS invasion into keratinocytes. Furthermore, we demonstrate that plasminogen binding protects the bacteria against macrophage killing.
Collapse
Affiliation(s)
- Nikolai Siemens
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Hospital, Schillingallee 70, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
41
|
Seymour LM, Falconer L, Deutscher AT, Minion FC, Padula MP, Dixon NE, Djordjevic SP, Walker MJ. Mhp107 is a member of the multifunctional adhesin family of Mycoplasma hyopneumoniae. J Biol Chem 2011; 286:10097-104. [PMID: 21245147 DOI: 10.1074/jbc.m110.208140] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative pathogen of porcine enzootic pneumonia, an economically significant disease that disrupts the mucociliary escalator in the swine respiratory tract. Expression of Mhp107, a P97 paralog encoded by the gene mhp107, was confirmed using ESI-MS/MS. To investigate the function of Mhp107, three recombinant proteins, F1(Mhp107), F2(Mhp107), and F3(Mhp107), spanning the N-terminal, central, and C-terminal regions of Mhp107 were constructed. Colonization of swine by M. hyopneumoniae requires adherence of the bacterium to ciliated cells of the respiratory tract. Recent studies have identified a number of M. hyopneumoniae adhesins that bind heparin, fibronectin, and plasminogen. F1(Mhp107) was found to bind porcine heparin (K(D) ∼90 nM) in a dose-dependent and saturable manner, whereas F3(Mhp107) bound fibronectin (K(D) ∼180 nM) at physiologically relevant concentrations. F1(Mhp107) also bound porcine plasminogen (K(D) = 24 nM) in a dose-dependent and physiologically relevant manner. Microspheres coated with F3(Mhp107) mediate adherence to porcine kidney epithelial-like (PK15) cells, and all three recombinant proteins (F1(Mhp107)-F3(Mhp107)) bound swine respiratory cilia. Together, these findings indicate that Mhp107 is a member of the multifunctional M. hyopneumoniae adhesin family of surface proteins and contributes to both adherence to the host and pathogenesis.
Collapse
Affiliation(s)
- Lisa M Seymour
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Itzek A, Gillen CM, Fulde M, Friedrichs C, Rodloff AC, Chhatwal GS, Nitsche-Schmitz DP. Contribution of plasminogen activation towards the pathogenic potential of oral streptococci. PLoS One 2010; 5:e13826. [PMID: 21072208 PMCID: PMC2972214 DOI: 10.1371/journal.pone.0013826] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/13/2010] [Indexed: 11/19/2022] Open
Abstract
Oral streptococci are a heterogeneous group of human commensals, with a potential to cause serious infections. Activation of plasminogen has been shown to increase the virulence of typical human pathogenic streptococci such as S. pneumoniae. One important factor for plasminogen activation is the streptococcal α-enolase. Here we report that plasminogen activation is also common in oral streptococci species involved in clinical infection and that it depends on the action of human plasminogen activators. The ability to activate plasminogen did not require full conservation of the internal plasminogen binding sequence motif FYDKERKVY of α-enolase that was previously described as crucial for increased plasminogen binding, activation and virulence. Instead, experiments with recombinant α-enolase variants indicate that the naturally occurring variations do not impair plasminogen binding. In spite of these variations in the internal plasminogen binding motif oral streptococci showed similar activation of plasminogen. We conclude that the pathomechanism of plasminogen activation is conserved in oral streptococci that cause infections in human. This may contribute to their opportunistic pathogenic character that is unfurled in certain niches.
Collapse
Affiliation(s)
- Andreas Itzek
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christine M. Gillen
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcus Fulde
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Claudia Friedrichs
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany
| | - Arne C. Rodloff
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany
| | - Gursharan S. Chhatwal
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
43
|
Candela M, Centanni M, Fiori J, Biagi E, Turroni S, Orrico C, Bergmann S, Hammerschmidt S, Brigidi P. DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. MICROBIOLOGY-SGM 2010; 156:1609-1618. [PMID: 20167618 DOI: 10.1099/mic.0.038307-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bifidobacterium animalis subsp. lactis lives in the gastrointestinal tract of most mammals, including humans. Recently, for the probiotic strain B. animalis subsp. lactis BI07, a dose-dependent plasminogen-binding activity was demonstrated and five putative plasminogen-binding proteins were identified. Here we investigated the role of surface DnaK as a B. animalis subsp. lactis BI07 plasminogen receptor. DnaK was visualized on the bacterial cell surface by transmission electron microscopy. The His-tagged recombinant DnaK protein showed a high affinity for human plasminogen, with an equilibrium dissociation constant in the nanomolar range. The capability to tolerate physiological concentrations of bile salts is a crucial feature for an intestinal symbiont micro-organism. By proteome analysis we demonstrated that the long-term exposure of B. animalis subsp. lactis BI07 to bile salts results in the upregulation of important surface plasminogen receptors such as DnaK and enolase. Moreover, adaptation of B. animalis subsp. lactis BI07 to physiological concentrations of bile salts significantly increased its capacity to interact with the host plasminogen system. By enhancing the bacterial capacity to interact with the host plasminogen, the gut bile environment may facilitate the colonization of the human host by B. animalis subsp. lactis BI07.
Collapse
Affiliation(s)
- Marco Candela
- Department of Pharmaceutical Sciences, University of Bologna, Italy
| | - Manuela Centanni
- Department of Pharmaceutical Sciences, University of Bologna, Italy
| | - Jessica Fiori
- Department of Pharmaceutical Sciences, University of Bologna, Italy
| | - Elena Biagi
- Department of Pharmaceutical Sciences, University of Bologna, Italy
| | - Silvia Turroni
- Department of Pharmaceutical Sciences, University of Bologna, Italy
| | - Catia Orrico
- Department of Pathological Anatomy Martinelli, S. Orsola-Malpighi, University of Bologna, Italy
| | - Simone Bergmann
- Department of Microbial Pathogenicity, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Sven Hammerschmidt
- Department of Genetics of Microorganisms, Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Patrizia Brigidi
- Department of Pharmaceutical Sciences, University of Bologna, Italy
| |
Collapse
|
44
|
Candela M, Biagi E, Centanni M, Turroni S, Vici M, Musiani F, Vitali B, Bergmann S, Hammerschmidt S, Brigidi P. Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology (Reading) 2009; 155:3294-3303. [DOI: 10.1099/mic.0.028795-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction with the host plasminogen/plasmin system represents a novel component in the molecular cross-talk between bifidobacteria and human host. Here, we demonstrated that the plasminogen-binding bifidobacterial species B. longum, B. bifidum, B. breve and B. lactis share the key glycolytic enzyme enolase as a surface receptor for human plasminogen. Enolase was visualized on the cell surface of the model strain B. lactis BI07. The His-tagged recombinant protein showed a high affinity for human plasminogen, with an equilibrium dissociation constant in the nanomolar range. By site-directed mutagenesis we demonstrated that the interaction between the B. lactis BI07 enolase and human plasminogen involves an internal plasminogen-binding site homologous to that of pneumococcal enolase. According to our data, the positively charged residues Lys-251 and Lys-255, as well as the negatively charged Glu-252, of the B. lactis BI07 enolase are crucial for plasminogen binding. Acting as a human plasminogen receptor, the bifidobacterial surface enolase is suggested to play an important role in the interaction process with the host.
Collapse
Affiliation(s)
- Marco Candela
- Department of Pharmaceutical Sciences, CIRB-centre for Biotechnology, University of Bologna, Italy
| | - Elena Biagi
- Department of Pharmaceutical Sciences, CIRB-centre for Biotechnology, University of Bologna, Italy
| | - Manuela Centanni
- Department of Pharmaceutical Sciences, CIRB-centre for Biotechnology, University of Bologna, Italy
| | - Silvia Turroni
- Department of Pharmaceutical Sciences, CIRB-centre for Biotechnology, University of Bologna, Italy
| | - Manuela Vici
- Department of Experimental Pathology, University of Bologna, Italy
| | - Francesco Musiani
- Department of Agro Environmental Science and Technology, University of Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmaceutical Sciences, CIRB-centre for Biotechnology, University of Bologna, Italy
| | - Simone Bergmann
- Department of Microbial Pathogenicity, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Patrizia Brigidi
- Department of Pharmaceutical Sciences, CIRB-centre for Biotechnology, University of Bologna, Italy
| |
Collapse
|
45
|
Bessen DE. Population biology of the human restricted pathogen, Streptococcus pyogenes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9:581-93. [PMID: 19460325 PMCID: PMC2685916 DOI: 10.1016/j.meegid.2009.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 02/24/2009] [Accepted: 03/04/2009] [Indexed: 12/31/2022]
Abstract
Streptococcus pyogenes, also referred to as beta-hemolytic group A streptococci, are strictly human pathogens with a global distribution and high prevalence of infection. The organisms are characterized by high levels of genetic recombination, extensive strain diversity, and a narrow habitat. This review highlights many key features of the population genetics and molecular epidemiology of this biologically diverse bacterial species, with special emphasis on ecological subdivisions and tissue-specific infections, strain diversity and population dynamics in communities, selection pressures arising from the specific host immune response and antibiotic exposure, and within-host selection during the course of invasive disease.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
46
|
Bessen DE. Population biology of the human restricted pathogen, Streptococcus pyogenes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9. [PMID: 19460325 PMCID: PMC2685916 DOI: 10.1016/j.meegid.2009.03.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus pyogenes, also referred to as beta-hemolytic group A streptococci, are strictly human pathogens with a global distribution and high prevalence of infection. The organisms are characterized by high levels of genetic recombination, extensive strain diversity, and a narrow habitat. This review highlights many key features of the population genetics and molecular epidemiology of this biologically diverse bacterial species, with special emphasis on ecological subdivisions and tissue-specific infections, strain diversity and population dynamics in communities, selection pressures arising from the specific host immune response and antibiotic exposure, and within-host selection during the course of invasive disease.
Collapse
Affiliation(s)
- Debra E. Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA 10595, , +1-914-594-4193
| |
Collapse
|
47
|
Cork AJ, Jergic S, Hammerschmidt S, Kobe B, Pancholi V, Benesch JLP, Robinson CV, Dixon NE, Aquilina JA, Walker MJ. Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J Biol Chem 2009; 284:17129-17137. [PMID: 19363026 DOI: 10.1074/jbc.m109.004317] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flesh-eating bacterium group A Streptococcus (GAS) binds and activates human plasminogen, promoting invasive disease. Streptococcal surface enolase (SEN), a glycolytic pathway enzyme, is an identified plasminogen receptor of GAS. Here we used mass spectrometry (MS) to confirm that GAS SEN is octameric, thereby validating in silico modeling based on the crystal structure of Streptococcus pneumoniae alpha-enolase. Site-directed mutagenesis of surface-located lysine residues (SEN(K252 + 255A), SEN(K304A), SEN(K334A), SEN(K344E), SEN(K435L), and SEN(Delta434-435)) was used to examine their roles in maintaining structural integrity, enzymatic function, and plasminogen binding. Structural integrity of the GAS SEN octamer was retained for all mutants except SEN(K344E), as determined by circular dichroism spectroscopy and MS. However, ion mobility MS revealed distinct differences in the stability of several mutant octamers in comparison with wild type. Enzymatic analysis indicated that SEN(K344E) had lost alpha-enolase activity, which was also reduced in SEN(K334A) and SEN(Delta434-435). Surface plasmon resonance demonstrated that the capacity to bind human plasminogen was abolished in SEN(K252 + 255A), SEN(K435L), and SEN(Delta434-435). The lysine residues at positions 252, 255, 434, and 435 therefore play a concerted role in plasminogen acquisition. This study demonstrates the ability of combining in silico structural modeling with ion mobility-MS validation for undertaking functional studies on complex protein structures.
Collapse
Affiliation(s)
- Amanda J Cork
- From the School of Biological Sciences, Wollongong NSW 2522, Australia
| | - Slobodan Jergic
- School of Chemistry, University of Wollongong, Wollongong NSW 2522, Australia
| | - Sven Hammerschmidt
- Department of Genetics of Microorganisms, Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University of Greifswald, Greifswald D-17487, Germany
| | - Bostjan Kobe
- School of Molecular and Microbial Sciences and Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Vijay Pancholi
- Department of Pathology, Ohio State University, Columbus, Ohio 43210
| | - Justin L P Benesch
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Carol V Robinson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Nicholas E Dixon
- School of Chemistry, University of Wollongong, Wollongong NSW 2522, Australia
| | - J Andrew Aquilina
- From the School of Biological Sciences, Wollongong NSW 2522, Australia
| | - Mark J Walker
- From the School of Biological Sciences, Wollongong NSW 2522, Australia.
| |
Collapse
|
48
|
McArthur JD, McKay FC, Ramachandran V, Shyam P, Cork AJ, Sanderson‐Smith ML, Cole JN, Ringdahl U, Sjöbring U, Ranson M, Walker MJ. Allelic variants of streptokinase fromStreptococcus pyogenesdisplay functional differences in plasminogen activation. FASEB J 2008; 22:3146-53. [DOI: 10.1096/fj.08-109348] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jason D. McArthur
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Fiona C. McKay
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Priya Shyam
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Amanda J. Cork
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Jason N. Cole
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Ulrika Ringdahl
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Ulf Sjöbring
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Marie Ranson
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Mark J. Walker
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| |
Collapse
|
49
|
Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG, McArthur JD, Chhatwal GS, Walker MJ. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 2008; 22:2715-22. [PMID: 18467595 DOI: 10.1096/fj.07-105643] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococcus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild-type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.
Collapse
Affiliation(s)
- M L Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kinnby B, Booth NA, Svensäter G. Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. MICROBIOLOGY-SGM 2008; 154:924-931. [PMID: 18310038 DOI: 10.1099/mic.0.2007/013235-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plasminogen binding by bacteria is a virulence factor important for the entry and dissemination of bacteria in the body. A wide variety of bacteria bind plasminogen, including both organisms causing disease and components of the normal oral flora. The purpose of this study was to examine the characteristics of plasminogen binding by six clinical isolates of oral streptococci from both dental plaque and inflammatory lesions. All the strains bound plasminogen with approximately the same affinity, and binding was specific and lysine-dependent as evidenced by its inhibition by epsilon-aminocaproic acid. All of the test strains were capable of activating bound plasminogen to plasmin without the addition of a plasminogen activator, and subsequent analysis revealed the presence of streptokinase in all strains. However, the streptococci exhibited fibrinolytic activity only in the presence of plasminogen and this could be inhibited by the addition of epsilon-aminocaproic acid. SDS-PAGE and 2D gel electrophoresis coupled with plasminogen ligand blotting showed that only a subset of the total proteins (2-15) were involved in the binding of plasminogen. Partial identification of the binding proteins revealed that four glycolytic enzymes, enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase, were predominant in binding plasminogen. The binding of plasminogen by bacteria from pus did not differ from that of the strains from supragingival plaque. The findings illustrate how apparently innocuous commensal bacteria are capable of utilizing a mechanism that is generally regarded as being of importance to pathogenicity and suggest an additional role of plasminogen binding.
Collapse
Affiliation(s)
- Bertil Kinnby
- Department of Oral Biology, Malmö University, S-20506 Malmö, Sweden
| | - Nuala A Booth
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Gunnel Svensäter
- Department of Oral Biology, Malmö University, S-20506 Malmö, Sweden
| |
Collapse
|