1
|
Miki T, Ito M, Haneda T, Kim YG. Outer membrane barrier impairment by envC deletion reduces gut colonization of Crohn's disease pathobiont Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001509. [PMID: 39405098 PMCID: PMC11570989 DOI: 10.1099/mic.0.001509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024]
Abstract
Adherent-invasive Escherichia coli (AIEC) has been implicated in the aetiology of Crohn's disease (CD), a chronic inflammatory disorder of the gastrointestinal tract. The presence of Enterobacteriaceae, including AIEC, is heightened in the intestines of CD patients. Therefore, inhibiting AIEC colonization in the gastrointestinal tract could be a promising therapeutic intervention for CD. This study aims to assess the potential of EnvC as a novel therapeutic target, examining how disrupting EnvC activity through the deletion of the envC gene decreases AIEC gut colonization levels. EnvC serves as a catalyst for peptidoglycan (also called murein) amidases, facilitating bacterial cell division. An AIEC mutant lacking the envC gene exhibited impaired cell division. Furthermore, envC deletion led to a diminished outer membrane barrier, as seen in our finding that the envC mutant became susceptible to vancomycin. Finally, we found that the envC mutant is impaired in competitive gut colonization in a dysbiotic mouse model. The colonization defects might be attributable to reduced resistance to colonic bile acids, as evidenced by our finding that increased colonic levels of bile acids inhibited the colonization of the gastrointestinal tract by AIEC strains. The present findings suggest that targeting bacterial cell division through the inhibition of EnvC activity could represent a promising intervention for CD.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| |
Collapse
|
2
|
Hajra D, Nair AV, Chakravortty D. Decoding the invasive nature of a tropical pathogen of concern: The invasive non-Typhoidal Salmonella strains causing host-restricted extraintestinal infections worldwide. Microbiol Res 2023; 277:127488. [PMID: 37716125 DOI: 10.1016/j.micres.2023.127488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Invasive-Non-Typhoidal Salmonella (iNTS) are the major cause of health concern in the low-income, under-developed nations in Africa and Asia that lack proper sanitation facilities. Around 5% of the NTS cases give rise to invasive, extraintestinal diseases leading to focal infections like osteomyelitis, meningitis, osteoarthritis, endocarditis and neonatal sepsis. iNTS serovars like S. Typhimurium, S. Enteritidis, S. Dublin, S. Choleraesuis show a greater propensity to become invasive than others which hints at the genetic basis of their emergence. The major risk factors attributing to the invasive diseases include immune-compromised individuals having co-infection with malaria or HIV, or suffering from malnutrition. The rampant use of antibiotics leading to the emergence of multi-drug resistant strains poses a great challenge in disease management. An extensive understanding of the iNTS pathogenesis and its epidemiology will open up avenues for the development of new vaccination and therapeutic strategies to restrict the spread of this neglected disease.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
3
|
Vasicek EM, Gunn JS. Invasive Non-Typhoidal Salmonella Lineage Biofilm Formation and Gallbladder Colonization Vary But Do Not Correlate Directly with Known Biofilm-Related Mutations. Infect Immun 2023; 91:e0013523. [PMID: 37129526 PMCID: PMC10187132 DOI: 10.1128/iai.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars have a broad host range and cause gastroenteritis in humans. However, invasive NTS (iNTS) bloodstream infections have increased in the last decade, causing 60,000 deaths annually. Human-specific typhoidal Salmonella colonizes and forms biofilms on gallstones, resulting in chronic, asymptomatic infection. iNTS lineages are undergoing genomic reduction and may have adapted to person-to-person transmission via mutations in virulence, bile resistance, and biofilm formation. As such, we sought to determine the capacity of iNTS lineages for biofilm formation and the development of chronic infections in the gallbladder in our mouse model. Of the lineages tested (L1, L2, L3 and UK), only L2 and UK were defective for the rough, dry and red (RDAR) morphotype, correlating with the known bcsG (cellulose) mutation but not with csgD (curli) gene mutations. Biofilm-forming ability was assessed in vitro, which revealed a biofilm formation hierarchy of L3 > ST19 > UK > L1 = L2, which did not correlate directly with either the bcsG or the csgD mutation. By confocal microscopy, biofilms of L2 and UK had significantly less curli and cellulose, while L1 biofilms had significantly lower cellulose. All iNTS strains were able to colonize the mouse gallbladder, liver, and spleen in a similar manner, while L3 had a significantly higher bacterial load in the gallbladder and increased lethality. While there was iNTS lineage variability in biofilm formation, gallbladder colonization, and virulence in a chronic mouse model, all tested lineages were capable of colonization despite possessing biofilm-related mutations. Thus, iNTS strains may be unrecognized chronic pathogens in endemic settings.
Collapse
Affiliation(s)
- Erin M. Vasicek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - John S. Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
4
|
Yahashiri A, Kaus GM, Popham DL, Houtman JCD, Weiss DS. Comparative Study of Bacterial SPOR Domains Identifies Functionally Important Differences in Glycan Binding Affinity. J Bacteriol 2022; 204:e0025222. [PMID: 36005810 PMCID: PMC9487507 DOI: 10.1128/jb.00252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial SPOR domains target proteins to the divisome by binding septal peptidoglycan (PG) at sites where cell wall amidases have removed stem peptides. These PG structures are referred to as denuded glycans. Although all characterized SPOR domains bind denuded glycans, whether there are differences in affinity is not known. Here, we use isothermal titration calorimetry (ITC) to determine the relative PG glycan binding affinity (<i>K</i><sub>d</sub>) of four Escherichia coli SPOR domains and one Cytophaga hutchinsonii SPOR domain. We found that the <i>K</i><sub>d</sub> values ranged from approximately 1 μM for E. coli DamX<sup>SPOR</sup> and <i>C. hutchinsonii</i> CHU2221<sup>SPOR</sup> to about 10 μM for E. coli FtsN<sup>SPOR</sup>. To investigate whether these differences in PG binding affinity are important for SPOR domain protein function, we constructed and characterized a set of DamX and FtsN "swap" proteins. As expected, all SPOR domain swap proteins localized to the division site, and, in the case of FtsN, all of the heterologous SPOR domains supported cell division. However, for DamX, only the high-affinity SPOR domain from CHU2221 supported normal function in cell division. In summary, different SPOR domains bind denuded PG glycans with different affinities, which appears to be important for the functions of some SPOR domain proteins (e.g., DamX) but not for the functions of others (e.g., FtsN). <b>IMPORTANCE</b> SPOR domain proteins are prominent components of the cell division apparatus in a wide variety of bacteria. The primary function of SPOR domains is targeting proteins to the division site, which they accomplish by binding to septal peptidoglycan. However, whether SPOR domains have any functions beyond septal targeting is unknown. Here, we show that SPOR domains vary in their PG binding affinities and that, at least in the case of the E. coli cell division protein DamX, having a high-affinity SPOR domain contributes to proper function.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Gabriela M. Kaus
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Mitchell SJ, Verma D, Griswold KE, Bailey-Kellogg C. Building blocks and blueprints for bacterial autolysins. PLoS Comput Biol 2021; 17:e1008889. [PMID: 33793553 PMCID: PMC8051824 DOI: 10.1371/journal.pcbi.1008889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/16/2021] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
Bacteria utilize a wide variety of endogenous cell wall hydrolases, or autolysins, to remodel their cell walls during processes including cell division, biofilm formation, and programmed death. We here systematically investigate the composition of these enzymes in order to gain insights into their associated biological processes, potential ways to disrupt them via chemotherapeutics, and strategies by which they might be leveraged as recombinant antibacterial biotherapies. To do so, we developed LEDGOs (lytic enzyme domains grouped by organism), a pipeline to create and analyze databases of autolytic enzyme sequences, constituent domain annotations, and architectural patterns of multi-domain enzymes that integrate peptidoglycan binding and degrading functions. We applied LEDGOs to eight pathogenic bacteria, gram negatives Acinetobacter baumannii, Klebsiella pneumoniae, Neisseria gonorrhoeae, and Pseudomonas aeruginosa; and gram positives Clostridioides difficile, Enterococcus faecium, Staphylococcus aureus, and Streptococcus pneumoniae. Our analysis of the autolytic enzyme repertoires of these pathogens reveals commonalities and differences in their key domain building blocks and architectures, including correlations and preferred orders among domains in multi-domain enzymes, repetitions of homologous binding domains with potentially complementarity recognition modalities, and sequence similarity patterns indicative of potential divergence of functional specificity among related domains. We have further identified a variety of unannotated sequence regions within the lytic enzymes that may themselves contain new domains with important functions.
Collapse
Affiliation(s)
- Spencer J. Mitchell
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
| | - Deeptak Verma
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
6
|
Fernández-Fernández R, Hernández SB, Puerta-Fernández E, Sánchez-Romero MA, Urdaneta V, Casadesús J. Evidence for Involvement of the Salmonella enterica Z-Ring Assembly Factors ZapA and ZapB in Resistance to Bile. Front Microbiol 2021; 12:647305. [PMID: 33717045 PMCID: PMC7947894 DOI: 10.3389/fmicb.2021.647305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Genes annotated as ygfE and yiiU in the genome of Salmonella enterica serovar Typhimurium encode proteins homologous to Escherichia coli cell division factors ZapA and ZapB, respectively. ZapA- and ZapB- mutants of S. enterica are bile-sensitive. The amount of zapB mRNA increases in the presence of a sublethal concentration of sodium deoxycholate (DOC) while zapA mRNA remains unaffected. Increased zapB mRNA level in the presence of DOC is not caused by upregulation of zapB transcription but by increased stability of zapB mRNA. This increase is suppressed by an hfq mutation, suggesting the involvement of a small regulatory RNA. We provide evidence that such sRNA is MicA. The ZapB protein is degraded in the presence of DOC, and degradation appears to involve the Lon protease. We propose that increased stability of zapB mRNA in the presence of DOC may counter degradation of bile-damaged ZapB, thereby providing sufficient level of functional ZapB protein to permit Z-ring assembly in the presence of bile.
Collapse
Affiliation(s)
| | - Sara B Hernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ, Wenner N, Rodwell EV, Kumwenda B, Zhu X, Bennett RJ, Stenhouse GE, Malaka De Silva P, Webster HJ, Bengoechea JA, Dumigan A, Tran-Dien A, Prakash R, Banda HC, Alufandika L, Mautanga MP, Bowers-Barnard A, Beliavskaia AY, Predeus AV, Rowe WPM, Darby AC, Hall N, Weill FX, Gordon MA, Feasey NA, Baker KS, Hinton JCD. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol 2021; 6:327-338. [PMID: 33349664 PMCID: PMC8018540 DOI: 10.1038/s41564-020-00836-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.
Collapse
Affiliation(s)
- Caisey V Pulford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Blanca M Perez-Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rocío Canals
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jessica A Bevington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bengtsson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ella V Rodwell
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Xiaojun Zhu
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bennett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - George E Stenhouse
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - P Malaka De Silva
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hermione J Webster
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Alicia Tran-Dien
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, France
| | - Reenesh Prakash
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Happy C Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Lovemore Alufandika
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Mike P Mautanga
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Arthur Bowers-Barnard
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexandra Y Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexander V Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Will P M Rowe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Melita A Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Nicholas A Feasey
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Kate S Baker
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
The Salmonella enterica Serovar Typhi ltrR Gene Encodes Two Proteins Whose Transcriptional Expression Is Upregulated by Alkaline pH and Repressed at Their Promoters and Coding Regions by H-NS and Lrp. J Bacteriol 2020; 202:JB.00783-19. [PMID: 32284321 DOI: 10.1128/jb.00783-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
LtrR is a LysR-type regulator involved in the positive expression of ompR to promote ompC and ompF expression. This regulatory network is fundamental for the control of bacterial transformation and resistance to the bile salt sodium deoxycholate in Salmonella enterica serovar Typhi. In this work, the transcriptional regulation of ltrR was characterized, revealing that the use of alternative promoters results in two transcripts. The larger one, the ltrR2 mRNA, was repressed at promoter and coding regions by H-NS, whereas Lrp repressed its expression at the coding region. In the case of the second and shorter ltrR1 transcript, it was repressed only at the coding region by H-NS and Lrp. Remarkably, pH 7.5 is a positive signal involved in the transcriptional expression of both ltrR units. Translational fusions and Western blot experiments demonstrated that ltrR2 and ltrR1 mRNAs encode the LtrR2 and LtrR1 proteins. This study adds new data on the complex genetic and regulatory characteristics of one of the most predominant types of transcriptional factors in bacteria, the LysR-type transcriptional regulators.IMPORTANCE The LysR-type transcriptional regulators are present in viruses, archaea, bacteria, and eukaryotic cells. Furthermore, these proteins are the most abundant transcriptional factors in bacteria. Here, we demonstrate that two LysR-type proteins are generated from the ltrR gene. These proteins are genetically induced by pH and repressed at the promoter and coding regions by the global regulators H-NS and Lrp. Thus, novel basic aspects of the complex genetic regulation of the LysR-type transcriptional regulators are described.
Collapse
|
9
|
Draft Genome Sequence of Shewanella sp. Strain ISO12, a Candidate Probiotic Isolated from the Intestine of Fundulus heteroclitus. Microbiol Resour Announc 2020; 9:9/22/e00399-20. [PMID: 32467277 PMCID: PMC7256264 DOI: 10.1128/mra.00399-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The genome of Shewanella sp. strain ISO12, which was isolated from the intestine of wild-caught Fundulus heteroclitus, was sequenced and is reported here. Bioinformatic analysis revealed genes encoding the bacteriocin marinocine and those potentially associated with probiotic activity. The genome sequence will assist in further identifying probiotic and other antibacterial processes. The genome of Shewanella sp. strain ISO12, which was isolated from the intestine of wild-caught Fundulus heteroclitus, was sequenced and is reported here. Bioinformatic analysis revealed genes encoding the bacteriocin marinocine and those potentially associated with probiotic activity. The genome sequence will assist in further identifying probiotic and other antibacterial processes.
Collapse
|
10
|
Structural basis of denuded glycan recognition by SPOR domains in bacterial cell division. Nat Commun 2019; 10:5567. [PMID: 31804467 PMCID: PMC6895207 DOI: 10.1038/s41467-019-13354-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 10/30/2019] [Indexed: 01/31/2023] Open
Abstract
SPOR domains are widely present in bacterial proteins that recognize cell-wall peptidoglycan strands stripped of the peptide stems. This type of peptidoglycan is enriched in the septal ring as a product of catalysis by cell-wall amidases that participate in the separation of daughter cells during cell division. Here, we document binding of synthetic denuded glycan ligands to the SPOR domain of the lytic transglycosylase RlpA from Pseudomonas aeruginosa (SPOR-RlpA) by mass spectrometry and structural analyses, and demonstrate that indeed the presence of peptide stems in the peptidoglycan abrogates binding. The crystal structures of the SPOR domain, in the apo state and in complex with different synthetic glycan ligands, provide insights into the molecular basis for recognition and delineate a conserved pattern in other SPOR domains. The biological and structural observations presented here are followed up by molecular-dynamics simulations and by exploration of the effect on binding of distinct peptidoglycan modifications.
Collapse
|
11
|
Mutational and non mutational adaptation of Salmonella enterica to the gall bladder. Sci Rep 2019; 9:5203. [PMID: 30914708 PMCID: PMC6435676 DOI: 10.1038/s41598-019-41600-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
During systemic infection of susceptible hosts, Salmonella enterica colonizes the gall bladder, which contains lethal concentrations of bile salts. Recovery of Salmonella cells from the gall bladder of infected mice yields two types of isolates: (i) bile-resistant mutants; (ii) isolates that survive lethal selection without mutation. Bile-resistant mutants are recovered at frequencies high enough to suggest that increased mutation rates may occur in the gall bladder, thus providing a tentative example of stress-induced mutation in a natural environment. However, most bile-resistant mutants characterized in this study show defects in traits that are relevant for Salmonella colonization of the animal host. Mutation may thus permit short-term adaptation to the gall bladder at the expense of losing fitness for transmission to new hosts. In contrast, non mutational adaptation may have evolved as a fitness-preserving strategy. Failure of RpoS− mutants to colonize the gall bladder supports the involvement of the general stress response in non mutational adaptation.
Collapse
|
12
|
Urdaneta V, Casadesús J. Adaptation of Salmonella enterica to bile: essential role of AcrAB-mediated efflux. Environ Microbiol 2018; 20:1405-1418. [PMID: 29349886 DOI: 10.1111/1462-2920.14047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Abstract
Adaptation to bile is the ability to endure the lethal effects of bile salts after growth on sublethal concentrations. Surveys of adaptation to bile in Salmonella enterica ser. Tyhimurium reveal that active efflux is essential for adaptation while other bacterial functions involved in bile resistance are not. Among S. enterica mutants lacking one or more efflux systems, only strains lacking AcrAB are unable to adapt, thus revealing an essential role for AcrAB. Transcription of the acrAB operon is upregulated in the presence of a sublethal concentration of sodium deoxycholate (DOC) while other efflux loci are either weakly upregulated or irresponsive. Upregulation of acrAB transcription is strong during exponential growth, and weak in stationary cultures. Single cell analysis of ethidium bromide accumulation indicates that DOC-induced AcrAB-mediated efflux occurs in both exponential and stationary cultures. Upregulation of acrAB expression may thus be crucial at early stages of adaptation, while sustained AcrAB activity may be sufficient to confer bile resistance in nondividing cells.
Collapse
Affiliation(s)
- Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| |
Collapse
|
13
|
Horáčková Š, Plocková M, Demnerová K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 2017; 36:682-690. [PMID: 29248683 DOI: 10.1016/j.biotechadv.2017.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
An important feature of the intestinal microbiota, particularly in the case of administered probiotic microorganisms, is their resistance to conditions in the gastrointestinal tract, particularly tolerance to and growth in the presence of bile salts. Bacteria can use several defence mechanisms against bile, including special transport mechanisms, the synthesis of various types of surface proteins and fatty acids or the production of exopolysaccharides. The ability to enzymatically hydrolyse bile salts occurs in a variety of bacteria. Choloylglycine hydrolase (EC 3.5.1.24), a bile salt hydrolase, is a constitutive intracellular enzyme responsible for the hydrolysis of an amide bond between glycine or taurine and the steroid nucleus of bile acids. Its presence was demonstrated in specific microorganisms from several bacterial genera (Lactobacillus spp., Bifidobacterium spp., Clostridium spp., Bacteroides spp.). Occurrence and gene arrangement encoding this enzyme are highly variable in probiotic microorganisms. Bile salt hydrolase activity may provide the possibility to use the released amino acids by bacteria as sources of carbon and nitrogen, to facilitate detoxification of bile or to support the incorporation of cholesterol into the cell wall. Deconjugation of bile salts may be directly related to a lowering of serum cholesterol levels, from which conjugated bile salts are synthesized de novo. Furthermore, the ability of microorganisms to assimilate or to bind ingested cholesterol to the cell wall or to eliminate it by co-precipitation with released cholic acid was also documented. Some intestinal microflora produce cholesterol reductase that catalyses the conversion of cholesterol to insoluble coprostanol, which is subsequently excreted in faeces, thereby also reducing the amount of exogenous cholesterol.
Collapse
Affiliation(s)
- Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
14
|
Karash S, Liyanage R, Qassab A, Lay JO, Kwon YM. A Comprehensive Assessment of the Genetic Determinants in Salmonella Typhimurium for Resistance to Hydrogen Peroxide Using Proteogenomics. Sci Rep 2017; 7:17073. [PMID: 29213059 PMCID: PMC5719062 DOI: 10.1038/s41598-017-17149-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/17/2017] [Indexed: 02/04/2023] Open
Abstract
Salmonella is an intracellular pathogen infecting a wide range of hosts and can survive in macrophages. An essential mechanism used by macrophages to eradicate Salmonella is production of reactive oxygen species. Here, we used proteogenomics to determine the candidate genes and proteins that have a role in resistance of S. Typhimurium to H2O2. For Tn-seq, a saturated Tn5 insertion library was grown in vitro under either 2.5 (H2O2L) or 3.5 mM H2O2 (H2O2H). We identified two sets of overlapping genes required for resistance of S. Typhimurium to H2O2L and H2O2H, and the results were validated via phenotypic evaluation of 50 selected mutants. The enriched pathways for H2O2 resistance included DNA repair, aromatic amino acid biosynthesis (aroBK), Fe-S cluster biosynthesis, iron homeostasis and a putative iron transporter system (ybbKLM), and H2O2 scavenging enzymes. Proteomics revealed that the majority of essential proteins, including ribosomal proteins, were downregulated upon exposure to H2O2. On the contrary, a subset of conditionally essential proteins identified by Tn-seq were analyzed by targeted proteomics, and 70% of them were upregulated by H2O2. The identified genes will deepen our understanding on S. Typhimurium survival mechanisms in macrophages, and can be exploited to develop new antimicrobial drugs.
Collapse
Affiliation(s)
- Sardar Karash
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Rohana Liyanage
- Department of Chemistry, University of Arkansas, Fayetteville, AR, 72701, USA.,Statewide Mass Spectrometry Facility, Fayetteville, AR, 72701, USA
| | - Abdullah Qassab
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jackson O Lay
- Department of Chemistry, University of Arkansas, Fayetteville, AR, 72701, USA.,Statewide Mass Spectrometry Facility, Fayetteville, AR, 72701, USA
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA. .,Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
15
|
Genome characterization of two bile-isolated Vibrio fluvialis strains: an insight into pathogenicity and bile salt adaption. Sci Rep 2017; 7:11827. [PMID: 28928424 PMCID: PMC5605694 DOI: 10.1038/s41598-017-12304-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/06/2017] [Indexed: 12/26/2022] Open
Abstract
Vibrio fluvialis is recognized as an emerging pathogen. However, not much is known about the mechanism of its pathogenesis, and its adaptation to a special niche such as the gall bladder. Here we describe two V. fluvialis strains that cause acute cholecystitis. It is noteworthy that both strains were susceptible to all antibiotics tested, which is in contrast to previous studies, suggesting substantial genetic diversity among V. fluvialis isolates. In agreement with their survival and growth in the gall bladder, the genomes of strains 12605 and 3663 contain a considerable number of genes that confer resistance to bile, including toxR, ompU, tolC, cmeABC, rlpB, yrbK, rpoS, damX and gltK. Furthermore, integrative and conjugative elements (ICEs), virulence factors and prophage regions were also detected in strains 12605 and 3663, reflecting their flexibility in recombination during the evolution of pathogenicity. Comparative analysis of nine available genomes of V. fluvialis revealed a core genome consisting of 3,147 genes. Our results highlight the association of V. fluvialis with a rare disease profile and shed light on the evolution of pathogenesis and niche adaptation of V. fluvialis.
Collapse
|
16
|
The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division. J Bacteriol 2017; 199:JB.00118-17. [PMID: 28396350 DOI: 10.1128/jb.00118-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites.
Collapse
|
17
|
Abstract
UNLABELLED The ability to change cell morphology is an advantageous characteristic adopted by multiple pathogenic bacteria in order to evade host immune detection and assault during infection. Uropathogenic Escherichia coli (UPEC) exhibits such cellular dynamics and has been shown to transition through a series of distinct morphological phenotypes during a urinary tract infection. Here, we report the first systematic spatio-temporal gene expression analysis of the UPEC transition through these phenotypes by using a flow chamber-based in vitro infection model that simulates conditions in the bladder. This analysis revealed a novel association between the cell division gene damX and reversible UPEC filamentation. We demonstrate a lack of reversible bacterial filamentation in a damX deletion mutant in vitro and absence of a filamentous response by this mutant in a murine model of cystitis. While deletion of damX abrogated UPEC filamentation and secondary surface colonization in tissue culture and in mouse infections, transient overexpression of damX resulted in reversible UPEC filamentation. In this study, we identify a hitherto-unknown damX-mediated mechanism underlying UPEC morphotypical switching. Murine infection studies showed that DamX is essential for establishment of a robust urinary tract infection, thus emphasizing its role as a mediator of virulence. Our study demonstrates the value of an in vitro methodology, in which uroepithelium infection is closely simulated, when undertaking targeted investigations that are challenging to perform in animal infection models. IMPORTANCE Urinary tract infections (UTIs) are most often caused by uropathogenic Escherichia coli (UPEC) and account for a considerable health care burden. UPEC exhibits a dynamic lifestyle in the course of infection, in which the bacterium transiently adopts alternative morphologies ranging from rod shaped to coccoid and filamentous, rendering it better at immune evasion and host epithelium adhesion. This penchant for morphotype switching might in large measure account for UPEC's success as a pathogen. In aiming to uncover genes underlying the phenomenon of UPEC morphotype switching, this study identifies damX, a cell division gene, as a mediator of reversible filamentation during UTI. DamX-mediated filamentation represents an additional pathway for bacterial cell shape control, an alternative to SulA-mediated FtsZ sequestration during E. coli uropathogenesis, and hence represents a potential target for combating UTI.
Collapse
|
18
|
Hay AJ, Zhu J. In Sickness and in Health: The Relationships Between Bacteria and Bile in the Human Gut. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:43-64. [PMID: 27565580 DOI: 10.1016/bs.aambs.2016.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Colonization of a human host with a commensal microbiota has a complex interaction in which bacterial communities provide numerous health benefits to the host. An equilibrium between host and microbiota is kept in check with the help of biliary secretions by the host. Bile, composed primarily of bile salts, promotes digestion. It also provides a barrier between host and bacteria. After bile salts are synthesized in the liver, they are stored in the gallbladder to be released after food intake. The set of host-secreted bile salts is modified by the resident bacteria. Because bile salts are toxic to bacteria, an equilibrium of modified bile salts is reached that allows commensal bacteria to survive, yet rebuffs invading pathogens. In addition to direct toxic effects on cells, bile salts maintain homeostasis as signaling molecules, tuning the immune system. To cause disease, gram-negative pathogenic bacteria have shared strategies to survive this harsh environment. Through exclusion of bile, efflux of bile, and repair of bile-induced damage, these pathogens can successfully disrupt and outcompete the microbiota to activate virulence factors.
Collapse
Affiliation(s)
- A J Hay
- University of Pennsylvania, Philadelphia, PA, United States
| | - J Zhu
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Zhao L, Yang M, Zhang M, Zhang S. Expression, purification, and in vitro comparative characterization of avian beta-defensin-2, -6, and -12. Avian Dis 2014; 58:541-549. [PMID: 25618998 DOI: 10.1637/10848-042014-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The mature peptides of avian β-defensin-2 (AvBD-2), AvBD-6, and AvBD-12 were expressed as 6xHis-tagged recombinant proteins using the Escherichia coli BL21(DE3)pLysS system. The yields of rAvBD-2, rAvBD-6, and rAvBD-12 were approximately 0.92 mg/L, 1.24 mg/L, and 1.52 mg/L, respectively, of bacterial culture. The antimicrobial activities of rAvBDs were characterized under different salt, nutrient, and pH conditions. At concentrations of 8 μg/ml, 16 μg/ml, and 32 μg/ml, rAvBDs inhibited the growth of Staphylococcus aureus, E. coli, and Salmonella enterica serovar Typhimurium. While no synergistic inhibitory activity was found, a significant antagonistic effect was detected between rAvBD-2 and rAvBD-12. Treatment of E. coli and Salmonella Typhimurium with rAvBDs diminished their natural resistance to bile salts. Under the nonreplicating low-nutrient condition, rAvBDs at a concentration of 16 μg/ml were able to kill E. coli and S. aureus within 30 min of contact. The antimicrobial activities of rAvBDs were enhanced by lowering salt concentration and pH from 7 to 6. The antimicrobial potency against S. aureus and E. coli could be characterized as rAvBD-6 > rAvBD-2 > rAvBD-12, which coincided with the net positive charges of these peptides. In conclusion, data from the current study warrant the investigation of the potential use of rAvBD-2, -6, and -12 as therapeutic and prophylactic antimicrobial agents against common bacterial pathogens.
Collapse
|
20
|
Villarreal JM, Becerra-Lobato N, Rebollar-Flores JE, Medina-Aparicio L, Carbajal-Gómez E, Zavala-García ML, Vázquez A, Gutiérrez-Ríos RM, Olvera L, Encarnación S, Martínez-Batallar AG, Calva E, Hernández-Lucas I. The Salmonella enterica serovar Typhi ltrR-ompR-ompC-ompF genes are involved in resistance to the bile salt sodium deoxycholate and in bacterial transformation. Mol Microbiol 2014; 92:1005-24. [PMID: 24720747 DOI: 10.1111/mmi.12610] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 01/25/2023]
Abstract
A characterization of the LtrR regulator, an S. Typhi protein belonging to the LysR family is presented. Proteomics, outer membrane protein profiles and transcriptional analyses demonstrated that LtrR is required for the synthesis of OmpR, OmpC and OmpF. DNA-protein interaction analysis showed that LtrR binds to the regulatory region of ompR and then OmpR interacts with the ompC and ompF promoters inducing porin synthesis. LtrR-dependent and independent ompR promoters were identified, and both promoters are involved in the synthesis of OmpR for OmpC and OmpF production. To define the functional role of the ltrR-ompR-ompC-ompF genetic network, mutants in each gene were obtained. We found that ltrR, ompR, ompC and ompF were involved in the control of bacterial transformation, while the two regulators and ompC are necessary for the optimal growth of S. Typhi in the presence of one of the major bile salts found in the gut, sodium deoxycholate. The data presented establish the pivotal role of LtrR in the regulatory network of porin synthesis and reveal new genetic strategies of survival and cellular adaptation to the environment used by Salmonella.
Collapse
Affiliation(s)
- J M Villarreal
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Identification of SPOR domain amino acids important for septal localization, peptidoglycan binding, and a disulfide bond in the cell division protein FtsN. J Bacteriol 2013; 195:5308-15. [PMID: 24056104 DOI: 10.1128/jb.00911-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SPOR domains are about 75 amino acids long and probably bind septal peptidoglycan during cell division. We mutagenized 33 amino acids with surface-exposed side chains in the SPOR domain from an Escherichia coli cell division protein named FtsN. The mutant SPOR domains were fused to Tat-targeted green fluorescent protein ((TT)GFP) and tested for septal localization in live E. coli cells. Lesions at the following 5 residues reduced septal localization by a factor of 3 or more: Q251, S254, W283, R285, and I313. All of these residues map to a β-sheet in the published solution structure of FtsN(SPOR). Three of the mutant proteins (Q251E, S254E, and R285A mutants) were purified and found to be defective in binding to peptidoglycan sacculi in a cosedimentation assay. These results match closely with results from a previous study of the SPOR domain from DamX, even though these two SPOR domains share <20% amino acid identity. Taken together, these findings support the proposal that SPOR domains localize by binding to septal peptidoglycan and imply that the binding site is associated with the β-sheet. We also show that FtsN(SPOR) contains a disulfide bond between β-sheet residues C252 and C312. The disulfide bond contributes to protein stability, cell division, and peptidoglycan binding.
Collapse
|
22
|
Williams KB, Yahshiri A, Arends SR, Popham DL, Fowler CA, Weiss DS. Nuclear magnetic resonance solution structure of the peptidoglycan-binding SPOR domain from Escherichia coli DamX: insights into septal localization. Biochemistry 2013; 52:627-39. [PMID: 23290046 PMCID: PMC3732209 DOI: 10.1021/bi301609e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SPOR domains are present in thousands of bacterial proteins and probably bind septal peptidoglycan (PG), but the details of the SPOR-PG interaction have yet to be elucidated. Here we characterize the structure and function of the SPOR domain for an Escherichia coli division protein named DamX. Nuclear magnetic resonance revealed the domain comprises a four-stranded antiparallel β-sheet buttressed on one side by two α-helices. A third helix, designated α3, associates with the other face of the β-sheet, but this helix is relatively mobile. Site-directed mutagenesis revealed the face of the β-sheet that interacts with α3 is important for septal localization and binding to PG sacculi. The position and mobility of α3 suggest it might regulate PG binding, but although α3 deletion mutants still localized to the septal ring, they were too unstable to use in a PG binding assay. Finally, to assess the importance of the SPOR domain in DamX function, we constructed and characterized E. coli mutants that produced DamX proteins with SPOR domain point mutations or SPOR domain deletions. These studies revealed the SPOR domain is important for multiple activities associated with DamX: targeting the protein to the division site, conferring full resistance to the bile salt deoxycholate, improving the efficiency of cell division when DamX is produced at normal levels, and inhibiting cell division when DamX is overproduced.
Collapse
Affiliation(s)
- Kyle B. Williams
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - Atsushi Yahshiri
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - S.J. Ryan Arends
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - C. Andrew Fowler
- NMR Core Facility, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| | - David S. Weiss
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
23
|
|
24
|
Genome scanning for conditionally essential genes in Salmonella enterica Serotype Typhimurium. Appl Environ Microbiol 2012; 78:3098-107. [PMID: 22367088 DOI: 10.1128/aem.06865-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As more whole-genome sequences become available, there is an increasing demand for high-throughput methods that link genes to phenotypes, facilitating discovery of new gene functions. In this study, we describe a new version of the Tn-seq method involving a modified EZ:Tn5 transposon for genome-wide and quantitative mapping of all insertions in a complex mutant library utilizing massively parallel Illumina sequencing. This Tn-seq method was applied to a genome-saturating Salmonella enterica serotype Typhimurium mutant library recovered from selection under 3 different in vitro growth conditions (diluted Luria-Bertani [LB] medium, LB medium plus bile acid, and LB medium at 42°C), mimicking some aspects of host stressors. We identified an overlapping set of 105 protein-coding genes in S. Typhimurium that are conditionally essential under at least one of the above selective conditions. Competition assays using 4 deletion mutants (pyrD, glnL, recD, and STM14_5307) confirmed the phenotypes predicted by Tn-seq data, validating the utility of this approach in discovering new gene functions. With continuously increasing sequencing capacity of next generation sequencing technologies, this robust Tn-seq method will aid in revealing unexplored genetic determinants and the underlying mechanisms of various biological processes in Salmonella and the other approximately 70 bacterial species for which EZ:Tn5 mutagenesis has been established.
Collapse
|
25
|
Hernández SB, Cota I, Ducret A, Aussel L, Casadesús J. Adaptation and preadaptation of Salmonella enterica to Bile. PLoS Genet 2012; 8:e1002459. [PMID: 22275872 PMCID: PMC3261920 DOI: 10.1371/journal.pgen.1002459] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/19/2011] [Indexed: 12/23/2022] Open
Abstract
Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile: adaptation, mutation, and non-mutational preadaptation. Adaptation is easily observed in the laboratory: when a Salmonella culture is grown in the presence of a sublethal concentration of the bile salt sodium deoxycholate (DOC), the minimal inhibitory concentration of DOC increases. Adaptation appears to be associated to multiple changes in gene expression induced by DOC. Mutational bile resistance is also a common phenomenon: plating on agar containing a lethal concentration of bile yields bile-resistant colonies. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. Non-mutational preadaptation, a non-canonical phenomenon a priori, suggests that batch cultures contain rare Salmonella cells whose physiological state permits survival upon encountering bile. The view that non-mutational preadaptation may be a consequence of phenotypic heterogeneity is supported by the observation that Salmonella cultures contain cells that activate stress response genes in the absence of DOC.
Collapse
Affiliation(s)
| | - Ignacio Cota
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Adrien Ducret
- Laboratoire de Chimie Bactérienne, CNRS-UPR 9043, Aix-Marseille University, Marseille, France
| | - Laurent Aussel
- Laboratoire de Chimie Bactérienne, CNRS-UPR 9043, Aix-Marseille University, Marseille, France
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
26
|
Álvarez-Ordóñez A, Begley M, Prieto M, Messens W, López M, Bernardo A, Hill C. Salmonella spp. survival strategies within the host gastrointestinal tract. MICROBIOLOGY-SGM 2011; 157:3268-3281. [PMID: 22016569 DOI: 10.1099/mic.0.050351-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human salmonellosis infections are usually acquired via the food chain as a result of the ability of Salmonella serovars to colonize and persist within the gastrointestinal tract of their hosts. In addition, after food ingestion and in order to cause foodborne disease in humans, Salmonella must be able to resist several deleterious stress conditions which are part of the host defence against infections. This review gives an overview of the main defensive mechanisms involved in the Salmonella response to the extreme acid conditions of the stomach, and the elevated concentrations of bile salts, osmolytes and commensal bacterial metabolites, and the low oxygen tension conditions of the mammalian and avian gastrointestinal tracts.
Collapse
Affiliation(s)
- Avelino Álvarez-Ordóñez
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Winy Messens
- Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy
| | - Mercedes López
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Ana Bernardo
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Bäumler AJ, Winter SE, Thiennimitr P, Casadesús J. Intestinal and chronic infections: Salmonella lifestyles in hostile environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:508-517. [PMID: 23761329 DOI: 10.1111/j.1758-2229.2011.00242.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The main disease syndromes caused by Salmonella serovars in immunocompetent individuals are gastroenteritis and typhoid fever. These syndromes differ with regard to the host niches in which Salmonella serovars grow and survive to ensure their transmission. During gastroenteritis, non-typhoidal Salmonella serovars such as Salmonella enterica serovar Typhimurium (S. Typhimurium) use their virulence factors to elicit acute intestinal inflammation, thereby creating a novel luminal niche. Reactive oxygen species produced by phagocytes in the intestinal lumen oxidize endogenous sulfur compounds to produce a new respiratory electron acceptor, tetrathionate. Respiration of tetrathionate confers a growth advantage to S. Typhimurium over competing microbes. This growth advantage ensures transmission of the pathogen by the faecal-oral route. In typhoid fever, S. enterica serovar Typhi (S. Typhi) establishes a chronic infection in the gall bladder, and perhaps in additional niches. Studies using the mouse model of typhoid fever suggest that survival and proliferation in the gall bladder may involve several strategies. Invasion of the gallbladder epithelium and formation of biofilms on gallstones may protect the pathogen from the bactericidal activities of bile salts. In the gallbladder lumen, activation of bile defence responses may permit survival of planktonic Salmonella cells. Individuals developing chronic carriage after an episode of typhoid fever can transmit the disease for the remainder of their lives by shedding the pathogen through the cystic duct. Shedding promotes S. Typhi transmission to new susceptible hosts. Here we review Salmonella virulence strategies for growth and survival in host niches that represent reservoirs for transmission.
Collapse
Affiliation(s)
- Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA. Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41080 Sevilla, Spain
| | | | | | | |
Collapse
|
28
|
Metabolomics reveals phospholipids as important nutrient sources during Salmonella growth in bile in vitro and in vivo. J Bacteriol 2011; 193:4719-25. [PMID: 21764918 DOI: 10.1128/jb.05132-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During the colonization of hosts, bacterial pathogens are presented with many challenges that must be overcome for colonization to occur successfully. This requires the bacterial sensing of the surroundings and adaptation to the conditions encountered. One of the major impediments to the pathogen colonization of the mammalian gastrointestinal tract is the antibacterial action of bile. Salmonella enterica serovar Typhimurium has specific mechanisms involved in resistance to bile. Additionally, Salmonella can successfully multiply in bile, using it as a source of nutrients. This accomplishment is highly relevant to pathogenesis, as Salmonella colonizes the gallbladder of hosts, where it can be carried asymptomatically and promote further host spread and transmission. To gain insights into the mechanisms used by Salmonella to grow in bile, we studied the changes elicited by Salmonella in the chemical composition of bile during growth in vitro and in vivo through a metabolomics approach. Our data suggest that phospholipids are an important source of carbon and energy for Salmonella during growth in the laboratory as well as during gallbladder infections of mice. Further studies in this area will generate a better understanding of how Salmonella exploits this generally hostile environment for its own benefit.
Collapse
|
29
|
Transcriptomic responses of Salmonella enterica serovars Enteritidis and Typhimurium to chlorine-based oxidative stress. Appl Environ Microbiol 2010; 76:5013-24. [PMID: 20562293 DOI: 10.1128/aem.00823-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovars Enteritidis and Typhimurium are the leading causative agents of salmonellosis in the United States. S. Enteritidis is predominantly associated with contamination of shell eggs and egg products, whereas S. Typhimurium is frequently linked to tainted poultry meats, fresh produce, and recently, peanut-based products. Chlorine is an oxidative disinfectant commonly used in the food industry to sanitize the surfaces of foods and food processing facilities (e.g., shell eggs and poultry meats). However, chlorine disinfection is not always effective, as some S. enterica strains may resist and survive the disinfection process. To date, little is known about the underlying mechanisms of how S. enterica responds to chlorine-based oxidative stress. In this study, we designed a custom bigenome microarray that consists of 385,000 60-mer oligonucleotide probes and targets 4,793 unique gene features in the genomes of S. Enteritidis strain PT4 and S. Typhimurium strain LT2. We explored the transcriptomic responses of both strains to two different chlorine treatments (130 ppm of chlorine for 30 min and 390 ppm of chlorine for 10 min) in brain heart infusion broth. We identified 209 S. enterica core genes associated with Fe-S cluster assembly, cysteine biosynthesis, stress response, ribosome formation, biofilm formation, and energy metabolism that were differentially expressed (>1.5-fold; P < 0.05). In addition, we found that serovars Enteriditis and Typhimurium differed in the responses of 33 stress-related genes and 19 virulence-associated genes to the chlorine stress. Findings from this study suggest that the oxidative-stress response may render S. enterica resistant or susceptible to certain types of environmental stresses, which in turn promotes the development of more effective hurdle interventions to reduce the risk of S. enterica contamination in the food supply.
Collapse
|
30
|
López-Garrido J, Casadesús J. The DamX protein of Escherichia coli and Salmonella enterica. Gut Microbes 2010; 1:285-288. [PMID: 21327035 PMCID: PMC3023611 DOI: 10.4161/gmic.1.4.12079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/14/2010] [Accepted: 04/18/2010] [Indexed: 02/03/2023] Open
Abstract
We recently showed that disruption of damX causes bile sensitivity in Salmonella enterica. The damX gene is part of an operon that contains genes with heterogeneous functions: DNA adenine methylation, biosynthesis of aromatic compounds, carbohydrate metabolism, and tRNA charging. The damX gene encodes a protein with a predicted size of 46 kDa. In Salmonella, DamX is found in the inner membrane of both dividing and non-dividing cells. The DamX protein contains a peptidoglycan-binding SPOR domain, and accumulates in the E. coli septal ring. E. coli mutants lacking DamX are bile-sensitive like their Salmonella counterparts.
Collapse
|