1
|
Korkus J, Sałata P, Thompson SA, Paluch E, Bania J, Wałecka-Zacharska E. The role of cydB gene in the biofilm formation by Campylobacter jejuni. Sci Rep 2024; 14:26574. [PMID: 39496766 PMCID: PMC11535028 DOI: 10.1038/s41598-024-77556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Campylobacter jejuni is a major cause of food- and water-borne bacterial infections in humans. A key factor helping bacteria to survive adverse environmental conditions is biofilm formation ability. Nonetheless, the molecular basis underlying biofilm formation by C. jejuni remains poorly understood. Around thirty genes involved in the regulation and dynamics of C. jejuni biofilm formation have been described so far. We applied random transposon mutagenesis to identify new biofilm-associated genes in C. jejuni strain 81-176. Of 1350 mutants, twenty-four had a decreased ability to produce biofilm compared to the wild-type strain. Some mutants contained insertions in genes previously reported to affect the biofilm formation process. The majority of identified genes encoded hypothetical proteins. In the library of EZ-Tn5 insertion mutants, we found the cydB gene associated with respiration that was not previously linked with biofilm formation in Campylobacter. To study the involvement of the cydB gene in biofilm formation, we constructed a non-marked deletion cydB mutant together with a complemented mutant. We found that the cydB deletion-mutant formed a weaker biofilm of loosely organized structure and lower volume than the parent strain. In the present study, we demonstrated the role of the cydB gene in biofilm formation by C. jejuni.
Collapse
Affiliation(s)
- Jakub Korkus
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Patrycja Sałata
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA
| | - Emil Paluch
- Department of Microbiology Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
2
|
Delaporte E, Karki AB, Fakhr MK. Aerotolerancy of Campylobacter spp.: A Comprehensive Review. Pathogens 2024; 13:842. [PMID: 39452714 PMCID: PMC11510350 DOI: 10.3390/pathogens13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Campylobacter spp. constitute a group of microaerophilic bacteria that includes strains that are aerotolerant and capable of surviving in aerobic conditions. Recent studies have shown that aerotolerant strains are highly prevalent in meats, animals, and clinical settings. Changes in growth media and other environmental conditions can affect the aerotolerance of Campylobacter strains and must be considered when studying their aerotolerance in vitro. Polymicrobial interactions and biofilms also play a significant role in the ability of Campylobacter to survive oxygen exposure. Continuous subculturing may foster aerotolerance, and studies have demonstrated a positive correlation between aerotolerance and virulence and between aerotolerance and the ability to survive stressful environmental conditions. Various mechanisms and genetic origins for aerotolerance have been proposed; however, most of the potential genes involved in aerotolerance require further investigation, and many candidate genes remain unidentified. Research is also needed to investigate if there are any clinical implications for Campylobacter aerotolerance. Understanding the aerotolerance of Campylobacter remains an important target for further research, and it will be an important step towards identifying potential targets for intervention against this clinically important food-borne pathogen.
Collapse
Affiliation(s)
- Elise Delaporte
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| | - Anand B. Karki
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|
3
|
Korkus J, Sałata P, Thompson SA, Paluch E, Bania J, Wałecka-Zacharska E. The role of cydB gene in the biofilm formation by Campylobacter jejuni. RESEARCH SQUARE 2024:rs.3.rs-4342718. [PMID: 39315276 PMCID: PMC11419190 DOI: 10.21203/rs.3.rs-4342718/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Campylobacter jejuni is a major cause of food- and water-borne bacterial infections in humans. A key factor helping bacteria to survive adverse environmental conditions is biofilm formation ability. Nonetheless, the molecular basis underlying biofilm formation by C. jejuni remains poorly understood. Around thirty genes involved in the regulation and dynamics of C. jejuni biofilm formation have been described so far. We applied random transposon mutagenesis to identify new biofilm-associated genes in C. jejuni strain 81-176. Of 1350 mutants, twenty-four had a decreased ability to produce biofilm compared to the wild-type strain. Some mutants contained insertions in genes previously reported to affect the biofilm formation process. The majority of identified genes encoded hypothetical proteins. In the library of EZ-Tn5 insertion mutants, we found the cydB gene associated with respiration that was not previously linked with biofilm formation in Campylobacter. To study the involvement of the cydB gene in biofilm formation, we constructed a non-marked deletion cydB mutant together with a complemented mutant. We found that the cydB deletion-mutant formed a weaker biofilm of loosely organized structure and lower volume than the parent strain. In the present study, we demonstrated the role of the cydB gene in biofilm formation by C. jejuni.
Collapse
Affiliation(s)
- Jakub Korkus
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Patrycja Sałata
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Stuart A. Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia Augusta University, Augusta, GA USA
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
4
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
5
|
Gong JJ, Huang IH, Su MSW, Xie SX, Liu WY, Huang CR, Hung YP, Wu SR, Tsai PJ, Ko WC, Chen JW. Phage transcriptional regulator X (PtrX)-mediated augmentation of toxin production and virulence in Clostridioides difficile strain R20291. Microbiol Res 2024; 280:127576. [PMID: 38183754 DOI: 10.1016/j.micres.2023.127576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, and spore-forming bacterial member of the human gut microbiome. The primary virulence factors of C. difficile are toxin A and toxin B. These toxins damage the cell cytoskeleton and cause various diseases, from diarrhea to severe pseudomembranous colitis. Evidence suggests that bacteriophages can regulate the expression of the pathogenicity locus (PaLoc) genes of C. difficile. We previously demonstrated that the genome of the C. difficile RT027 strain NCKUH-21 contains a prophage-like DNA sequence, which was found to be markedly similar to that of the φCD38-2 phage. In the present study, we investigated the mechanisms underlying the φNCKUH-21-mediated regulation of the pathogenicity and the PaLoc genes expression in the lysogenized C. difficile strain R20291. The carriage of φNCKUH-21 in R20291 cells substantially enhanced toxin production, bacterial motility, biofilm formation, and spore germination in vitro. Subsequent mouse studies revealed that the lysogenized R20291 strain caused a more severe infection than the wild-type strain. We screened three φNCKUH-21 genes encoding DNA-binding proteins to check their effects on PaLoc genes expression. The overexpression of NCKUH-21_03890, annotated as a transcriptional regulator (phage transcriptional regulator X, PtrX), considerably enhanced toxin production, biofilm formation, and bacterial motility of R20291. Transcriptome analysis further confirmed that the overexpression of ptrX led to the upregulation of the expression of toxin genes, flagellar genes, and csrA. In the ptrX-overexpressing R20291 strain, PtrX influenced the expression of flagellar genes and the sigma factor gene sigD, possibly through an increased flagellar phase ON configuration ratio.
Collapse
Affiliation(s)
- Jun-Jia Gong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiu Huang
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Marcia Shu-Wei Su
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Si-Xuan Xie
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yong Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Rung Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Center for Clinical Medicine Research, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Kanaan MHG. Effect of biofilm formation in a hostile oxidative stress environment on the survival of Campylobacter jejuni recovered from poultry in Iraqi markets. Vet World 2024; 17:136-142. [PMID: 38406363 PMCID: PMC10884572 DOI: 10.14202/vetworld.2024.136-142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Campylobacter jejuni is a major contributor to bacterial enteritis, a common health problem. The resistance of this microaerophilic bacterium to oxidative stress allows it to thrive under aerobic conditions. This study aimed to investigate whether the capacity of C. jejuni to form biofilms in the presence of oxidative stress contributes to the pathogen's ability to thrive in agricultural settings as well as in chicken slaughter lines. Materials and Methods Twenty identified strains originating from chicken samples (eight from caeca contents and 12 from frozen chicken carcasses) were previously isolated and identified according to standard bacteriological protocols, followed by confirmation at the species level using multiplex polymerase chain reaction assay. Crystal violet staining was used to evaluate biofilm formation by these bacteria. Two exposure periods to gaseous ozone (1 and 2 min) were used to assess resistance to oxidative damage. Results Most of the strong biofilm-forming Campylobacter strains came from imported frozen chicken meat (25%), whereas only 10% came from caeca content. After exposure to gaseous ozone at 600 mg/h for 2 min, strong biofilm-producing strains exhibited a higher survival rate with a limited reduction of up to 3 logs, whereas negative biofilm-producing strains exhibited a limited survival rate with a reduction of 6 logs. Conclusion Based on our findings, we hypothesized that the presence of C. jejuni strains capable of forming biofilms in poultry farms and/or chicken production facilities triggers a public health alarm as this bacterium seems to be able to adapt more easily to live and thrive in hostile environmental conditions.
Collapse
Affiliation(s)
- Manal H. G. Kanaan
- Department of Nursing, Technical Institute of Suwaria, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
7
|
Ren CY, Xu QJ, Alvarez PJJ, Zhu L, Zhao HP. Simultaneous antibiotic removal and mitigation of resistance induction by manganese bio-oxidation process. WATER RESEARCH 2023; 244:120442. [PMID: 37549546 DOI: 10.1016/j.watres.2023.120442] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Microbial degradation to remove residual antibiotics in wastewater is of growing interest. However, biological treatment of antibiotics may cause resistance dissemination by mutations and horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). In this study, a Mn(Ⅱ)-oxidizing bacterium (MnOB), Pseudomonas aeruginosa MQ2, simultaneously degraded antibiotics, decreased HGT, and mitigated antibiotic resistance mutation. Intracellular Mn(II) levels increased during manganese oxidation, and biogenic manganese oxides (BioMnOx, including Mn(II), Mn(III) and Mn(IV)) tightly coated the cell surface. Mn(II) bio-oxidation mitigated antibiotic resistance acquisition from an E. coli ARG donor and mitigated antibiotic resistance inducement by decreasing conjugative transfer and mutation, respectively. BioMnOx also oxidized ciprofloxacin (1 mg/L) and tetracycline (5 mg/L), respectively removing 93% and 96% within 24 h. Transcriptomic analysis revealed that two new multicopper oxidase and one peroxidase genes are involved in Mn(II) oxidation. Downregulation of SOS response, multidrug resistance and type Ⅳ secretion system related genes explained that Mn(II) and BioMnOx decreased HGT and mitigated resistance mutation by alleviating oxidative stress, which makes recipient cells more vulnerable to ARG acquisition and mutation. A manganese bio-oxidation based reactor was constructed and completely removed tetracycline with environmental concentration within 4-hour hydraulic retention time. Overall, this study suggests that Mn (II) bio-oxidation process could be exploited to control antibiotic contamination and mitigate resistance propagation during water treatment.
Collapse
Affiliation(s)
- Chong-Yang Ren
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiu-Jin Xu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Lizhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Zhu L, Andersen-Civil AIS, Castro-Meija JL, Nielsen DS, Blanchard A, Olsen JE, Thamsborg SM, Williams AR. Garlic-Derived Metabolites Exert Antioxidant Activity, Modulate Gut Microbiota Composition and Limit Citrobacter rodentium Infection in Mice. Antioxidants (Basel) 2022; 11:2033. [PMID: 36290756 PMCID: PMC9598726 DOI: 10.3390/antiox11102033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The garlic-derived compounds propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) are metabolites with putative health benefits against intestinal inflammation that may be related to their antioxidant activity. However, the underlying mechanisms remain unclear, and whether PTS-PTSO can promote gut health by altering the microbiota and exert protection against enteric pathogens needs further investigation. Here, we explored the antioxidant activity of PTS-PTSO in murine macrophages in vitro, and in an in vivo model of bacterial infection with the bacterial pathogen Citrobacter rodentium. PTS-PTSO attenuated reactive oxygen species in lipopolysaccharide-stimulated macrophages in a nuclear factor erythroid factor 2-related factor 2 (Nrf2)-dependent manner, decreased nitric oxide levels both in macrophages in vitro and in the sera of mice fed PTS-PTSO, and had putatively beneficial effects on the commensal gut microbiota. Importantly, PTS-PTSO decreased faecal C. rodentium counts, concomitant with upregulation of Nrf2-related genes in colon tissue. Thus, PTS-PTSO mediates Nrf2-mediated antioxidant activity and modulates gut microbiota, which may protect the host against C. rodentium colonization. Our results provide further insight into how PTS-PTSO and related bioactive dietary compounds may reduce enteric infections.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Audrey I. S. Andersen-Civil
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | | | - Dennis S. Nielsen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | | | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Stig M. Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
9
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
10
|
Ma L, Feng J, Zhang J, Lu X. Campylobacter biofilms. Microbiol Res 2022; 264:127149. [DOI: 10.1016/j.micres.2022.127149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
|
11
|
Insights into the Virulence of Campylobacter jejuni Associated with Two-Component Signal Transduction Systems and Single Regulators. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is one of the major aetiologies of diarrhoea. Understanding the processes and virulence factors contributing to C. jejuni fitness is a cornerstone for developing mitigation strategies. Two-component signal transduction systems, known as two-component systems (TCSs), along with single regulators with no obvious cognate histidine kinase, help pathogens in interacting with their environments, but the available literature on C. jejuni is limited. A typical TCS possesses histidine kinase and response regulator proteins. The objective of this review was to provide insights into the virulence of C. jejuni associated with TCSs and single regulators. Despite limited research, TCSs are important contributors to the pathogenicity of C. jejuni by influencing motility (FlgSR), colonisation (DccRS), nutrient acquisition (PhosSR and BumSR), and stress response (RacRS). Of the single regulators, CbrR and CosR are involved in bile resistance and oxidative stress response, respectively. Cross-talks among TCSs complicate the full elucidation of their molecular mechanisms. Although progress has been made in characterising C. jejuni TCSs, shortfalls such as triggering signals, inability to induce mutations in some genes, or developing suitable in vivo models are still being encountered. Further research is expected to shed light on the unexplored sides of the C. jejuni TCSs, which may allow new drug discoveries and better control strategies.
Collapse
|
12
|
Cox CA, Bogacz M, El Abbar FM, Browning DD, Hsueh BY, Waters CM, Lee VT, Thompson SA. The Campylobacter jejuni Response Regulator and Cyclic-Di-GMP Binding CbrR Is a Novel Regulator of Flagellar Motility. Microorganisms 2021; 10:microorganisms10010086. [PMID: 35056537 PMCID: PMC8779298 DOI: 10.3390/microorganisms10010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
A leading cause of bacterial gastroenteritis, Campylobacter jejuni is also associated with broad sequelae, including extragastrointestinal conditions such as reactive arthritis and Guillain-Barré Syndrome (GBS). CbrR is a C. jejuni response regulator that is annotated as a diguanylate cyclase (DGC), an enzyme that catalyzes the synthesis of c-di-GMP, a universal bacterial second messenger, from GTP. In C. jejuni DRH212, we constructed an unmarked deletion mutant, cbrR-, and complemented mutant, cbrR+. Motility assays indicated a hyper-motile phenotype associated with cbrR-, whereas motility was deficient in cbrR+. The overexpression of CbrR in cbrR+ was accompanied by a reduction in expression of FlaA, the major flagellin. Biofilm assays and scanning electron microscopy demonstrated similarities between DRH212 and cbrR-; however, cbrR+ was unable to form significant biofilms. Transmission electron microscopy showed similar cell morphology between the three strains; however, cbrR+ cells lacked flagella. Differential radial capillary action of ligand assays (DRaCALA) showed that CbrR binds GTP and c-di-GMP. Liquid chromatography tandem mass spectrometry detected low levels of c-di-GMP in C. jejuni and in E. coli expressing CbrR. CbrR is therefore a negative regulator of FlaA expression and motility, a critical virulence factor in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Claudia A. Cox
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Marek Bogacz
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Faiha M. El Abbar
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA;
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Chris M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Vincent T. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| | - Stuart A. Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
- Correspondence:
| |
Collapse
|
13
|
Phoka T, Fule L, Da Fonseca JP, Cokelaer T, Picardeau M, Patarakul K. Investigating the role of the carbon storage regulator A (CsrA) in Leptospira spp. PLoS One 2021; 16:e0260981. [PMID: 34898610 PMCID: PMC8668096 DOI: 10.1371/journal.pone.0260981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Carbon Storage Regulator A (CsrA) is a well-characterized post-transcriptional global regulator that plays a critical role in response to environmental changes in many bacteria. CsrA has been reported to regulate several metabolic pathways, motility, biofilm formation, and virulence-associated genes. The role of csrA in Leptospira spp., which are able to survive in different environmental niches and infect a wide variety of reservoir hosts, has not been characterized. To investigate the role of csrA as a gene regulator in Leptospira, we generated a L. biflexa csrA deletion mutant (ΔcsrA) and csrA overexpressing Leptospira strains. The ΔcsrA L. biflexa displayed poor growth under starvation conditions. RNA sequencing revealed that in rich medium only a few genes, including the gene encoding the flagellar filament protein FlaB3, were differentially expressed in the ΔcsrA mutant. In contrast, 575 transcripts were differentially expressed when csrA was overexpressed in L. biflexa. Electrophoretic mobility shift assay (EMSA) confirmed the RNA-seq data in the ΔcsrA mutant, showing direct binding of recombinant CsrA to flaB3 mRNA. In the pathogen L. interrogans, we were not able to generate a csrA mutant. We therefore decided to overexpress csrA in L. interrogans. In contrast to the overexpressing strain of L. biflexa, the overexpressing L. interrogans strain had poor motility on soft agar. The overexpressing strain of L. interrogans also showed significant upregulation of the flagellin flaB1, flaB2, and flaB4. The interaction of L. interrogans rCsrA and flaB4 was confirmed by EMSA. Our results demonstrated that CsrA may function as a global regulator in Leptospira spp. under certain conditions that cause csrA overexpression. Interestingly, the mechanisms of action and gene targets of CsrA may be different between non-pathogenic and pathogenic Leptospira strains.
Collapse
Affiliation(s)
- Theerapat Phoka
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Lenka Fule
- Institut Pasteur, Biology of Spirochetes Unit, French National Reference Centre for Leptospirosis, Paris, France
| | - Juliana Pipoli Da Fonseca
- Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Thomas Cokelaer
- Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique – Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, French National Reference Centre for Leptospirosis, Paris, France
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
- * E-mail: ,
| |
Collapse
|
14
|
Ohadi E, Bakhshi B, Kalani BS, Talebi M, Irajian G. Transcriptome analysis of biofilm formation under aerobic and microaerobic conditions in clinical isolates of Campylobacter spp. Res Vet Sci 2021; 142:24-30. [PMID: 34847463 DOI: 10.1016/j.rvsc.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
It has been well documented that Campylobacter is the leading cause of foodborne infections and bacterial enteritis in high-income countries. The gastrointestinal tract of most warm-blooded animals, such as mammals and poultry, is prone to this pathogen. Infections caused by this bacterium in humans have usually been associated with the consumption of contaminated poultry meat. The important point about Campylobacter is that this bacterium has adapted to harsh environmental conditions along the food chain (poultry digestive tract to the consumer's plate) and developed an adapted mechanism to those conditions. This study aimed to compare the ability of Campylobacter jejuni and Campylobacter coli strains to form biofilms under aerobic and microaerobic conditions. The presence and expression of flab, FliS, DnaK, luxs, CsrA, Cj0688, and cosR genes involved in biofilm formation were investigated. Finally, the correlation between the biofilm forming ability of Campylobacter isolates and the presence/expression of selected genes has been explored. A significant correlation was observed between the presence and expression of some genes and the degree of biofilm formation in C. jejuni and C. coli isolates. A strong biofilm production was detected in strains harboring all selected genes with greater expression levels. The ability of C. jejuni and C. coli strains in biofilm formation is associated with the coordinated function and convergent expression of the selected genes. Seemingly, stress response- and motility-related genes have the most involvement in biofilm formation of C. jejuni and C. coli strains, while other genes have an accessory role in this phenomenon.
Collapse
Affiliation(s)
- Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Behrooz Sadeghi Kalani
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Koeksoy E, Bezuidt OM, Bayer T, Chan CS, Emerson D. Zetaproteobacteria Pan-Genome Reveals Candidate Gene Cluster for Twisted Stalk Biosynthesis and Export. Front Microbiol 2021; 12:679409. [PMID: 34220764 PMCID: PMC8250860 DOI: 10.3389/fmicb.2021.679409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Twisted stalks are morphologically unique bacterial extracellular organo-metallic structures containing Fe(III) oxyhydroxides that are produced by microaerophilic Fe(II)-oxidizers belonging to the Betaproteobacteria and Zetaproteobacteria. Understanding the underlying genetic and physiological mechanisms of stalk formation is of great interest based on their potential as novel biogenic nanomaterials and their relevance as putative biomarkers for microbial Fe(II) oxidation on ancient Earth. Despite the recognition of these special biominerals for over 150 years, the genetic foundation for the stalk phenotype has remained unresolved. Here we present a candidate gene cluster for the biosynthesis and secretion of the stalk organic matrix that we identified with a trait-based analyses of a pan-genome comprising 16 Zetaproteobacteria isolate genomes. The “stalk formation in Zetaproteobacteria” (sfz) cluster comprises six genes (sfz1-sfz6), of which sfz1 and sfz2 were predicted with functions in exopolysaccharide synthesis, regulation, and export, sfz4 and sfz6 with functions in cell wall synthesis manipulation and carbohydrate hydrolysis, and sfz3 and sfz5 with unknown functions. The stalk-forming Betaproteobacteria Ferriphaselus R-1 and OYT-1, as well as dread-forming Zetaproteobacteria Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8 contain distant sfz gene homologs, whereas stalk-less Zetaproteobacteria and Betaproteobacteria lack the entire gene cluster. Our pan-genome analysis further revealed a significant enrichment of clusters of orthologous groups (COGs) across all Zetaproteobacteria isolate genomes that are associated with the regulation of a switch between sessile and motile growth controlled by the intracellular signaling molecule c-di-GMP. Potential interactions between stalk-former unique transcription factor genes, sfz genes, and c-di-GMP point toward a c-di-GMP regulated surface attachment function of stalks during sessile growth.
Collapse
Affiliation(s)
- Elif Koeksoy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.,Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures), Braunschweig, Germany
| | - Oliver M Bezuidt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Timm Bayer
- Geomicrobiology Group, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States.,School of Marine Sciences and Policy, University of Delaware, Newark, DE, United States
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
16
|
Gahamanyi N, Song DG, Yoon KY, Mboera LEG, Matee MI, Mutangana D, Amachawadi RG, Komba EVG, Pan CH. Antimicrobial Resistance Profiles, Virulence Genes, and Genetic Diversity of Thermophilic Campylobacter Species Isolated From a Layer Poultry Farm in Korea. Front Microbiol 2021; 12:622275. [PMID: 33859624 PMCID: PMC8043113 DOI: 10.3389/fmicb.2021.622275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
Thermophilic Campylobacter species are among the major etiologies of bacterial enteritis globally. This study aimed at assessing the antimicrobial resistance (AMR) profiles, virulence genes, and genetic diversity of thermophilic Campylobacter species isolated from a layer poultry farm in South Korea. One hundred fifty-three chicken feces were collected from two layer poultry farms in Gangneung, South Korea. The Campylobacter species were isolated by cultural techniques, while PCR and sequencing were used for species confirmation. Antimicrobial susceptibility testing for six antimicrobials [ciprofloxacin (CIP), nalidixic acid (NAL), sitafloxacin (SIT), erythromycin (ERY), tetracycline (TET), and gentamicin (GEN)] was carried out by broth microdilution. Three AMR and nine virulence genes were screened by PCR. Genotyping was performed by flaA-restriction fragment length polymorphism (RFLP) and multilocus sequence typing (MLST). Of the 153 samples, Campylobacter spp. were detected in 55 (35.9%), with Campylobacter jejuni and Campylobacter coli being 49 (89.1%) and six (10.9%), respectively. High-level resistance was observed for CIP (100%), NAL (100%), and TET (C. jejuni, 93.9%; C. coli: 83.3%). No resistance was observed for SIT. The missense mutation (C257T) in gyrA gene was confirmed by sequencing, while the tet(O) gene was similar to known sequences in GenBank. The rate of multidrug-resistant (MDR) strains was 8.2%, and they all belonged to C. jejuni. All Campylobacter isolates possessed five virulence genes (cdtB, cstII, flaA, cadF, and dnaJ), but none possessed ggt, while the rates for other genes (csrA, ciaB, and pldA) ranged between 33.3 and 95.9%. The flaA-RFLP yielded 26 flaA types (C. jejuni: 21 and C. coli: five), while the MLST showed 10 sequence types (STs) for C. jejuni and three STs for C. coli, with CC-607 (STs 3611) and CC-460 (ST-460) being predominant. Among the 10 STs of C. jejuni, three were newly assigned. The findings of this study highlight the increased resistance to quinolones and TET, the virulence potential, and the diverse genotypes among Campylobacter strains isolated from the layer poultry farm.
Collapse
Affiliation(s)
- Noel Gahamanyi
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, South Korea
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Dae-Geun Song
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, South Korea
| | - Kye-Yoon Yoon
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, South Korea
| | - Leonard E. G. Mboera
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Mecky I. Matee
- School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Erick V. G. Komba
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| |
Collapse
|
17
|
Duqué B, Rezé S, Rossero A, Membré JM, Guillou S, Haddad N. Quantification of Campylobacter jejuni gene expression after successive stresses mimicking poultry slaughtering steps. Food Microbiol 2021; 98:103795. [PMID: 33875223 DOI: 10.1016/j.fm.2021.103795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Broiler meat is considered as the most important source of the foodborne pathogen Campylobacter jejuni. Exposure to stress conditions encountered during the slaughtering process may induce bacterial adaptation mechanisms, and enhance or decrease pathogen resistance to subsequent stress. This adaptation may result from changes in bacterial gene expression. This study aims to accurately quantify the expression of selected C. jejuni genes after stresses inspired from the poultry slaughtering process. RT-qPCR was used to quantify gene expression of 44 genes in three strains after successive heat and cold stresses. Main results indicated that 26 genes out of 44 were differentially expressed following the successive thermal stresses. Three clusters of genes were differentially expressed according to the strain and the stress condition. Up-regulated genes mainly included genes involved in the heat shock response, whereas down-regulated genes belonged to metabolic pathways (such as lipid, amino-acid metabolisms). However, four genes were similarly overexpressed in the three strains; they might represent indicators of the thermal stress response at the species scale. Advances in the molecular understanding of the stress response of pathogenic bacteria, such as Campylobacter, in real-life processing conditions will make it possible to identify technological levers and better mitigate the microbial risk.
Collapse
Affiliation(s)
- Benjamin Duqué
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Sandrine Rezé
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Albert Rossero
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | | | - Sandrine Guillou
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Nabila Haddad
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| |
Collapse
|
18
|
Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr Top Microbiol Immunol 2021. [PMID: 33620656 DOI: 10.1007/978-3-030-65481-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The LuxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.
Collapse
|
19
|
Kim SH, Chelliah R, Ramakrishnan SR, Perumal AS, Bang WS, Rubab M, Daliri EBM, Barathikannan K, Elahi F, Park E, Jo HY, Hwang SB, Oh DH. Review on Stress Tolerance in Campylobacter jejuni. Front Cell Infect Microbiol 2021; 10:596570. [PMID: 33614524 PMCID: PMC7890702 DOI: 10.3389/fcimb.2020.596570] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Campylobacter spp. are the leading global cause of bacterial colon infections in humans. Enteropathogens are subjected to several stress conditions in the host colon, food complexes, and the environment. Species of the genus Campylobacter, in collective interactions with certain enteropathogens, can manage and survive such stress conditions. The stress-adaptation mechanisms of Campylobacter spp. diverge from other enteropathogenic bacteria, such as Escherichia coli, Salmonella enterica serovar Typhi, S. enterica ser. Paratyphi, S. enterica ser. Typhimurium, and species of the genera Klebsiella and Shigella. This review summarizes the different mechanisms of various stress-adaptive factors on the basis of species diversity in Campylobacter, including their response to various stress conditions that enhance their ability to survive on different types of food and in adverse environmental conditions. Understanding how these stress adaptation mechanisms in Campylobacter, and other enteric bacteria, are used to overcome various challenging environments facilitates the fight against resistance mechanisms in Campylobacter spp., and aids the development of novel therapeutics to control Campylobacter in both veterinary and human populations.
Collapse
Affiliation(s)
- Se-Hun Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju, South Korea.,College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sudha Rani Ramakrishnan
- School of Food Science, Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | | | - Woo-Suk Bang
- Department of Food and Nutrition, College of Human Ecology and Kinesiology, Yeungnam University, Gyeongsan, South Korea
| | - Momna Rubab
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eric Banan-Mwine Daliri
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Kaliyan Barathikannan
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eunji Park
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyeon Yeong Jo
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Su-Bin Hwang
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog Hwan Oh
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
20
|
Elmi A, Nasher F, Dorrell N, Wren B, Gundogdu O. Revisiting Campylobacter jejuni Virulence and Fitness Factors: Role in Sensing, Adapting, and Competing. Front Cell Infect Microbiol 2021; 10:607704. [PMID: 33614526 PMCID: PMC7887314 DOI: 10.3389/fcimb.2020.607704] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis world wide and represents a major public health concern. Over the past two decades, significant progress in functional genomics, proteomics, enzymatic-based virulence profiling (EBVP), and the cellular biology of C. jejuni have improved our basic understanding of this important pathogen. We review key advances in our understanding of the multitude of emerging virulence factors that influence the outcome of C. jejuni–mediated infections. We highlight, the spatial and temporal dynamics of factors that promote C. jejuni to sense, adapt and survive in multiple hosts. Finally, we propose cohesive research directions to obtain a comprehensive understanding of C. jejuni virulence mechanisms.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Bogacz M, El Abbar FM, Cox CA, Li J, Fiedler JS, Tran LKH, Tran PMH, Daugherty CL, Blake KH, Wang Z, Azadi P, Thompson SA. Binding of Campylobacter jejuni FliW Adjacent to the CsrA RNA-Binding Pockets Modulates CsrA Regulatory Activity. Front Microbiol 2021; 11:531596. [PMID: 33505360 PMCID: PMC7829508 DOI: 10.3389/fmicb.2020.531596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni CsrA is an mRNA-binding, post-transcriptional regulator that controls many metabolic- and virulence-related characteristics of this important pathogen. In contrast to E. coli CsrA, whose activity is modulated by binding to small non-coding RNAs (sRNAs), C. jejuni CsrA activity is controlled by binding to the CsrA antagonist FliW. In this study, we identified the FliW binding site on CsrA. Deletion of the C-terminus of C. jejuni CsrA, which is extended relative to sRNA-binding CsrA proteins, abrogated FliW binding. Bacterial two-hybrid experiments were used to assess the interaction of FliW with wild-type CsrA and mutants thereof, in which every amino acid was individually mutated. Two CsrA mutations (V51A and N55A) resulted in a significant decrease in FliW binding. The V51A and N55A mutants also showed a decrease in CsrA-FliW complex formation, as assessed by size-exclusion chromatography and surface plasmon resonance. These residues were highly conserved in bacterial species containing CsrA orthologs whose activities are predicted to be regulated by FliW. The location of FliW binding was immediately adjacent to the two RNA-binding sites of the CsrA homodimer, suggesting the model that FliW binding to CsrA modulates its ability to bind to its mRNA targets either by steric hindrance, electrostatic repulsion, or by altering the overall structure of the RNA-binding sites.
Collapse
Affiliation(s)
- Marek Bogacz
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Faiha M El Abbar
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Claudia A Cox
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jiaqi Li
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jarred S Fiedler
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lynn K H Tran
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Paul M H Tran
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - C Luke Daugherty
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kate H Blake
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
22
|
Whelan MVX, Simpson JC, Ó Cróinín T. A novel high-content screening approach for the elucidation of C. jejuni biofilm composition and integrity. BMC Microbiol 2021; 21:2. [PMID: 33397288 PMCID: PMC7784365 DOI: 10.1186/s12866-020-02062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide and the main source of infection is contaminated chicken meat. Although this important human pathogen is an obligate microaerophile, it must survive atmospheric oxygen conditions to allow transmission from contaminated chicken meat to humans. It is becoming increasingly evident that formation of biofilm plays a key role in the survival of this organism for extended periods on poultry products. We have recently demonstrated a novel inducible model for the study of adherent C. jejuni biofilm formation under aerobic conditions. By taking advantage of supercoiling mediated gene regulation, incubation of C. jejuni with subinhibitory concentrations of the Gyrase B inhibitor novobiocin was shown to promote the consistent formation of metabolically active adherent biofilm. RESULTS In this study, we implement this model in conjunction with the fluorescent markers: TAMRA (live cells) and SytoX (dead cells, eDNA) to develop a novel systematic high-content imaging approach and describe how it can be implemented to gain quantifiable information about the integrity and extracellular polymeric substance (EPS) composition of adherent C. jejuni biofilm in aerobic conditions. We show that this produces a model with a consistent, homogenous biofilm that can be induced and used to screen a range of inhibitors of biofilm adherence and matrix formation. CONCLUSIONS This model allows for the first time a high throughput analysis of C. jejuni biofilms which will be invaluable in enabling researchers to develop mechanisms to disrupt these biofilms and reduce the viability of these bacteria under aerobic conditions.
Collapse
Affiliation(s)
- Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
23
|
Assigning a role for chemosensory signal transduction in Campylobacter jejuni biofilms using a combined omics approach. Sci Rep 2020; 10:6829. [PMID: 32321947 PMCID: PMC7176700 DOI: 10.1038/s41598-020-63569-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 11/08/2022] Open
Abstract
Biofilms of the gastroenteric pathogen C. jejuni may serve an important role in the transmission of infection from reservoirs of infection to humans. Herein, we undertook a combinatorial approach examining differential gene expression and protein abundance during biofilm formation in C. jejuni. Biofilms induced a substantial rearrangement of the C. jejuni transcriptome and proteome, with ~600 genes differentially expressed when compared to planktonic cells. Genes and proteins induced in biofilms were involved in iron metabolism and acquisition, cell division, glycan production and attachment, while those repressed were associated with metabolism, amino acid usage, and large tracts of the chemotaxis pathway. We further examined the role of chemotaxis in C. jejuni biofilm formation by examining isogenic strains with deletions of the cheV and cheW signal transduction genes. Both ∆cheV and ∆cheW exhibited a significant decrease in directed motility when compared to wild-type C. jejuni as well as demonstrating an increase in autoagglutination ability and biofilm formation. A subtle difference was also observed between the phenotypes of ∆cheV and ∆cheW mutants, both in motility and biofilm formation. This suggests roles for CheV and CheW and may present signal transduction as a potential method for modulating C. jejuni biofilm formation.
Collapse
|
24
|
Tram G, Day CJ, Korolik V. Bridging the Gap: A Role for Campylobacter jejuni Biofilms. Microorganisms 2020; 8:E452. [PMID: 32210099 PMCID: PMC7143964 DOI: 10.3390/microorganisms8030452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis in the developed world. Cases of Campylobacteriosis are common, as the organism is an avian commensal and is passed on to humans through contaminated poultry meat, water, and food preparation areas. Although typically a fastidious organism, C. jejuni can survive outside the avian intestinal tract until it is able to reach a human host. It has long been considered that biofilms play a key role in transmission of this pathogen. The aim of this review is to examine factors that trigger biofilm formation in C. jejuni. A range of environmental elements have been shown to initiate biofilm formation, which are then affected by a suite of intrinsic factors. We also aim to further investigate the role that biofilms may play in the life cycle of this organism.
Collapse
Affiliation(s)
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Southport, Queensland 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Southport, Queensland 4222, Australia;
| |
Collapse
|
25
|
Alzheimer M, Svensson SL, König F, Schweinlin M, Metzger M, Walles H, Sharma CM. A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLoS Pathog 2020; 16:e1008304. [PMID: 32069333 PMCID: PMC7048300 DOI: 10.1371/journal.ppat.1008304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/28/2020] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens. Enteric pathogens have evolved numerous strategies to successfully colonize and persist in the human gastrointestinal tract. However, especially for the research of virulence mechanisms of human pathogens, often only limited infection models are available. Here, we have applied and further advanced a tissue-engineered human intestinal tissue model based on an extracellular matrix scaffold reseeded with human cells that can faithfully mimic pathogenesis-determining processes of the zoonotic pathogen Campylobacter jejuni. Our three-dimensional (3D) intestinal infection model allows for the assessment of epithelial barrier function during infection as well as for the quantification of bacterial adherence, internalization, and transmigration. Investigation of C. jejuni mutant strains in our 3D tissue model revealed isolate-specific infection phenotypes, in-vivo relevant infection outcomes, and uncovered the involvement of a small RNA pair during C. jejuni pathogenesis. Overall, our results demonstrate the power of tissue-engineered models for studying host-pathogen interactions, and our model will also be helpful to investigate other gastrointestinal pathogens.
Collapse
Affiliation(s)
- Mona Alzheimer
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sarah L. Svensson
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Fabian König
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Matthias Schweinlin
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer-Institute for Silicate Research, Translational Centre Regenerative Therapies, Würzburg, Germany
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail: (HW); (CMS)
| | - Cynthia M. Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- * E-mail: (HW); (CMS)
| |
Collapse
|
26
|
Whelan MVX, Ardill L, Koide K, Nakajima C, Suzuki Y, Simpson JC, Ó Cróinín T. Acquisition of fluoroquinolone resistance leads to increased biofilm formation and pathogenicity in Campylobacter jejuni. Sci Rep 2019; 9:18216. [PMID: 31796849 PMCID: PMC6890674 DOI: 10.1038/s41598-019-54620-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
The World Health Organization has listed C. jejuni as one of 12 microorganisms on a global priority list for antibiotic resistance due to a rapid increase in strains resistant to fluoroquinolone antibiotics. This fluoroquinolone resistance is conferred through a single point mutation in the QRDR region within the gyrA gene known to be involved in DNA supercoiling. We have previously revealed that changes in DNA supercoilikng play a major role in the regulation of virulence in C. jejuni with relaxation of DNA supercoiling associated with increased attachment to and invasion of human epithelial cells. The aim of this study was to investigate whether fluoroquinolone resistant strains of C. jejuni displayed altered supercoiling associated phenotypes. A panel of fluoroquinolone resistant mutants were derived and shown to have a greater ability to form viable biofilms under aerobic conditions, invade epithelial cells and promote virulence in the Galleria mellonella model of infection. We thus report for the first time that fluoroquinolone resistance in C. jejuni is associated with an increase in virulence and the ability to form viable biofilms in oxygen rich environments. These altered phenotypes likely play a critical role in the continued increase in fluoroquinolone resistance observed for this important pathogen.
Collapse
Affiliation(s)
- Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laura Ardill
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kentaro Koide
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
27
|
Díaz-Riaño J, Posada L, Acosta IC, Ruíz-Pérez C, García-Castillo C, Reyes A, Zambrano MM. Computational search for UV radiation resistance strategies in Deinococcus swuensis isolated from Paramo ecosystems. PLoS One 2019; 14:e0221540. [PMID: 31790419 PMCID: PMC6886795 DOI: 10.1371/journal.pone.0221540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet radiation (UVR) is widely known as deleterious for many organisms since it can cause damage to biomolecules either directly or indirectly via the formation of reactive oxygen species. The goal of this study was to analyze the capacity of high-mountain Espeletia hartwegiana plant phyllosphere microorganisms to survive UVR and to identify genes related to resistance strategies. A strain of Deinococcus swuensis showed a high survival rate of up to 60% after UVR treatment at 800J/m2 and was used for differential expression analysis using RNA-seq after exposing cells to 400J/m2 of UVR (with >95% survival rate). Differentially expressed genes were identified using the R-Bioconductor package NOISeq and compared with other reported resistance strategies reported for this genus. Genes identified as being overexpressed included transcriptional regulators and genes involved in protection against damage by UVR. Non-coding (nc)RNAs were also differentially expressed, some of which have not been previously implicated. This study characterized the immediate radiation response of D. swuensis and indicates the involvement of ncRNAs in the adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Jorge Díaz-Riaño
- Corporación Corpogen Research Center, Bogotá D.C, Colombia
- Research group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de Los Andes, Bogotá D.C, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá D.C, Colombia
| | | | | | - Carlos Ruíz-Pérez
- Research group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de Los Andes, Bogotá D.C, Colombia
| | - Catalina García-Castillo
- Research group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de Los Andes, Bogotá D.C, Colombia
| | - Alejandro Reyes
- Research group in Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de Los Andes, Bogotá D.C, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá D.C, Colombia
- Center of Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, United States of America
| | | |
Collapse
|
28
|
Andrzejewska M, Szczepańska B, Śpica D, Klawe JJ. Prevalence, Virulence, and Antimicrobial Resistance of Campylobacter spp. in Raw Milk, Beef, and Pork Meat in Northern Poland. Foods 2019; 8:E420. [PMID: 31533265 PMCID: PMC6770586 DOI: 10.3390/foods8090420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to determine whether raw milk, unpasteurized dairy products, pork, and beef available for sale in the Kujawsko-Pomorskie and Wielkopolska regions in Poland are contaminated with Campylobacter spp. bacteria and may be a potential source of infection. For isolated strains, antibiotic susceptibility and the presence of genes responsible for virulence were examined. Material for research included 1058 food samples collected between 2014 and 2018 with 454 samples of raw milk and unpasteurized dairy products (milk from vending machines, milk from owners of dairy cows, cheese, milk cream) and 604 samples of raw meat (pork, beef). The results indicated that 9.3% of the samples were positive for Campylobacter spp., and Campylobacter jejuni was predominant in this study. Campylobacter bacteria was not found in milk collected from vending machines, as well as cheese and milk cream samples. Campylobacter was noted in 12.7% of beef samples, 11.8% of raw milk purchased from individual suppliers, and 10.9% of pork samples. Resistance to erythromycin (2.0%), azithromycin (3.1%), gentamicin (4.1%), tetracycline (65.3%), and ciprofloxacin (71.4%) was determined using the disc diffusion method. Furthermore, the prevalence of racR, sodB, csrA, virB11, cdtB, iam, and wlaN genes were examined using the PCR method. The sodB, csrA, and cdtB genes exhibited the highest detection rate, but none of the genes were identified in 100% of the isolates. Statistically significant differences between the presence of virulence marker genes, including for iam, racR, and csrA markers, were noted among different sources of the isolates. Differences in the distribution of iam, wlaN, and virB11 were also shown between C. jejuni and C. coli strains. As a result of the analysis, it has been concluded that unpasteurized milk, beef, and pork could be a sources of Campylobacter pathogens. Moreover, this study revealed virulent properties of Campylobacter isolated from such food products and high resistance rates to fluoroquinolones, which may represent difficulties in campylobacteriosis treatment.
Collapse
Affiliation(s)
- Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology and Ergonomics Nicolaus Copernicus University in Toruń and Ludwik Rydygier Collegium Medicum in Bydgoszcz, 9 Marii Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland.
| | - Bernadeta Szczepańska
- Department of Hygiene, Epidemiology and Ergonomics Nicolaus Copernicus University in Toruń and Ludwik Rydygier Collegium Medicum in Bydgoszcz, 9 Marii Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland.
| | - Dorota Śpica
- Department of Hygiene, Epidemiology and Ergonomics Nicolaus Copernicus University in Toruń and Ludwik Rydygier Collegium Medicum in Bydgoszcz, 9 Marii Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland.
| | - Jacek J Klawe
- Department of Hygiene, Epidemiology and Ergonomics Nicolaus Copernicus University in Toruń and Ludwik Rydygier Collegium Medicum in Bydgoszcz, 9 Marii Curie Skłodowskiej St., 85-094 Bydgoszcz, Poland.
| |
Collapse
|
29
|
El Abbar FM, Li J, Owen HC, Daugherty CL, Fulmer CA, Bogacz M, Thompson SA. RNA Binding by the Campylobacter jejuni Post-transcriptional Regulator CsrA. Front Microbiol 2019; 10:1776. [PMID: 31447808 PMCID: PMC6692469 DOI: 10.3389/fmicb.2019.01776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative rod-shaped bacterium that commensally inhabits the intestinal tracts of livestock and birds, and which also persists in surface waters. C. jejuni is a leading cause of foodborne gastroenteritis, and these infections are sometimes associated with the development of post-infection sequelae such as Guillain-Barré Syndrome. Flagella are considered a primary virulence factor in C. jejuni, as these organelles are required for pathogenicity-related phenotypes including motility, biofilm formation, host cell interactions, and host colonization. The post-transcriptional regulator CsrA regulates the expression of the major flagellin FlaA by binding to flaA mRNA and repressing its translation. Additionally, CsrA has previously been shown to regulate 120–150 proteins involved in diverse cellular processes. The amino acid sequence of C. jejuni CsrA is significantly different from that of Escherichia coli CsrA, and no previous research has defined the amino acids of C. jejuni CsrA that are critical for RNA binding. In this study, we used in vitro SELEX to identify the consensus RNA sequence mAwGGAs to which C. jejuni CsrA binds with high affinity. We performed saturating site-directed mutagenesis on C. jejuni CsrA and assessed the regulatory activity of these mutant proteins, using a reporter system encoding the 5′ untranslated region (5′ UTR) upstream of flaA linked translationally to the C. jejuni astA gene. These assays allowed us to identify 19 amino acids that were involved in RNA binding by CsrA, with many but not all of these amino acids clustered in predicted beta strands that are involved in RNA binding by E. coli CsrA. Decreased flaA mRNA binding by mutant CsrA proteins L2A and A36V was confirmed by electrophoretic mobility shift assays. The majority of the amino acids implicated in RNA binding were conserved among diverse Campylobacter species.
Collapse
Affiliation(s)
- Faiha M El Abbar
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Jiaqi Li
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Harry C Owen
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - C Luke Daugherty
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Claudia A Fulmer
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Marek Bogacz
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| |
Collapse
|
30
|
Wagle BR, Upadhyay A, Upadhyaya I, Shrestha S, Arsi K, Liyanage R, Venkitanarayanan K, Donoghue DJ, Donoghue AM. Trans-Cinnamaldehyde, Eugenol and Carvacrol Reduce Campylobacter jejuni Biofilms and Modulate Expression of Select Genes and Proteins. Front Microbiol 2019; 10:1837. [PMID: 31456771 PMCID: PMC6698798 DOI: 10.3389/fmicb.2019.01837] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni is the leading cause of human foodborne illness globally, and is strongly linked with the consumption of contaminated poultry products. Several studies have shown that C. jejuni can form sanitizer tolerant biofilm leading to product contamination, however, limited research has been conducted to develop effective control strategies against C. jejuni biofilms. This study investigated the efficacy of three generally recognized as safe status phytochemicals namely, trans-cinnamaldehyde (TC), eugenol (EG), or carvacrol (CR) in inhibiting C. jejuni biofilm formation and inactivating mature biofilm on common food contact surfaces at 20 and 37°C. In addition, the effect of phytochemicals on biofilm architecture and expression of genes and proteins essential for biofilm formation was evaluated. For the inhibition study, C. jejuni was allowed to form biofilms either in the presence or absence of sub-inhibitory concentrations of TC (0.75 mM), EG (0.61 mM), or CR (0.13 mM) for 48 h and the biofilm formation was quantified at 24-h interval. For the inactivation study, C. jejuni biofilms developed at 20 or 37°C for 48 h were exposed to the phytochemicals for 1, 5, or 10 min and surviving C. jejuni in the biofilm were enumerated. All phytochemicals reduced C. jejuni biofilm formation as well as inactivated mature biofilm on polystyrene and steel surface at both temperatures (P < 0.05). The highest dose of TC (75.64 mM), EG (60.9 mM) and CR (66.56 mM) inactivated (>7 log reduction) biofilm developed on steel (20°C) within 5 min. The genes encoding for motility systems (flaA, flaB, and flgA) were downregulated by all phytochemicals (P < 0.05). The expression of stress response (cosR, ahpC) and cell surface modifying genes (waaF) was reduced by EG. LC-MS/MS based proteomic analysis revealed that TC, EG, and CR significantly downregulated the expression of NapA protein required for oxidative stress response. The expression of chaperone protein DnaK and bacterioferritin required for biofilm formation was reduced by TC and CR. Scanning electron microscopy revealed disruption of biofilm architecture and loss of extracellular polymeric substances after treatment. Results suggest that TC, EG, and CR could be used as a natural disinfectant for controlling C. jejuni biofilms in processing areas.
Collapse
Affiliation(s)
- Basanta R. Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Indu Upadhyaya
- School of Agriculture, Tennessee Tech University, Cookeville, TN, United States
| | - Sandip Shrestha
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Komala Arsi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | | | - Dan J. Donoghue
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Annie M. Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture – Agriculture Research Station, Fayetteville, AR, United States
| |
Collapse
|
31
|
Teren M, Turonova Michova H, Vondrakova L, Demnerova K. Molecules Autoinducer 2 and cjA and Their Impact on Gene Expression in Campylobacter jejuni. J Mol Microbiol Biotechnol 2019; 28:207-215. [DOI: 10.1159/000495411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
Quorum sensing is a widespread form of cell-to-cell communication, which is based on the production of signaling molecules known as autoinducers (AIs). The first group contains highly species-specific N-acyl homoserine lactones (N-AHLs), generally known as AI-1, which are produced by AHL synthase. The second group, possessing the characteristic structure of a furanone ring, are known as AI-2. The enzyme responsible for their production is S-ribosylhomocysteine lyase (LuxS). In <i>Campylobacter jejuni</i>, AI-2 and LuxS play a role in many important processes, including biofilm formation, stress response, motility, expression of virulence factors, and colonization. However, neither the receptor protein nor the exact structure of the AI-2 molecule have been identified to date. Similarly, little is known about the possible existence of AHL-synthase producing AI-1 and its impact on gene expression. Recently, an analogue of homoserine lactone, called cjA, was isolated from a cell-free supernatant of <i>C. jejuni</i> strain<i></i> 81–176 and from the food isolate c11. The molecule cjA particularly impacted the expression of virulence factors and biofilm formation. This review summarizes the role of AI-2 and cjA in the context of biofilm formation, motility, stress responses, and expression of virulence factors.
Collapse
|
32
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
33
|
Karki AB, Marasini D, Oakey CK, Mar K, Fakhr MK. Campylobacter coli From Retail Liver and Meat Products Is More Aerotolerant Than Campylobacter jejuni. Front Microbiol 2018; 9:2951. [PMID: 30631306 PMCID: PMC6315125 DOI: 10.3389/fmicb.2018.02951] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 11/16/2018] [Indexed: 02/01/2023] Open
Abstract
Aerotolerance in the microaerophilic species Campylobacter was previously reported and could increase bacterial survival and transmission in foods during stressful processing and storage conditions. In this study, 167 Campylobacter isolates (76 C. jejuni and 91 C. coli) were screened for aerotolerance; these strains were previously isolated from retail chicken meat, chicken livers, chicken gizzards, turkey, pork, and beef liver samples. Bacterial cultures were incubated aerobically in Mueller Hinton broth with agitation and viable cell counts were taken at 0, 6, 12, and 24 h. Approximately 47% of the screened Campylobacter isolates were aerotolerant (viable after a 12-h aerobic incubation period), whereas 24% were hyper-aerotolerant (viable after a 24-h aerobic incubation). A greater prevalence of aerotolerant strains (80%) was found among C. coli isolates as compared to C. jejuni isolates (6%). Differences in the oxidative stress response related genes were detected among C. jejuni and C. coli isolates when comparative genomics was used to analyze 17 Whole Genome Sequenced (WGS) strains from our laboratory. Genes encoding putative transcriptional regulator proteins and a catalase-like heme binding protein were found in C. coli genomes, but were absent in the genomes of C. jejuni. PCR screening showed the presence of a catalase-like protein gene in 75% (68/91) of C. coli strains, which was absent in all tested C. jejuni strains. While about 79% (30/38) of the hyper-aerotolerant C. coli strains harbored the catalase-like protein gene, the gene was also present in a number of the aerosensitive strains. The Catalase like protein gene was found to be expressed in both aerobic and microaerobic conditions with a 2-fold higher gene expression detected in aerobic conditions for an aerosensitive strain. However, the exact function of the gene remains unclear and awaits further investigation. In conclusion, aerotolerant Campylobacter strains (especially C. coli) are prevalent in various retail meats. Further studies are needed to investigate whether the genes encoding catalase-like heme binding protein and putative transcriptional regulators in C. coli strains are involved in stress response.
Collapse
Affiliation(s)
- Anand B Karki
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Daya Marasini
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Clark K Oakey
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Kaitlin Mar
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Mohamed K Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
34
|
Li J, Gulbronson CJ, Bogacz M, Hendrixson DR, Thompson SA. FliW controls growth-phase expression of Campylobacter jejuni flagellar and non-flagellar proteins via the post-transcriptional regulator CsrA. MICROBIOLOGY-SGM 2018; 164:1308-1319. [PMID: 30113298 DOI: 10.1099/mic.0.000704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Campylobacter jejuni is an important human pathogen that causes 96 million cases of acute diarrheal disease worldwide each year. We have shown that C. jejuni CsrA is involved in the post-transcriptional regulation of more than 100 proteins, and altered expression of these proteins is presumably involved in the altered virulence-related phenotypes of a csrA mutant. Mutation of fliW results in C. jejuni cells that have greatly truncated flagella, are less motile, less able to form biofilms, and exhibit a reduced ability to colonize chicks. The loss of FliW results in the altered expression of 153 flagellar and non-flagellar proteins, the majority of which are members of the CsrA regulon. The number of proteins dysregulated in the fliW mutant was greater at mid-log phase (120 proteins) than at stationary phase (85 proteins); 52 proteins showed altered expression at both growth phases. Loss of FliW altered the growth-phase- and CsrA-mediated regulation of FlaA flagellin. FliW exerts these effects by binding to both FlaA and to CsrA, as evidenced by pull-down assays, protein-protein cross-linking, and size-exclusion chromatography. Taken together, these results show that CsrA-mediated regulation of both flagellar and non-flagellar proteins is modulated by direct binding of CsrA to the flagellar chaperone FliW. Changing FliW:CsrA stoichiometries at different growth phases allow C. jejuni to couple the expression of flagellar motility to metabolic and virulence characteristics.
Collapse
Affiliation(s)
- Jiaqi Li
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| | - Connor J Gulbronson
- 2Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Bogacz
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| | - David R Hendrixson
- 2Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stuart A Thompson
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
35
|
Gomes CN, Passaglia J, Vilela FP, Pereira da Silva FM, Duque SS, Falcão JP. High survival rates of Campylobacter coli under different stress conditions suggest that more rigorous food control measures might be needed in Brazil. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4014-4032. [PMID: 29424050 DOI: 10.1002/jsfa.8945] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
It takes several steps to bring food from the farm to the fork (dining table), and contamination with food-borne pathogens can occur at any point in the process. Campylobacter spp. and Salmonella spp. are the main microorganisms responsible for foodborne disease in the EU. These two pathogens are able to persist throughout the food supply chain thanks to their ability to form biofilms. Owing to the high prevalence of Salmonella and especially of Campylobacter in the food supply chain and the huge efforts of food authorities to reduce these levels, it is of great importance to fully understand their mechanisms of persistence. Diverse studies have evaluated the biofilm-forming capacity of foodborne pathogens isolated at different steps of food production. Nonetheless, the principal obstacle of these studies is to reproduce the real conditions that microorganisms encounter in the food supply chain. While there are a wide number of Salmonella biofilm studies, information on Campylobacter biofilms is still limited. A comparison between the two microorganisms could help to develop new research in the field of Campylobacter biofilms. Therefore, this review evaluates relevant work in the field of Salmonella and Campylobacter biofilms and the applicability of the data obtained from these studies to real working conditions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Patricia Regal
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Beatriz Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - José M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carlos M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
37
|
Ugarte-Ruiz M, Domínguez L, Corcionivoschi N, Wren BW, Dorrell N, Gundogdu O. Exploring the oxidative, antimicrobial and genomic properties of Campylobacter jejuni strains isolated from poultry. Res Vet Sci 2018; 119:170-175. [PMID: 29957495 DOI: 10.1016/j.rvsc.2018.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 11/19/2022]
Abstract
Campylobacter jejuni is the leading cause of food-borne bacterial enteritis in humans, with contaminated poultry products considered the main source of infection. To survive the food chain, C. jejuni utilizes multiple defense mechanisms that counter oxidative and aerobic stresses. In this study, we phenotypically characterised 63 C. jejuni strains with oxidative stress survival and antimicrobial susceptibility testing to investigate correlations between these two phenotypes against the source of the strains and the presence of the MarR regulators RrpA and RrpB which have a role in regulating the response to oxidative and aerobic stress. C. jejuni strains isolated from meat and neck skin displayed the highest resistance to oxidative stress. In addition, C. jejuni strains that have an rrpA+rrpB- profile exhibit increased resistance to oxidative stress and to antimicrobials. Here we establish a preliminary link between the distribution of RrpA and RrpB and the increased resistance to antimicrobials. This study provides insight into how the genotypic make up of C. jejuni can influence the ability of the bacterium to survive within areas of high oxygen stress, such as the food chain, and subsequently can have a potential negative impact on human health.
Collapse
Affiliation(s)
- Maria Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain.
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain; Facultad de Veterinaria, Universidad Complutense Madrid, Madrid, Spain.
| | | | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - Nick Dorrell
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
38
|
The Catabolite Repressor/Activator Cra Is a Bridge Connecting Carbon Metabolism and Host Colonization in the Plant Drought Resistance-Promoting Bacterium Pantoea alhagi LTYR-11Z. Appl Environ Microbiol 2018; 84:AEM.00054-18. [PMID: 29703735 DOI: 10.1128/aem.00054-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Efficient root colonization is a prerequisite for application of plant growth-promoting (PGP) bacteria in improving health and yield of agricultural crops. We have recently identified an endophytic bacterium, Pantoea alhagi LTYR-11Z, with multiple PGP properties that effectively colonizes the root system of wheat and improves its growth and drought tolerance. To identify novel regulatory genes required for wheat colonization, we screened an LTYR-11Z transposon (Tn) insertion library and found cra to be a colonization-related gene. By using transcriptome (RNA-seq) analysis, we found that transcriptional levels of an eps operon, the ydiV gene encoding an anti-FlhD4C2 factor, and the yedQ gene encoding an enzyme for synthesis of cyclic dimeric GMP (c-di-GMP) were significantly downregulated in the Δcra mutant. Further studies demonstrated that Cra directly binds to the promoters of the eps operon, ydiV, and yedQ and activates their expression, thus inhibiting motility and promoting exopolysaccharide (EPS) production and biofilm formation. Consistent with previous findings that Cra plays a role in transcriptional regulation in response to carbon source availability, the activating effects of Cra were much more pronounced when LTYR-11Z was grown within a gluconeogenic environment than when it was grown within a glycolytic environment. We further demonstrate that the ability of LTYR-11Z to colonize wheat roots is modulated by the availability of carbon sources. Altogether, these results uncover a novel strategy utilized by LTYR-11Z to achieve host colonization in response to carbon nutrition in the environment, in which Cra bridges a connection between carbon metabolism and colonization capacity of LTYR-11Z.IMPORTANCE Rapid and appropriate response to environmental signals is crucial for bacteria to adapt to competitive environments and to establish interactions with their hosts. Efficient colonization and persistence within the host are controlled by various regulatory factors that respond to specific environmental cues. The most common is nutrient availability. In this work, we unraveled the pivotal role of Cra in regulation of colonization ability of Pantoea alhagi LTYR-11Z in response to carbon source availability. Moreover, we identified three novel members of the Cra regulon involved in EPS synthesis, regulation of flagellar biosynthesis, and synthesis of c-di-GMP and propose a working model to explain the Cra-mediated regulatory mechanism that links carbon metabolism to host colonization. This study elucidates the regulatory role of Cra in bacterial attachment and colonization of plants, which raises the possibility of extending our studies to other bacteria associated with plant and human health.
Collapse
|
39
|
Gu H, Qi H, Chen S, Shi K, Wang H, Wang J. Carbon storage regulator CsrA plays important roles in multiple virulence-associated processes of Clostridium difficile. Microb Pathog 2018; 121:303-309. [PMID: 29859293 DOI: 10.1016/j.micpath.2018.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
The carbon storage regulator CsrA is a global regulator that controls multiple virulence-associated processes including host cell invasion, virulence secretion, quorum sensing, biofilm formation, and motility in many pathogenic bacteria. However, the roles of CsrA in Clostridium difficile still remain unclear. In this study, a C. difficile strain overexpressing csrA was constructed to investigate its effects on multiple virulence associated processes. Overexpression of csrA resulted in flagella defect and poor motility in C. difficile 630Δerm, suggesting that CsrA involves in the regulation of flagellum synthesis. The levels of toxin production were increased in the C. difficile 630Δerm overexpressing of csrA. Moreover, csrA overexpression enhanced the adherence ability to Caco-2 cells and solvent production of C. difficile 630Δerm. Altogether, CsrA of C. difficile participates in multiple virulence processes including toxin production, motility, and adherence, and in the regulation of carbon metabolism. These results enhance our understanding of the regulatory functions of CsrA and reveal that CsrA is an important regulator in C. difficile contributing to virulence regulation.
Collapse
Affiliation(s)
- Huawei Gu
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Haonan Qi
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Shuyi Chen
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Kan Shi
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Haiying Wang
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China.
| |
Collapse
|
40
|
Otigbu AC, Clarke AM, Fri J, Akanbi EO, Njom HA. Antibiotic Sensitivity Profiling and Virulence Potential of Campylobacter jejuni Isolates from Estuarine Water in the Eastern Cape Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E925. [PMID: 29734778 PMCID: PMC5981964 DOI: 10.3390/ijerph15050925] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 01/21/2023]
Abstract
Campylobacter jejuni (CJ) is a zoonotic microbe and a major causative organism of diarrheal infection in humans that often has its functional characteristics inactivated in stressed conditions. The current study assessed the correlation between recovered CJ and water quality parameters and the drug sensitivity patterns of the pathogen to frontline antibiotics in human and veterinary medicine. Water samples (n = 244) from rivers/estuarines were collected from April⁻September 2016, and physicochemical conditions were recorded on-site. CJ was isolated from the samples using standard microbiological methods and subjected to sensitivity testing to 10 antibiotics. Mean CJ counts were between 1 and 5 logs (CFU/mL). Ninety-five isolates confirmed as CJ by PCR showed varying rates of resistance. Sensitivity testing showed resistance to tetracycline (100%), azithromycin (92%), clindamycin (84.2%), clarithromycin and doxycycline (80%), ciprofloxacin (77.8%), vancomycin (70.5%), erythromycin (70%), metronidazole (36.8%) and nalidixic acid (30.5%). Virulence encoding genes were detected in the majority 80/95, 84.2%) of the confirmed isolates from cdtB; 60/95 (63.2%) from cstII; 49/95 (51.6%) from cadF; 45/95 (47.4%) from clpP; 30/95 (31.6%) from htrB, and 0/95 (0%) from csrA. A multiple resistance cmeABC active efflux pump system was present in 69/95 (72.6) isolates. The presence of CJ was positively correlated with temperature (r = 0.17), pH (r = 0.02), dissolved oxygen (r = 0.31), and turbidity (r = 0.23) but negatively correlated with salinity (r = −0.39) and conductivity (r = −0.28). The detection of multidrug resistant CJ strains from estuarine water and the differential gene expressions they possess indicates a potential hazard to humans. Moreover, the negative correlation between the presence of the pathogen and physicochemical parameters such as salinity indicates possible complementary expression of stress tolerance response mechanisms by wild-type CJ strains.
Collapse
Affiliation(s)
- Anthony C Otigbu
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, Department of Biochemistry & microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Anna M Clarke
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, Department of Biochemistry & microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Justine Fri
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, Department of Biochemistry & microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Emmanuel O Akanbi
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, Department of Biochemistry & microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Henry A Njom
- Microbial Pathogenicity and Molecular Epidemiology Research Group (MPMERG), Department of Biochemistry and Microbiology, Department of Biochemistry & microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
41
|
Grenga L, Little RH, Malone JG. Quick change: post-transcriptional regulation in Pseudomonas. FEMS Microbiol Lett 2018; 364:3866594. [PMID: 28605536 PMCID: PMC5812540 DOI: 10.1093/femsle/fnx125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas.
Collapse
Affiliation(s)
- Lucia Grenga
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Richard H Little
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
42
|
Campylobacter jejuni transcriptional and genetic adaptation during human infection. Nat Microbiol 2018; 3:494-502. [PMID: 29588538 PMCID: PMC5876760 DOI: 10.1038/s41564-018-0133-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
Campylobacter jejuni infections are a leading cause bacterial food-borne diarrheal illness worldwide, and Campylobacter infections in children are associated with stunted growth and therefore long-term deficits into adulthood. Despite this global impact on health and human capital, how zoonotic C. jejuni responds to the human host remains unclear. Unlike other intestinal pathogens, C. jejuni does not harbor pathogen-defining toxins that explicitly contribute to disease in humans. This makes understanding Campylobacter pathogenesis challenging and supports a broad examination of bacterial factors that contribute to C. jejuni infection. Here we use a controlled human infection model to characterize C. jejuni transcriptional and genetic adaptations in vivo, along with a non-human primate infection model to validate our approach. We found variation in 11 genes is associated with either acute or persistent human infections and include products involved in host cell invasion, bile sensing, and flagella modification, plus additional potential therapeutic targets. Particularly, a functional version of the cell invasion protein A (cipA) gene product is strongly associated with persistently infecting bacteria and we went on to identify its biochemical role in flagella modification. These data characterize the adaptive C. jejuni response to primate infections and suggest therapy design should consider the intrinsic differences between acute and persistently infecting bacteria. Additionally, RNA-sequencing revealed conserved responses during natural host commensalism and human infections. 39 genes were differentially regulated in vivo across hosts, lifestyles, and C. jejuni strains. This conserved in vivo response highlights important C. jejuni survival mechanisms such as iron acquisition and evasion of the host mucosal immune response. These advances highlight pathogen adaptability across host species and demonstrate the utility of multidisciplinary collaborations in future clinical trials to study pathogens in vivo.
Collapse
|
43
|
Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation. Appl Environ Microbiol 2018; 84:AEM.02068-17. [PMID: 29269493 DOI: 10.1128/aem.02068-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is a microaerophilic bacterium and is believed to persist in a biofilm to antagonize environmental stress. This study investigated the influence of environmental conditions on the formation of C. jejuni biofilm. We report an extracellular DNA (eDNA)-mediated mechanism of biofilm formation in response to aerobic and starvation stress. The eDNA was determined to represent a major form of constitutional material of C. jejuni biofilms and to be closely associated with bacterial lysis. Deletion mutation of the stress response genes spoT and recA enhanced the aerobic influence by stimulating lysis and increasing eDNA release. Flagella were also involved in biofilm formation but mainly contributed to attachment rather than induction of lysis. The addition of genomic DNA from either Campylobacter or Salmonella resulted in a concentration-dependent stimulation effect on biofilm formation, but the effect was not due to forming a precoating DNA layer. Enzymatic degradation of DNA by DNase I disrupted C. jejuni biofilm. In a dual-species biofilm, eDNA allocated Campylobacter and Salmonella at distinct spatial locations that protect Campylobacter from oxygen stress. Our findings demonstrated an essential role and multiple functions of eDNA in biofilm formation of C. jejuni, including facilitating initial attachment, establishing and maintaining biofilm, and allocating bacterial cells.IMPORTANCECampylobacter jejuni is a major cause of foodborne illness worldwide. In the natural environment, the growth of C. jejuni is greatly inhibited by various forms of environmental stress, such as aerobic stress and starvation stress. Biofilm formation can facilitate the distribution of C. jejuni by enabling the survival of this fragile microorganism under unfavorable conditions. However, the mechanism of C. jejuni biofilm formation in response to environmental stress has been investigated only partially. The significance of our research is in identifying extracellular DNA released by bacterial lysis as a major form of constitution material that mediates the formation of C. jejuni biofilm in response to environmental stress, which enhances our understanding of the formation mechanism of C. jejuni biofilm. This knowledge can aid the development of intervention strategies to limit the distribution of C. jejuni.
Collapse
|
44
|
Abstract
Pasteurella multocida is an important multihost animal and zoonotic pathogen that is capable of causing respiratory and multisystemic diseases, bacteremia, and bite wound infections. The glycosaminoglycan capsule of P. multocida is an essential virulence factor that protects the bacterium from host defenses. However, chronic infections (such as swine atrophic rhinitis and the carrier state in birds and other animals) may be associated with biofilm formation, which has not been characterized in P. multocida. Biofilm formation by clinical isolates was inversely related to capsule production and was confirmed with capsule-deficient mutants of highly encapsulated strains. Capsule-deficient mutants formed biofilms with a larger biomass that was thicker and smoother than the biofilm of encapsulated strains. Passage of a highly encapsulated, poor-biofilm-forming strain under conditions that favored biofilm formation resulted in the production of less capsular polysaccharide and a more robust biofilm, as did addition of hyaluronidase to the growth medium of all of the strains tested. The matrix material of the biofilm was composed predominately of a glycogen exopolysaccharide (EPS), as determined by gas chromatography-mass spectrometry, nuclear magnetic resonance, and enzymatic digestion. However, a putative glycogen synthesis locus was not differentially regulated when the bacteria were grown as a biofilm or planktonically, as determined by quantitative reverse transcriptase PCR. Therefore, the negatively charged capsule may interfere with biofilm formation by blocking adherence to a surface or by preventing the EPS matrix from encasing large numbers of bacterial cells. This is the first detailed description of biofilm formation and a glycogen EPS by P. multocida. Pasteurella multocida is an important pathogen responsible for severe infections in food animals, domestic and wild birds, pet animals, and humans. P. multocida was first isolated by Louis Pasteur in 1880 and has been studied for over 130 years. However, aspects of its lifecycle have remained unknown. Although formation of a biofilm by P. multocida has been proposed, this report is the first to characterize biofilm formation by P. multocida. Of particular interest is that the biofilm matrix material contained a newly reported amylose-like glycogen as the exopolysaccharide component and that production of capsular polysaccharide (CPS) was inversely related to biofilm formation. However, even highly mucoid, poor-biofilm-forming strains could form abundant biofilms by loss of CPS or following in vitro passage under biofilm growth conditions. Therefore, the carrier state or subclinical chronic infections with P. multocida may result from CPS downregulation with concomitant enhanced biofilm formation.
Collapse
|
45
|
Teh AHT, Lee SM, Dykes GA. Identification of potential Campylobacter jejuni genes involved in biofilm formation by EZ-Tn5 Transposome mutagenesis. BMC Res Notes 2017; 10:182. [PMID: 28499399 PMCID: PMC5427567 DOI: 10.1186/s13104-017-2504-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/05/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Biofilm formation has been suggested to play a role in the survival of Campylobacter jejuni in the environment and contribute to the high incidence of human campylobacteriosis. Molecular studies of biofilm formation by Campylobacter are sparse. RESULTS We attempted to identify genes that may be involved in biofilm formation in seven C. jejuni strains through construction of mutants using the EZ-Tn5 Transposome system. Only 14 mutants with reduced biofilm formation were obtained, all from one strain of C. jejuni. Three different genes of interest, namely CmeB (synthesis of multidrug efflux system transporter proteins), NusG (transcription termination and anti-termination protein) and a putative transmembrane protein (involved in membrane protein function) were identified. The efficiency of the EZ::TN5 transposon mutagenesis approach was strain dependent and was unable to generate any mutants from most of the strains used. CONCLUSIONS A diverse range of genes may be involved in biofilm formation by C. jejuni. The application of the EZ::TN5 system for construction of mutants in different Campylobacter strains is limited.
Collapse
Affiliation(s)
- Amy Huei Teen Teh
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan Malaysia
| | - Sui Mae Lee
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan Malaysia
| | - Gary A. Dykes
- School of Public Health, Curtin University, Bentley, WA 6102 Australia
| |
Collapse
|
46
|
Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of Campylobacter jejuni Determinants Required for Commensalism and Virulence. mBio 2017; 8:mBio.00407-17. [PMID: 28487428 PMCID: PMC5424204 DOI: 10.1128/mbio.00407-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni promotes commensalism in the intestinal tracts of avian hosts and diarrheal disease in humans, yet components of intestinal environments recognized as spatial cues specific for different intestinal regions by the bacterium to initiate interactions in either host are mostly unknown. By analyzing a C. jejuni acetogenesis mutant defective in converting acetyl coenzyme A (Ac-CoA) to acetate and commensal colonization of young chicks, we discovered evidence for in vivo microbiota-derived short-chain fatty acids (SCFAs) and organic acids as cues recognized by C. jejuni that modulate expression of determinants required for commensalism. We identified a set of C. jejuni genes encoding catabolic enzymes and transport systems for amino acids required for in vivo growth whose expression was modulated by SCFAs. Transcription of these genes was reduced in the acetogenesis mutant but was restored upon supplementation with physiological concentrations of the SCFAs acetate and butyrate present in the lower intestinal tracts of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract where C. jejuni colonizes less efficiently, reduced expression of these genes. We propose that microbiota-generated SCFAs and lactate are cues for C. jejuni to discriminate between different intestinal regions. Spatial gradients of these metabolites likely allow C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for intestinal growth and commensal colonization. Our findings provide insights into the types of cues C. jejuni monitors in the avian host for commensalism and likely in humans to promote diarrheal disease. Campylobacter jejuni is a commensal of the intestinal tracts of avian species and other animals and a leading cause of diarrheal disease in humans. The types of cues sensed by C. jejuni to influence responses to promote commensalism or infection are largely lacking. By analyzing a C. jejuni acetogenesis mutant, we discovered a set of genes whose expression is modulated by lactate and short-chain fatty acids produced by the microbiota in the intestinal tract. These genes include those encoding catabolic enzymes and transport systems for amino acids that are required by C. jejuni for in vivo growth and intestinal colonization. We propose that gradients of these microbiota-generated metabolites are cues for spatial discrimination between areas of the intestines so that the bacterium can locate niches in the lower intestinal tract for optimal growth for commensalism in avian species and possibly infection of human hosts leading to diarrheal disease.
Collapse
|
47
|
Frazão MR, Medeiros MIC, Duque SDS, Falcão JP. Pathogenic potential and genotypic diversity of Campylobacter jejuni: a neglected food-borne pathogen in Brazil. J Med Microbiol 2017; 66:350-359. [PMID: 28317494 DOI: 10.1099/jmm.0.000424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose and methodology.Campylobacter jejuni is a major zoonotic pathogen that causes food-borne gastroenteritis worldwide. However, there are only a few studies available that have molecularly characterized C. jejuni strains isolated in Brazil. The aim of this study was to genotype 111 C. jejuni strains isolated from sick humans (43), monkey faeces (19), chicken faeces (14), chicken meat (33) and sewage (2) between 1996 and 2016 in Brazil using flaA-SVR (short variable region) sequencing and PFGE. Furthermore, the presence of 16 virulence genes was analysed by PCR. RESULTS Using PFGE and flaA-SVR sequencing, the 111 C. jejuni strains studied were grouped into three and two clusters, respectively, and some strains of different origin presented a similarity of ≥80 %. In total, 35 flaA-SVR alleles were detected. Alleles gt45, gt49 and gt57 were the most prevalent, in contrast with those frequently described in the PubMLST database. All 111 C. jejuni strains contained the genes flaA, flhA, cadF, docA, cdtA, cdtB, cdtC, iamA, ciaB, sodB, dnaJ, pldA, racR and csrA. The wlaN gene was detected in 11 strains (9.9 %), and the virB11 in just one strain (0.9 %). CONCLUSIONS In conclusion, the pathogenic potential of the C. jejuni strains studied was highlighted by the high frequency of the majority of the virulence genes searched. The flaA-SVR sequencing and PFGE results showed that some of the strains studied presented a high genotypic similarity, suggesting potential for transmission between animal sources and humans in this country. Altogether, the results characterize further C. jejuni isolates from Brazil, an important producer and exporter of chicken meat.
Collapse
Affiliation(s)
- Miliane Rodrigues Frazão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
48
|
Kassem II, Candelero-Rueda RA, Esseili KA, Rajashekara G. Formate simultaneously reduces oxidase activity and enhances respiration in Campylobacter jejuni. Sci Rep 2017; 7:40117. [PMID: 28091524 PMCID: PMC5238407 DOI: 10.1038/srep40117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
The foodborne microaerophilic pathogen, Campylobacter jejuni, possesses a periplasmic formate dehydrogenase and two terminal oxidases, which serve to metabolize formate and facilitate the use of oxygen as a terminal electron acceptor, respectively. Formate, a primary energy source for C. jejuni, inhibits oxidase activity in other bacteria. Here, we hypothesized that formate might affect both energy metabolism and microaerobic survival in C. jejuni. Subsequently, we showed that C. jejuni 81–176 (wildtype) exhibited enhanced chemoattraction to and respiration of formate in comparison to other organic acids. Formate also significantly increased C. jejuni’s growth, motility, and biofilm formation under microaerobic (5% O2) conditions. However, formate reduced oxidase activity under microaerobic conditions as well as aerotolerance and biofilm formation under ambient oxygen conditions. The expression of genes encoding the ribonucleotide reductase (RNR) and proteins that facilitate the use of alternative electron acceptors generally increased in the presence of formate. Taken together, formate might play a role in optimizing C. jejuni’s adaptation to the oxygen-limited gastrointestinal tract of the host. By affecting oxidase activity, formate possibly facilitates shuttling electrons to alternative acceptors, while likely conserving limited oxygen concentrations for other essential functions such as DNA synthesis via RNR which is required for C. jejuni’s growth.
Collapse
Affiliation(s)
- Issmat I Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Rosario A Candelero-Rueda
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Kawthar A Esseili
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
49
|
Gundogdu O, da Silva DT, Mohammad B, Elmi A, Wren BW, van Vliet AHM, Dorrell N. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance. Front Microbiol 2016; 7:2117. [PMID: 28082970 PMCID: PMC5183652 DOI: 10.3389/fmicb.2016.02117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.
Collapse
Affiliation(s)
- Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Daiani T da Silva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Banaz Mohammad
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey Guildford, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| |
Collapse
|
50
|
Flint A, Stintzi A, Saraiva LM. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol Rev 2016; 40:938-960. [PMID: 28201757 PMCID: PMC5091033 DOI: 10.1093/femsre/fuw025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.
Collapse
Affiliation(s)
- Annika Flint
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica, NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|