1
|
Kundu S, Das S, Maitra P, Halder P, Koley H, Mukhopadhyay AK, Miyoshi SI, Dutta S, Chatterjee NS, Bhattacharya S. Sodium butyrate inhibits the expression of virulence factors in Vibrio cholerae by targeting ToxT protein. mSphere 2025; 10:e0082424. [PMID: 40261078 DOI: 10.1128/msphere.00824-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Cholera, a diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, remains a global health threat in developing countries due to its high transmissibility and increased antibiotic resistance. There is a pressing need for alternative strategies, with an emphasis on anti-virulent approaches to alter the outcome of bacterial infections, given the increase in antimicrobial-resistant strains. V. cholerae causes cholera by secreting virulence factors in the intestinal epithelial cells. These virulence factors facilitate bacterial colonization and cholera toxin production during infection. Here, we demonstrate that sodium butyrate (SB), a small molecule, had no effect on bacterial viability but was effective in suppressing the virulence attributes of V. cholerae. The production of cholera toxin (CT) was significantly reduced in a standard V. cholerae El Tor strain and two clinical isolates when grown in the presence of SB. Analysis of mRNA and protein levels further revealed that SB reduced the expression of the ToxT-dependent virulence genes like tcpA and ctxAB. DNA-protein interaction assays, conducted at cellular (ChIP) and in vitro conditions (EMSA), indicated that SB weakens the binding between ToxT and its downstream promoter DNA, likely by blocking DNA binding. Furthermore, the anti-virulence efficacy of SB was confirmed in animal models. These findings suggest that SB could be developed as an anti-virulence agent against V. cholerae, serving as a potential alternative to conventional antibiotics or as an adjunctive therapy to combat cholera. IMPORTANCE The world has been facing an upsurge in cholera cases since 2021, a similar trend continuing into 2022, with over 29 countries reporting cholera outbreaks (World Health Organization, 16 December 2022, Disease Outbreak News, Cholera-global situation). Treatment of cholera involves oral rehydration therapy coupled with antibiotics to reduce the duration of the illness. However, in recent years, indiscriminate use of antibiotics has contributed to the emergence of antibiotic-resistant strains. In this study, we have addressed the problem of antibiotic resistance by targeting virulence factors. Screening various compounds using in silico methods led to the identification of a small molecule, SB, that inhibits the virulence cascade in V. cholerae. We demonstrated that (i) SB intervened in ToxT protein-DNA binding and subsequently affected the expression of ToxT-regulated virulence genes (ctxAB and tcpA) and (ii) SB is a potential therapeutic candidate for the development of a novel antimicrobial agent.
Collapse
Affiliation(s)
- Sushmita Kundu
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Suman Das
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Priyanka Maitra
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Shin-Ichi Miyoshi
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Nabendu Sekhar Chatterjee
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Sushmita Bhattacharya
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| |
Collapse
|
2
|
Shrivastava M, Roy D, Chaba R. Long-chain fatty acids as nutrients for Gram-negative bacteria: stress, proliferation, and virulence. Curr Opin Microbiol 2025; 85:102609. [PMID: 40252293 DOI: 10.1016/j.mib.2025.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/21/2025]
Abstract
Bacteria use host-derived long-chain fatty acids (LCFAs) as nutrients, signals, and membrane building blocks. Although the impact of LCFAs on the pathogenesis of Gram-negative bacteria via membrane remodeling or signaling is well-documented, their importance as a nutrient source for bacterial proliferation and virulence is an emerging research area with definitive studies reported only for Salmonella Typhimurium, Vibrio cholerae, and Pseudomonas aeruginosa. Moreover, recent studies in Escherichia coli have shown that LCFA degradation confers redox stress. Here, we review the known role of LCFAs as nutrients during infection in Gram-negative human pathogens and the association of LCFA degradation with redox stress and stress response mechanisms. We suggest that for understanding how, as nutrients, LCFAs influence host-bacterial interactions, it is necessary to resolve whether LCFA utilization also causes redox stress in pathogens, with defense mechanisms preconditioning them for challenging host environments, or if pathogens have pre-existing mechanisms that prevent LCFA-induced stress.
Collapse
Affiliation(s)
- Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Deeptodeep Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
3
|
Sajeevan A, Ramamurthy T, Solomon AP. Vibrio cholerae virulence and its suppression through the quorum-sensing system. Crit Rev Microbiol 2025; 51:22-43. [PMID: 38441045 DOI: 10.1080/1040841x.2024.2320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 03/06/2024]
Abstract
Vibrio cholerae is a cholera-causing pathogen known to instigate severe contagious diarrhea that affects millions globally. Survival of vibrios depend on a combination of multicellular responses and adapt to changes that prevail in the environment. This process is achieved through a strong communication at the cellular level, the process has been recognized as quorum sensing (QS). The severity of infection is highly dependent on the QS of vibrios in the gut milieu. The quorum may exist in a low/high cell density (LCD/HCD) state to exert a positive or negative response to control the regulatory pathogenic networks. The impact of this regulation reflects on the transition of pathogenic V. cholerae from the environment to infect humans and cause outbreaks or epidemics of cholera. In this context, the review portrays various regulatory processes and associated virulent pathways, which maneuver and control LCD and HCD states for their survival in the host. Although several treatment options are existing, promotion of therapeutics by exploiting the virulence network may potentiate ineffective antibiotics to manage cholera. In addition, this approach is also useful in resource-limited settings, where the accessibility to antibiotics or conventional therapeutic options is limited.
Collapse
Affiliation(s)
- Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Disease, Kolkata, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
4
|
Bhalerao SE, Sen H, Raychaudhuri S. Administration of novobiocin and apomorphine mitigates cholera toxin mediated cellular toxicity: Lessons from cholera toxin yeast model system. PLoS One 2024; 19:e0315052. [PMID: 39637178 PMCID: PMC11620602 DOI: 10.1371/journal.pone.0315052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Cholera is a dreadful disease. The scourge of this deadly disease is still evident in the developing world. Though several therapeutic strategies are in practice to combat and contain the disease, there is still a need for new drugs to control the disease safely and effectively. Keeping in view the concern, we first successfully established an inducible yeast model to express cholera toxin subunit A, and then used this yeast model, to screen a small molecule library against cholera toxin A subunit. Our effort resulted in the discovery of a small molecule, apomorphine (a Parkinson's disease drug) effective in reducing the lethality of toxic subunit in yeast model. In addition, novobiocin, an inhibitor of ADP ribosylation process, a key biochemical event through which cholera toxin exerts its action on host, was also found to rescue yeast cells from cholera toxin A subunit mediated toxicity. Finally, the effects of both molecules were tested on the cholera toxin-treated human gut epithelial cell line HT29, and it was observed that both apomorphine and novobiocin prevented cholera toxin-mediated cellular toxicity on HT29 intestinal epithelial cells.
Collapse
Affiliation(s)
| | - Himanshu Sen
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saumya Raychaudhuri
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Lee D, Joo J, Choi H, Son S, Bae J, Kim DW, Kim EJ. Variations in the Antivirulence Effects of Fatty Acids and Virstatin against Vibrio cholerae Strains. J Microbiol Biotechnol 2024; 34:1757-1768. [PMID: 39187456 PMCID: PMC11485679 DOI: 10.4014/jmb.2405.05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024]
Abstract
The expression of two major virulence factors of Vibrio cholerae, cholera toxin (CT) and toxin co-regulated pilus (TCP), is induced by environmental stimuli through a cascade of interactions among regulatory proteins known as the ToxR regulon when the bacteria reach the human small intestine. ToxT is produced via the ToxR regulon and acts as the direct transcriptional activator of CT (ctxAB), TCP (tcp gene cluster), and other virulence genes. Unsaturated fatty acids (UFAs) and several small-molecule inhibitors of ToxT have been developed as antivirulence agents against V. cholerae. This study reports the inhibitory effects of fatty acids and virstatin (a small-molecule inhibitor of ToxT) on the transcriptional activation functions of ToxT in isogenic derivatives of V. cholerae strains containing various toxT alleles. The fatty acids and virstatin had discrete effects depending on the ToxT allele (different by 2 amino acids), V. cholerae strain, and culture conditions, indicating that V. cholerae strains could overcome the effects of UFAs and small-molecule inhibitors by acquiring point mutations in toxT. Our results suggest that small-molecule inhibitors should be examined thoroughly against various V. cholerae strains and toxT alleles during development.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jayun Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Demey LM, Sinha R, DiRita VJ. An essential host dietary fatty acid promotes TcpH inhibition of TcpP proteolysis promoting virulence gene expression in Vibrio cholerae. mBio 2024; 15:e0072124. [PMID: 38958446 PMCID: PMC11323476 DOI: 10.1128/mbio.00721-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Vibrio cholerae is a Gram-negative gastrointestinal pathogen responsible for the diarrheal disease cholera. Expression of key virulence factors, cholera toxin and toxin-coregulated pilus, is regulated directly by ToxT and indirectly by two transmembrane transcription regulators (TTRs), ToxR and TcpP, that promote the expression of toxT. TcpP abundance and activity are controlled by TcpH, a single-pass transmembrane protein, which protects TcpP from a two-step proteolytic process known as regulated intramembrane proteolysis (RIP). The mechanism of TcpH-mediated protection of TcpP represents a major gap in our understanding of V. cholerae pathogenesis. The absence of tcpH leads to unimpeded degradation of TcpP in vitro and a colonization defect in a neonate mouse model of V. cholerae colonization. Here, we show that TcpH protects TcpP from RIP via direct interaction. We also demonstrate that α-linolenic acid, a dietary fatty acid, promotes TcpH-dependent inhibition of RIP via co-association of TcpP and TcpH molecules within detergent-resistant membranes (DRMs) in a mechanism requiring the TcpH transmembrane domain. Taken together, our data support a model where V. cholerae cells use exogenous α-linolenic acid to remodel the phospholipid bilayer in vivo, leading to co-association of TcpP and TcpH within DRMs where RIP of TcpP is inhibited by TcpH, thereby promoting V. cholerae pathogenicity. IMPORTANCE Vibrio cholerae continues to pose a significant global burden on health and an alternative therapeutic approach is needed, due to evolving multidrug resistance strains. Transcription of toxT, stimulated by TcpP and ToxR, is essential for V. cholerae pathogenesis. Our results show that TcpP, one of the major regulators of toxT gene expression, is protected from proteolysis by TcpH, via direct interaction. Furthermore, we identified a gut metabolite, α-linolenic acid, that stimulates the co-association of TcpP and TcpH within detergent-resistant membranes (also known as lipid-ordered membrane domains), thereby supporting TcpH-dependent antagonism of TcpP proteolysis. Data presented here extend our knowledge of RIP, virulence gene regulation in V. cholerae, and, to the best of our knowledge, provides the first evidence that lipid-ordered membranes exist within V. cholerae. The model presented here also suggests that TTRs, common among bacteria and archaea, and co-component signal transduction systems present in Enterobacteria, could also be influenced similarly.
Collapse
Affiliation(s)
- Lucas M. Demey
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ritam Sinha
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Victor J. DiRita
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Chowdhury R, Bitar PDP, Bell KE, Altier C. Shigella flexneri utilizes intestinal signals to control its virulence. Gut Microbes 2023; 15:2256767. [PMID: 37741806 PMCID: PMC10519361 DOI: 10.1080/19490976.2023.2256767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023] Open
Abstract
The enteric pathogens have evolved to utilize elements from their surroundings to optimize their infection strategies. A common mechanism to achieve this is to employ intestinal compounds as signals to control the activity of a master regulator of virulence. Shigella flexneri (S. flexneri) is a highly infectious entero-invasive pathogen which requires very few organisms to cause invasion of the colonic mucosa. The invasion program is controlled by the virulence master regulator VirF. Here, we show that the fatty acids commonly found in the colon can be exploited by S. flexneri to repress its virulence, allowing it to energetically finance its proliferation, thus increasing its pathogenicity. Colonic fatty acids such as oleic, palmitoleic and cis-2-hexadecenoic acid were shown to directly bind to VirF and mediate its prompt degradation. These fatty acids also disrupted the ability of VirF to bind to its target DNA, suppressing the transcription of the downstream virulence genes and significantly reducing the invasion of S. flexneri to colonic epithelial cells. Treatment with colonic fatty acids significantly increased the growth rate of the pathogen only under invasion-inducing conditions, showing that the reduction in the burden of virulence promotes a growth advantage. These results demonstrate the process by which S. flexneri can employ intestinal compounds as signals to increase its numbers at its preferred site of invasion, highlighting the mechanism by which the full spectrum of shigellosis is achieved despite a miniscule infectious dose. This highlights an elegant model of environmental adaption by S. flexneri to maximize the pathogenic benefit.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | | | - Katherine E. Bell
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Adnan M, Siddiqui AJ, Noumi E, Ashraf SA, Awadelkareem AM, Hadi S, Snoussi M, Badraoui R, Bardakci F, Sachidanandan M, Patel M. Biosurfactant derived from probiotic Lactobacillus acidophilus exhibits broad-spectrum antibiofilm activity and inhibits the quorum sensing-regulated virulence. BIOMOLECULES & BIOMEDICINE 2023; 23:1051-1068. [PMID: 37421468 PMCID: PMC10655870 DOI: 10.17305/bb.2023.9324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Antimicrobial resistance by pathogenic bacteria has become a global risk to human health in recent years. The most promising approach to combating antimicrobial resistance is to target virulent traits of bacteria. In the present study, a biosurfactant derived from the probiotic strain Lactobacillus acidophilus was tested against three Gram-negative bacteria to evaluate its inhibitory potential on their biofilms, and whether it affected the virulence factors controlled by quorum sensing (QS). A reduction in the virulence factors of Chromobacterium violaceum (violacein production), Serratia marcescens (prodigiosin production) and Pseudomonas aeruginosa (pyocyanin, total protease, LasB elastase and LasA protease production) was observed at different sub-MIC concentrations in a dose-dependent manner. Biofilm development was reduced by 65.76%, 70.64% and 58.12% at the highest sub-MIC levels for C. violaceum, P. aeruginosa and S. marcescens, respectively. Biofilm formation on glass surfaces exhibited significant reduction, with less bacterial aggregation and reduced formation of extracellular polymeric materials. Additionally, swimming motility and exopolysaccharides (EPS) production were shown to be reduced in the presence of the L. acidophilus-derived biosurfactant. Furthermore, molecular docking analysis performed on compounds identified through gas chromatography-mass spectrometry (GC-MS) analysis of QS and biofilm proteins yielded further insights into the mechanism underlying the anti-QS activity. Therefore, the present study has clearly demonstrated that a biosurfactant derived from L. acidophilus can significantly inhibit virulence factors of Gram-negative pathogenic bacteria. This could provide an effective method to inhibit the formation of biofilms and QS in Gram-negative bacteria.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Sibte Hadi
- Department of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| |
Collapse
|
9
|
Gubensäk N, Sagmeister T, Buhlheller C, Geronimo BD, Wagner GE, Petrowitsch L, Gräwert MA, Rotzinger M, Berger TMI, Schäfer J, Usón I, Reidl J, Sánchez-Murcia PA, Zangger K, Pavkov-Keller T. Vibrio cholerae's ToxRS bile sensing system. eLife 2023; 12:e88721. [PMID: 37768326 PMCID: PMC10624426 DOI: 10.7554/elife.88721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023] Open
Abstract
The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium Vibrio cholerae. Its environmental persistence provoking recurring sudden outbreaks is enabled by V. cholerae's rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies for example bile resistance and virulence regulation. The presented crystal structure of the sensory domains of ToxR and ToxS in combination with multiple bile acid interaction studies, reveals that a bile binding pocket of ToxS is only properly folded upon binding to ToxR. Our data proposes an interdependent functionality between ToxR transcriptional activity and ToxS sensory function. These findings support the previously suggested link between ToxRS and VtrAC-like co-component systems. Besides VtrAC, ToxRS is now the only experimentally determined structure within this recently defined superfamily, further emphasizing its significance. In-depth analysis of the ToxRS complex reveals its remarkable conservation across various Vibrio species, underlining the significance of conserved residues in the ToxS barrel and the more diverse ToxR sensory domain. Unravelling the intricate mechanisms governing ToxRS's environmental sensing capabilities, provides a promising tool for disruption of this vital interaction, ultimately inhibiting Vibrio's survival and virulence. Our findings hold far-reaching implications for all Vibrio strains that rely on the ToxRS system as a shared sensory cornerstone for adapting to their surroundings.
Collapse
Affiliation(s)
- Nina Gubensäk
- Institute of Molecular Biosciences, University of GrazGrazAustria
| | - Theo Sagmeister
- Institute of Molecular Biosciences, University of GrazGrazAustria
| | | | - Bruno Di Geronimo
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of GrazGrazAustria
| | - Gabriel E Wagner
- Institute of Chemistry / Organic and Bioorganic Chemistry, Medical University of GrazGrazAustria
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of GrazGrazAustria
| | | | | | - Markus Rotzinger
- Institute of Chemistry / Organic and Bioorganic Chemistry, Medical University of GrazGrazAustria
| | | | | | - Isabel Usón
- Institute of Molecular Biology of BarcelonaBarcelonaSpain
- ICREA, Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of GrazGrazAustria
- BioHealth Field of Excellence, University of GrazGrazAustria
- BioTechMed-GrazGrazAustria
| | - Pedro A Sánchez-Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of GrazGrazAustria
| | - Klaus Zangger
- Institute of Chemistry / Organic and Bioorganic Chemistry, Medical University of GrazGrazAustria
- BioHealth Field of Excellence, University of GrazGrazAustria
- BioTechMed-GrazGrazAustria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of GrazGrazAustria
- BioHealth Field of Excellence, University of GrazGrazAustria
- BioTechMed-GrazGrazAustria
| |
Collapse
|
10
|
Lee D, Choi H, Son S, Bae J, Joo J, Kim DW, Kim EJ. Expression of Cholera Toxin (CT) and the Toxin Co-Regulated Pilus (TCP) by Variants of ToxT in Vibrio cholerae Strains. Toxins (Basel) 2023; 15:507. [PMID: 37624264 PMCID: PMC10467113 DOI: 10.3390/toxins15080507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The expression of the two major virulence genes of Vibrio cholerae-tcpA (the major subunit of the toxin co-regulated pilus) and ctxAB (cholera toxin)-is regulated by the ToxR regulon, which is triggered by environmental stimuli during infection within the human small intestine. Special culture methods are required to induce the expression of virulence genes in V. cholerae in the laboratory setting. In the present study, induction of the expression of virulence genes by two point mutations (65th and 139th amino acids) in toxT, which is produced by the ToxR regulon and activates the transcription of the virulence genes in V. cholerae, under laboratory culture conditions has been investigated. Each of the four toxT alleles assessed displayed different transcriptional activator functions in a given V. cholerae strain. Although the ToxR regulon has been known to not be expressed by El Tor biotype V. cholerae strains cultured under standard laboratory conditions, the variant toxT alleles that we assessed in this study enabled the expression virulence genes in El Tor biotype strains grown under simple culture conditions comprising shake culture in LB medium, suggesting that the regulation of virulence gene expression may be regulated more complexly than previously thought and may involve additional factors beyond the production of ToxT by the ToxR regulon.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jayun Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
11
|
Trirocco R, Pasqua M, Tramonti A, Grossi M, Colonna B, Paiardini A, Prosseda G. Fatty Acids Abolish Shigella Virulence by Inhibiting Its Master Regulator, VirF. Microbiol Spectr 2023; 11:e0077823. [PMID: 37140433 PMCID: PMC10269687 DOI: 10.1128/spectrum.00778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
The pathogenicity of Shigella, the intracellular pathogen responsible for human bacillary dysentery, depends on a coordinated and tightly regulated expression of its virulence determinants. This is the result of a cascade organization of its positive regulators, with VirF, a transcriptional activator belonging to the AraC-XylS family, in a pivotal position. VirF itself is submitted to several well-known regulations at the transcriptional level. In this work, we present evidence for a novel posttranslational regulatory mechanism of VirF mediated by the inhibitory interaction with specific fatty acids. By homology modeling and molecular docking analyses, we identify a jelly roll motif in the structure of ViF capable of interacting with medium-chain saturated and long-chain unsaturated fatty acids. In vitro and in vivo assays show that capric, lauric, myristoleic, palmitoleic, and sapienic acids interact effectively with the VirF protein, abolishing its transcription-promoting activity. This silences the virulence system of Shigella, leading to a drastic reduction in its ability to invade epithelial cells and proliferate in their cytoplasm. IMPORTANCE In the absence of a valid vaccine, the main therapeutic approach currently used to treat shigellosis is based on the use of antibiotics. The emergence of antibiotic resistance jeopardizes the future effectiveness of this approach. The importance of the present work resides both in the identification of a new level of posttranslational regulation of the Shigella virulence system and in the characterization of a mechanism offering new opportunities for the design of antivirulence compounds, which may change the treatment paradigm of Shigella infections by limiting the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Rita Trirocco
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Martina Pasqua
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Milena Grossi
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Bianca Colonna
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gianni Prosseda
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Walton MG, Cubillejo I, Nag D, Withey JH. Advances in cholera research: from molecular biology to public health initiatives. Front Microbiol 2023; 14:1178538. [PMID: 37283925 PMCID: PMC10239892 DOI: 10.3389/fmicb.2023.1178538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
The aquatic bacterium Vibrio cholerae is the etiological agent of the diarrheal disease cholera, which has plagued the world for centuries. This pathogen has been the subject of studies in a vast array of fields, from molecular biology to animal models for virulence activity to epidemiological disease transmission modeling. V. cholerae genetics and the activity of virulence genes determine the pathogenic potential of different strains, as well as provide a model for genomic evolution in the natural environment. While animal models for V. cholerae infection have been used for decades, recent advances in this area provide a well-rounded picture of nearly all aspects of V. cholerae interaction with both mammalian and non-mammalian hosts, encompassing colonization dynamics, pathogenesis, immunological responses, and transmission to naïve populations. Microbiome studies have become increasingly common as access and affordability of sequencing has improved, and these studies have revealed key factors in V. cholerae communication and competition with members of the gut microbiota. Despite a wealth of knowledge surrounding V. cholerae, the pathogen remains endemic in numerous countries and causes sporadic outbreaks elsewhere. Public health initiatives aim to prevent cholera outbreaks and provide prompt, effective relief in cases where prevention is not feasible. In this review, we describe recent advancements in cholera research in these areas to provide a more complete illustration of V. cholerae evolution as a microbe and significant global health threat, as well as how researchers are working to improve understanding and minimize impact of this pathogen on vulnerable populations.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
13
|
Kapadia C, Kachhdia R, Singh S, Gandhi K, Poczai P, Alfarraj S, Ansari MJ, Gafur A, Sayyed RZ. Pseudomonas aeruginosa inhibits quorum-sensing mechanisms of soft rot pathogen Lelliottia amnigena RCE to regulate its virulence factors and biofilm formation. Front Microbiol 2022; 13:977669. [PMID: 36090086 PMCID: PMC9450810 DOI: 10.3389/fmicb.2022.977669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
The quorum-sensing (QS) cascade is responsible for the colonization and phenotypic behavior of the pathogenic organism and the regulation of diverse signal molecules. The disruption of the quorum-sensing system is an effective strategy to overcome the possibility of antibiotic resistance development in the pathogen. The quorum quenching does not kill the microbes. Instead, it hinders the expression of pathogenic traits. In the present experiment, Pseudomonas aeruginosa RKC1 was used to extract the metabolites responsible for quorum-sensing inhibition in soft rot pathogen Lelliottia amnigena RCE. During the initial screening, P. aeruginosa RKC1 was found to be most promising and inhibits violacein of Chromobacterium violaceum MTCC2656 pyocyanin, swarming-swimming motility of P. aeruginosa MTCC2297. The characterization of metabolites produced by the microbes which are responsible for quorum-sensing inhibition through GC-MS is very scarce in scientific literature. The ethyl acetate extract of P. aeruginosa RKC1 inhibits biofilm formation of L. amnigena RCE while inhibiting growth at higher concentrations. The GC-MS analysis suggested that Cyclic dipeptides (CDPs) such as Cyclo (L-prolyl-L-valine), Cyclo (Pro-Leu), and Cyclo(D-phenylalanyl-L-prolyl) were predominantly found in the ethyl acetate extract of the P. aeruginosa RKC1 (93.72%). This diketopiperazine (DKPs) exhibited quorum-sensing inhibition against the pathogen in liquid media during the active growth phase and regulated diverse metabolites of the pathogen. Moreover, the metabolites data from the clear zone around wells showed a higher concentration of DKSs (9.66%) compared to other metabolites. So far, very few reports indicate the role of DKPs or CDPs in inhibiting the quorum-sensing system in plant pathogenic bacteria. This is one such report that exploits metabolites of P. aeruginosa RKC1. The present investigation provided evidence to use quorum-sensing inhibitor metabolites, to suppress microbes' pathogenesis and thus develop an innovative strategy to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
- *Correspondence: Chintan Kapadia
| | - Rinkal Kachhdia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Susheel Singh
- Food Quality Testing Laboratory, N. M. College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Kelvin Gandhi
- Food Quality Testing Laboratory, N. M. College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Peter Poczai
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandals, S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
- R. Z. Sayyed
| |
Collapse
|
14
|
Kachhadia R, Kapadia C, Singh S, Gandhi K, Jajda H, Alfarraj S, Ansari MJ, Danish S, Datta R. Quorum Sensing Inhibitory and Quenching Activity of Bacillus cereus RC1 Extracts on Soft Rot-Causing Bacteria Lelliottia amnigena. ACS OMEGA 2022; 7:25291-25308. [PMID: 35910130 PMCID: PMC9330221 DOI: 10.1021/acsomega.2c02202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/28/2022] [Indexed: 05/15/2023]
Abstract
The quorum sensing (QS) system of bacteria helps them to communicate with each other in a density-dependent manner and regulates pathogenicity. The concentrations of autoinducers, peptides, and signaling factors are required for determining the expression of virulence factors in many pathogens. The QS signals of the pathogen are regulated by the signal transduction pathway. The binding of signal molecules to its cognate receptor brings changes in the structure of the receptor, makes it more accessible to the DNA, and thus regulates diverse expression patterns, including virulence factors. Degrading the autoinducer molecules or disturbing the quorum sensing network could be exploited to control the virulence of the pathogen while avoiding multidrug-resistant phenotypes. The rhizosphere is a tremendous source of beneficial microbes that has not yet been explored properly for its anti-quorum sensing potential. Lelliottia amnigena causes soft rot diseases in onion, potato, and other species. The present investigation was carried out with the aim of isolating the anti-quorum sensing metabolites and elucidating their role in controlling the virulence factors of the pathogen by performing a maceration assay. The ethyl acetate extracts of various bacteria are promising for violacein inhibition assay using Chromobacterium violaceum MTCC2656 and pyocyanin inhibition of Pseudomonas aeruginosa MTCC2297. Therefore, the extract was used to deduce its role in attenuation of soft rot in potato, carrot, and cucumber. The maximum reduction of macerated tissue in carrot, potato, and cucumber was given by Bacillus cereus RC1 at 91.22, 97.59, and 88.78%, respectively. The concentration-dependent inhibition of virulence traits was observed during the entire experiment. The quorum quenching potential of the bacterial extract was used to understand the regulatory metabolites. The data of the diffusible zone and gas chromatography-mass spectrometry (GC-MS) analysis showed that diketopiperazines, viz. Cyclo(d-phenylalanyl-l-prolyl), Cyclo Phe-Val, Cyclo(Pro-Ala), Cyclo(l-prolyl-l-valine), Cyclo (Leu-Leu), and Cyclo(-Leu-Pro), are prominent metabolites that could modulate the pathogenicity in L. amnigena RCE. The interaction of bacterial extracts regulates various metabolites of the pathogens during their growth in liquid culture compared to their control counterparts. This study might help in exploiting the metabolites from bacteria to control the pathogens, with concurrent reduction in the pathogenicity of the pathogens without developing antibiotic resistance.
Collapse
Affiliation(s)
- Rinkal Kachhadia
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari, Gujarat 396450, India
| | - Chintan Kapadia
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari, Gujarat 396450, India
| | - Susheel Singh
- Food
Quality Testing Laboratory, N. M. College Of Agriculture, Navsari Agricultural University, Navsari, Gujarat 396450, India
| | - Kelvin Gandhi
- Food
Quality Testing Laboratory, N. M. College Of Agriculture, Navsari Agricultural University, Navsari, Gujarat 396450, India
| | - Harsur Jajda
- Gujarat
Agricultural Biotech Institute, Navsari
Agricultural University, Navsari, Gujarat 396450, India
| | - Saleh Alfarraj
- Zoology
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department
of Botany, Hindu College Moradabad (Mahatma
Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Subhan Danish
- Hainan
Key
Laboratory for Sustainable Utilization of Tropical Bioresource, College
of Tropical Crops, Hainan University, Haikou 570228, China
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno 61300, Czech Republic
| |
Collapse
|
15
|
Mitchell MK, Ellermann M. Long Chain Fatty Acids and Virulence Repression in Intestinal Bacterial Pathogens. Front Cell Infect Microbiol 2022; 12:928503. [PMID: 35782143 PMCID: PMC9247172 DOI: 10.3389/fcimb.2022.928503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
When bacterial pathogens enter the gut, they encounter a complex milieu of signaling molecules and metabolites produced by host and microbial cells or derived from external sources such as the diet. This metabolomic landscape varies throughout the gut, thus establishing a biogeographical gradient of signals that may be sensed by pathogens and resident bacteria alike. Enteric bacterial pathogens have evolved elaborate mechanisms to appropriately regulate their virulence programs, which involves sensing and responding to many of these gut metabolites to facilitate successful gut colonization. Long chain fatty acids (LCFAs) represent major constituents of the gut metabolome that can impact bacterial functions. LCFAs serve as important nutrient sources for all cellular organisms and can function as signaling molecules that regulate bacterial metabolism, physiology, and behaviors. Moreover, in several enteric pathogens, including Salmonella enterica, Listeria monocytogenes, Vibrio cholerae, and enterohemorrhagic Escherichia coli, LCFA sensing results in the transcriptional repression of virulence through two general mechanisms. First, some LCFAs function as allosteric inhibitors that decrease the DNA binding affinities of transcriptional activators of virulence genes. Second, some LCFAs also modulate the activation of histidine kinase receptors, which alters downstream intracellular signaling networks to repress virulence. This mini-review will summarize recent studies that have investigated the molecular mechanisms by which different LCFA derivatives modulate the virulence of enteric pathogens, while also highlighting important gaps in the field regarding the roles of LCFAs as determinants of infection and disease.
Collapse
|
16
|
Lactiplantibacillus plantarum-Derived Biosurfactant Attenuates Quorum Sensing-Mediated Virulence and Biofilm Formation in Pseudomonas aeruginosa and Chromobacterium violaceum. Microorganisms 2022; 10:microorganisms10051026. [PMID: 35630468 PMCID: PMC9145448 DOI: 10.3390/microorganisms10051026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Quorum sensing (QS) controls the expression of diverse biological traits in bacteria, including virulence factors. Any natural bioactive compound that disables the QS system is being considered as a potential strategy to prevent bacterial infection. Various biological activities of biosurfactants have been observed, including anti-QS effects. In the present study, we investigated the effectiveness of a biosurfactant derived from Lactiplantibacillus plantarum on QS-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. The structural analogues of the crude biosurfactant were identified using gas chromatography–mass spectrometry (GC–MS). Moreover, the inhibitory prospects of identified structural analogues were assessed with QS-associated CviR, LasA, and LasI ligands via in silico molecular docking analysis. An L. plantarum-derived biosurfactant showed a promising dose-dependent interference with the production of both violacein and acyl homoserine lactone (AHL) in C. violaceum. In P. aeruginosa, at a sub-MIC concentration (2.5 mg/mL), QS inhibitory activity was also demonstrated by reduction in pyocyanin (66.63%), total protease (60.95%), LasA (56.62%), and LasB elastase (51.33%) activity. The swarming motility and exopolysaccharide production were also significantly reduced in both C. violaceum (61.13%) and P. aeruginosa (53.11%). When compared with control, biofilm formation was also considerably reduced in C. violaceum (68.12%) and P. aeruginosa (59.80%). A GC–MS analysis confirmed that the crude biosurfactant derived from L. plantarum was a glycolipid type. Among all, n-hexadecanoic acid, oleic acid, and 1H-indene,1-hexadecyl-2,3-dihydro had a high affinity for CviR, LasI, and LasA, respectively. Thus, our findings suggest that the crude biosurfactant of L. plantarum can be used as a new anti-QS/antibiofilm agent against biofilm-associated pathogenesis, which warrants further investigation to uncover its therapeutic efficacy.
Collapse
|
17
|
Shao S, Zhang Y, Yin K, Zhang Y, Wei L, Wang Q. FabR senses long-chain unsaturated fatty acids to control virulence in pathogen Edwardsiella piscicida. Mol Microbiol 2022; 117:737-753. [PMID: 34932231 DOI: 10.1111/mmi.14869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
Long-chain unsaturated fatty acids (UFAs) can serve as nutrient sources or building blocks for bacterial membranes. However, little is known about how UFAs may be incorporated into the virulence programs of pathogens. A previous investigation identified FabR as a positive regulator of virulence gene expression in Edwardsiella piscicida. Here, chromatin immunoprecipitation-sequencing coupled with RNA-seq analyses revealed that 10 genes were under the direct control of FabR, including fabA, fabB, and cfa, which modulate the composition of UFAs. The binding of FabR to its target DNA was facilitated by oleoyl-CoA and inhibited by stearoyl-CoA. In addition, analyses of enzyme mobility shift assay and DNase I footprinting with wild-type and a null mutant (F131A) of FabR demonstrated crucial roles of FabR in binding to the promoters of fabA, fabB, and cfa. Moreover, FabR also binds to the promoter region of the virulence regulator esrB for its activation, facilitating the expression of the type III secretion system (T3SS) in response to UFAs. Furthermore, FabR coordinated with RpoS to modulate the expression of T3SS. Collectively, our results elucidate the molecular machinery of FabR regulating bacterial fatty acid composition and virulence in enteric pathogens, further expanding our knowledge of its crucial role in host-pathogen interactions.
Collapse
Affiliation(s)
- Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
18
|
Katumba GL, Tran H, Henderson JP. The Yersinia High-Pathogenicity Island Encodes a Siderophore-Dependent Copper Response System in Uropathogenic Escherichia coli. mBio 2022; 13:e0239121. [PMID: 35089085 PMCID: PMC8725597 DOI: 10.1128/mbio.02391-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
Siderophores are iron chelators used by microbes to bind and acquire iron, which, once in the cell, inhibits siderophore production through feedback repression mediated by the ferric uptake repressor (Fur). Yersiniabactin (Ybt), a siderophore associated with enhanced pathogenic potential among Enterobacteriaceae, also binds copper ions during human and experimental murine infections. In contrast to iron, we found that extracellular copper ions rapidly and selectively stimulate Ybt production in extraintestinal pathogenic Escherichia coli. The stimulatory pathway requires formation of an extracellular copper-Ybt (Cu(II)-Ybt) complex, internalization of Cu(II)-Ybt entry through the canonical TonB-dependent outer membrane transporter, and Fur-independent transcriptional regulation by the specialized transcription factor YbtA. Dual regulation by iron and copper is consistent with a multifunctional metallophore role for Ybt. Feed-forward regulation is typical of stress responses, implicating Ybt in prevention of, or response to, copper stress during infection pathogenesis. IMPORTANCE Interactions between bacteria and transition metal ions play an important role in encounters between humans and bacteria. Siderophore systems have long been prominent mediators of these interactions. These systems secrete small-molecule chelators that bind oxidized iron(III) and express proteins that specifically recognize and import these complexes as a nutritional iron source. While E. coli and other Enterobacteriaceae secrete enterobactin, clinical isolates often secrete an additional siderophore, yersiniabactin (Ybt), which has been found to also bind copper and other non-iron metal ions. The observation here that an extraintestinal E. coli isolate secretes Ybt in a copper-inducible manner suggests an important gain of function over the enterobactin system. Copper recognition involves using Ybt to bind Cu(II) ions, consistent with a distinctively extracellular mode of copper detection. The resulting Cu(II)-Ybt complex signals upregulation of Ybt biosynthesis genes as a rapid response against potentially toxic extracellular copper ions. The Ybt system is distinguishable from other copper response systems that sense cytosolic and periplasmic copper ions. The Ybt dependence of the copper response presents an implicit feed-forward regulatory scheme that is typical of bacterial stress responses. The distinctive extracellular copper recognition-response functionality of the Ybt system may enhance the pathogenic potential of infection-associated Enterobacteriaceae.
Collapse
Affiliation(s)
- George L. Katumba
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung Tran
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
19
|
OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6570571. [DOI: 10.1093/femsle/fnac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 11/14/2022] Open
|
20
|
Bile Salts Promote ToxR Regulon Activation during Growth under Virulence-Inducing Conditions. Infect Immun 2021; 89:e0044121. [PMID: 34543121 DOI: 10.1128/iai.00441-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cholera is an epidemic disease caused by the Gram-negative bacterium Vibrio cholerae. V. cholerae is found in aquatic ecosystems and infects people through the consumption of V. cholerae-contaminated food or water. Following ingestion, V. cholerae responds to host cues to activate the expression of critical virulence genes that are under the control of a hierarchical regulatory system called the ToxR regulon. The ToxR regulon is tightly regulated and is expressed in vitro only under special growth conditions referred to as AKI conditions. AKI conditions have been instrumental in elucidating V. cholerae virulence regulation, but the chemical cues within AKI medium that activate virulence gene expression are unknown. In this study, we fractionated AKI medium on a reverse-phase chromatography column (RPCC) and showed that the virulence-activating molecules were retained on the RPCC column and recovered in the eluate. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis of the eluate revealed the presence of a known ToxR regulon activator, taurocholate, and other bile salts. The RPCC eluate activated the ToxR regulon when added to noninducing medium and promoted TcpP dimerization in a two-hybrid system, consistent with taurocholate being responsible for the virulence-inducing activity of AKI medium. Additional experiments using purified bile salts showed that the ToxR regulon was preferentially activated in response to primary bile acids. The results of this study shed light on the chemical cues involved in V. cholerae virulence activation and suggested that V. cholerae virulence genes are modulated in response to regionally specific bile acid species in the intestine.
Collapse
|
21
|
DeMars ZR, Krute CN, Ridder MJ, Gilchrist AK, Menjivar C, Bose JL. Fatty acids can inhibit Staphylococcus aureus SaeS activity at the membrane independent of alterations in respiration. Mol Microbiol 2021; 116:1378-1391. [PMID: 34626146 DOI: 10.1111/mmi.14830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
In Staphylococcus aureus, the two-component system SaeRS is responsible for regulating various virulence factors essential for the success of this pathogen. SaeRS can be stimulated by neutrophil-derived products but has also recently been shown to be inactivated by the presence of free fatty acids. A mechanism for how fatty acids negatively impacts SaeRS has not been described. We found that unsaturated fatty acids, as well as fatty acids not commonly found in Staphylococcal membranes, prevent the activation of SaeRS at a lower concentration than their saturated counterparts. These fatty acids can negatively impact SaeRS without altering the respiratory capacity of the bacterium. To uncover a potential mechanism for how fatty acids impact SaeRS function/activity, we utilized a naturally occurring point mutation found in S. aureus as well as chimeric SaeS proteins. Using these tools, we identified that the native transmembrane domains of SaeS dictate the transcriptional response to fatty acids in S. aureus. Our data support a model where free fatty acids alter the activity of the two-component system SaeRS directly through the sensor kinase SaeS and is dependent on the transmembrane domains of the protein.
Collapse
Affiliation(s)
- Zachary R DeMars
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christina N Krute
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Miranda J Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aubrey K Gilchrist
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cindy Menjivar
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
22
|
Zhou X, Hadiatullah H, Guo T, Yao Y, Li C, Wang X. Dairy Processing Affects the Gut Digestion and Microecology by Changing the Structure and Composition of Milk Fat Globules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10194-10205. [PMID: 34435766 DOI: 10.1021/acs.jafc.1c04482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Milk fat globules (MFGs) are the major source of energy for infants' dietary intake. In this study, the effects of changes in the structure and composition of MFG after dairy processing on lipolysis and immune regulation were investigated. Pasteurized MFG tends to form protein aggregates to prevent lipolysis. However, the aggregate is rich in neutrophil degranulation products, which are effective in killing pathogens. Homogenized MFG has the lowest hydrolysis rate due to the reconstituted anti-lipase barrier and exposed apolipoprotein. Simultaneously, the reconstituted barrier can compensate for the lack of the complement cascade. Spray-dried MFG had the highest hydrolysis rate attributable to the disrupted MFG barrier and the release of lipoprotein lipase and endothelial lipase. The immunomodulatory properties of spray-dried MFG proteins are mainly mediated by the toll-like receptor (TLR) signaling pathway. This research provides the improvement basis of dairy processing and functional infant formulas.
Collapse
Affiliation(s)
- Xinyun Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
23
|
H-NS and ToxT Inversely Control Cholera Toxin Production by Binding to Overlapping DNA Sequences. J Bacteriol 2021; 203:e0018721. [PMID: 34228499 DOI: 10.1128/jb.00187-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae infects human hosts following ingestion of contaminated food or water, resulting in the severe diarrheal disease cholera. The watery diarrhea that is characteristic of the disease is directly caused by the production of cholera toxin (CT). A complex regulatory cascade controls the production of CT and other virulence factors. However, ultimately, a single protein, ToxT, directly binds to virulence gene promoters and activates their transcription. Previously, we identified two ToxT binding sites, or toxboxes, within the cholera toxin promoter (PctxAB). The toxboxes overlap the two promoter-proximal GATTTTT heptad repeats found within PctxAB in classical biotype V. cholerae strain O395. These heptad repeats were previously found to be located within a large DNA region bound by H-NS, a global transcriptional repressor present in Gram-negative bacteria. The current model for the control of PctxAB transcription proposes complete H-NS displacement from the DNA by ToxT, followed by direct activation by ToxT-RNA polymerase (RNAP) contacts. The goal of this study was to determine more precisely where H-NS binds to PctxAB and test the hypothesis that ToxT completely displaces H-NS from the PctxAB promoter before activating transcription. The results suggest that H-NS binds only to the region of PctxAB encompassing the heptad repeats and that ToxT displaces H-NS only from its most promoter-proximal binding sites, calling for a revision of the current model involving H-NS and ToxT at PctxAB. IMPORTANCE H-NS is a global negative regulator of transcription in Gram-negative bacteria, particularly in horizontally acquired genetic islands. Previous work in Vibrio cholerae suggested that H-NS represses the transcription of cholera toxin genes by binding to a large region upstream of its promoter and that the virulence activator ToxT derepresses transcription by removing H-NS from the promoter. Here, new data support a revised model in which ToxT displaces only H-NS bound to the most promoter-proximal DNA sites that overlap the ToxT binding sites, leaving the upstream sites occupied by H-NS. This introduces a higher-resolution mechanism for the antirepression of H-NS in the control of cholera toxin production.
Collapse
|
24
|
Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, Sanabria-Ríos DJ. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res 2021; 82:101093. [PMID: 33577909 PMCID: PMC8137538 DOI: 10.1016/j.plipres.2021.101093] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The antibacterial activity of fatty acids (FA) is well known in the literature and represents a promising option for developing the next-generation of antibacterial agents to treat a broad spectrum of bacterial infections. FA are highly involved in living organisms' defense system against numerous pathogens, including multidrug-resistant bacteria. When combined with other antibacterial agents, the remarkable ability of FA to enhance their bactericidal properties is a critical feature that is not commonly observed in other naturally-occurring compounds. More reviews focusing on FA antibacterial activity, traditional and non-traditional mechanisms and biomedical applications are needed. This review is intended to update the reader on the antibacterial properties of recent FA and how their chemical structures influence their antibacterial activity. This review also aims to better understand both traditional and non-traditional mechanisms involved in these recently explored FA antibacterial activities.
Collapse
Affiliation(s)
- Giancarlo Casillas-Vargas
- Faculty of Science and Technology, Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, USA
| | - Carlimar Ocasio-Malavé
- Faculty of Science and Technology, Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, USA
| | - Solymar Medina
- Faculty of Science and Technology, Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, USA
| | - Christian Morales-Guzmán
- University of Puerto Rico, Río Piedras Campus, Department of Chemistry, 17 Ave. Universidad Ste. 1701, San Juan, PR 00925-2537, USA
| | - René García Del Valle
- University of Puerto Rico, Río Piedras Campus, Department of Chemistry, 17 Ave. Universidad Ste. 1701, San Juan, PR 00925-2537, USA
| | - Néstor M Carballeira
- University of Puerto Rico, Río Piedras Campus, Department of Chemistry, 17 Ave. Universidad Ste. 1701, San Juan, PR 00925-2537, USA.
| | - David J Sanabria-Ríos
- Faculty of Science and Technology, Department of Natural Sciences, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR 00919, USA.
| |
Collapse
|
25
|
The Canonical Long-Chain Fatty Acid Sensing Machinery Processes Arachidonic Acid To Inhibit Virulence in Enterohemorrhagic Escherichia coli. mBio 2021; 12:mBio.03247-20. [PMID: 33468701 PMCID: PMC7845647 DOI: 10.1128/mbio.03247-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in host immunity. Manipulation of lipid content in host tissues through diet or pharmacological interventions is associated with altered severity of various inflammatory diseases. The mammalian gastrointestinal tract is a complex biochemical organ that generates a diverse milieu of host- and microbe-derived metabolites. In this environment, bacterial pathogens sense and respond to specific stimuli, which are integrated into the regulation of their virulence programs. Previously, we identified the transcription factor FadR, a long-chain fatty acid (LCFA) acyl coenzyme A (acyl-CoA) sensor, as a novel virulence regulator in the human foodborne pathogen enterohemorrhagic Escherichia coli (EHEC). Here, we demonstrate that exogenous LCFAs directly inhibit the locus of enterocyte effacement (LEE) pathogenicity island in EHEC through sensing by FadR. Moreover, in addition to LCFAs that are 18 carbons in length or shorter, we introduce host-derived arachidonic acid (C20:4) as an additional LCFA that is recognized by the FadR system in EHEC. We show that arachidonic acid is processed by the acyl-CoA synthetase FadD, which permits binding to FadR and decreases FadR affinity for its target DNA sequences. This interaction enables the transcriptional regulation of FadR-responsive operons by arachidonic acid in EHEC, including the LEE. Finally, we show that arachidonic acid inhibits hallmarks of EHEC disease in a FadR-dependent manner, including EHEC attachment to epithelial cells and the formation of attaching and effacing lesions. Together, our findings delineate a molecular mechanism demonstrating how LCFAs can directly inhibit the virulence of an enteric bacterial pathogen. More broadly, our findings expand the repertoire of ligands sensed by the canonical LFCA sensing machinery in EHEC to include arachidonic acid, an important bioactive lipid that is ubiquitous within host environments.
Collapse
|
26
|
Sousa FBM, Nolêto IRSG, Chaves LS, Pacheco G, Oliveira AP, Fonseca MMV, Medeiros JVR. A comprehensive review of therapeutic approaches available for the treatment of cholera. J Pharm Pharmacol 2020; 72:1715-1731. [DOI: 10.1111/jphp.13344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
Abstract
Abstract
Objectives
The oral rehydration solution is the most efficient method to treat cholera; however, it does not interfere in the action mechanism of the main virulence factor produced by Vibrio cholerae, the cholera toxin (CT), and this disease still stands out as a problem for human health worldwide. This review aimed to describe therapeutic alternatives available in the literature, especially those related to the search for molecules acting upon the physiopathology of cholera.
Key findings
New molecules have offered a protection effect against diarrhoea induced by CT or even by infection from V. cholerae. The receptor regulator cystic fibrosis channel transmembrane (CFTR), monosialoganglioside (GM1), enkephalinase, AMP-activated protein kinase (AMPK), inhibitors of expression of virulence factors and activators of ADP-ribosylarginine hydrolase are the main therapeutic targets studied. Many of these molecules or extracts still present unclear action mechanisms.
Conclusions
Knowing therapeutic alternatives and their molecular mechanisms for the treatment of cholera could guide us to develop a new drug that could be used in combination with the rehydration solution.
Collapse
Affiliation(s)
- Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Isabela R S G Nolêto
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Leticia S Chaves
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Post-graduation Program in Biomedical Sciences, Federal University of Piauí, Parnaíba, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
| | - Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Mikhail M V Fonseca
- Institute of Higher Education of Vale do Parnaíba (IESVAP), Parnaíba, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Post-graduation Program in Biotechnology, Federal University of Parnaíba Delta, Parnaíba, Brazil
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
27
|
The Vibrio cholerae Quorum-Sensing Protein VqmA Integrates Cell Density, Environmental, and Host-Derived Cues into the Control of Virulence. mBio 2020; 11:mBio.01572-20. [PMID: 32723922 PMCID: PMC7387800 DOI: 10.1128/mbio.01572-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a process of chemical communication that bacteria use to orchestrate collective behaviors. QS communication relies on chemical signal molecules called autoinducers. QS regulates virulence in Vibrio cholerae, the causative agent of the disease cholera. Transit into the human small intestine, the site of cholera infection, exposes V. cholerae to the host environment. In this study, we show that the combination of two stimuli encountered in the small intestine, the absence of oxygen and the presence of host-produced bile salts, impinge on V. cholerae QS function and, in turn, pathogenicity. We suggest that possessing a QS system that is responsive to multiple environmental, host, and cell density cues enables V. cholerae to fine-tune its virulence capacity in the human intestine. Quorum sensing is a chemical communication process in which bacteria use the production, release, and detection of signal molecules called autoinducers to orchestrate collective behaviors. The human pathogen Vibrio cholerae requires quorum sensing to infect the small intestine. There, V. cholerae encounters the absence of oxygen and the presence of bile salts. We show that these two stimuli differentially affect quorum-sensing function and, in turn, V. cholerae pathogenicity. First, during anaerobic growth, V. cholerae does not produce the CAI-1 autoinducer, while it continues to produce the DPO autoinducer, suggesting that CAI-1 may encode information specific to the aerobic lifestyle of V. cholerae. Second, the quorum-sensing receptor-transcription factor called VqmA, which detects the DPO autoinducer, also detects the lack of oxygen and the presence of bile salts. Detection occurs via oxygen-, bile salt-, and redox-responsive disulfide bonds that alter VqmA DNA binding activity. We propose that VqmA serves as an information processing hub that integrates quorum-sensing information, redox status, the presence or absence of oxygen, and host cues. In response to the information acquired through this mechanism, V. cholerae appropriately modulates its virulence output.
Collapse
|
28
|
Free Fatty Acids Interfere with the DNA Binding Activity of the Virulence Regulator PrfA of Listeria monocytogenes. J Bacteriol 2020; 202:JB.00156-20. [PMID: 32393522 DOI: 10.1128/jb.00156-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
Naturally occurring free fatty acids (FFAs) are recognized as potent antimicrobial agents that also affect the production of virulence factors in bacterial pathogens. In the foodborne pathogen Listeria monocytogenes, some medium- and long-chain FFAs act as antimicrobial agents as well as signaling compounds, causing a repression of transcription of virulence genes. We previously observed that the master virulence regulator PrfA is involved in both the antimicrobial and virulence-inhibitory response of L. monocytogenes to selected FFAs, but the underlying mechanisms are presently unknown. Here, we present a systematic analysis of the antimicrobial and PrfA-inhibitory activities of medium- and long-chain FFAs of various carbon chain lengths and degrees of saturation. We observed that exposure to specific antimicrobial and nonantimicrobial FFAs prevented PrfA-dependent activation of virulence gene transcription and reduced the levels of PrfA-regulated virulence factors. Thus, an antimicrobial activity was not compulsory for the PrfA-inhibitory ability of an FFA. In vitro binding experiments revealed that PrfA-inhibitory FFAs were also able to prevent the constitutively active variant PrfA* from binding to the PrfA box in the promoter region of the virulence gene hly, whereas noninhibitory FFAs did not affect its ability to bind DNA. Notably, the unsaturated FFAs inhibited the DNA binding activity of PrfA* most efficiently. Altogether, our findings support a model in which specific FFAs orchestrate a generalized reduction of the virulence potential of L. monocytogenes by directly targeting the key virulence regulator PrfA.IMPORTANCE Listeria monocytogenes is a Gram-positive pathogen able to cause foodborne infections in humans and animals. Key virulence genes in L. monocytogenes are activated by the transcription regulator PrfA, a DNA binding protein belonging to the CRP/FNR family. Various signals from the environment are known to affect the activity of PrfA, either positively or negatively. Recently, we found that specific medium- and long-chain free fatty acids act as antimicrobial agents as well as signaling compounds in L. monocytogenes Here, we show that both antimicrobial and nonantimicrobial free fatty acids inhibit PrfA-dependent activation of virulence gene transcription by interfering with the DNA binding activity of PrfA. Our findings suggest that free fatty acids could be candidates for alternative therapies against L. monocytogenes.
Collapse
|
29
|
Alavi S, Mitchell JD, Cho JY, Liu R, Macbeth JC, Hsiao A. Interpersonal Gut Microbiome Variation Drives Susceptibility and Resistance to Cholera Infection. Cell 2020; 181:1533-1546.e13. [PMID: 32631492 PMCID: PMC7394201 DOI: 10.1016/j.cell.2020.05.036] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiome is the resident microbial community of the gastrointestinal tract. This community is highly diverse, but how microbial diversity confers resistance or susceptibility to intestinal pathogens is poorly understood. Using transplantation of human microbiomes into several animal models of infection, we show that key microbiome species shape the chemical environment of the gut through the activity of the enzyme bile salt hydrolase. The activity of this enzyme reduced colonization by the major human diarrheal pathogen Vibrio cholerae by degrading the bile salt taurocholate that activates the expression of virulence genes. The absence of these functions and species permits increased infection loads on a personal microbiome-specific basis. These findings suggest new targets for individualized preventative strategies of V. cholerae infection through modulating the structure and function of the gut microbiome.
Collapse
Affiliation(s)
- Salma Alavi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Jonathan D Mitchell
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Jennifer Y Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA; Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA; Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA, USA
| | - John C Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
30
|
Carabajal MA, Viarengo G, Yim L, Martínez-Sanguiné A, Mariscotti JF, Chabalgoity JA, Rasia RM, Véscovi EG. PhoQ is an unsaturated fatty acid receptor that fine-tunes Salmonella pathogenic traits. Sci Signal 2020; 13:13/628/eaaz3334. [PMID: 32317368 DOI: 10.1126/scisignal.aaz3334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Salmonella enterica PhoP/PhoQ two-component signaling system coordinates the spatiotemporal expression of key virulence factors that confer pathogenic traits. Through biochemical and structural analyses, we found that the sensor histidine kinase PhoQ acted as a receptor for long-chain unsaturated fatty acids (LCUFAs), which induced a conformational change in the periplasmic domain of the PhoQ protein. This resulted in the repression of PhoQ autokinase activity, leading to inhibition of the expression of PhoP/PhoQ-dependent genes. Recognition of the LCUFA linoleic acid (LA) by PhoQ was not stereospecific because positional and geometrical isomers of LA equally inhibited PhoQ autophosphorylation, which was conserved in multiple S. enterica serovars. Because orally acquired Salmonella encounters conjugated LA (CLA), a product of the metabolic conversion of LA by microbiota, in the human intestine, we tested how short-term oral administration of CLA affected gut colonization and systemic dissemination in a mouse model of Salmonella-induced colitis. Compared to untreated mice, CLA-treated mice showed increased gut colonization by wild-type Salmonella, as well as increased dissemination to the spleen. In contrast, the inability of the phoP strain to disseminate systemically remained unchanged by CLA treatment. Together, our results reveal that, by inhibiting PhoQ, environmental LCUFAs fine-tune the fate of Salmonella during infection. These findings may aid in the design of new anti-Salmonella therapies.
Collapse
Affiliation(s)
- María Ayelén Carabajal
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
| | - Gastón Viarengo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
| | - Lucía Yim
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
| | - Adriana Martínez-Sanguiné
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
| | - Javier F Mariscotti
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
| | - José A Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
| | - Rodolfo M Rasia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
31
|
Biopolymer Extracted from Anadenanthera colubrina (Red Angico Gum) Exerts Therapeutic Potential in Mice: Antidiarrheal Activity and Safety Assessment. Pharmaceuticals (Basel) 2020; 13:ph13010017. [PMID: 31963683 PMCID: PMC7168896 DOI: 10.3390/ph13010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Anadenanthera colubrina var. cebil (Griseb.) Altschul (Fabaceae family), commonly known as the red angico tree, is a medicinal plant found throughout Brazil’s semi-arid area. In this study, a chemical analysis was performed to investigate the antidiarrheal activity and safety profile of red angico gum (RAG), a biopolymer extracted from the trunk exudate of A. colubrina. Upon FT-IR spectroscopy, RAG showed bands in the regions of 1608 cm−1, 1368 cm−1, and 1029 cm−1, which relate to the vibration of O–H water molecules, deformation vibration of C-O bands, and vibration of the polysaccharide C-O band, respectively, all of which are relevant to glycosidic bonds. The peak molar mass of RAG was 1.89 × 105 g/mol, with the zeta potential indicating electronegativity. RAG demonstrated high yield and solubility with a low degree of impurity. Pre-treatment with RAG reduced the total diarrheal stool and enteropooling. RAG also enhanced Na+/K+-ATPase activity and reduced gastrointestinal transit, and thereby inhibited intestinal smooth muscle contractions. Enzyme-Linked Immunosorbent Assay (ELISA) demonstrated that RAG can interact with GM1 receptors and can also reduce E. coli-induced diarrhea in vivo. Moreover, RAG did not induce any signs of toxicity in mice. These results suggest that RAG is a possible candidate for the treatment of diarrheal diseases.
Collapse
|
32
|
Bhattacharya D, Sinha R, Mukherjee P, Howlader DR, Nag D, Sarkar S, Koley H, Withey JH, Gachhui R. Anti-virulence activity of polyphenolic fraction isolated from Kombucha against Vibrio cholerae. Microb Pathog 2019; 140:103927. [PMID: 31846743 DOI: 10.1016/j.micpath.2019.103927] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
The use of traditional foods and beverages or their bioactive compounds as anti-virulence agents is a new alternative method to overcome the increased global emergence of antimicrobial resistance in enteric pathogens. In the present study, we investigated the anti-virulence activity of a polyphenolic fraction previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against Vibrio cholerae O1. The isolated fraction was mainly composed of the polyphenols catechin and isorhamnetin. The fraction, the individual polyphenols and the combination of the individual polyphenols significantly inhibited bacterial swarming motility and expression of flagellar regulatory genes motY and flaC, even at sub-inhibitory concentrations. The polyphenolic compounds also decreased bacterial protease secretion and mucin penetration in vitro. In vivo study revealed that the polyphenolic fraction significantly inhibited V. cholerae induced fluid accumulation in the rabbit ileal loop model and intestinal colonization in suckling mice model. Therefore, the anti-virulence activity of the Kombucha polyphenolic fraction involved inhibition of motility and protease secretion of V. cholerae, thus preventing bacterial penetration through the mucin layer as well as fluid accumulation and bacterial colonization in the intestinal epithelial cells. The overall results implied that Kombucha might be considered as a potential alternative source of anti-virulence polyphenols against V. cholerae. To the best of our knowledge, this is the first report on the anti-virulence activity of Kombucha, mostly attributed to its polyphenolic content.
Collapse
Affiliation(s)
- Debanjana Bhattacharya
- Department of Life Science & Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Priyadarshini Mukherjee
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Debaki Ranjan Howlader
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Dhrubajyoti Nag
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Soumyadev Sarkar
- Department of Life Science & Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases (NICED), P-33 CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Ratan Gachhui
- Department of Life Science & Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
33
|
Cruite JT, Kovacikova G, Clark KA, Woodbrey AK, Skorupski K, Kull FJ. Structural basis for virulence regulation in Vibrio cholerae by unsaturated fatty acid components of bile. Commun Biol 2019; 2:440. [PMID: 31815195 PMCID: PMC6882843 DOI: 10.1038/s42003-019-0686-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
The AraC/XylS-family transcriptional regulator ToxT is the master virulence activator of Vibrio cholerae, the gram-negative bacterial pathogen that causes the diarrheal disease cholera. Unsaturated fatty acids (UFAs) found in bile inhibit the activity of ToxT. Crystal structures of inhibited ToxT bound to UFA or synthetic inhibitors have been reported, but no structure of ToxT in an active conformation had been determined. Here we present the 2.5 Å structure of ToxT without an inhibitor. The structure suggests release of UFA or inhibitor leads to an increase in flexibility, allowing ToxT to adopt an active conformation that is able to dimerize and bind DNA. Small-angle X-ray scattering was used to validate a structural model of an open ToxT dimer bound to the cholera toxin promoter. The results presented here provide a detailed structural mechanism for virulence gene regulation in V. cholerae by the UFA components of bile and other synthetic ToxT inhibitors.
Collapse
Affiliation(s)
- Justin T. Cruite
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
- Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH USA
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Kenzie A. Clark
- Department of Chemistry, Dartmouth College, Hanover, NH USA
- Present Address: Department of Chemistry, Princeton University, Princeton, NJ USA
| | - Anne K. Woodbrey
- Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH USA
- Department of Chemistry, Dartmouth College, Hanover, NH USA
| | - Karen Skorupski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - F. Jon Kull
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
- Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH USA
- Department of Chemistry, Dartmouth College, Hanover, NH USA
| |
Collapse
|
34
|
Tiensuu T, Guerreiro DN, Oliveira AH, O’Byrne C, Johansson J. Flick of a switch: regulatory mechanisms allowing Listeria monocytogenes to transition from a saprophyte to a killer. Microbiology (Reading) 2019; 165:819-833. [DOI: 10.1099/mic.0.000808] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Teresa Tiensuu
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Ana H. Oliveira
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Jörgen Johansson
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Pennetzdorfer N, Lembke M, Pressler K, Matson JS, Reidl J, Schild S. Regulated Proteolysis in Vibrio cholerae Allowing Rapid Adaptation to Stress Conditions. Front Cell Infect Microbiol 2019; 9:214. [PMID: 31293982 PMCID: PMC6598108 DOI: 10.3389/fcimb.2019.00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022] Open
Abstract
The lifecycle of the causative agent of the severe secretory diarrheal disease cholera, Vibrio cholerae, is characterized by the transition between two dissimilar habitats, i.e., as a natural inhabitant of aquatic ecosystems and as a pathogen in the human gastrointestinal tract. Vibrio cholerae faces diverse stressors along its lifecycle, which require effective adaptation mechanisms to facilitate the survival fitness. Not surprisingly, the pathogen's transcriptome undergoes global changes during the different stages of the lifecycle. Moreover, recent evidence indicates that several of the transcription factors (i.e., ToxR, TcpP, and ToxT) and alternative sigma factors (i.e., FliA, RpoS, and RpoE) involved in transcriptional regulations along the lifecycle are controlled by regulated proteolysis. This post-translational control ensures a fast strategy by the pathogen to control cellular checkpoints and thereby rapidly respond to changing conditions. In this review, we discuss selected targets for regulated proteolysis activated by various stressors, which represent a key feature for fast adaptation of V. cholerae.
Collapse
Affiliation(s)
| | - Mareike Lembke
- Institute of Molecular Microbiology, University of Graz, Graz, Austria
| | | | - Jyl S Matson
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Joachim Reidl
- Institute of Molecular Microbiology, University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Microbiology, University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| |
Collapse
|
36
|
The bile salt glycocholate induces global changes in gene and protein expression and activates virulence in enterotoxigenic Escherichia coli. Sci Rep 2019; 9:108. [PMID: 30643184 PMCID: PMC6331568 DOI: 10.1038/s41598-018-36414-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022] Open
Abstract
Pathogenic bacteria use specific host factors to modulate virulence and stress responses during infection. We found previously that the host factor bile and the bile component glyco-conjugated cholate (NaGCH, sodium glycocholate) upregulate the colonization factor CS5 in enterotoxigenic Escherichia coli (ETEC). To further understand the global regulatory effects of bile and NaGCH, we performed Illumina RNA-Seq and found that crude bile and NaGCH altered the expression of 61 genes in CS5 + CS6 ETEC isolates. The most striking finding was high induction of the CS5 operon (csfA-F), its putative transcription factor csvR, and the putative ETEC virulence factor cexE. iTRAQ-coupled LC-MS/MS proteomic analyses verified induction of the plasmid-borne virulence proteins CS5 and CexE and also showed that NaGCH affected the expression of bacterial membrane proteins. Furthermore, NaGCH induced bacteria to aggregate, increased their adherence to epithelial cells, and reduced their motility. Our results indicate that CS5 + CS6 ETEC use NaGCH present in the small intestine as a signal to initiate colonization of the epithelium.
Collapse
|
37
|
Redox, amino acid, and fatty acid metabolism intersect with bacterial virulence in the gut. Proc Natl Acad Sci U S A 2018; 115:E10712-E10719. [PMID: 30348782 DOI: 10.1073/pnas.1813451115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The gut metabolic landscape is complex and is influenced by the microbiota, host physiology, and enteric pathogens. Pathogens have to exquisitely monitor the biogeography of the gastrointestinal tract to find a suitable niche for colonization. To dissect the important metabolic pathways that influence virulence of enterohemorrhagic Escherichia coli (EHEC), we conducted a high-throughput screen. We generated a dataset of regulatory pathways that control EHEC virulence expression under anaerobic conditions. This unraveled that the cysteine-responsive regulator, CutR, converges with the YhaO serine import pump and the fatty acid metabolism regulator FadR to optimally control virulence expression in EHEC. CutR activates expression of YhaO to increase activity of the YhaJ transcription factor that has been previously shown to directly activate the EHEC virulence genes. CutR enhances FadL, which is a pump for fatty acids that represses inhibition of virulence expression by FadR, unmasking a feedback mechanism responsive to metabolite fluctuations. Moreover, CutR and FadR also augment murine infection by Citrobacter rodentium, which is a murine pathogen extensively employed as a surrogate animal model for EHEC. This high-throughput approach proved to be a powerful tool to map the web of cellular circuits that allows an enteric pathogen to monitor the gut environment and adjust the levels of expression of its virulence repertoire toward successful infection of the host.
Collapse
|
38
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
39
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
40
|
Peterson KM, Gellings PS. Multiple intraintestinal signals coordinate the regulation of Vibrio cholerae virulence determinants. Pathog Dis 2018; 76:4791527. [PMID: 29315383 DOI: 10.1093/femspd/ftx126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is a Gram-negative motile bacterium capable of causing fatal pandemic disease in humans via oral ingestion of contaminated water or food. Within the human intestine, the motile vibrios must evade the innate host defense mechanisms, penetrate the mucus layer covering the small intestine, adhere to and multiply on the surface of the microvilli and cause disease via the action of cholera toxin. The explosive diarrhea associated with V. cholerae intestinal colonization leads to dissemination of the vibrios back into the environment to complete this phase of the life cycle. The host phase of the vibrio life cycle is made possible via the concerted action of a signaling cascade that controls the synthesis of V. cholerae colonization determinants. These virulence proteins are coordinately synthesized in response to specific host signals that are still largely undefined. A more complete understanding of the molecular events involved in the V. cholerae recognition of intraintestinal signals and the subsequent transcriptional response will provide important information regarding how pathogenic bacteria establish infection and provide novel methods for treating and/or preventing bacterial infections such as Asiatic cholera. This review will summarize what is currently known in regard to host intraintestinal signals that inform the complex ToxR regulatory cascade in order to coordinate in a spatial and temporal fashion virulence protein synthesis within the human small intestine.
Collapse
Affiliation(s)
- Kenneth M Peterson
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA 71130, USA
| | - Patrick S Gellings
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA 71130, USA
| |
Collapse
|
41
|
Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc Natl Acad Sci U S A 2018; 115:E6048-E6055. [PMID: 29891656 PMCID: PMC6042076 DOI: 10.1073/pnas.1801233115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Second messengers are employed by all organisms to regulate fundamental behaviors, including biofilm formation, motility, metabolism, and pathogenesis in bacteria. We have identified a phospholipase in the El Tor Vibrio cholerae biotype, responsible for the current cholera pandemic, that is directly activated by the second messenger 3′, 3′-cyclic GMP-AMP (cGAMP). Discovery of this proteinaceous bacterial cGAMP effector sheds light on the functions and basic principles of cGAMP signaling. Both this phospholipase and the cGAMP synthase are encoded within the VSP-1 pathogenicity island, unique to the El Tor biotype, and our findings assign a biochemical function to VSP-1 that may contribute to the epidemiological success of El Tor V. cholerae. Sensing and responding to environmental changes is essential for bacteria to adapt and thrive, and nucleotide-derived second messengers are central signaling systems in this process. The most recently identified bacterial cyclic dinucleotide second messenger, 3′, 3′-cyclic GMP-AMP (cGAMP), was first discovered in the El Tor biotype of Vibrio cholerae. The cGAMP synthase, DncV, is encoded on the VSP-1 pathogenicity island, which is found in all El Tor isolates that are responsible for the current seventh pandemic of cholera but not in the classical biotype. We determined that unregulated production of DncV inhibits growth in El Tor V. cholerae but has no effect on the classical biotype. This cGAMP-dependent phenotype can be suppressed by null mutations in vc0178 immediately 5′ of dncV in VSP-1. VC0178 [renamed as cGAMP-activated phospholipase in Vibrio (CapV)] is predicted to be a patatin-like phospholipase, and coexpression of capV and dncV is sufficient to induce growth inhibition in classical V. cholerae and Escherichia coli. Furthermore, cGAMP binds to CapV and directly activates its hydrolase activity in vitro. CapV activated by cGAMP in vivo degrades phospholipids in the cell membrane, releasing 16:1 and 18:1 free fatty acids. Together, we demonstrate that cGAMP activates CapV phospholipase activity to target the cell membrane and suggest that acquisition of this second messenger signaling pathway may contribute to the emergence of the El Tor biotype as the etiological agent behind the seventh cholera pandemic.
Collapse
|
42
|
Torktaz I, Najafi A, Golmohamadi R, Hassani S. Molecular dynamics simulation (MDS) analysis of Vibrio cholerae ToxT virulence factor complexed with docked potential inhibitors. Bioinformation 2018; 14:101-105. [PMID: 29785068 PMCID: PMC5953856 DOI: 10.6026/97320630014101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 11/23/2022] Open
Abstract
The ToxT transcription factor mediates the transcription of the two major virulence factors in Vibrio cholerae. It has a DNA binding domain made of α4, α5, α6, α7, α8, α9 and α10 helices that is responsible for the transcription of virulence genes. Therefore, it is of interest to screen ToxT against the ZINC ligand database containing data for a million compounds. The QSAR model identified 40 top hits for ToxT. Two target protein complexes with ligands Lig N1 and Lig N2 with high score were selected for molecular dynamics simulation. Simulation data shows that ligands are stable in the DNA binding domain of ToxT. Moreover, Lig N1 and Lig N2 passed pharmacological as well as ADME filters along with g-mmpbsa analysis with binding affinity of -199.831 kJ/mol for Lig N1 and - 286.951 kJ/mol for Lig N2. Moreover, no Lipinski and PhysChem violations were identified. It is further observed that these compounds were not inhibitors of P-glycoprotein, CYP450 and renal organic cation transporters. The LD50 of 2.5804 mol/kg for Lig N1 and 2.7788 mol/kg for Lig N2 was noted with acceptable toxicity index.
Collapse
Affiliation(s)
- Ibrahim Torktaz
- Molecular Biology Research Center, Systems Biology and Poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, IRAN
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, IRAN
| | - Reza Golmohamadi
- Molecular Biology Research Center, Systems Biology and Poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, IRAN
| | - Sorour Hassani
- Molecular Biology Research Center, Systems Biology and Poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, IRAN
| |
Collapse
|
43
|
Abstract
Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.
Collapse
|
44
|
Nicol M, Alexandre S, Luizet JB, Skogman M, Jouenne T, Salcedo SP, Dé E. Unsaturated Fatty Acids Affect Quorum Sensing Communication System and Inhibit Motility and Biofilm Formation of Acinetobacter baumannii. Int J Mol Sci 2018; 19:ijms19010214. [PMID: 29320462 PMCID: PMC5796163 DOI: 10.3390/ijms19010214] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
The increasing threat of Acinetobacter baumannii as a nosocomial pathogen is mainly due to the occurrence of multidrug-resistant strains that are associated with the real problem of its eradication from hospital wards. The particular ability of this pathogen to form biofilms contributes to its persistence, increases antibiotic resistance, and promotes persistent/device-related infections. We previously demonstrated that virstatin, which is a small organic compound known to decrease virulence of Vibrio cholera via an inhibition of T4-pili expression, displayed very promising activity to prevent A. baumannii biofilm development. Here, we examined the antibiofilm activity of mono-unsaturated chain fatty acids, palmitoleic (PoA), and myristoleic (MoA) acids, presenting similar action on V. cholerae virulence. We demonstrated that PoA and MoA (at 0.02 mg/mL) were able to decrease A. baumannii ATCC 17978 biofilm formation up to 38% and 24%, respectively, presented a biofilm dispersing effect and drastically reduced motility. We highlighted that these fatty acids decreased the expression of the regulator abaR from the LuxIR-type quorum sensing (QS) communication system AbaIR and consequently reduced the N-acyl-homoserine lactone production (AHL). This effect can be countered by addition of exogenous AHLs. Besides, fatty acids may have additional non-targeted effects, independent from QS. Atomic force microscopy experiments probed indeed that PoA and MoA could also act on the initial adhesion process in modifying the material interface properties. Evaluation of fatty acids effect on 22 clinical isolates showed a strain-dependent antibiofilm activity, which was not correlated to hydrophobicity or pellicle formation ability of the tested strains, and suggested a real diversity in cell-to-cell communication systems involved in A. baumannii biofilm formation.
Collapse
Affiliation(s)
- Marion Nicol
- Normandie University, Unirouen, 76000 Rouen, France.
- CNRS, UMR 6270, Polymers, Biopolymers, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France.
| | - Stéphane Alexandre
- Normandie University, Unirouen, 76000 Rouen, France.
- CNRS, UMR 6270, Polymers, Biopolymers, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France.
| | - Jean-Baptiste Luizet
- Laboratory of Molecular Microbiology and Structural Biochemistry, University of Lyon, Centre National de la Recherche Scientifique, F-69367 Lyon, France.
| | - Malena Skogman
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland.
| | - Thierry Jouenne
- Normandie University, Unirouen, 76000 Rouen, France.
- CNRS, UMR 6270, Polymers, Biopolymers, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France.
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, University of Lyon, Centre National de la Recherche Scientifique, F-69367 Lyon, France.
| | - Emmanuelle Dé
- Normandie University, Unirouen, 76000 Rouen, France.
- CNRS, UMR 6270, Polymers, Biopolymers, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France.
| |
Collapse
|
45
|
Hsieh SH, Brock M. Lipid components of bile increase the protective effect of conjugated bile salts against antifungal drugs. Fungal Biol 2017; 121:929-938. [DOI: 10.1016/j.funbio.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/12/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
|
46
|
Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species. Appl Environ Microbiol 2017; 83:AEM.01415-17. [PMID: 28864654 DOI: 10.1128/aem.01415-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/25/2017] [Indexed: 01/24/2023] Open
Abstract
The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae, V. parahaemolyticus, and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B.
Collapse
|
47
|
Kallipolitis BH. How can naturally occurring fatty acids neutralize Listeria? Future Microbiol 2017; 12:1239-1241. [PMID: 28975811 DOI: 10.2217/fmb-2017-0176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Birgitte H Kallipolitis
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
48
|
Sternkopf Lillebæk EM, Lambert Nielsen S, Scheel Thomasen R, Færgeman NJ, Kallipolitis BH. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes. Res Microbiol 2017; 168:547-557. [DOI: 10.1016/j.resmic.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
|
49
|
Zhuang S, Li Q, Cai L, Wang C, Lei X. Chemoproteomic Profiling of Bile Acid Interacting Proteins. ACS CENTRAL SCIENCE 2017; 3:501-509. [PMID: 28573213 PMCID: PMC5445530 DOI: 10.1021/acscentsci.7b00134] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 05/04/2023]
Abstract
Bile acids (BAs) are a family of endogenous metabolites synthesized from cholesterol in liver and modified by microbiota in gut. Being amphipathic molecules, the major function of BAs is to help with dietary lipid digestion. In addition, they also act as signaling molecules to regulate lipid and glucose metabolism as well as gut microbiota composition in the host. Remarkably, recent discoveries of the dedicated receptors for BAs such as FXR and TGR5 have uncovered a number of novel actions of BAs as signaling hormones which play significant roles in both physiological and pathological conditions. Disorders in BAs' metabolism are closely related to metabolic syndrome and intestinal and neurodegenerative diseases. Though BA-based therapies have been clinically implemented for decades, the regulatory mechanism of BA is still poorly understood and a comprehensive characterization of BA-interacting proteins in proteome remains elusive. We herein describe a chemoproteomic strategy that uses a number of structurally diverse, clickable, and photoreactive BA-based probes in combination with quantitative mass spectrometry to globally profile BA-interacting proteins in mammalian cells. Over 600 BA-interacting protein targets were identified, including known endogenous receptors and transporters of BA. Analysis of these novel BA-interacting proteins revealed that they are mainly enriched in functional pathways such as endoplasmic reticulum (ER) stress response and lipid metabolism, and are predicted with strong implications with Alzheimer's disease, non-alcoholic fatty liver disease, and diarrhea. Our findings will significantly improve the current understanding of BAs' regulatory roles in human physiology and diseases.
Collapse
Affiliation(s)
- Shentian Zhuang
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
| | - Qiang Li
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
| | - Lirong Cai
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
- E-mail:
| | - Xiaoguang Lei
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
- E-mail:
| |
Collapse
|
50
|
Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev 2017; 29:819-36. [PMID: 27464994 DOI: 10.1128/cmr.00031-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens.
Collapse
|