1
|
Gu Q, He P, Bai Q, Zhong X, Zhang Y, Ma J, Yao H, Pan Z. Insight into the role of Streptococcus suis zinc metalloprotease C from the new serotype causing meningitis in piglets. BMC Vet Res 2024; 20:337. [PMID: 39080654 PMCID: PMC11290213 DOI: 10.1186/s12917-024-03893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/19/2024] [Indexed: 08/02/2024] Open
Abstract
Streptococcus suis (S. suis) is an important gram-positive pathogen and an emerging zoonotic pathogen that causes meningitis in swine and humans. Although several virulence factors have been characterized in S. suis, the underlying mechanisms of pathogenesis are not fully understood. In this study, we identified Zinc metalloproteinase C (ZmpC) probably as a critical virulence factor widely distributed in S. suis strains. ZmpC was identified as a critical facilitator in the development of bacterial meningitis, as evidenced by the detection of increased expression of TNF-α, IL-8, and matrix metalloprotease 9 (MMP-9). Subcellular localization analysis further revealed that ZmpC was localized to the cell wall surface and gelatin zymography analysis showed that ZmpC could cleave human MMP-9. Mice challenge demonstrated that ZmpC provided protection against S. suis CZ130302 (serotype Chz) and ZY05719 (serotype 2) infection. In conclusion, these results reveal that ZmpC plays an important role in promoting CZ130302 to cause mouse meningitis and may be a potential candidate for a S. suis CZ130302 vaccine.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Peijuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- Master Shanxi Animal Health and Slaughtering Management Station, Xian, Shanxi Province, 710016, China
| | - Qiankun Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
2
|
Aono R, Emi S, Okabe-Watanabe K, Nariya H, Matsunaga N, Hitsumoto Y, Katayama S. Autolysin as a fibronectin receptor on the cell surface of Clostridium perfringens. Anaerobe 2023; 83:102769. [PMID: 37544355 DOI: 10.1016/j.anaerobe.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Clostridium perfringens causes food poisoning and gas gangrene, a serious wound-associated infection. C. perfringens cells adhere to collagen via fibronectin (Fn). We investigated whether the peptidoglycan hydrolase of C. perfringens, i.e., autolysin (Acp), is implicated in Fn binding to C. perfringens cells. METHODS This study used recombinant Acp fragments, human Fn and knockout mutants (C. perfringens 13 acp::erm and HN13 ΔfbpC ΔfbpD). Ligand blotting, Western blotting analysis, and complementation tests were performed. The Fn-binding activity of each mutant was evaluated by ELISA. RESULTS From an Fn-binding assay using recombinant Acp fragments, Fn was found to bind to the catalytic domain of Acp. In mutant cells lacking Acp, Fn binding was significantly decreased, but was restored by the complementation of the acp gene. There are three known kinds of Fn-binding proteins in C. perfringens: FbpC, FbpD, and glyceraldehyde-3-phosphate dehydrogenase. We found no difference in Fn-binding activity between the mutant cells lacking both FbpC and FbpD (SAK3 cells) and the wild-type cells, indicating that these Fn-binding proteins are not involved in Fn binding to C. perfringens cells. CONCLUSIONS We found that the Acp is an Fn-binding protein that acts as an Fn receptor on the surface of C. perfringens cells.
Collapse
Affiliation(s)
- Riyo Aono
- Department of Material Science, School of Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama, 700-0005, Japan
| | - Shogo Emi
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama, 700-0005, Japan
| | - Kanako Okabe-Watanabe
- Department of Medical Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki-shi, Okayama, 701-0193, Japan
| | - Hirofumi Nariya
- Laboratory of Food Microbiology, Graduate School of Human Life Science, Jumonji University, 2-1-28 Sugasawa, Niiza-shi, Saitama, 352-8510, Japan
| | - Nozomu Matsunaga
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama, 700-0005, Japan
| | - Yasuo Hitsumoto
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama, 700-0005, Japan
| | - Seiichi Katayama
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama, 700-0005, Japan.
| |
Collapse
|
3
|
Uruén C, García C, Fraile L, Tommassen J, Arenas J. How Streptococcus suis escapes antibiotic treatments. Vet Res 2022; 53:91. [DOI: 10.1186/s13567-022-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractStreptococcus suis is a zoonotic agent that causes sepsis and meningitis in pigs and humans. S. suis infections are responsible for large economic losses in pig production. The lack of effective vaccines to prevent the disease has promoted the extensive use of antibiotics worldwide. This has been followed by the emergence of resistance against different classes of antibiotics. The rates of resistance to tetracyclines, lincosamides, and macrolides are extremely high, and resistance has spread worldwide. The genetic origin of S. suis resistance is multiple and includes the production of target-modifying and antibiotic-inactivating enzymes and mutations in antibiotic targets. S. suis genomes contain traits of horizontal gene transfer. Many mobile genetic elements carry a variety of genes that confer resistance to antibiotics as well as genes for autonomous DNA transfer and, thus, S. suis can rapidly acquire multiresistance. In addition, S. suis forms microcolonies on host tissues, which are associations of microorganisms that generate tolerance to antibiotics through a variety of mechanisms and favor the exchange of genetic material. Thus, alternatives to currently used antibiotics are highly demanded. A deep understanding of the mechanisms by which S. suis becomes resistant or tolerant to antibiotics may help to develop novel molecules or combinations of antimicrobials to fight these infections. Meanwhile, phage therapy and vaccination are promising alternative strategies, which could alleviate disease pressure and, thereby, antibiotic use.
Collapse
|
4
|
Farmen K, Tofiño-Vian M, Iovino F. Neuronal Damage and Neuroinflammation, a Bridge Between Bacterial Meningitis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680858. [PMID: 34149363 PMCID: PMC8209290 DOI: 10.3389/fncel.2021.680858] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the fundamental units of Central Nervous System, and other types of glial cells. Although the specific molecular mechanism behind the interaction between such pathogens with neurons is still under investigation, it is clear that bacterial interaction with neurons and neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore, clinical studies have shown indications of meningitis-caused dementia; and a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are characterized by the loss of neurons, which, unlike many other eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this review article is to provide an overview of the knowledge on how bacterial pathogens in the brain damage neurons through direct and indirect interactions, and how the neuronal damage caused by bacterial pathogen can, in the long-term, influence the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet Biomedicum, Stockholm, Sweden
| |
Collapse
|
5
|
Zhu H, Zhou J, Wang D, Yu Z, Li B, Ni Y, He K. Quantitative proteomic analysis reveals that serine/threonine kinase is involved in Streptococcus suis virulence and adaption to stress conditions. Arch Microbiol 2021; 203:4715-4726. [PMID: 34028569 PMCID: PMC8141825 DOI: 10.1007/s00203-021-02369-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/27/2022]
Abstract
The eukaryotic-type serine/threonine kinase of Streptococcus suis serotype 2 (SS2) performs critical roles in bacterial pathogenesis. In this study, isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were used to analyze the protein profiles of wild type strain SS2-1 and its isogenic STK deletion mutant (Δstk). A total of 281 significant differential proteins, including 147 up-regulated and 134 down-regulated proteins, were found in Δstk. Moreover, 69 virulence factors (VFs) among these 281 proteins were predicted by the Virulence Factor Database (VFDB), including 38 downregulated and 31 up-regulated proteins in Δstk, among which 15 down regulated VFs were known VFs of SS2. Among the down-regulated proteins, high temperature requirement A (HtrA), glutamine synthase (GlnA), ferrichrome ABC transporter substrate-binding protein FepB, and Zinc-binding protein AdcA are known to be involved in bacterial survival and/or nutrient and energy acquisition under adverse host conditions. Overall, our results indicate that STK regulates the expression of proteins involved in virulence of SS2 and its adaption to stress environments.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| |
Collapse
|
6
|
Tram G, Jennings MP, Blackall PJ, Atack JM. Streptococcus suis pathogenesis-A diverse array of virulence factors for a zoonotic lifestyle. Adv Microb Physiol 2021; 78:217-257. [PMID: 34147186 DOI: 10.1016/bs.ampbs.2020.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus suis is a major cause of respiratory tract and invasive infections in pigs and is responsible for a substantial disease burden in the pig industry. S. suis is also a significant cause of bacterial meningitis in humans, particularly in South East Asia. S. suis expresses a wide array of virulence factors, and although many are described as being required for disease, no single factor has been demonstrated to be absolutely required. The lack of uniform distribution of known virulence factors among individual strains and lack of evidence that any particular virulence factor is essential for disease makes the development of vaccines and treatments challenging. Here we review the current understanding of S. suis virulence factors and their role in the pathogenesis of this important zoonotic pathogen.
Collapse
Affiliation(s)
- Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
7
|
Matysik A, Ho FK, Ler Tan AQ, Vajjala A, Kline KA. Cellular chaining influences biofilm formation and structure in group A Streptococcus. Biofilm 2020; 2:100013. [PMID: 33447800 PMCID: PMC7798446 DOI: 10.1016/j.bioflm.2019.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/02/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
Group A Streptococcal (GAS) biofilm formation is an important pathological feature contributing to the antibiotic tolerance and progression of various GAS infections. Although a number of bacterial factors have been described to promote in vitro GAS biofilm formation, the relevance of in vitro biofilms to host-associated biofilms requires further understanding. In this study, we demonstrate how constituents of the host environment, such as lysozyme and NaCl, can modulate GAS bacterial chain length and, in turn, shape GAS biofilm morphology and structure. Disruption of GAS chains with lysozyme results in biofilms that are more stable. Based on confocal microscopy, we attribute the increase in biofilm stability to a dense and compact three-dimensional structure produced by de-chained cells. To show that changes in biofilm stability and structure are due to the shortening of bacterial chains and not specific to the activity of lysozyme, we demonstrate that augmented chaining induced by NaCl or deletion of the autolysin gene mur1.2 produced defects in biofilm formation characterized by a loose biofilm architecture. We conclude that GAS biofilm formation can be directly influenced by host and environmental factors through the modulation of bacterial chain length, potentially contributing to persistence and colonization within the host. Further studies of in vitro biofilm models incorporating physiological constituents such as lysozyme may uncover new insights into the physiology of in vivo GAS biofilms.
Collapse
Affiliation(s)
- Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Alicia Qian Ler Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Anuradha Vajjala
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551
| |
Collapse
|
8
|
A novel autolysin AtlA SS mediates bacterial cell separation during cell division and contributes to full virulence in Streptococcus suis. Vet Microbiol 2019; 234:92-100. [PMID: 31213278 DOI: 10.1016/j.vetmic.2019.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Streptococcus suis (SS) is a major pathogen in the swine industry, and also an important zoonotic agent for humans. The novel SS cell surface protein, AtlASS, comprising the special GW module and N-acetylmuramidases domain, was designated as a putative autolysin. Indeed, the atlASS deletion mutant almost completely lost its activity in Triton X-100 induced bacterial autolysis, while the wild-type and CΔatlASS strains showed significant decrease, to less than 20% of the initial OD600 values. Unexpectedly, both immunofluorescence and immunogold electron microscopy confirmed that AtlASS is mainly located in the cell division septum, suggesting autolytic activity in peptidoglycan hydrolysis may be required for cell separation, thus modulating and truncating bacterial chain length. The biofilm capacity of the AtlASS mutation was reduced ˜ 40%, as compared to the wild-type strain. The ΔatlASS strain also attenuated bacterial adherence in human brain microvessel endothelial cells (HBMECs). Furthermore, we confirmed that AtlASS has fibrinogen/fibronectin binding capacities. In mouse infection model, the AtlASS inactivation also significantly attenuated bacterial virulence and proliferation in vivo. In conclusion, these results indicate that AtlASS autolysin modulates bacterial chain length, and contributes to the full virulence of SS during infection.
Collapse
|
9
|
Huang J, Liu X, Chen H, Chen L, Gao X, Pan Z, Wang J, Lu C, Yao H, Wang L, Wu Z. Identification of six novel capsular polysaccharide loci (
NCL
) from
Streptococcus suis
multidrug resistant non‐typeable strains and the pathogenic characteristic of strains carrying new
NCL
s. Transbound Emerg Dis 2019; 66:995-1003. [DOI: 10.1111/tbed.13123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Xi Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
- Key Lab of Animal Bacteriology, Ministry of Agriculture Nanjing China
- OIE Reference Lab for Swine Streptococcosis Nanjing China
| | - Hao Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
- Key Lab of Animal Bacteriology, Ministry of Agriculture Nanjing China
- OIE Reference Lab for Swine Streptococcosis Nanjing China
| | - Li Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Xueping Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
- Key Lab of Animal Bacteriology, Ministry of Agriculture Nanjing China
- OIE Reference Lab for Swine Streptococcosis Nanjing China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
- Key Lab of Animal Bacteriology, Ministry of Agriculture Nanjing China
- OIE Reference Lab for Swine Streptococcosis Nanjing China
| | - Jian Wang
- Shanghai Municipal Animal Disease Control Center Shanghai China
| | - Chengping Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
- Key Lab of Animal Bacteriology, Ministry of Agriculture Nanjing China
- OIE Reference Lab for Swine Streptococcosis Nanjing China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
- Key Lab of Animal Bacteriology, Ministry of Agriculture Nanjing China
- OIE Reference Lab for Swine Streptococcosis Nanjing China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety College of Veterinary Medicine Nanjing Agricultural University Nanjing China
- Key Lab of Animal Bacteriology, Ministry of Agriculture Nanjing China
- OIE Reference Lab for Swine Streptococcosis Nanjing China
| |
Collapse
|
10
|
Zhu H, Wang Y, Ni Y, Zhou J, Han L, Yu Z, Mao A, Wang D, Fan H, He K. The Redox-Sensing Regulator Rex Contributes to the Virulence and Oxidative Stress Response of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2018; 8:317. [PMID: 30280091 PMCID: PMC6154617 DOI: 10.3389/fcimb.2018.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen responsible for septicemia and meningitis. The redox-sensing regulator Rex has been reported to play critical roles in the metabolism regulation, oxidative stress response, and virulence of various pathogens. In this study, we identified and characterized a Rex ortholog in the SS2 virulent strain SS2-1 that is involved in bacterial pathogenicity and stress environment susceptibility. Our data show that the Rex-knockout mutant strain Δrex exhibited impaired growth in medium with hydrogen peroxide or a low pH compared with the wildtype strain SS2-1 and the complementary strain CΔrex. In addition, Δrex showed a decreased level of survival in whole blood and in RAW264.7 macrophages. Further analyses revealed that Rex deficiency significantly attenuated bacterial virulence in an animal model. A comparative proteome analysis found that the expression levels of several proteins involved in virulence and oxidative stress were significantly different in Δrex compared with SS2-1. Electrophoretic mobility shift assays revealed that recombinant Rex specifically bound to the promoters of target genes in a manner that was modulated by NADH and NAD+. Taken together, our data suggest that Rex plays critical roles in the virulence and oxidative stress response of SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Yong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| | - Lixiao Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
11
|
Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Appl Microbiol Biotechnol 2018; 102:9121-9129. [PMID: 30209548 DOI: 10.1007/s00253-018-9356-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
Streptococcus suis (S. suis) is a major swine pathogen and an important zoonotic agent. Like most pathogens, the ability of S. suis to form biofilms plays a significant role in its virulence and drug resistance. A better understanding of the mechanisms involved in biofilm formation by S. suis as well as of the methods to efficiently remove and kill biofilm-embedded bacteria can be of high interest for the prevention and treatment of S. suis infections. The aim of this literature review is to update our current knowledge of S. suis biofilm formation, regulatory mechanisms, drug-resistance mechanisms, and disinfection strategies.
Collapse
|
12
|
Fang L, Zhou J, Fan P, Yang Y, Shen H, Fang W. A serine/threonine phosphatase 1 of Streptococcus suis type 2 is an important virulence factor. J Vet Sci 2018; 18:439-447. [PMID: 28057904 PMCID: PMC5746436 DOI: 10.4142/jvs.2017.18.4.439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/30/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is regarded as one of the major pathogens of pigs, and Streptococcus suis type 2 (SS2) is considered a zoonotic bacterium based on its ability to cause meningitis and streptococcal toxic shock-like syndrome in humans. Many bacterial species contain genes encoding serine/threonine protein phosphatases (STPs) responsible for dephosphorylation of their substrates in a single reaction step. This study investigated the role of stp1 in the pathogenesis of SS2. An isogenic stp1 mutant (Δstp1) was constructed from SS2 strain ZJ081101. The Δstp1 mutant exhibited a significant increase in adhesion to HEp-2 and bEnd.3 cells as well as increased survival in RAW264.7 cells, as compared to the parent strain. Increased survival in macrophage cells might be related to resistance to reactive oxygen species since the Δstp1 mutant was more resistant than its parent strain to paraquat-induced oxidative stress. However, compared to parent strain virulence, deletion of stp1 significantly attenuated virulence of SS2 in mice, as shown by the nearly double lethal dose 50 value and the lower bacterial load in organs and blood in the murine model. We conclude that Stp1 has an essential role in SS2 virulence.
Collapse
Affiliation(s)
- Lihua Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China.,Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingjing Zhou
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Pengcheng Fan
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Yunkai Yang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Hongxia Shen
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
13
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
14
|
Diverse toxic effectors are harbored by vgrG islands for interbacterial antagonism in type VI secretion system. Biochim Biophys Acta Gen Subj 2018; 1862:1635-1643. [DOI: 10.1016/j.bbagen.2018.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022]
|
15
|
Li YH, Zhou YH, Ren YZ, Xu CG, Liu X, Liu B, Chen JQ, Ding WY, Zhao YL, Yang YB, Wang S, Liu D. Inhibition of Streptococcus suis Adhesion and Biofilm Formation in Vitro by Water Extracts of Rhizoma Coptidis. Front Pharmacol 2018; 9:371. [PMID: 29713285 PMCID: PMC5911698 DOI: 10.3389/fphar.2018.00371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis is difficult to treat and responsible for various infections in humans and pigs. It can also form biofilms and induce persistent infections. Rhizoma Coptidis is a medicinal plant widely used in Traditional Chinese Medicine. Although the inhibitory effects of Rhizoma Coptidis on biofilm formation have been investigated in several studies, the ability of Rhizoma Coptidis to inhibit S. suis biofilm formation and the underlying mechanisms have not yet been reported. In this study, we showed that sub-minimal inhibitory concentrations (25 and 50 μg mL-1) of water extracts of Rhizoma Coptidis (Coptis deltoidea C.Y.Cheng & P.K.Hsiao, obtained from Sichuan Province) were sufficient to inhibit biofilm formation, as shown in the tissue culture plate (TCP) method and scanning electron microscopy. Real-time PCR and iTRAQ were used to measure gene and protein expression in S. suis. Sub-minimum inhibitory concentrations (25 and 50 μg mL-1) of Rhizoma Coptidis water extracts inhibited S. suis adhesion significantly in an anti-adherence assay. Some genes, such as gapdh, sly, and mrp, and proteins, such as antigen-like protein, CPS16V, and methyltransferase H, involved in adhesion were significantly modulated in cells treated with 50 μg mL-1 of Rhizoma Coptidis water extracts compared to untreated cells. The results from this study suggest that compounds in Rhizoma Coptidis water extracts play an important role in inhibiting adhesion of S. suis cells and, therefore, biofilm formation.
Collapse
Affiliation(s)
- Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yong-Hui Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yong-Zhi Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Chang-Geng Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Bing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jian-Qing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Wen-Ya Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yu-Lin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yan-Bei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Shuai Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Auger JP, Chuzeville S, Roy D, Mathieu-Denoncourt A, Xu J, Grenier D, Gottschalk M. The bias of experimental design, including strain background, in the determination of critical Streptococcus suis serotype 2 virulence factors. PLoS One 2017; 12:e0181920. [PMID: 28753679 PMCID: PMC5533308 DOI: 10.1371/journal.pone.0181920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis. However, serotype 2 strains are genotypically and phenotypically heterogeneous. Though a multitude of virulence factors have been described for S. suis serotype 2, the lack of a clear definition regarding which ones are truly “critical” has created inconsistencies that have only recently been highlighted. Herein, the involvement of two factors previously described as being critical for S. suis serotype 2 virulence, whether the dipeptidyl peptidase IV and autolysin, were evaluated with regards to different ascribed functions using prototype strains belonging to important sequence types. Results demonstrate a lack of reproducibility with previously published data. In fact, the role of the dipeptidyl peptidase IV and autolysin as critical virulence factors could not be confirmed. Though certain in vitro functions may be ascribed to these factors, their roles are not unique for S. suis, probably due to compensation by other factors. As such, variations and discrepancies in experimental design, including in vitro assays, cell lines, and animal models, are an important source of differences between results. Moreover, the use of different sequence types in this study demonstrates that the role attributed to a virulence factor may vary according to the S. suis serotype 2 strain background. Consequently, it is necessary to establish standard experimental designs according to the experiment and purpose in order to facilitate comparison between laboratories. Alongside, studies should include strains of diverse origins in order to prevent erroneous and biased conclusions that could affect future studies.
Collapse
Affiliation(s)
- Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Sarah Chuzeville
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Annabelle Mathieu-Denoncourt
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- * E-mail:
| |
Collapse
|
17
|
Zhang C, Sun W, Tan M, Dong M, Liu W, Gao T, Li L, Xu Z, Zhou R. The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Front Cell Infect Microbiol 2017; 7:66. [PMID: 28326294 PMCID: PMC5339665 DOI: 10.3389/fcimb.2017.00066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Like eukaryotes, bacteria express one or more serine/threonine kinases (STKs) that initiate diverse signaling networks. The STK from Streptococcus suis is encoded by a single-copy stk gene, which is crucial in stress response and virulence. To further understand the regulatory mechanism of STK in S. suis, a stk deletion strain (Δstk) and its complementary strain (CΔstk) were constructed to systematically decode STK characteristics by applying whole transcriptome RNA sequencing (RNA-Seq) and phosphoproteomic analysis. Numerous genes were differentially expressed in Δstk compared with the wild-type parental strain SC-19, including 320 up-regulated and 219 down-regulated genes. Particularly, 32 virulence-associated genes (VAGs) were significantly down-regulated in Δstk. Seven metabolic pathways relevant to bacterial central metabolism and translation are significantly repressed in Δstk. Phosphoproteomic analysis further identified 12 phosphoproteins that exhibit differential phosphorylation in Δstk. These proteins are associated with cell growth and division, glycolysis, and translation. Consistently, phenotypic assays confirmed that the Δstk strain displayed deficient growth and attenuated pathogenicity. Thus, STK is a central regulator that plays an important role in cell growth and division, as well as S. suis metabolism.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wen Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Meifang Tan
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences Nanchang, China
| | - Mengmeng Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wanquan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ting Gao
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| |
Collapse
|
18
|
Xiao G, Wu Z, Zhang S, Tang H, Wang F, Lu C. Mac Protein is not an Essential Virulence Factor for the Virulent Reference Strain Streptococcus suis P1/7. Curr Microbiol 2016; 74:90-96. [PMID: 27847975 DOI: 10.1007/s00284-016-1160-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022]
Abstract
Streptococcus suis is a major pathogen of pigs and also an important zoonotic agent for humans. A S. suis protein containing Mac-1 domain (designated Mac) is a protective antigen, exclusively cleaves porcine IgM, and contributes to complement evasion with the presence of high titers of specific porcine anti-S. suis IgM, but its role in S. suis virulence has not been investigated in natural healthy host without specific IgM. In this study, a mac deletion mutant was constructed by homologous recombination in S. suis serotype 2 virulent reference strain P1/7. Deletion of mac did not significantly influence phagocytosis or intracellular survival within murine macrophages RAW264.7, or the oxidative-burst induction of RAW264.7 and murine neutrophils. Furthermore, the mutant is as virulent as the wild-type strain in pig, mouse, and zebrafish infection models. Our data suggest that Mac is not essential for S. suis virulence in strain P1/7 in natural healthy host without specific IgM, and the immunogenicity of Mac does not appear to correlate with its significance for virulence.
Collapse
Affiliation(s)
- Genhui Xiao
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Shouming Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Huanyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Fengqiu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
19
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
20
|
Zaccaria E, Cao R, Wells JM, van Baarlen P. A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains. PLoS One 2016; 11:e0151623. [PMID: 26999052 PMCID: PMC4801416 DOI: 10.1371/journal.pone.0151623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Rui Cao
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M. Wells
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
21
|
Xu J, Mu Y, Zhang Y, Dong W, Zhu Y, Ma J, Song W, Pan Z, Lu C, Yao H. Antibacterial effect of porcine PTX3 against Streptococcus suis type 2 infection. Microb Pathog 2015; 89:128-39. [DOI: 10.1016/j.micpath.2015.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 09/07/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
|
22
|
Virulence genotyping and population analysis of Streptococcus suis serotype 2 isolates from China. INFECTION GENETICS AND EVOLUTION 2015; 36:483-489. [DOI: 10.1016/j.meegid.2015.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 11/13/2022]
|
23
|
Li Q, Liu H, Du D, Yu Y, Ma C, Jiao F, Yao H, Lu C, Zhang W. Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2. Front Cell Infect Microbiol 2015; 5:82. [PMID: 26636044 PMCID: PMC4644805 DOI: 10.3389/fcimb.2015.00082] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/31/2015] [Indexed: 02/06/2023] Open
Abstract
Bacterial cell wall (CW) and extracellular (EC) proteins are often involved in interactions with extracellular matrix (ECM) proteins such as laminin (LN) and fibronectin (FN), which play important roles in adhesion and invasion. In this study, an efficient method combining proteomic analysis and Far-Western blotting assays was developed to screen directly for bacterial surface proteins with LN- and FN-binding capacity. With this approach, fifteen potential LN-binding proteins and five potential FN-binding proteins were identified from Streptococcus suis serotype 2 (SS2) CW and EC proteins. Nine newly identified proteins, including oligopeptide-binding protein OppA precursor (OppA), elongation factor Tu (EF-Tu), enolase, lactate dehydrogenase (LDH), fructose-bisphosphate aldolase (FBA), 3-ketoacyl-ACP reductase (KAR), Gly ceraldehyde-3-phosphate dehydrogenase (GAPDH), Inosine 5'-monophosphate dehydrogenase (IMPDH), and amino acid ABC transporter permease (ABC) were cloned, expressed, purified and further confirmed by Far-Western blotting and ELISA. Five proteins (OppA, EF-Tu, enolase, LDH, and FBA) exhibited specifically binding activity to both human LN and human FN. Furthermore, seven important recombinant proteins were selected and identified to have the ability to bind Hep-2 cells by the indirect immunofluorescent assay. In addition, four recombinant proteins, and their corresponding polyclonal antibodies, were observed to decrease SS2 adhesion to Hep-2 cells, which indicates that these proteins contribute to the adherence of SS2 to host cell surface. Collectively, these results show that the approach described here represents a useful tool for investigating the host-pathogen interactions.
Collapse
Affiliation(s)
- Quan Li
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Hanze Liu
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Dechao Du
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Yanfei Yu
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Caifeng Ma
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Fangfang Jiao
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Huochun Yao
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
24
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Giovanetti E, Brenciani A, Morroni G, Tiberi E, Pasquaroli S, Mingoia M, Varaldo PE. Transduction of the Streptococcus pyogenes bacteriophage Φm46.1, carrying resistance genes mef(A) and tet(O), to other Streptococcus species. Front Microbiol 2015; 5:746. [PMID: 25620959 PMCID: PMC4288039 DOI: 10.3389/fmicb.2014.00746] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/09/2014] [Indexed: 11/13/2022] Open
Abstract
Φm46.1 – Streptococcus pyogenes bacteriophage carrying mef(A) and tet(O), respectively, encoding resistance to macrolides (M phenotype) and tetracycline – is widespread in S. pyogenes but has not been reported outside this species. Φm46.1 is transferable in vitro among S. pyogenes isolates, but no information is available about its transferability to other Streptococcus species. We thus investigated Φm46.1 for its ability to be transduced in vitro to recipients of different Streptococcus species. Transductants were obtained from recipients of Streptococcus agalactiae, Streptococcus gordonii, and Streptococcus suis. Retransfer was always achieved, and from S. suis to S. pyogenes occurred at a much greater frequency than in the opposite direction. In transductants Φm46.1 retained its functional properties, such as inducibility with mitomycin C, presence both as a prophage and as a free circular form, and transferability. The transductants shared the same Φm46.1 chromosomal integration site as the donor, at the 3′ end of a conserved RNA uracil methyltransferase (rum) gene, which is an integration hotspot for a variety of genetic elements. No transfer occurred to recipients of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus salivarius, even though rum-like genes were also detected in the sequenced genomes of these species. A largely overlapping 18-bp critical sequence, where the site-specific recombination process presumably takes place, was identified in the rum genes of all recipients, including those of the species yielding no transductants. Growth assays to evaluate the fitness cost of Φm46.1 acquisition disclosed a negligible impact on S. pyogenes, S. agalactiae, and S. gordonii transductants and a noticeable fitness advantage in S. suis. The S. suis transductant also displayed marked overexpression of the autolysin-encoding gene atl.
Collapse
Affiliation(s)
- Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School Ancona, Italy
| | - Erika Tiberi
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School Ancona, Italy
| | - Sonia Pasquaroli
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche Ancona, Italy
| | - Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School Ancona, Italy
| |
Collapse
|
26
|
Novel variant serotype of streptococcus suis isolated from piglets with meningitis. Appl Environ Microbiol 2014; 81:976-85. [PMID: 25416757 DOI: 10.1128/aem.02962-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen causing severe infections in pigs and humans. In previous studies, 33 serotypes of S. suis have been identified using serum agglutination. Here, we describe a novel S. suis strain, CZ130302, isolated from an outbreak of acute piglet meningitis in eastern China. Strong pathogenicity of meningitis caused by strain CZ130302 was reproduced in the BALB/c mouse model. The strain showed a high fatality rate (8/10), higher than those for known virulent serotype 2 strains P1/7 (1/10) and 9801 (2/10). Cell adhesion assay results with bEnd.3 and HEp2 cells showed that CZ130302 was significantly close to P1/7 and 9801. Both the agglutination test and its complementary test showed that strain CZ130302 had no strong cross-reaction with the other 33 S. suis serotypes. The multiplex PCR assays revealed no specified bands for all four sets used to detect the other 33 serotypes. In addition, genetic analysis of the whole cps gene clusters of all serotypes was performed in this study. The results of comparative genomics showed that the cps gene cluster of CZ130302, which was not previously reported, showed no homology to the gene sequences of the other strains. Especially, the wzy, wzx, and acetyltransferase genes of strain CZ130302 are phylogenetically distinct from strains of the other 33 serotypes. Therefore, this study suggested that strain CZ130302 represents a novel variant serotype of S. suis (designated serotype Chz) which has a high potential to be virulent and associated with meningitis in animals.
Collapse
|
27
|
The identification of six novel proteins with fibronectin or collagen type I binding activity from Streptococcus suis serotype 2. J Microbiol 2014; 52:963-9. [DOI: 10.1007/s12275-014-4311-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
28
|
Wu Z, Wu C, Shao J, Zhu Z, Wang W, Zhang W, Tang M, Pei N, Fan H, Li J, Yao H, Gu H, Xu X, Lu C. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. RNA (NEW YORK, N.Y.) 2014; 20:882-898. [PMID: 24759092 PMCID: PMC4024642 DOI: 10.1261/rna.041822.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Streptococcus suis (SS) is an important pathogen of pigs, and it is also recognized as a zoonotic agent for humans. SS infection may result in septicemia or meningitis in the host. However, little is known about genes that contribute to the virulence process and survival within host blood or cerebrospinal fluid (CSF). Small RNAs (sRNA) have emerged as key regulators of virulence in several bacteria, but they have not been investigated in SS. Here, using a differential RNA-sequencing approach and RNAs from SS strain P1/7 grown in rich medium, pig blood, or CSF, we present the SS genome-wide map of 793 transcriptional start sites and 370 operons. In addition to identifying 29 sRNAs, we show that five sRNA deletion mutants attenuate SS virulence in a zebrafish infection model. Homology searches revealed that 10 sRNAs were predicted to be present in other pathogenic Streptococcus species. Compared with wild-type strain P1/7, sRNAs rss03, rss05, and rss06 deletion mutants were significantly more sensitive to killing by pig blood. It is possible that rss06 contributes to SS virulence by indirectly activating expression of SSU0308, a virulence gene encoding a zinc-binding lipoprotein. In blood, genes involved in the synthesis of capsular polysaccharide (CPS) and subversion of host defenses were up-regulated. In contrast, in CSF, genes for CPS synthesis were down-regulated. Our study is the first analysis of SS sRNAs involved in virulence and has both improved our understanding of SS pathogenesis and increased the number of sRNAs known to play definitive roles in bacterial virulence.
Collapse
Affiliation(s)
- Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Jing Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Weixue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | | | - Min Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Na Pei
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | | | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Hongwei Gu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
29
|
Two novel functions of hyaluronidase from Streptococcus agalactiae are enhanced intracellular survival and inhibition of proinflammatory cytokine expression. Infect Immun 2014; 82:2615-25. [PMID: 24711564 DOI: 10.1128/iai.00022-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl(+) strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.
Collapse
|
30
|
Zhu H, Zhou J, Ni Y, Yu Z, Mao A, Hu Y, Wang W, Zhang X, Wen L, Li B, Wang X, Yu Y, Lv L, Guo R, Lu C, He K. Contribution of eukaryotic-type serine/threonine kinase to stress response and virulence of Streptococcus suis. PLoS One 2014; 9:e91971. [PMID: 24637959 PMCID: PMC3956855 DOI: 10.1371/journal.pone.0091971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important swine and human pathogen responsible for septicemia and meningitis. The bacterial homologues of eukaryotic-type serine/threonine kinases (ESTKs) have been reported to play critical roles in various cellular processes. To investigate the role of STK in SS2, an isogenic stk mutant strain (Δstk) and a complemented strain (CΔstk) were constructed. The Δstk showed a significant decrease in adherence to HEp-2 cells, compared with the wild-type strain, and a reduced survival ratio in whole blood. In addition, the Δstk exhibited a notable reduced tolerance of environmental stresses including high temperature, acidic pH, oxidative stress, and high osmolarity. More importantly, the Δstk was attenuated in both the CD1 mouse and piglet models of infection. The results of quantitative reverse transcription-PCR (qRT-PCR) analysis indicated that the expressions of a few genes involving in adherence, stress response and virulence were clearly decreased in the Δstk mutant strain. Our data suggest that SsSTK is required for virulence and stress response in SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yiyi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaomin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lixin Lv
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
31
|
Identification of genes required by Bacillus thuringiensis for survival in soil by transposon-directed insertion site sequencing. Curr Microbiol 2013; 68:477-85. [PMID: 24310935 DOI: 10.1007/s00284-013-0502-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 10/14/2013] [Indexed: 10/25/2022]
Abstract
Transposon-directed insertion site sequencing was used to identify genes required by Bacillus thuringiensis to survive in non-axenic plant/soil microcosms. A total of 516 genetic loci fulfilled the criteria as conferring survival characteristics. Of these, 127 (24.6 %) were associated with uptake and transport systems; 227 loci (44.0 %) coded for enzymatic properties; 49 (9.5 %) were gene regulation or sensory loci; 40 (7.8 %) were structural proteins found in the cell envelope or had enzymatic activities related to it and 24 (4.7 %) were involved in the production of antibiotics or resistance to them. Eighty-three (16.1 %) encoded hypothetical proteins or those of unknown function. The ability to form spores was a key survival characteristic in the microcosms: bacteria, inoculated in either spore or vegetative form, were able to multiply and colonise the soil, whereas a sporulation-deficient mutant was not. The presence of grass seedlings was critical to colonisation. Bacteria labelled with green fluorescent protein were observed to adhere to plant roots. The sporulation-specific promoter of spo0A, the key regulator of sporulation, was strongly activated in the rhizosphere. In contrast, the vegetative-specific promoters of spo0A and PlcR, a pleiotropic regulator of genes with diverse activities, were only very weakly activated.
Collapse
|
32
|
Wu Z, Wang W, Tang M, Shao J, Dai C, Zhang W, Fan H, Yao H, Zong J, Chen D, Wang J, Lu C. Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC070731 contains a unique 105K genomic island. Gene 2013; 535:156-64. [PMID: 24316490 DOI: 10.1016/j.gene.2013.11.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/16/2013] [Accepted: 11/19/2013] [Indexed: 11/29/2022]
Abstract
Streptococcus suis (SS) is an important swine pathogen worldwide that occasionally causes serious infections in humans. SS infection may result in meningitis in pigs and humans. The pathogenic mechanisms of SS are poorly understood. Here, we provide the complete genome sequence of S. suis serotype 2 (SS2) strain SC070731 isolated from a pig with meningitis. The chromosome is 2,138,568bp in length. There are 1933 predicted protein coding sequences and 96.7% (57/59) of the known virulence-associated genes are present in the genome. Strain SC070731 showed similar virulence with SS2 virulent strains HA9801 and ZY05719, but was more virulent than SS2 virulent strain P1/7 in the zebrafish infection model. Comparative genomic analysis revealed a unique 105K genomic island in strain SC070731 that is absent in seven other sequenced SS2 strains. Further analysis of the 105K genomic island indicated that it contained a complete nisin locus similar to the nisin U locus in S. uberis strain 42, a prophage similar to S. oralis phage PH10 and several antibiotic resistance genes. Several proteins in the 105K genomic island, including nisin and RelBE toxin-antitoxin system, contribute to the bacterial fitness and virulence in other pathogenic bacteria. Further investigation of newly identified gene products, including four putative new virulence-associated surface proteins, will improve our understanding of SS pathogenesis.
Collapse
Affiliation(s)
- Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| | - Weixue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Min Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Jing Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Jie Zong
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | - Dai Chen
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | | | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| |
Collapse
|
33
|
Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. Life after death: the critical role of extracellular DNA in microbial biofilms. Lett Appl Microbiol 2013; 57:467-75. [PMID: 23848166 DOI: 10.1111/lam.12134] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 01/24/2023]
Abstract
The death and lysis of microbial cells leads to the release of cytoplasmic contents, many of which are rapidly degraded by enzymes. However, some macromolecules survive intact and find new functions in the extracellular environment. There is now strong evidence that DNA released from cells during lysis, or sometimes by active secretion, becomes a key component of the macromolecular scaffold in many different biofilms. Enzymatic degradation of extracellular DNA can weaken the biofilm structure and release microbial cells from the surface. Many bacteria produce extracellular deoxyribonuclease (DNase) enzymes that are apparently tightly regulated to avoid excessive degradation of the biofilm matrix. Interfering with these control mechanisms, or adding exogenous DNases, could prove a potent strategy for controlling biofilm growth.
Collapse
Affiliation(s)
- N S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
34
|
Rapid visual detection of highly pathogenic Streptococcus suis serotype 2 isolates by use of loop-mediated isothermal amplification. J Clin Microbiol 2013; 51:3250-6. [PMID: 23884995 DOI: 10.1128/jcm.01183-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that causes considerable economic losses to the pig industry and significantly threatens public health worldwide. The highly pathogenic S. suis 2, which contains the 89K pathogenicity island (PAI), has caused large-scale outbreaks of infections in humans, resulting in high mortality rates. In this study, we established two loop-mediated isothermal amplification (LAMP)-based assays that can rapidly detect S. suis 2 and the 89K PAI and can be performed simultaneously under the same conditions. Further, based on the findings of these two LAMP assays and using the same set of serially diluted DNA samples, we compared the sensitivities of different LAMP product detection methods, including SYBR green detection, gel electrophoresis, turbidimetry, calcein assays, and hydroxynaphthol blue detection. The results suggest that target genes can be amplified and detected within 48 min under 63°C isothermal conditions. The sensitivity of tests for S. suis 2 detection varies between detection methods and reaction systems, indicating that for each LAMP reaction system, multiple detection methods should be performed to select the optimal one. The sensitivities of the optimized methods (7.16 copies/reaction) in the present study were identical to those of the real-time PCR assay, and the test results for reference strains and clinical samples showed that these LAMP systems have high specificities. Thus, since the LAMP systems established in this study are simple, fast, and sensitive, they may have good clinical potential for detecting the highly pathogenic S. suis 2.
Collapse
|
35
|
Kouki A, Pieters RJ, Nilsson UJ, Loimaranta V, Finne J, Haataja S. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands. BIOLOGY 2013; 2:918-35. [PMID: 24833053 PMCID: PMC3960878 DOI: 10.3390/biology2030918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/16/2022]
Abstract
Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections.
Collapse
Affiliation(s)
- Annika Kouki
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht 3508 TB, The Netherlands.
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB 124, Lund SE-22100, Sweden.
| | - Vuokko Loimaranta
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| | - Jukka Finne
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, P.O.B. 56, Helsinki FI-00014, Finland.
| | - Sauli Haataja
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland.
| |
Collapse
|
36
|
Yang L, Bao G, Zhu Y, Dong H, Zhang Y, Li Y. Discovery of a novel gene involved in autolysis of Clostridium cells. Protein Cell 2013; 4:467-74. [PMID: 23702687 DOI: 10.1007/s13238-013-3025-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/25/2013] [Indexed: 01/08/2023] Open
Abstract
Cell autolysis plays important physiological roles in the life cycle of clostridial cells. Understanding the genetic basis of the autolysis phenomenon of pathogenic Clostridium or solvent producing Clostridium cells might provide new insights into this important species. Genes that might be involved in autolysis of Clostridium acetobutylicum, a model clostridial species, were investigated in this study. Twelve putative autolysin genes were predicted in C. acetobutylicum DSM 1731 genome through bioinformatics analysis. Of these 12 genes, gene SMB_G3117 was selected for testing the in tracellular autolysin activity, growth profile, viable cell numbers, and cellular morphology. We found that overexpression of SMB_G3117 gene led to earlier ceased growth, significantly increased number of dead cells, and clear electrolucent cavities, while disruption of SMB_G3117 gene exhibited remarkably reduced intracellular autolysin activity. These results indicate that SMB_G3117 is a novel gene involved in cellular autolysis of C. acetobutylicum.
Collapse
Affiliation(s)
- Liejian Yang
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
37
|
Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release. mBio 2013; 4:e00154. [PMID: 23592262 PMCID: PMC3634606 DOI: 10.1128/mbio.00154-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study, we identified and characterized the major autolysin in E. faecium, which we designated AtlAEfm. atlAEfm disruption resulted in resistance to lysis, reduced extracellular DNA (eDNA), deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and chaining. Furthermore, AtlAEfm is associated with Acm cell surface localization, resulting in less binding to collagen types I and IV in the atlAEfm mutant. We also identified AtlAEfm-independent eDNA release that contributes to cell-cell interactions in the atlAEfm mutant. These findings indicate that AtlAEfm is important in biofilm and collagen binding in E. faecium, making AtlAEfm a promising target for treatment of E. faecium infections.
Collapse
|
38
|
Yi L, Wang Y, Ma Z, Zhang H, Li Y, Zheng JX, Yang YC, Lu CP, Fan HJ. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus equi ssp. zooepidemicus. Pathog Dis 2013; 67:174-83. [PMID: 23620180 DOI: 10.1111/2049-632x.12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 11/27/2022] Open
Abstract
Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is responsible for a wide variety of infections in many species. Fibronectin-binding protein is a bacterial cell surface protein, which specifically binds fibronectin (FN). Considering the specific role of FN-binding protein in host-pathogen interactions, we investigated the function of a novel FN-binding domain in the FN-binding protein (FNZ) of S. zooepidemicus. Five recombinant FNZ gene fragments [N1 (amino acids, 38-197), N2 (amino acids, 38-603), N3 (amino acids, 41-315), N4 (amino acids, 192-370), and N5 (amino acids, 38-225)] were expressed in Escherichia coli, and their FN-binding activities were tested. The results showed that amino acids 192-225 in the NH2 -terminal region of FNZ could be responsible for binding fibronectin. The FNZ knockout mutant was constructed in S. zooepidemicus, which results in the reduced capacity to adhere to HEp-2 cell, defective virulence in vivo, decreased biofilm formation, and decreased colonization capacity in blood, liver, lung, and spleen tissues of mice as compared to the wild type. These results suggest that FNZ participates in biofilm formation, FN binding, cell adhesion, and pathogenesis of S. zooepidemicus. Furthermore, this work offers a novel FN-binding domain within FNZ, which will help in further characterization of S. zooepidemicus FN-binding properties.
Collapse
Affiliation(s)
- Li Yi
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang H, Ma Z, Li Y, Zheng J, Yi L, Fan H, Lu C. Identification of a novel collagen type І-binding protein from Streptococcus suis serotype 2. Vet J 2013; 197:406-14. [PMID: 23465548 DOI: 10.1016/j.tvjl.2013.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
Streptococcus suis, a major pathogen of pigs, is an emerging zoonotic agent that causes meningitis and septic shock. cbp40 is a putative virulent gene that has been identified using suppression subtractive hybridization performed on the virulent S. suis serotype 2 strain HA9801 and the avirulent S. suis serotype 2 strain T15. Based on predicted protein features showing a shared conserved domain with the collagen-binding protein Cna of Staphylococcus aureus, Cbp40 is likely to function as a direct mediator of collagen adhesion. Here, the cbp40 gene was cloned and the recombinant protein purified. Western blotting using swine convalescent sera confirmed its role as an immunogenic protein. Collagen binding activity could be detected by western affinity blot and ELISA. Conversely, deletion of the cbp40 gene reduced bacterial adhesion to HEp-2 cells, capacity for biofilm formation, and virulence in a zebrafish infection model. The response of the bEnd.3 cell line to infection with the S. suis serotype 2 strain ZY05719 and the cbp40-knockout strain was evaluated using gene expression arrays. The differentially expressed genes were involved in inflammatory and immune responses, leukocyte adhesion and heterophilic cell adhesion. Collectively, these data suggest that Cbp40 plays an important role as an extracellular matrix adhesion protein that interacts with host cells during infection.
Collapse
Affiliation(s)
- Hui Zhang
- Key Lab Animal Disease Diagnostic and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Lysogenic Streptococcus suis isolate SS2-4 containing prophage SMP showed increased mortality in zebra fish compared to the wild-type isolate. PLoS One 2013; 8:e54227. [PMID: 23326601 PMCID: PMC3542266 DOI: 10.1371/journal.pone.0054227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/11/2012] [Indexed: 11/29/2022] Open
Abstract
Streptococcus suis (S. suis) infection is considered to be a major problem in the swine industry worldwide. Based on the capsular type, 33 serotypes of S. suis have been described, with serotype 2 (SS2) being the most frequently isolated from diseased piglets. Little is known, however, about the pathogenesis and virulence factors of S. suis. Research on bacteriophages highlights a new area in S. suis research. A S. suis serotype 2 bacteriophage, designated SMP, has been previously isolated in our laboratory. Here, we selected a lysogenic isolate in which the SMP phage was integrated into the chromosome of strain SS2-4. Compared to the wild-type isolate, the lysogenic strain showed increased mortality in zebra fish. Moreover the sensitivity of the lysogenic strain to lysozyme was seven times higher than that of the wild-type.
Collapse
|