1
|
Guo H, Wang N, Ding T, Zheng B, Guo L, Huang C, Zhang W, Sun L, Ma X, Huo YX. A tRNAModification-based strategy for Identifying amiNo acid Overproducers (AMINO). Metab Eng 2023; 78:11-25. [PMID: 37149082 DOI: 10.1016/j.ymben.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Amino acids have a multi-billion-dollar market with rising demand, prompting the development of high-performance microbial factories. However, a general screening strategy applicable to all proteinogenic and non-proteinogenic amino acids is still lacking. Modification of the critical structure of tRNA could decrease the aminoacylation level of tRNA catalyzed by aminoacyl-tRNA synthetases. Involved in a two-substrate sequential reaction, amino acids with increased concentration could elevate the reduced aminoacylation rate caused by specific tRNA modification. Here, we developed a selection system for overproducers of specific amino acids using corresponding engineered tRNAs and marker genes. As a proof-of-concept, overproducers of five amino acids such as L-tryptophan were screened out by growth-based and/or fluorescence-activated cell sorting (FACS)-based screening from random mutation libraries of Escherichia coli and Corynebacterium glutamicum, respectively. This study provided a universal strategy that could be applied to screen overproducers of proteinogenic and non-proteinogenic amino acids in amber-stop-codon-recoded or non-recoded hosts.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China; Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, Tangshan, 063611, PR China
| | - Ning Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, PR China
| | - Tingting Ding
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Chaoyong Huang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Wuyuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China; Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, Tangshan, 063611, PR China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, PR China; Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, Tangshan, 063611, PR China.
| |
Collapse
|
2
|
Sun X, Li Q, Wang Y, Zhou W, Guo Y, Chen J, Zheng P, Sun J, Ma Y. Isoleucyl-tRNA synthetase mutant based whole-cell biosensor for high-throughput selection of isoleucine overproducers. Biosens Bioelectron 2021; 172:112783. [PMID: 33157411 DOI: 10.1016/j.bios.2020.112783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/02/2023]
Abstract
Whole-cell amino acid biosensors can sense the concentrations of certain amino acids and output easily detectable signals, which are important for construction of microbial producers. However, many reported biosensors have poor specificity because they also sense non-target amino acids. Besides, biosensors for many amino acids are still unavailable. In this study, we proposed a new strategy for constructing whole-cell biosensors based on aminoacyl-tRNA synthetases (aaRSs), which take the advantage of their universality and intrinsically specific binding ability to corresponding amino acids. Taking isoleucine biosensor as an example, we first mutated the isoleucyl-tRNA synthetase in Escherichia coli to dramatically decrease its affinity to isoleucine. The engineered cells specifically sensed isoleucine and output isoleucine dose-dependent cell growth as an easily detectable signal. To further expand the sensing range, an isoleucine exporter was overexpressed to enhance excretion of intracellular isoleucine. Since cells equipped with the optimized whole-cell biosensor showed accelerated growth when cells produced higher concentrations of isoleucine, the biosensor was successfully applied in high-throughput selection of isoleucine overproducers from random mutation libraries. This work demonstrates the feasibility of engineering aaRSs to construct a new kind of whole-cell biosensors for amino acids. Considering all twenty proteinogenic and many non-canonical amino acids have their specific aaRSs, this strategy should be useful for developing biosensors for various amino acids.
Collapse
Affiliation(s)
- Xue Sun
- Tianjin Institute of Industrial Biotechnology, Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinggang Li
- Tianjin Institute of Industrial Biotechnology, Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yu Wang
- Tianjin Institute of Industrial Biotechnology, Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenjuan Zhou
- Tianjin Institute of Industrial Biotechnology, Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yanmei Guo
- Tianjin Institute of Industrial Biotechnology, Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jiuzhou Chen
- Tianjin Institute of Industrial Biotechnology, Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
3
|
Leiva LE, Pincheira A, Elgamal S, Kienast SD, Bravo V, Leufken J, Gutiérrez D, Leidel SA, Ibba M, Katz A. Modulation of Escherichia coli Translation by the Specific Inactivation of tRNA Gly Under Oxidative Stress. Front Genet 2020; 11:856. [PMID: 33014012 PMCID: PMC7461829 DOI: 10.3389/fgene.2020.00856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria modulate the response to oxidative stress according to the prevailing metabolic state of the cells.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Pincheira
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Sandra D Kienast
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells-in-Motion Cluster of Excellence and Faculty of Medicine, University of Münster, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Verónica Bravo
- Unidad de Microbiología, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Johannes Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells-in-Motion Cluster of Excellence and Faculty of Medicine, University of Münster, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Daniela Gutiérrez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells-in-Motion Cluster of Excellence and Faculty of Medicine, University of Münster, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
5
|
Abstract
Devoted teachers and mentors during early childhood and adolescence nurtured my ambition to become a scientist, but it was not until I actually began doing experiments in college and graduate school that I was confident about that choice and of making it a reality. During my postdoctoral experiences and thereafter, I made several significant advances, most notably the discovery of the then novel acyl- and aminoacyl adenylates: the former as intermediates in fatty acyl coenzyme A (CoA) formation and the latter as precursors to aminoacyl tRNAs. In the early 1970s, my research changed from a focus on transcription and translation in Escherichia coli to the molecular genetics of mammalian cells. To that end, my laboratory developed a method for creating recombinant DNAs that led us and others, over the next two decades, to create increasingly sophisticated ways for introducing “foreign” DNAs into cultured mammalian cells and to target modifications of specific chromosomal loci. Circumstances surrounding that work drew me into the public policy debates regarding recombinant DNA practices. As an outgrowth of my commitment to teaching, I coauthored several textbooks on molecular genetics and a biography of George Beadle. The colleagues, students, and wealth of associates with whom I interacted have made being a scientist far richer than I can have imagined.
Collapse
Affiliation(s)
- Paul Berg
- Cahill Professor in Cancer Research and Biochemistry, Emeritus, Stanford University Medical Center, Stanford, California 94305-5020
| |
Collapse
|
6
|
Kisselev LL, Favorova OO. Aminoacyl-tRNA synthetases: sone recent results and achievements. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 40:141-238. [PMID: 4365538 DOI: 10.1002/9780470122853.ch5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Austin FE, Turco J, Winkler HH. Rickettsia prowazekii requires host cell serine and glycine for growth. Infect Immun 1987; 55:240-4. [PMID: 3098686 PMCID: PMC260309 DOI: 10.1128/iai.55.1.240-244.1987] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The growth requirement of Rickettsia prowazekii for the amino acids serine and glycine was assessed in both wild-type cell lines and a mutant cell line. X-irradiated L929 cells supported the growth of R. prowazekii when the cells were incubated in Eagle minimal essential medium supplemented with serum. In contrast, in this medium, X-irradiated Vero cells did not support the growth of rickettsiae unless cycloheximide, serine, or glycine was added. Other nonessential amino acids, additional glucose, and potential products of host cell metabolism of serine and glycine were nonstimulatory. The concentration of serine or glycine required to support rickettsial growth had no effect on the doubling time of uninfected, unirradiated Vero cells. A comparison of intracellular amino acid pools indicated that the serine and glycine concentrations in mock-infected Vero cells were approximately 31 and 14% of the respective concentrations in mock-infected L929 cells. The pools of both amino acids in Vero cells increased markedly upon treatment of the cells with cycloheximide. Interconversion of serine and glycine catalyzed by serine hydroxymethyltransferase was detected in cell-free extracts of purified rickettsiae. However, this enzymatic activity did not permit rickettsial growth in a glycine-requiring clone (772-56d) of the Chinese hamster ovary cell CHO-K1 in the absence of glycine supplementation. These data indicate that R. prowazekii depends on the host cell for serine or glycine.
Collapse
|
8
|
Abstract
Several addition and deletion mutations were constructed in the region of the gene for Escherichia coli tRNATyr su+3 corresponding to the dihydrouracil loop of the mature tRNA. None of these resulting mutants had detectable suppressor function compared to the parent gene yet some directed the synthesis of mature tRNA. These latter mutants may affect the ability of the tRNA to be aminoacylated or to interact with the translational machinery on the ribosome.
Collapse
|
9
|
Lin RJ, Capage M, Hill CW. A repetitive DNA sequence, rhs, responsible for duplications within the Escherichia coli K-12 chromosome. J Mol Biol 1984; 177:1-18. [PMID: 6086936 DOI: 10.1016/0022-2836(84)90054-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel family of large, imperfectly repeated DNA sequences has been found in Escherichia coli. Two members of this family, rhsA and rhsB, occur as direct repeats, flanking the pit glyS xyl segment of the chromosome. Unequal sister-chromatid crossing over between rhsA and rhsB accounts for the frequent tandem duplication of the glyS locus that has been observed by various workers. This unequal recombination is recA-dependent. The rhsA locus is operationally defined as the segment between xyl and mtl that is repeated at other chromosomal locations. Using this definition, rhsA extends minimally 5500 base-pairs; 3800 base-pairs of rhsA are sufficiently homologous to rhsB to form an S1 nuclease-resistant heteroduplex with it. The rhsA sequence also exhibits internal repetition. At least one additional rhs sequence occurs in the E. coli chromosome unlinked to either rhsA or rhsB. Southern analysis of restriction digests of genomic DNA from E. coli strains C and B/5 showed that both of these strains have rhs hybridizable patterns similar to strain K-12, but the rhs sequence is absent in Salmonella typhimurium. The function of the rhs sequences has not been discovered. In the course of this work we developed a technique, termed "transductional walking", by which chromosomal DNA adjacent to a previously cloned DNA segment can be cloned through genetic procedures.
Collapse
|
10
|
Dev IK, Harvey RJ. Regulation of synthesis of serine hydroxymethyltransferase in chemostat cultures of Escherichia coli. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39743-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Abstract
Threonine can be used aerobically as the sole source of carbon and energy by mutants of Escherichia coli K-12. The pathway used involves the conversion of threonine via threonine dehydrogenase to aminoketobutyric acid, which is further metabolized by aminoketobutyric acid ligase, forming acetyl coenzyme A and glycine. A strain devoid of serine transhydroxymethylase uses this pathway and excretes glycine as a waste product. Aminoketobutyric acid ligase activity was demonstrated after passage of crude extracts through Sephadex G100.
Collapse
|
12
|
Nasoff MS, Wolf RE. Molecular cloning, correlation of genetic and restriction maps, and determination of the direction of transcription of gnd of Escherichia coli. J Bacteriol 1980; 143:731-41. [PMID: 6259121 PMCID: PMC294352 DOI: 10.1128/jb.143.2.731-741.1980] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expression of the gene gnd of Escherichia coli, which encodes 6-phosphogluconate dehydrogenase, is regulated by growth rate. Using deoxyribonucleic acid from the specialized transducing phage lambda h80 dgnd his as the source of gnd, we cloned restriction fragments carrying the complete gene and portions of it on the plasmid vector pBR322. A hybrid plasmid carrying a 3.7-megadalton HindIII restriction fragment from the phage was prepared and found to be gnd+. Through restriction mapping of this fragment and subcloning segments of it, we prepared a gnd+ hybrid plasmid which carried only 1.85 megadaltons of E. coli deoxyribonucleic acid. A cleavage site for the restriction endonuclease PstI was located on the genetic map of gnd by cloning adjacent EcoRI-PstI restriction fragments and crossing the resulting hybrid plasmids with previously mapped gnd deletion and bacteriophage Mu insertion mutants. A maxicell experiment was used to determine the direction of transcription of gnd, to identify which EcoRI-PstI fragment contains the gnd promote, and to localize th beginning of the structural gene to a region about 850 +/- 150 base pairs from the PstI cleavage site. A fine-structure restriction map surrounding the PstI cleavage site was prepared for endonucleases KpnI, HincII, HaeIII, HpaII, and TaqI.
Collapse
|
13
|
Grüll JM, Hennecke H, Fröhler J, Thomale J, Nass G, Böck A. Escherichia coli mutants overproducing phenylalanyl- and threonyl-tRNA synthetase. J Bacteriol 1979; 137:480-9. [PMID: 368026 PMCID: PMC218474 DOI: 10.1128/jb.137.1.480-489.1979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The structural genes for threonyl-tRNA synthetase (ThrRS) and phenylalanyl-tRNA synthetase (PheRS) are closely linked on the Escherichia coli chromosome. To study whether these enzymes share a common regulatory element, we have investigated their synthesis in mutants which were selected for overproduction of either ThrRS or PheRS. It was found that mutants isolated previously for overproduction of ThrRS as strains resistant to the antibiotic borrelidin (strains Bor Res 3 and Bor Res 15) did not show an elevated level of PheRS. PheRS-overproducing strains were then isolated as revertants of strains with structurally altered enzymes. Strain S1 is a temperature-resistant derivative of a temperature-sensitive PheRS mutant, and strain G118 is a prototrophic derivative of a PheRS mutant which shows phenylalanine auxotrophy as a consequence of an altered K(m) of this enzyme for the amino acid. In both kinds of revertants, S1 and G118, the concentration of PheRS and ThrRS was increased by factors of about 2.5 and 1.8, respectively, whereas the level of other aminoacyl-tRNA synthetases was not affected by the mutations. Genetic studies showed that the simultaneous overproduction of PheRS and ThrRS in revertants G118 and S1 is based upon gene amplification, since this property was easily lost after growing the cells in the absence of the selective stimulus, and since this loss could be prevented by the presence of the recA allele. By similar criteria, the four- and eightfold overproduction of ThrRS in strains Bor Res 3 and Bor Res 15, respectively, was very stable genetically, indicating that it is caused by a mutational event other than gene amplification. From these results, we conclude that the concomitant increase of PheRS and ThrRS in strains G118 and S1 is an expression of gene duplication and not of a joint regulation of these two aminoacyl-tRNA synthetases. This conclusion is further supported by the result that, in mutant G118 as well as in its parental strain G1, growth in minimal medium lacking phenylalanine led to an additional twofold increase of their PheRS concentration. This increase was restricted to the PheRS, since the level of other aminoacyl-tRNA synthetases, including the ThrRS, stayed unchanged.
Collapse
|
14
|
Hughes J, Mellows G. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem J 1978; 176:305-18. [PMID: 365175 PMCID: PMC1186229 DOI: 10.1042/bj1760305] [Citation(s) in RCA: 168] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mode of action of the antibiotic pseudomonic acid has been studied in Escherichia coli. Pseudomonic acid strongly inhibits protein and RNA synthesis in vivo. The antibiotic had no effect on highly purified DNA-dependent RNA polymerase and showed only a weak inhibitory effect on a poly(U)-directed polyphenylalanine-forming ribosomal preparation. Chloramphenicol reversed inhibition of RNA synthesis in vivo. Pseudomonic acid had little effect on RNA synthesis in a regulatory mutant, E. coli B AS19 RC(rel), whereas protein synthesis was strongly inhibited. In pseudomonic acid-treated cells, increased concentrations of ppGpp, pppGpp and ATP were observed, but the GTP pool size decreased, suggesting that inhibition of RNA synthesis is a consequence of the stringent control mechanism imposed by pseudomonic acid-induced deprivation of an amino acid. Of the 20 common amino acids, only isoleucine reversed the inhibitory effect in vivo. The antibiotic was found to be a powerful inhibitor of isoleucyl-tRNA synthetase both in vivo and in vitro. Of seven other tRNA synthetases assayed, only a weak inhibitory effect on phenylalanyl-tRNA synthetase was observed; this presumably accounted for the weak effect on polyphenylalanine formation in a ribosomal preparation. Pseudomonic acid also significantly de-repressed threonine deaminase and transaminase B activity, but not dihydroxyacid dehydratase (isoleucine-biosynthetic enzymes) by decreasing the supply of aminoacylated tRNA(Ile). Pseudomonic acid is the second naturally occurring inhibitor of bacterial isoleucyl-tRNA synthetase to be discovered, furanomycin being the first.
Collapse
|
15
|
Hankinson O. Mutants of the Chinese hamster ovary cell line requiring alanine and glutamate. ACTA ACUST UNITED AC 1976. [DOI: 10.1007/bf01542687] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Comer MM, Böck A. Genes for the alpha and beta subunits of the phenylalanyl-transfer ribonucleic acid synthetase of Escherichia coli. J Bacteriol 1976; 127:923-33. [PMID: 783122 PMCID: PMC233002 DOI: 10.1128/jb.127.2.923-933.1976] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The phenylalanyl-transfer ribonucleic acid synthetase of Escherichia coli is a tetramer that contains two different kinds of polypeptide chains. To locate the genes for the two polypeptides, we analyzed temperature-sensitive mutants with defective phenylalanyl-transfer ribonucleic acid synthetases to see which subunit was altered. The method was in vitro complementation; mutant cell extracts were mixed with purified separated alpha or beta subunits of the wild-type enzyme to generate an active hybrid enzyme. With three mutants, enzyme activity appeared when alpha was added, but not when beta was added: these are, therefore, assumed to carry lesions in the gene for the alpha subunit. Two other mutants gave the opposite response and are presumably beta mutants. Enzyme activity is also generated when alpha and beta mutant extracts are mixed, but not when two alpha or two beta mutant extracts are mixed. The inactive mutant enzymes appear to be dissociated, as judged by their sedimentation in sucrose density gradients, but the dissociation may be only partial. The active enzyme generated by complementation occurred in two forms, one that resembled the native wild-type enzyme and one that sedimented more slowly. Both alpha and beta mutants are capable of generating the native form, although alpha mutants require prior urea denaturation of the defective enzyme. With the mutants thus characterized, the genes for the alpha and beta subunits (designated pheS and heT, respectively) were mapped. The gene order, as determined by transduction is aroD-pps-pheT-pheS. The pheS and pheT genes are close together and may be immediately adjacent.
Collapse
|
17
|
Bachmann BJ, Low KB, Taylor AL. Recalibrated linkage map of Escherichia coli K-12. BACTERIOLOGICAL REVIEWS 1976; 40:116-67. [PMID: 773363 PMCID: PMC413944 DOI: 10.1128/br.40.1.116-167.1976] [Citation(s) in RCA: 845] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Ogilvie A, Wiebauer K, Kersten W. Inhibition of leucyl-transfer ribonucleic acid synthetasymol. Biochem J 1975; 152:511-5. [PMID: 818999 PMCID: PMC1172503 DOI: 10.1042/bj1520511] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bacteriostatic effect of low concentrations of the antibiotic granaticin on Bacillus subtilis is relieved by the addition leucine to the growth medium. In cells treated with granaticin, aminoacylation of leucine tRNA is specifically decreased, but the content of free leucine is not. It is concluded that granaticin interferes with the charging process of leucine tRNA in B. subtilis leading to leucine auxotrophy.
Collapse
|
19
|
Ogilvie A, Wiebauer K, Spitzbarth P, Kersten W. Inhibition of leucyl-tRNA synthetase in Escherichia coli by the cytostatic 5,8-dioxo-6-amino-7-chloroquinoline. BIOCHIMICA ET BIOPHYSICA ACTA 1975; 407:357-64. [PMID: 95889 DOI: 10.1016/0005-2787(75)90103-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At concentrations of 1-1.6 mug/ml, 5,8-dioxo-6-amino-7-chloroquinoline causes auxotrophy for leucine in Escherichia coli MRE 600. With increasing concentrations of this quinone additional amino acids are required for growth. The amount of leucine in the pool of free amino acids is not decreased after treatment of E. coli with the quinone. Transfer RNALeu, however, is charged with leucine less than 10% in quinone-treated cells of E. coli, whereas in control cells the degree of aminoacylation is about 85%. From these data we conclude that the quinone causes auxotrophy for leucine by interacting with the charging process of tRNALeu. Quinone was found to inhibit leucyl-tRNA synthetase activity in purified extracts of E. coli with E. coli tRNA as substrate.
Collapse
|
20
|
Abstract
Escherichia coli AT2046 has been shown previously to lack the enzyme serine transhydroxymethylase and to require exogenous glycine for growth as a consequence. Strains JEV73 and JEV73R, mutants derived from strain AT2046, are shown here to be serine transhydroxymethylase deficient, but able to derive their glycine from endogenously synthesized threonine. Leucine is shown to be closely involved in the regulation of biosynthesis of glycine, to spare glycine in strain AT2046T, to replace glycine in strain JEV73, and to increase threonine conversion to glycine in a representative prototroph of E. coli. An interpretation of strains JEV73 and JEV73R as regulatory mutants of strain AT2046 is given. A hypothesis as to the role of leucine as a signal for nitrogen scavenging is suggested.
Collapse
|
21
|
Stauffer GV, Baker CA, Brenchley JE. Regulation of serine transhydroxymethylase activity in Salmonella typhimurium. J Bacteriol 1974; 120:1017-25. [PMID: 4373434 PMCID: PMC245879 DOI: 10.1128/jb.120.3.1017-1025.1974] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The regulation of serine transhydroxymethylase (EC 2.1.2.1.; l-serine:tetrahydrofolic-5,10-hydroxymethyltransferase) has been investigated in Salmonella typhimurium LT2. Our results indicate that limitation of a methionine auxotroph for methionine does not cause derepression of this enzyme as reported for Escherichia coli. However, a sixfold decrease in specific activity was observed when S. typhimurium cells were grown in glucose minimal medium supplemented with serine, glycine, methionine, adenine, guanine, and thymine. None of these compounds added to the growth medium individually produced more than a 42% reduction of wild-type enzyme activity. This enhanced repression by the combination of compounds suggests a form of cumulative repression of this enzyme. Growth of serine and thymine auxotrophs, with the respective requirement of each limiting, did not result in increased enzyme activity. However, growth of a purine auxotroph with a limiting amount of either guanine or inosine resulted in a five- to sevenfold increase in enzyme activity. A second condition causing significant derepression (fourfold increase) above the levels observed with cells grown in minimal medium was the addition of 0.5 mug of trimethoprim per ml, an inhibitor of the dihydrofolate reductase activity. (A partial report on this work was presented at 1974 meeting of the American Society for Microbiology.)
Collapse
|
22
|
Chung ST, Greenberg GR. Apparent mutagenic effect of induction of lambda prophage inserted between lysA and thyA. J Bacteriol 1974; 120:1209-12. [PMID: 4612006 PMCID: PMC245901 DOI: 10.1128/jb.120.3.1209-1212.1974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Induction of a heat-inducible abnormal lambda prophage inserted between lysA and thyA in Escherichia coli resulted in a number of auxotrophic mutants in the surviving cured-cell populations. These mutants could not be accounted for by deletions arising on formation of lambda hybrid particles carrying regions adjacent to the insertion site. The properties of these mutants, which were almost all spontaneously revertable, have been described and mapped by F' episome complementation. Tentatively, it was suggested that induction of the lambda lysogen leads to a mutagenic state.
Collapse
|
23
|
Yaniv M, Folk WR, Berg P, Soll L. A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. J Mol Biol 1974; 86:245-60. [PMID: 4606150 DOI: 10.1016/0022-2836(74)90016-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Straus DS, Ames BN. Histidyl-transfer ribonucleic acid synthetase mutants requiring a high internal pool of histidine for growth. J Bacteriol 1973; 115:188-97. [PMID: 4352174 PMCID: PMC246229 DOI: 10.1128/jb.115.1.188-197.1973] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mutants that require histidine due to an altered structural gene for the histidyl-transfer ribonucleic acid synthetase (hisS) have been isolated by a general selection for histidine-requiring strains in which the mutation producing histidine auxotrophy is unlinked to the histidine operon. One of the mutants has been shown to require an abnormally high internal histidine pool for growth owing to an altered synthetase that is unstable at low histidine concentrations. It is difficult to determine accurately the K(m) for histidine of the synthetase enzyme from the mutant because of the instability of the enzyme at limiting histidine concentrations; however, a histidine K(m) value has been estimated that is approximately 100 times higher than the histidine K(m) of the wild-type enzyme. For the mutant strains to achieve the high internal pool of histidine required for growth, all the systems that transport histidine from the growth medium must be functioning to capacity. Amino acids that interfere with histidine transport strongly inhibit the growth of the mutants. The mutants have been useful in providing a selective genetic marker for transductional mapping in the hisS region. The mutants are discussed as representative of a general class of curable mutants that have an altered enzyme with poor affinity for a substrate or coenzyme.
Collapse
|
25
|
Paetz W, Nass G. Biochemical and immunological characterization of threonyl-tRNA synthetase of two borrelidin-resistant mutants of Escherichia coli K12. EUROPEAN JOURNAL OF BIOCHEMISTRY 1973; 35:331-7. [PMID: 4577856 DOI: 10.1111/j.1432-1033.1973.tb02843.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
|
27
|
|
28
|
Rose JK, Yanofsky C. Metabolic regulation of the tryptophan operon of Escherichia coli: repressor-independent regulation of transcription initiation frequency. J Mol Biol 1972; 69:103-18. [PMID: 4560758 DOI: 10.1016/0022-2836(72)90026-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Buonocore V, Harris MH, Schlesinger S. Properties of Tyrosyl Transfer Ribonucleic Acid Synthetase from Two tyrS Mutants of Escherichia coli K-12. J Biol Chem 1972. [DOI: 10.1016/s0021-9258(19)44988-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
30
|
Wijsman HJ. A genetic map of several mutations affecting the mucopeptide layer of Escherichia coli. Genet Res (Camb) 1972; 20:65-74. [PMID: 4563578 DOI: 10.1017/s0016672300013598] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SUMMARYSeveral temperature-sensitive mutants ofEscherichia coliwere isolated which lyse at the restrictive temperature. Some of these possess a biochemically defined lesion in cell-wall mucopeptide synthesis. Three genes, termedmurC, EandF, have been localized between theaziandleumarkers. From transductional data a fine structure map was constructed of themurmutations, establishing the order of the genes. The genetic relationship between these cell wall genes and neighbouring genes involved in cell division is discussed.
Collapse
|
31
|
|
32
|
Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J Bacteriol 1971; 108:742-50. [PMID: 4942762 PMCID: PMC247134 DOI: 10.1128/jb.108.2.742-750.1971] [Citation(s) in RCA: 84] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Two temperature-sensitive mutants of Escherichia coli have been found in which the conditional growth is a result of a thermosensitive leucyl-transfer ribonucleic acid (tRNA) synthetase and seryl-tRNA synthetase, respectively. The corresponding genetic loci, leuS and serS, cotransduce with lip and serC, respectively. As a result of the mutationally altered leucyl-tRNA synthetase, some leucine-, valine-, and isoleucine-forming enzymes were derepressed. Thus, leucyl-tRNA synthetase is involved in the repression of the enzymes needed for the synthesis of branched-chain amino acids.
Collapse
|
33
|
Abstract
Members of a collection of mutants of Escherichia coli unable to form colonies on nutrient agar at 42 C have been characterized on the basis of their growth response to a shift from 32 to 42 C in liquid medium. Forty-four mutants, which show an abrupt, nonlethal cessation of growth when moved to the restrictive temperature, have been characterized with respect to the effect of the mutation responsible for temperature sensitivity on deoxyribonucleic acid, ribonucleic acid, and protein synthesis. In 12 mutants, the mutation causing temperature sensitivity of growth primarily affects protein synthesis, in each case through an altered aminoacyl-transfer ribonucleic acid synthetase. Mutants with temperature-sensitive glutamyl-, phenylalanyl-, and valyl-transfer ribonucleic acid synthetases have been obtained, and the genes specifying these enzymes have been mapped by conjugation and transduction. Another mutant has been shown to possess a temperature-sensitive tryptophanyl-transfer ribonucleic acid synthetase, but this is not responsible for inability to grow at 42 C on media containing tryptophan.
Collapse
|
34
|
Folk WR, Berg P. Duplication of the structural gene for glycyl-transfer RNA synthetase in Escherichia coli. J Mol Biol 1971; 58:595-610. [PMID: 4933418 DOI: 10.1016/0022-2836(71)90374-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Abstract
The amino acid analogue l-serine hydroxamate, which is bacteriostatic for Escherichia coli, has been shown to inhibit protein synthesis. The antimetabolite is a competitive inhibitor of seryl-transfer ribonucleic acid (tRNA) synthetase with a K(i) value of 30 mum. Mutants resistant to l-serine hydroxamate have been selected, and three were shown to have seryl-tRNA synthetases with increased K(i) values. One mutant contains a 3-phosphoglycerate dehydrogenase which is insensitive to inhibition by l-serine.
Collapse
|
36
|
Iaccarino M, Berg P. Isoleucine auxotrophy as a consequence of a mutationally altered isoleucyl-transfer ribonucleic acid synthetase. J Bacteriol 1971; 105:527-37. [PMID: 5541530 PMCID: PMC248415 DOI: 10.1128/jb.105.2.527-537.1971] [Citation(s) in RCA: 88] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Among mutants which require isoleucine, but not valine, for growth, we have found two distinguishable classes. One is defective in the biosynthetic enzyme threonine deaminase (l-threonine hydro-lyase, deaminating, EC 4.2.1.16) and the other has an altered isoleucyl transfer ribonucleic acid (tRNA) synthetase [l-isoleucine: soluble RNA ligase (adenosine monophosphate), EC 6.1.1.5]. The mutation which affects ileS, the structural gene for isoleucyl-tRNA synthetase, is located between thr and pyrA at 0 min on the map of the Escherichia coli chromosome. This mutationally altered isoleucyl-tRNA synthetase has an apparent K(m) for isoleucine ( approximately 1 mm) 300-fold higher than that of the enzyme from wild type; on the other hand, the apparent V(max) is altered only slightly. When the mutationally altered ileS allele was introduced into a strain which overproduces isoleucine, the resulting strain could grow without addition of isoleucine. We conclude that the normal intracellular isoleucine level is not high enough to allow efficient charging to tRNA(Ile) by the mutant enzyme because of the K(m) defect. A consequence of the alteration in isoleucyl-tRNA synthetase was a fourfold derepression of the enzymes responsible for isoleucine biosynthesis. Thus, a functional isoleucyl-tRNA synthetase is needed for isoleucine to act as a regulator of its own biosynthesis.
Collapse
|
37
|
Ostrem DL, Berg P. Glycyl-tRNA synthetase: an oligomeric protein containing dissimilar subunits. Proc Natl Acad Sci U S A 1970; 67:1967-74. [PMID: 4923123 PMCID: PMC283454 DOI: 10.1073/pnas.67.4.1967] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glycyl-tRNA synthetase from Escherichia coli is a tetramer containing two small (33,000 daltons) and two large (80,000 daltons) subunits. The subunits can be separated and then reassembled to form active enzyme. Genetically altered glycyl-tRNA synthetases are modified in either the large or the small subunit. Wild type activity can be reconstituted in vitro by mixing extracts containing enzymes with modifications in different subunits.
Collapse
|
38
|
Folk WR, Berg P. Characterization of altered forms of glycyl transfer ribonucleic acid synthetase and the effects of such alterations on aminoacyl transfer ribonucleic acid synthesis in vivo. J Bacteriol 1970; 102:204-12. [PMID: 4908672 PMCID: PMC284987 DOI: 10.1128/jb.102.1.204-212.1970] [Citation(s) in RCA: 93] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The glycyl transfer ribonucleic acid (tRNA) synthetase (GRS) activities of several Escherichia coli glyS mutants have been partially characterized; the K(m) for glycine and the apparent V(max) of several of the altered GRS differ significantly from the parental GRS. Paradoxically, some of the altered forms exhibit more activity in vitro than the GRS from a prototrophic strain (GRS(L)); several parameters of these activities have been studied in an attempt to resolve this problem. The amount of acylated tRNA(Gly) in vivo was examined to assess the GRS activities inside the cells. During exponential growth in media containing glycine, moderate amounts of acylated tRNA(Gly) occur in the glyS mutants; glycine deprivation leads to a dramatic drop in the amount of acylated tRNA(Gly). An alternative measure of the in vivo activities of the altered enzymes is the efficiency of suppression of the trpA36 locus by su(36) (+); glyS mutants grown with added glycine exhibit one-third to one-fourth the suppression efficiency of the prototrophic glyS(H) parent, presumably because they are less efficient, even in the presence of high levels of glycine, in charging the tRNA(Gly) species which functions as the translational suppressor.
Collapse
|