1
|
Tian N, Schmidt LC, Lameiro MJA, Polo-López MI, Marín ML, Boscá F, González IDC, Lehmann AH, Giannakis S. Why is HSO 5- so effective against bacteria? Insights into the mechanisms of Escherichia coli disinfection by unactivated peroxymonosulfate. WATER RESEARCH 2024; 254:121441. [PMID: 38479173 DOI: 10.1016/j.watres.2024.121441] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
This study examined the antimicrobial efficacy of peroxymonosulfate (PMS) against bacteria, using Escherichia coli (E. coli) as a model organism. Our investigation delineates the complex mechanisms exerted by unactivated PMS. Thus, an initial redox reaction between PMS and the target biomolecules of bacteria generates SO4•- as the pivotal reactive species for bacterial inactivation; to a lesser extent, •OH, 1O2, or O2•- may also participate. Damage generated during oxidation was identified using an array of biochemical techniques. Specifically, redox processes are promoted by PMS and SO4•- targets and disrupt various components of bacterial cells, predominantly causing extracellular damage as well as intracellular lesions. Among these, external events are the key to cell death. Finally, by employing gene knockout mutants, we uncovered the role of specific gene responses in the intracellular damage induced by radical pathways. The findings of this study not only expand the understanding of PMS-mediated bacterial inactivation but also explain the ten-fold higher effectiveness of PMS than that reported for H2O2. Hence, we provide clear evidence that unactivated PMS solutions generate SO4•- in the presence of bacteria, and consequently, should be considered an effective disinfection method.
Collapse
Affiliation(s)
- Na Tian
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China; Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| | - Luciana Carina Schmidt
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | - María Jesús Abeledo Lameiro
- CIEMAT-Plataforma Solar de Almería, Ctra. Senés km 4, Almería 04200, Spain; Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Carretera de Sacramento s/n, Almería E-04120, Spain
| | - María Inmaculada Polo-López
- CIEMAT-Plataforma Solar de Almería, Ctra. Senés km 4, Almería 04200, Spain; Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Carretera de Sacramento s/n, Almería E-04120, Spain
| | - María Luisa Marín
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | - Francisco Boscá
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | - Isabel Del Castillo González
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Aurelio Hernández Lehmann
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| |
Collapse
|
2
|
Erath J, Djuranovic S, Djuranovic SP. Adaptation of Translational Machinery in Malaria Parasites to Accommodate Translation of Poly-Adenosine Stretches Throughout Its Life Cycle. Front Microbiol 2019; 10:2823. [PMID: 31866984 PMCID: PMC6908487 DOI: 10.3389/fmicb.2019.02823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria is caused by unicellular apicomplexan parasites of the genus Plasmodium, which includes the major human parasite Plasmodium falciparum. The complex cycle of the malaria parasite in both mosquito and human hosts has been studied extensively. There is tight control of gene expression in each developmental stage, and at every level of gene synthesis: from RNA transcription, to its subsequent translation, and finally post-translational modifications of the resulting protein. Whole-genome sequencing of P. falciparum has laid the foundation for significant biological advances by revealing surprising genomic information. The P. falciparum genome is extremely AT-rich (∼80%), with a substantial portion of genes encoding intragenic polyadenosine (polyA) tracks being expressed throughout the entire parasite life cycle. In most eukaryotes, intragenic polyA runs act as negative regulators of gene expression. Recent studies have shown that translation of mRNAs containing 12 or more consecutive adenosines results in ribosomal stalling and frameshifting; activating mRNA surveillance mechanisms. In contrast, P. falciparum translational machinery can efficiently and accurately translate polyA tracks without activating mRNA surveillance pathways. This unique feature of P. falciparum raises interesting questions: (1) How is P. falciparum able to efficiently and correctly translate polyA track transcripts, and (2) What are the specifics of the translational machinery and mRNA surveillance mechanisms that separate P. falciparum from other organisms? In this review, we analyze possible evolutionary shifts in P. falciparum protein synthesis machinery that allow efficient translation of an AU rich-transcriptome. We focus on physiological and structural differences of P. falciparum stage specific ribosomes, ribosome-associated proteins, and changes in mRNA surveillance mechanisms throughout the complete parasite life cycle, with an emphasis on the mosquito and liver stages.
Collapse
Affiliation(s)
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Slavica Pavlovic Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Smith CR, Blair PL, Boyd C, Cody B, Hazel A, Hedrick A, Kathuria H, Khurana P, Kramer B, Muterspaw K, Peck C, Sells E, Skinner J, Tegeler C, Wolfe Z. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecol Evol 2016; 6:8075-8084. [PMID: 27878079 PMCID: PMC5108259 DOI: 10.1002/ece3.2553] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022] Open
Abstract
The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no‐till, had a much greater impact on nearly everything measured compared to the crop planted. No‐till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no‐till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff—both of which have ecosystem‐level effects and both direct and indirect effects on humans and other organisms.
Collapse
Affiliation(s)
- Chris R Smith
- Department of Biology Earlham College Richmond IN USA
| | - Peter L Blair
- Department of Biology Earlham College Richmond IN USA
| | - Charlie Boyd
- Department of Biology Earlham College Richmond IN USA
| | - Brianne Cody
- Department of Biology Earlham College Richmond IN USA
| | - Alexander Hazel
- Department of Biology Earlham College Richmond IN USA; Present address: Department of Entomology University of Illinois Urbana Champaign IL USA
| | | | - Hitesh Kathuria
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Parul Khurana
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Brent Kramer
- Department of Biology Earlham College Richmond IN USA
| | | | - Charles Peck
- Department of Computer Science Earlham College Richmond IN USA
| | - Emily Sells
- Department of Biology Earlham College Richmond IN USA
| | - Jessica Skinner
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Cara Tegeler
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Zoe Wolfe
- Department of Biology Earlham College Richmond IN USA
| |
Collapse
|
4
|
Shi Y, Posse V, Zhu X, Hyvärinen AK, Jacobs HT, Falkenberg M, Gustafsson CM. Mitochondrial transcription termination factor 1 directs polar replication fork pausing. Nucleic Acids Res 2016; 44:5732-42. [PMID: 27112570 PMCID: PMC4937320 DOI: 10.1093/nar/gkw302] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/12/2016] [Indexed: 12/01/2022] Open
Abstract
During replication of nuclear ribosomal DNA (rDNA), clashes with the transcription apparatus can cause replication fork collapse and genomic instability. To avoid this problem, a replication fork barrier protein is situated downstream of rDNA, there preventing replication in the direction opposite rDNA transcription. A potential candidate for a similar function in mitochondria is the mitochondrial transcription termination factor 1 (MTERF1, also denoted mTERF), which binds to a sequence just downstream of the ribosomal transcription unit. Previous studies have shown that MTERF1 prevents antisense transcription over the ribosomal RNA genes, a process which we here show to be independent of the transcription elongation factor TEFM. Importantly, we now demonstrate that MTERF1 arrests mitochondrial DNA (mtDNA) replication with distinct polarity. The effect is explained by the ability of MTERF1 to act as a directional contrahelicase, blocking mtDNA unwinding by the mitochondrial helicase TWINKLE. This conclusion is also supported by in vivo evidence that MTERF1 stimulates TWINKLE pausing. We conclude that MTERF1 can direct polar replication fork arrest in mammalian mitochondria.
Collapse
Affiliation(s)
- Yonghong Shi
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden Center for Molecular Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Viktor Posse
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Xuefeng Zhu
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden Center for Molecular Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Anne K Hyvärinen
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Finland
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Finland Institute of Biotechnology, FI-00014, University of Helsinki, Finland
| | - Maria Falkenberg
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Claes M Gustafsson
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
5
|
Maeda M, Shimada T, Ishihama A. Strength and Regulation of Seven rRNA Promoters in Escherichia coli. PLoS One 2015; 10:e0144697. [PMID: 26717514 PMCID: PMC4696680 DOI: 10.1371/journal.pone.0144697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
The model prokaryote Escherichia coli contains seven copies of the rRNA operon in the genome. The presence of multiple rRNA operons is an advantage for increasing the level of ribosome, the key apparatus of translation, in response to environmental conditions. The complete sequence of E. coli genome, however, indicated the micro heterogeneity between seven rRNA operons, raising the possibility in functional heterogeneity and/or differential mode of expression. The aim of this research is to determine the strength and regulation of the promoter of each rRNA operon in E. coli. For this purpose, we used the double-fluorescent protein reporter pBRP system that was developed for accurate and precise determination of the promoter strength of protein-coding genes. For application of this promoter assay vector for measurement of the rRNA operon promoters devoid of the signal for translation, a synthetic SD sequence was added at the initiation codon of the reporter GFP gene, and then approximately 500 bp-sequence upstream each 16S rRNA was inserted in front of this SD sequence. Using this modified pGRS system, the promoter activity of each rrn operon was determined by measuring the rrn promoter-directed GFP and the reference promoter-directed RFP fluorescence, both encoded by a single and the same vector. Results indicated that: the promoter activity was the highest for the rrnE promoter under all growth conditions analyzed, including different growth phases of wild-type E. coli grown in various media; but the promoter strength of other six rrn promoters was various depending on the culture conditions. These findings altogether indicate that seven rRNA operons are different with respect to the regulation mode of expression, conferring an advantage to E. coli through a more fine-tuned control of ribosome formation in a wide range of environmental situations. Possible difference in the functional role of each rRNA operon is also discussed.
Collapse
Affiliation(s)
- Michihisa Maeda
- Meiji University, Faculty of Agriculture Chemistry, Kawasaki, Kanagawa 214–8571, Japan
| | - Tomohiro Shimada
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama 226–8503, Japan
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184–8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184–8584, Japan
- * E-mail:
| |
Collapse
|
6
|
Gyorfy Z, Draskovits G, Vernyik V, Blattner FF, Gaal T, Posfai G. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number. Nucleic Acids Res 2015; 43:1783-94. [PMID: 25618851 PMCID: PMC4330394 DOI: 10.1093/nar/gkv040] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5–10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number of rrn operons. While growth parameters showed only minor differences, competition experiments revealed a clear pattern: 7–8 copies were optimal under conditions of fluctuating, occasionally rich nutrient influx and lower numbers were favored in stable, nutrient-limited environments. We found that the advantages of quick adjustment to nutrient availability, rapid growth and economic regulation of ribosome number all contribute to the selection of the optimal rrn operon number. Our results suggest that the wt rrn operon number of E. coli reflects the natural, ‘feast and famine’ life-style of the bacterium, however, different copy numbers might be beneficial under different environmental conditions. Understanding the impact of the copy number of rrn operons on the fitness of the cell is an important step towards the creation of functional and robust genomes, the ultimate goal of synthetic biology.
Collapse
Affiliation(s)
- Zsuzsanna Gyorfy
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Gabor Draskovits
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Viktor Vernyik
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | | | - Tamas Gaal
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gyorgy Posfai
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| |
Collapse
|
7
|
Aguilera A, Gaillard H. Transcription and recombination: when RNA meets DNA. Cold Spring Harb Perspect Biol 2014; 6:6/8/a016543. [PMID: 25085910 DOI: 10.1101/cshperspect.a016543] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription-replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain
| | - Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
8
|
KOBAYASHI T. Ribosomal RNA gene repeats, their stability and cellular senescence. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:119-29. [PMID: 24727936 PMCID: PMC4055705 DOI: 10.2183/pjab.90.119] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/08/2014] [Indexed: 05/19/2023]
Abstract
The ribosomal RNA gene (rDNA) repeats form a historically well-researched region in the chromosome. Their highly repetitive structure can be identified easily which has enabled studies on DNA replication, recombination, and transcription. The region is one of the most unstable regions in the genome because of deleterious recombination among the repeats. The ribosomal RNA gene repeats use a unique gene amplification system to restore the copy number after this has been reduced due to recombination. It has been shown that unstable features in the genome can accelerate cellular senescence that restricts the lifespan of a cell. Here, I will introduce a study by our group that shows how the stability of rDNA is maintained and affects lifespan. I propose that the ribosomal RNA gene repeats constitute a center from which the stability of the whole genome is regulated and the lifespan of the cell is controlled.
Collapse
Affiliation(s)
- Takehiko KOBAYASHI
- National Institute of Genetics, Division of Cytogenetics/Dept. of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Shizuoka, Japan
- Correspondence should be addressed: T. Kobayashi, National Institute of Genetics, Division of Cytogenetics/Dept. of Genetics, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan (e-mail: )
| |
Collapse
|
9
|
Duch A, de Nadal E, Posas F. Dealing with transcriptional outbursts during S phase to protect genomic integrity. J Mol Biol 2013; 425:4745-55. [PMID: 24021813 DOI: 10.1016/j.jmb.2013.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Transcription during S phase needs to be spatially and temporally regulated to prevent collisions between the transcription and replication machineries. Cells have evolved a number of mechanisms to make both processes compatible under normal growth conditions. When conflict management fails, the head-on encounter between RNA and DNA polymerases results in genomic instability unless conflict resolution mechanisms are activated. Nevertheless, there are specific situations in which cells need to dramatically change their transcriptional landscape to adapt to environmental challenges. Signal transduction pathways, such as stress-activated protein kinases (SAPKs), serve to regulate gene expression in response to environmental insults. Prototypical members of SAPKs are the yeast Hog1 and mammalian p38. In response to stress, p38/Hog1 SAPKs control transcription and also regulate cell cycle progression. When yeast cells are stressed during S phase, Hog1 promotes gene induction and, remarkably, also delays replication by directly affecting early origin firing and fork progression. Therefore, by delaying replication, Hog1 plays a key role in preventing conflicts between RNA and DNA polymerases. In this review, we focus on the genomic determinants and mechanisms that make compatible transcription with replication during S phase to prevent genomic instability, especially in response to environmental changes.
Collapse
Affiliation(s)
- Alba Duch
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | | | | |
Collapse
|
10
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
11
|
Gaillard H, Herrera-Moyano E, Aguilera A. Transcription-associated genome instability. Chem Rev 2013; 113:8638-61. [PMID: 23597121 DOI: 10.1021/cr400017y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla , Av. Américo Vespucio s/n, 41092 Seville, Spain
| | | | | |
Collapse
|
12
|
The layout of a bacterial genome. FEBS Lett 2012; 586:2043-8. [DOI: 10.1016/j.febslet.2012.03.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 12/25/2022]
|
13
|
Abstract
Alterations in genome sequence and structure contribute to somatic disease, affect the fitness of subsequent generations and drive evolutionary processes. The crucial roles of highly accurate replication and efficient repair in maintaining overall genome integrity are well-known, but the more localized stability costs that are associated with transcribing DNA into RNA molecules are less appreciated. Here we review the diverse ways in which the essential process of transcription alters the underlying DNA template and thereby modifies the genetic landscape.
Collapse
|
14
|
Abstract
My journey into a research career began in fermentation biochemistry in an applied science department during the difficult post-World War II time in Japan. Subsequently, my desire to do research in basic science developed. I was fortunate to be a postdoctoral fellow in the United States during the early days of molecular biology. From 1957 to 1960, I worked with three pioneers of molecular biology, Sol Spiegelman, James Watson, and Seymour Benzer. These experiences helped me develop into a basic research scientist. My initial research projects at Osaka University, and subsequently at the University of Wisconsin, Madison, were on the mode of action of colicins as well as on mRNA and ribosomes. Following success in the reconstitution of ribosomal subunits, my efforts focused more on ribosomes, initially on the aspects of structure, function, and in vitro assembly, such as the construction of the 30S subunit assembly map. After this, my laboratory studied the regulation of the synthesis of ribosomes and ribosomal components in Escherichia coli. Our achievements included the discovery of translational feedback regulation of ribosomal protein synthesis and the identification of several repressor ribosomal proteins used in this regulation. In 1984, I moved to the University of California, Irvine, and initiated research on rRNA transcription by RNA polymerase I in the yeast Saccharomyces cerevisiae. The use of yeast genetics combined with biochemistry allowed us to identify genes uniquely involved in rRNA synthesis and to elucidate the mechanism of initiation of transcription. This essay is a reflection on my life as a research scientist.
Collapse
Affiliation(s)
- Masayasu Nomura
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700
| |
Collapse
|
15
|
Abstract
Growth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation. The length of the rrn transcripts, coupled with gene dosage effects, influence the distribution of RNAP on the chromosome in response to growth rate. Regulation of rRNA synthesis depends on multiple factors that affect the structure of the nucleoid and the allocation of RNAP for global gene expression. The magic spot ppGpp, which acts with DksA synergistically, is a key effector in both the growth rate regulation and the stringent response induced by nutrient starvation, mainly because the ppGpp level changes in response to environmental cues. It regulates rRNA synthesis via a cascade of events including both transcription initiation and elongation, and can be explained by an RNAP redistribution (allocation) model.
Collapse
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | | | | |
Collapse
|
16
|
Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 2010; 6:e1000810. [PMID: 20090829 PMCID: PMC2797598 DOI: 10.1371/journal.pgen.1000810] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/10/2009] [Indexed: 01/18/2023] Open
Abstract
In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization. An important feature of genome organization is that transcription and replication are selectively co-oriented. This feature helps to avoid conflicts between head-on replication and transcription. The precise consequences of the conflict and how it affects genome organization remain to be understood. We previously found that reversing the transcription bias slows replication in the Bacillus subtilis genome. Here we engineered new inversions to avoid changes in other aspects of genome organization. We found that the reversed transcription bias is sufficient to decrease replication speed, and it results in lowered fitness of the inversion strains and a competitive disadvantage relative to wild-type cells in minimal medium. Further, by analyzing genomic copy-number snapshots to obtain replication speed as a function of genome position, we found that inversion of the strongly-transcribed rRNA genes obstructs replication during growth in rich medium. This confers a strong growth disadvantage to cells in rich medium, turns on DNA damage responses, and leads to cell death in a subpopulation of cells, while the surviving cells are more sensitive to genotoxic agents. Our results strongly support the hypothesis that evolution has favored co-orientation of transcription with replication, mainly to avoid these effects.
Collapse
Affiliation(s)
- Anjana Srivatsan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley Tehranchi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jue D. Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Prozorov AA. Regularities of the location of genes having different functions and of some other nucleotide sequences in the bacterial chromosome. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707040017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Kobayashi T. Strategies to maintain the stability of the ribosomal RNA gene repeats--collaboration of recombination, cohesion, and condensation. Genes Genet Syst 2007; 81:155-61. [PMID: 16905869 DOI: 10.1266/ggs.81.155] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ribosomal RNA gene repeats (rDNA) are one of the most characteristic regions in eukaryotic chromosomes. The repeats consist of more than 100 tandem units occupying large part of the chromosome in most of organisms. Cells are known to deal with this "unusual domain" in a unique manner. In this review, I will summarize work on rDNA repeat maintenance, focusing mainly on work done by our group, and show that the maintenance mechanism operates by a collaboration of recombination, sister-chromatid cohesion, and chromatin condensation.
Collapse
Affiliation(s)
- Takehiko Kobayashi
- National Institute for Basic Biology and The Graduate University for Advanced Studies SOKENDAI, School of Life Science, Okazaki, Japan.
| |
Collapse
|
19
|
Stevenson BS, Schmidt TM. Life history implications of rRNA gene copy number in Escherichia coli. Appl Environ Microbiol 2005; 70:6670-7. [PMID: 15528533 PMCID: PMC525164 DOI: 10.1128/aem.70.11.6670-6677.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the rRNA gene copy number as a central component of bacterial life histories was studied by using strains of Escherichia coli in which one or two of the seven rRNA operons (rrnA and/or rrnB) were deleted. The relative fitness of these strains was determined in competition experiments in both batch and chemostat cultures. In batch cultures, the decrease in relative fitness corresponded to the number of rRNA operons deleted, which could be accounted for completely by increased lag times and decreased growth rates. The magnitude of the deleterious effect varied with the environment in which fitness was measured: the negative consequences of rRNA operon deletions increased under culture conditions permitting more-rapid growth. The rRNA operon deletion strains were not more effective competitors under the regimen of constant, limited resources provided in chemostat cultures. Enhanced fitness in chemostat cultures would have suggested a simple tradeoff in which deletion strains grew faster (due to more efficient resource utilization) under resource limitation. The contributions of growth rate, lag time, Ks, and death rate to the fitness of each strain were verified through mathematical simulation of competition experiments. These data support the hypothesis that multiple rRNA operons are a component of bacterial life history and that they confer a selective advantage permitting microbes to respond quickly and grow rapidly in environments characterized by fluctuations in resource availability.
Collapse
Affiliation(s)
- Bradley S Stevenson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48823-4320, USA
| | | |
Collapse
|
20
|
Abstract
Most Salmonella serovars are general pathogens that infect a variety of hosts. These "generalist" serovars cause disease in many animals from reptiles to mammals. In contrast, a few serovars cause disease only in a specific host. Host-specific serovars can cause a systemic, often fatal disease in one species yet remain avirulent in other species. Host-specific Salmonella frequently have large genomic rearrangements due to recombination at the ribosomal RNA (rrn) operons while the generalists consistently have a conserved chromosomal arrangement. To determine whether this is the result of an intrinsic difference in recombination frequency or a consequence of lifestyle difference between generalist and host-specific Salmonella, we determined the frequency of rearrangements in vitro. Using lacZ genes as portable regions of homology for inversion analysis, we found that both generalist and host-specific serovars of Salmonella have similar tolerances to chromosomal rearrangements in vitro. Using PCR and genetic selection, we found that generalist and host-specific serovars also undergo rearrangements at rrn operons at similar frequencies in vitro. These observations indicate that the observed difference in genomic stability between generalist and host-specific serovars is a consequence of their distinct lifestyles, not intrinsic differences in recombination frequencies.
Collapse
Affiliation(s)
- R Allen Helm
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
21
|
Abstract
The replication of the chromosome is among the most essential functions of the bacterial cell and influences many other cellular mechanisms, from gene expression to cell division. Yet the way it impacts on the bacterial chromosome was not fully acknowledged until the availability of complete genomes allowed one to look upon genomes as more than bags of genes. Chromosomal replication includes a set of asymmetric mechanisms, among which are a division in a lagging and a leading strand and a gradient between early and late replicating regions. These differences are the causes of many of the organizational features observed in bacterial genomes, in terms of both gene distribution and sequence composition along the chromosome. When asymmetries or gradients increase in some genomes, e.g. due to a different composition of the DNA polymerase or to a higher growth rate, so do the corresponding biases. As some of the features of the chromosome structure seem to be under strong selection, understanding such biases is important for the understanding of chromosome organization and adaptation. Inversely, understanding chromosome organization may shed further light on questions relating to replication and cell division. Ultimately, the understanding of the interplay between these different elements will allow a better understanding of bacterial genetics and evolution.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Atelier de Bioinformatique, Université Pierre et Marie Curie, 12, Rue Cuvier, 75005 Paris, and Unité Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
22
|
Abstract
The chromosome structure of lactic acid bacteria has been investigated only recently. The development of pulsed-field gel electrophoresis (PFGE) combined with other DNA-based techniques enables whole-genome analysis of any bacterium, and has allowed rapid progress to be made in the knowledge of the lactic acid bacteria genome. Lactic acid bacteria possess one of the smallest eubacterial chromosomes. Depending on the species, the genome sizes range from 1.1 to 2.6 Mb. Combined physical and genetic maps of several species are already available or close to being achieved. Knowledge of the genomic structure of these organisms will serve as a basis for future genetic studies. Macrorestriction fingerprinting by PFGE is already one of the major tools for strain differentiation, identification of individual strains, and the detection of strain lineages. The genome data resulting from these studies will be of general application strain improvement.
Collapse
Affiliation(s)
- P Le Bourgeois
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | | | | |
Collapse
|
23
|
Rocha EPC, Danchin A. Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res 2003; 31:6570-7. [PMID: 14602916 PMCID: PMC275555 DOI: 10.1093/nar/gkg859] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 09/25/2003] [Accepted: 09/25/2003] [Indexed: 11/12/2022] Open
Abstract
In Escherichia coli and Bacillus subtilis, essentiality, not expressivity, drives the distribution of genes between the two replicating strands. Although essential genes tend to be coded in the leading replicating strand, the underlying selective constraints and the evolutionary extent of these findings have still not been subject to comparative studies. Here, we extend our previous analysis to the genomes of low G + C firmicutes and gamma-proteobacteria, and in a second step to all sequenced bacterial genomes. The inference of essentiality by homology allows us to show that essential genes are much more frequent in the leading strand than other genes, even when compared with non- essential highly expressed genes. Smaller biases were found in the genomes of obligatory intracellular bacteria, for which the assignment of essentiality by homology from fast growing free-living bacteria is most problematic. Cross-comparisons used to assess potential errors in the assignment of essentiality by homology revealed that, in most cases, variations in the assignment criteria have little influence on the overall results. Essential genes tend to be more conserved in the leading strand than average genes, which is consistent with selection for this positioning and may impose a strong constraint on chromosomal rearrangements. These results indicate that essentiality plays a fundamental role in the distribution of genes in most bacterial genomes.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, 28, rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
24
|
Martín JF, Barreiro C, González-Lavado E, Barriuso M. Ribosomal RNA and ribosomal proteins in corynebacteria. J Biotechnol 2003; 104:41-53. [PMID: 12948628 DOI: 10.1016/s0168-1656(03)00160-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribosomal RNAs (rRNAs) (16S, 23S, 5S) encoded by the rrn operons and ribosomal proteins play a very important role in the formation of ribosomes and in the control of translation. Five copies of the rrn operon were reported by hybridization studies in Brevibacterium (Corynebacterium) lactofermentum but the genome sequence of Corynebacterium glutamicum provided evidence for six rrn copies. All six copies of the C. glutamicum 16S rRNA have a size of 1523 bp and each of the six copies of the 5S contain 120 bp whereas size differences are found between the six copies of the 23S rRNA. The anti-Shine-Dalgarno sequence at the 3'-end of the 16S rRNA was 5'-CCUCCUUUC-3'. Each rrn operon is transcribed as a large precursor rRNA (pre-rRNA) that is processed by RNaseIII and other RNases at specific cleavage boxes that have been identified in the C. glutamicum pre-rRNA. A secondary structure of the C. glutamicum 16S rRNA is proposed. The 16S rRNA sequence has been used as a molecular evolution clock allowing the deduction of a phylogenetic tree of all Corynebacterium species. In C. glutamicum, there are 11 ribosomal protein gene clusters encoding 42 ribosomal proteins. The organization of some of the ribosomal protein gene cluster is identical to that of Escherichia coli whereas in other clusters the organization of the genes is rather different. Some specific ribosomal protein genes are located in a different cluster in C. glutamicum when compared with E. coli, indicating that the control of expression of these genes is different in E. coli and C. glutamicum.
Collapse
Affiliation(s)
- Juan F Martín
- Instituto de Biotecnología de León, Parque Cientifico de León, Avda. del Real, no 1, 24006 León, Spain.
| | | | | | | |
Collapse
|
25
|
Merlin C, Gardiner G, Durand S, Masters M. The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol 2002; 184:5513-7. [PMID: 12218041 PMCID: PMC135343 DOI: 10.1128/jb.184.19.5513-5517.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We report that the genes abc, yaeC, and yaeE comprise metD, an Escherichia coli locus encoding a DL-methionine uptake system. MetD is an ABC transporter with Abc the ATPase, YaeE the permease, and YaeC the likely substrate binding protein. Expression of these genes is regulated by L-methionine and MetJ, a common repressor of the methionine regulon. We propose to rename abc, yaeE, and yaeC as metN, metI, and metQ, respectively.
Collapse
Affiliation(s)
- Christophe Merlin
- University of Edinburgh, Institute for Cell and Molecular Biology, Edinburgh EH9 3JR, Scotland
| | | | | | | |
Collapse
|
26
|
Abstract
A PCR method was developed by which to rapidly and accurately determine the rrn arrangement of Salmonella enterica serovars. Primers were designed to the genomic regions flanking each of the seven rrn operons. PCR analysis using combinations of these primers will distinguish each of the possible arrangements of the rrn skeleton.
Collapse
Affiliation(s)
- R A Helm
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
27
|
Barney M, Volgyi A, Navarro A, Ryder D. Riboprinting and 16S rRNA gene sequencing for identification of brewery Pediococcus isolates. Appl Environ Microbiol 2001; 67:553-60. [PMID: 11157216 PMCID: PMC92620 DOI: 10.1128/aem.67.2.553-560.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 46 brewery and 15 ATCC Pediococcus isolates were ribotyped using a Qualicon RiboPrinter. Of these, 41 isolates were identified as Pediococcus damnosus using EcoRI digestion. Three ATCC reference strains had patterns similar to each other and matched 17 of the brewery isolates. Six other brewing isolates were similar to ATCC 25249. The other 18 P. damnosus brewery isolates had unique patterns. Of the remaining brewing isolates, one was identified as P. parvulus, two were identified as P. acidilactici, and two were identified as unique Pediococcus species. The use of alternate restriction endonucleases indicated that PstI and PvuII could further differentiate some strains having identical EcoRI profiles. An acid-resistant P. damnosus isolate could be distinguished from non-acid-resistant varieties of the same species using PstI instead of EcoRI. 16S rRNA gene sequence analysis was compared to riboprinting for identifying pediococci. The complete 16S rRNA gene was PCR amplified and sequenced from seven brewery isolates and three ATCC references with distinctive riboprint patterns. The 16S rRNA gene sequences from six different brewery P. damnosus isolates were homologous with a high degree of similarity to the GenBank reference strain but were identical to each other and one ATCC strain with the exception of 1 bp in one strain. A slime-producing, beer spoilage isolate had 16S rRNA gene sequence homology to the P. acidilactici reference strain, in agreement with the riboprint data. Although 16S rRNA gene sequencing correctly identified the genus and species of the test Pediococcus isolates, riboprinting proved to be a better method for subspecies differentiation.
Collapse
Affiliation(s)
- M Barney
- Miller Brewing Company, Milwaukee, Wisconsin 53201, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
29
|
Gralton EM, Campbell AL, Neidle EL. Directed introduction of DNA cleavage sites to produce a high-resolution genetic and physical map of the Acinetobacter sp. strain ADP1 (BD413UE) chromosome. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1345-1357. [PMID: 9141698 DOI: 10.1099/00221287-143-4-1345] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The natural transformability of the soil bacterium Acinetobacter sp. ADP1 (BD413UE), formerly classified as A. calcoaceticus, has facilitated previous physiological and biochemical investigations. In the present studies, the natural transformation system was exploited to generated a physical and genetic map of this strain's 3780 +/- 191 kbp circular chromosome. Previously isolated Acinetobacter genes were modified in vitro to incorporate a recognition sequence for the restriction endonuclease NotI. Following transformation of the wild-type strain by the modified DNA, homologous recombination placed each engineered NotI cleavage site at the chromosomal location of the corresponding gene. This allowed precise gene localization and orientation of more than 40 genes relative to a physical map which was constructed with transverse alternating field electrophoresis (TAFE) and Southern hybridization methods. The positions of NotI, AscI and I-CeuI recognition sites were determined, and the latter enzyme identified the presence of seven ribosomal RNA operons. Multiple chromosomal copies of insertion sequence IS1236 were indicated by hybridization. Several of these copies were concentrated in one region of the chromosome in which a spontaneous deletion of approximately 100 kbp occurred. Moreover, contrary to previous reports, ColE1-based plasmids appeared to replicate autonomously in Acinetobacter sp. ADP1.
Collapse
MESH Headings
- Acinetobacter/genetics
- Chromosome Mapping/methods
- Chromosomes, Bacterial
- Conjugation, Genetic
- DNA Restriction Enzymes/metabolism
- DNA, Bacterial/genetics
- DNA, Circular/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Electrophoresis, Gel, Pulsed-Field
- Endodeoxyribonucleases/metabolism
- Genes, Bacterial
- Mutation
- Nucleic Acid Probes
- Operon
- Plasmids/genetics
- RNA, Ribosomal/genetics
- Restriction Mapping/methods
- Transformation, Genetic
Collapse
Affiliation(s)
| | - Alan L Campbell
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
30
|
Bathe B, Kalinowski J, Pühler A. A physical and genetic map of the Corynebacterium glutamicum ATCC 13032 chromosome. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:255-65. [PMID: 8842145 DOI: 10.1007/bf02173771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A combined physical and genetic map of the Corynebacterium glutamicum ATCC 13032 chromosome was constructed using pulsed-field gel electrophoresis (PFGE) and hybridizations with cloned gene probes. Total genomic DNA was digested with the meganucleases SwaI (5'-ATTTAAAT-3'), PacI (5'-TTAATTAA-3'), and PmeI (5'-GTTTAAAC-3') yielding 26,27, and 23 fragments, respectively. The chromosomal restriction fragments were then separated by PFGE. By summing up the lengths of the fragments generated with each of the three enzymes, a genome size of 3082 +/- 20 kb was determined. To identify adjacent SwaI fragments, a genomic cosmid library of C.glutamicum was screened for chromosomal inserts containing SwaI sites. Southern blots of the PFGE gels were hybridized with these linking clones to connect the SwaI fragments in their natural order. By this method, about 90% of the genome could be ordered into three contigs. Two of the remaining gaps were closed by cross-hybridization of blotted SwaI digests using as probes PacI and PmeI fragments isolated from PFGE gels. The last gap in the chromosomal map was closed by hybridization experiments using partial SwaI digestions, thereby proving the circularity of the chromosome. By hybridization of gene probes to SwaI fragments separated by PFGE about 30 genes, including rRNA operons, IS element and transposon insertions were localized on the physical map.
Collapse
Affiliation(s)
- B Bathe
- Department of Genetics, University of Bielefeld, Germany
| | | | | |
Collapse
|
31
|
Condon C, Liveris D, Squires C, Schwartz I, Squires CL. rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol 1995; 177:4152-6. [PMID: 7608093 PMCID: PMC177152 DOI: 10.1128/jb.177.14.4152-4156.1995] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here we present evidence that only five of the seven rRNA operons present in Escherichia coli are necessary to support near-optimal growth on complex media. Seven rrn operons are necessary, however, for rapid adaptation to nutrient and temperature changes, suggesting it is the ability to adapt quickly to changing environmental conditions that has provided the selective pressure for the persistence of seven rrn operons in E. coli. We have also found that one consequence of rrn operon inactivation is a miscoordination of the concentrations of initiation factor IF3 and ribosomes.
Collapse
Affiliation(s)
- C Condon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
32
|
Roussel Y, Pebay M, Guedon G, Simonet JM, Decaris B. Physical and genetic map of Streptococcus thermophilus A054. J Bacteriol 1994; 176:7413-22. [PMID: 8002562 PMCID: PMC197195 DOI: 10.1128/jb.176.24.7413-7422.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The three restriction endonucleases SfiI, BssHII, and SmaI were found to generate fragments with suitable size distributions for mapping the genome of Streptococcus thermophilus A054. A total of 5, 8, and 24 fragments were produced with SfiI, BssHII, and SmaI, respectively. An average genome size of 1,824 kb was determined by summing the total fragment sizes obtained by digestions with these three enzymes. Partial and multiple digestions of genomic DNA in conjunction with Southern hybridization were used to map SfiI, BssHII, and SmaI fragments. All restriction fragments were arranged in a unique circular chromosome. Southern hybridization analysis with specific probes allowed 23 genetic markers to be located on the restriction map. Among them, six rrn loci were precisely located. The area of the chromosome containing the ribosomal operons was further detailed by mapping some of the ApaI and SgrAI sites. Comparison of macrorestriction patterns from three clones derived from strain A054 revealed two variable regions in the chromosome. One was associated with the tandem rrnD and rrnE loci, and the other was mapped in the region of the lactose operon.
Collapse
Affiliation(s)
- Y Roussel
- Laboratoire de Génétique et Microbiologie, Université Henri Poincaré Nancy I, France
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- R Wagner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
34
|
Casjens S, Huang WM. Linear chromosomal physical and genetic map of Borrelia burgdorferi, the Lyme disease agent. Mol Microbiol 1993; 8:967-80. [PMID: 8102774 DOI: 10.1111/j.1365-2958.1993.tb01641.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A physical map of the 952 kbp chromosome of Borrelia burgdorferi Sh-2-82 has been constructed. Eighty-three intervals on the chromosome, defined by the cleavage sites of 15 restriction enzymes, are delineated. The intervals vary in size from 96 kbp to a few hundred bp, with an average size of 11.5 kbp. A striking feature of the map is its linearity; no other bacterial groups are known to have linear chromosomes. The two ends of the chromosome do not hybridize with one another, indicating that there are no large common terminal regions. The chromosome of this strain was found to be stable in culture; passage 6, 165 and 320 cultures have identical chromosomal restriction maps. We have positioned all previously known Borrelia burgdorferi chromosomal genes and several newly identified ones on this map. These include the gyrA/gyrB/dnaA/dnaN gene cluster, the rRNA gene cluster, fla, flgE, groEL (hsp60), recA, the rho/hip cluster, the dnaK (hsp70)/dnaJ/grpE cluster, the pheT/pheS cluster, and the genes which encode the potent immunogen proteins p22A, p39 and p83. Our electrophoretic analysis detects five linear and at least two circular plasmids in B. burgdorferi Sh-2-82. We have constructed a physical map of the 53 kbp linear plasmid and located the operon that encodes the two major outer surface proteins ospA and ospB on this plasmid. Because of the absence of functional genetic tools for this organism, these maps will serve as a basis for future mapping, cloning and sequencing studies of B. burgdorferi.
Collapse
Affiliation(s)
- S Casjens
- Department of Cellular, Viral and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | |
Collapse
|
35
|
Abstract
The rate of in vivo transcription elongation for Escherichia coli rRNA operons was determined by electron microscopy following addition of rifampin to log-phase cultures. Direct observation of RNA polymerase positions along rRNA operons 30, 40, and 70 s after inhibition of transcription initiation yielded a transcription elongation rate of 42 nucleotides per s.
Collapse
Affiliation(s)
- S L Gotta
- Department of Biology, University of Virginia, Charlottesville 22901
| | | | | |
Collapse
|
36
|
Zacharias M, Theissen G, Bradaczek C, Wagner R. Analysis of sequence elements important for the synthesis and control of ribosomal RNA in E coli. Biochimie 1991; 73:699-712. [PMID: 1764516 DOI: 10.1016/0300-9084(91)90050-b] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The regulation of the synthesis of ribosomal RNA is a key problem for the understanding of bacterial growth. Many different regulatory mechanisms involving cis and trans acting components participate in a concerted way to achieve the very efficient, flexible and coordinated production of this class of molecules. We have studied three different sequence regions within a ribosomal RNA transcription unit which are believed to control different stages of ribosomal RNA expression. In the first part of the study the function of AT-rich sequences upstream of the -35 hexamer of rRNA promoter P1 in the activation of rRNA transcription was analyzed. We confirm that a sequence dependent bend upstream of P1 is responsible for the high promoter activity. Experiments employing linker scanning mutations demonstrated that the distance as well as the angular orientation of the bent DNA is crucial for the degree of activation. In addition, the effect of the trans activating protein Fis on the transcription initiation of promoter P1 was investigated. We can show, using the abortive initiation assay, that the predominant effect of Fis is due to an increase in the affinity of RNA polymerase for the promoter (binding constant KB) while the isomerisation rate (kf) from a closed to an open RNA polymerase promoter complex is not altered significantly. We also describe the characterization of sequence determinants important for stringent regulation and growth rate control. Evidence is provided that the discriminator motif GCGC is a necessary but not sufficient element for both types of control. Furthermore we show that not simply a particular DNA primary structure but the higher order conformation of the complete promoter region is recognized and triggers the two regulatory mechanisms, both of which are apparently mediated by the effector molecule guanosine tetraphosphate (ppGpp). Finally, we have carried out a systematic mutational analysis of the rrnB leader region preceding the structural gene for 16S RNA. We could demonstrate that highly conserved sequence elements within the rrnB leader, which were believed to be involved in transcription antitermination have post-transcriptional functions. We present evidence that these sequence elements direct the biogenesis of active ribosomal particles.
Collapse
Affiliation(s)
- M Zacharias
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Abstract
It should be possible to predict the rate of growth of Escherichia coli of a given genotype in a specified environment. The idea that the rate of synthesis of ATP determines the rate of growth and that the yield of ATP determines the yield of growth is entrenched in bacterial physiology, yet this idea is inconsistent with experimental results. In minimal media the growth rate and yield vary with the carbon source in a manner independent of the rate of formation and yield of ATP. With acetate as the carbon source, anapleurotic reactions, not ATP synthesis, limit the growth rate. For acetate and other gluconeogenic substrates the limiting step appears to be the formation of triose phosphate. I conclude that the rate of growth is controlled by the rate of formation of a precursor metabolite and, thus, of monomers such as amino acids derived from it. The protein-synthesizing system is regulated according to demand for protein synthesis. I examine the conjecture that the signal for this regulation is the ratio of uncharged tRNA to aminoacyl-tRNA, that this signal controls the concentration of guanosine tetraphosphate, and that the concentration of guanosine tetraphosphate controls transcription of rrn genes. Differential equations describing this system were solved numerically for steady states of growth; the computed values of ribosomes and guanosine tetraphosphate and the maximal growth rate agree with experimental values obtained from the literature of the past 35 years. These equations were also solved for dynamical states corresponding to nutritional shifts up and down.
Collapse
Affiliation(s)
- A G Marr
- Department of Microbiology, University of California, Davis 95616
| |
Collapse
|
38
|
Albrechtsen B, Ross BM, Squires C, Squires CL. Transcriptional termination sequence at the end of the Escherichia coli ribosomal RNA G operon: complex terminators and antitermination. Nucleic Acids Res 1991; 19:1845-52. [PMID: 1709493 PMCID: PMC328114 DOI: 10.1093/nar/19.8.1845] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have examined the termination region sequence of the rrnG operon and have observed its properties in vivo using a fusion plasmid test system. Transcription of rrnG terminator fragments was also studied in vitro. We found that termination of rrnG transcription is a complex process controlled by a tandem Rho-independent and Rho-dependent terminator arrangement which we designate rrnG-tt'. Together, these two elements were 98% efficient at terminating transcription initiated at the rrnG-P2 promoter. When the two elements were separated, however, we found that the Rho-independent structure was only 59% efficient while the Rho-dependent fragment alone could account for total transcriptional termination of the tandem arrangement. The rrnG termination region was resistant to rrn antitermination and, therefore, possesses some means of stopping antiterminated transcription. The distal rrnG sequence contains several additional noteworthy features; the rrnGt' fragment contains a REP (repetitive extragenic palindromic) sequence and homology with a small unidentified reading frame following rrnE. This sequence is followed by witA, which is homologous to a citrate transport gene, citB. Finally, our sequence, obtained from plasmid pLC23-30, contains a Tn1000 insertion that is absent from the E. coli chromosome. This insertion lies 975 bp beyond the 5S gene and is not involved in the termination events examined in this study.
Collapse
Affiliation(s)
- B Albrechtsen
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | | | |
Collapse
|
39
|
Allardet-Servent A, Carles-Nurit MJ, Bourg G, Michaux S, Ramuz M. Physical map of the Brucella melitensis 16 M chromosome. J Bacteriol 1991; 173:2219-24. [PMID: 2007548 PMCID: PMC207770 DOI: 10.1128/jb.173.7.2219-2224.1991] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We present the first restriction map of the Brucella melitensis 16 M chromosome obtained by Southern blot hybridization of SpeI, XhoI, and XbaI fragments separated by pulsed-field gel electrophoresis. All restriction fragments (a total of 113) were mapped into an open circle. The main difficulty in mapping involved the exceedingly high number of restriction fragments, as was expected considering the 59% G + C content of the Brucella genome. Several cloned genes were placed on this map, especially rRNA operons which are repeated three times. The size of the B. melitensis chromosome, estimated as 2,600 kb long in a previous study, appeared longer (3,130 kb) by restriction mapping. This restriction map is an initial approach to achieve a genetic map of the Brucella chromosome.
Collapse
Affiliation(s)
- A Allardet-Servent
- Faculté de Médecine, Unité 65 Montpellier-Nîmes, Institut National de la Santé et de la Recherche Médicale, France
| | | | | | | | | |
Collapse
|
40
|
Henkin TM, Chambliss GH, Grundy FJ. Bacillus subtilis mutants with alterations in ribosomal protein S4. J Bacteriol 1990; 172:6380-5. [PMID: 2121712 PMCID: PMC526823 DOI: 10.1128/jb.172.11.6380-6385.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two mutants with different alterations in the electrophoretic mobility of ribosomal protein S4 were isolated as spore-plus revertants of a streptomycin-resistant, spore-minus strain of Bacillus subtilis. The mutations causing the S4 alterations, designated rpsD1 and rpsD2, were located between the argGH and aroG genes, at 263 degrees on the B. subtilis chromosome, distant from the major ribosomal protein gene cluster at 12 degrees. The mutant rpsD alleles were isolated by hybridization using a wild-type rpsD probe, and their DNA sequences were determined. The two mutants contained alterations at the same position within the S4-coding sequence, in a region containing a 12-bp tandem duplication; the rpsD1 allele corresponded to an additional copy of this repeated segment, resulting in the insertion of four amino acids, whereas the rpsD2 allele corresponded to deletion of one copy of this segment, resulting in the loss of four amino acids. The effects of these mutations, alone and in combination with streptomycin resistance mutations, on growth, sporulation, and streptomycin resistance were analyzed.
Collapse
Affiliation(s)
- T M Henkin
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | |
Collapse
|
41
|
Rudd KE, Miller W, Ostell J, Benson DA. Alignment of Escherichia coli K12 DNA sequences to a genomic restriction map. Nucleic Acids Res 1990; 18:313-21. [PMID: 2183179 PMCID: PMC330269 DOI: 10.1093/nar/18.2.313] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects.
Collapse
Affiliation(s)
- K E Rudd
- Division of Bacterial Products, Food and Drug Administration, Bethesda, MD 20892
| | | | | | | |
Collapse
|
42
|
|
43
|
French SL, Miller OL. Transcription mapping of the Escherichia coli chromosome by electron microscopy. J Bacteriol 1989; 171:4207-16. [PMID: 2666391 PMCID: PMC210192 DOI: 10.1128/jb.171.8.4207-4216.1989] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The distinctive double Christmas tree morphology of rRNA operons as visualized by electron microscopy makes them easy to recognize in chromatin spreads from Escherichia coli. On the basis of the pattern of nascent transcripts on nearby transcription units and the relative distances of the operons from one another and the replication origin, we are now able to specifically identify five of the seven rRNA operons in E. coli. The use of rRNA operons as markers of both position and distance has resulted in the morphological mapping of a significant portion of the E. coli chromosome; over 600 kilobase pairs in the 84- to 90-min and 72-min regions can now be recognized. Since individual rRNA operons could be identified, direct comparisons could be made of their transcriptional activities. As judged by the densities of RNA polymerases along the operons, rrnA, rrnB, rrnC, rrnD, and rrnE were all transcribed at similar levels, with one RNA polymerase every 85 base pairs. The ability to recognize individual operons and specific regions of the chromosome allows direct comparisons of various genetic parameters.
Collapse
Affiliation(s)
- S L French
- Department of Biology, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
44
|
Abstract
We present the first complete map of the Haemophilus influenzae genome, consisting of a detailed restriction map with a number of genetic loci. All of the ApaI, SmaI, and RsrII restriction sites (total of 45 sites) were mapped by Southern blot hybridization analysis of fragments separated by pulsed-field gel electrophoresis. Cloned genes were placed on the restriction map by Southern hybridization, and antibiotic resistance loci were also located by transformation with purified restriction fragments. The attachment site of the HP1 prophage was mapped. In addition, the number, locations, and orientations of the six rRNA operons in the H. influenzae chromosome were determined. The positions of conserved restriction sites in these rrn operons confirm that the direction of transcription is 16S to 23S, as in most other bacteria. The widely used strain BC200 appears to contain an unexpected 45-kilobase duplication.
Collapse
Affiliation(s)
- J J Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
45
|
Brewer BJ. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 1988; 53:679-86. [PMID: 3286014 DOI: 10.1016/0092-8674(88)90086-4] [Citation(s) in RCA: 290] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- B J Brewer
- Department of Genetics, University of Washington, Seattle 98195
| |
Collapse
|
46
|
Weiner AM, Maizels N. tRNA-like structures tag the 3' ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci U S A 1987; 84:7383-7. [PMID: 3478699 PMCID: PMC299300 DOI: 10.1073/pnas.84.21.7383] [Citation(s) in RCA: 247] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Single-stranded RNA viruses often have 3'-terminal tRNA-like structures that serve as substrates for the enzymes of tRNA metabolism, including the tRNA synthases and the CCA-adding enzyme. We propose that such 3'-terminal tRNA-like structures are in fact molecular fossils of the original RNA world, where they tagged genomic RNA molecules for replication and also functioned as primitive telomeres to ensure that 3'-terminal nucleotides were not lost during replication. This picture suggests that the CCA-adding activity was originally an RNA enzyme, that modern DNA telomeres with the repetitive structure CmAn are the direct descendants of the CCA terminus of tRNA, and that the precursor of the modern enzyme RNase P evolved to convert genomic into functional RNA molecules by removing this 3'-terminal tRNA-like tag. Because early RNA replicases would have been catalytic RNA molecules that used the 3'-terminal tRNA-like tag as a template for the initiation of RNA synthesis, these tRNA-like structures could have been specifically aminoacylated with an amino acid by an aberrant activity of the replicase. We show that it is mechanistically reasonable to suppose that this aminoacylation occurred by the same sequence of reactions found in protein synthesis today. The advent of such tRNA synthases would thus have provided a pathway for the evolution of modern protein synthesis.
Collapse
Affiliation(s)
- A M Weiner
- Department of Molecular Biophysics and Biochemistry, Yale Medical School, New Haven, CT 06510
| | | |
Collapse
|
47
|
Structure and organization of the transfer ribonucleic acid genes of Escherichia coli K-12. Microbiol Rev 1985; 49:379-97. [PMID: 2419743 PMCID: PMC373044 DOI: 10.1128/mr.49.4.379-397.1985] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Hsu JH, Harms E, Umbarger HE. Leucine regulation of the ilvGEDA operon of Serratia marcescens by attenuation is modulated by a single leucine codon. J Bacteriol 1985; 164:217-22. [PMID: 3900038 PMCID: PMC214232 DOI: 10.1128/jb.164.1.217-222.1985] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The effect of leucine limitation and of restricted leucine tRNA charging on the expression of the ilvGEDA operon of Serratia marcescens was examined. In this organism, the ilv leader region specifies a putative peptide containing only a single leucine codon that could be involved in leucine-mediated control by attenuation (E. Harms, J.-H. Hsu, C. S. Subrahmanyam, and H. E. Umbarger, J. Bacteriol. 164:207-216, 1985). A plasmid (pPU134) containing the DNA of the S. marcescens ilv control region and three of the associated structural genes was studied as a single chromosomal copy in an Escherichia coli strain auxotrophic for all three branched-chain amino acids. The S. marcescens ilv genes responded to a multivalent control similar to that found in other enteric organisms. Furthermore, the S. marcescens ilv genes were derepressed when the charging of leucine tRNA was restricted in a leuS derivative of E. coli that had been transformed with pPU134. It was concluded that ribosome stalling leading to deattenuation is not dependent on either tandem or a consecutive series of codons for the regulatory amino acid. However, the fact that the single leucine codon is a less frequently used codon (CUA) may be important. The procedure for obtaining the cloned ilv genes in single chromosomal copy exploited the dependence of ColE1 replicons on the polA gene. The cloning experiments also revealed a branched-chain amino acid-glutamate transaminase in S. marcescens that is different from transaminase B.
Collapse
|
49
|
Liebke H, Hatfull G. The sequence of the distal end of the E. coli ribosomal RNA rrnE operon indicates conserved features are shared by rrn operons. Nucleic Acids Res 1985; 13:5515-25. [PMID: 2412207 PMCID: PMC321887 DOI: 10.1093/nar/13.15.5515] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The 1440 nucleotides of the distal region of the E. coli ribosomal RNA operon found on the lambda aroE transducing phage has been sequenced. We show that the lambda aroE hybrid rrn operon ends after a solitary 5S RNA gene with rrnE distal sequence. A single terminator structure of dyad symmetry followed by a run of six T's have been identified and compared to other sequenced rrn terminator hairpins. Immediately adjacent to the hairpin is a region of interrupted but conserved sequence that is shared by rrnE, rrnB and rrnD. An open reading frame of 127 amino acids abuts the terminator structure. Another open reading frame of 147 amino acids is found on the opposite strand several hundred nucleotides downstream.
Collapse
|
50
|
Sharrock RA, Gourse RL, Nomura M. Defective antitermination of rRNA transcription and derepression of rRNA and tRNA synthesis in the nusB5 mutant of Escherichia coli. Proc Natl Acad Sci U S A 1985; 82:5275-9. [PMID: 3161080 PMCID: PMC390550 DOI: 10.1073/pnas.82.16.5275] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The nusB5 mutant of Escherichia coli was originally selected for reduced ability to support the antitermination of transcription that is mediated by the gene N product of bacteriophage lambda. By analyzing pulse-labeled RNA with an RNA.DNA filter hybridization technique, we have shown that, in the nusB5 mutant, the ratio of promoter-proximal rRNA transcripts to promoter-distal transcripts is increased at least by a factor of 1.6; that is, in the absence of the functional nusB gene product, premature transcription termination takes place within rRNA operons. These results demonstrate that rRNA transcription in E. coli utilizes an antitermination mechanism that has at least one factor in common with the phage lambda system, the nusB gene product. We have also observed that the transcription initiation frequency at rRNA promoters is increased in the nusB5 strain and that this strain accumulates 30S and 50S ribosomal subunits at approximately the same rate as the parent. Thus, it appears that E. coli compensates for premature termination of rRNA transcription by derepressing rRNA operon expression. The increase in rRNA promoter activity in the nusB5 mutant is accompanied by a parallel derepression of synthesis of tRNAs that are not encoded by rRNA operons. These results are consistent with a model for negative feedback regulation of rRNA and tRNA synthesis by products of rRNA operons.
Collapse
|