1
|
Dubois L, Vettiger A, Buss JA, Bernhardt TG. Using fluorescently labeled wheat germ agglutinin to track lipopolysaccharide transport to the outer membrane in Escherichia coli. mBio 2025; 16:e0395024. [PMID: 39992125 PMCID: PMC11898776 DOI: 10.1128/mbio.03950-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
The cell envelope of gram-negative bacteria consists of two membranes sandwiching the peptidoglycan (PG) cell wall. The outer membrane (OM) contains integrated beta-barrel proteins and has an outer leaflet composed of lipopolysaccharide (LPS). LPS is transported from the inner membrane where it is made to the OM surface by the Lpt system. In the polarly elongating alpha-proteobacterium Brucella abortus, LPS transport has been localized to the polar growth zone and division site. However, LPS transport has not been tracked in live proteobacteria like Escherichia coli that elongate by dispersed incorporation of envelope material along their cell body. Here, we report an investigation into the binding target of fluorescently labeled wheat germ agglutinin (FL-WGA) on E. coli cells that led to the development of a method for visualizing LPS transport. We show that instead of PG or enterobacterial common antigen for which FL-WGA labeling has been used to detect in the past, this probe recognizes LPS modified with a terminal N-acetylglucosamine formed by the defective O-antigen synthesis pathway of laboratory strains of E. coli. This finding enabled the construction of mutants inducible for LPS modification that were used together with FL-WGA labeling to track LPS transport to the cell surface. We show that new LPS is inserted throughout the cell cylinder and at the division site, but not at the cell poles. A similar pattern was observed previously for PG synthesis and OM protein insertion in E. coli, suggesting that LPS transport to the OM is coordinated with these processes.IMPORTANCEGram-negative bacteria like Escherichia coli are surrounded by a multilayered cell envelope that includes an outer membrane (OM) responsible for their high intrinsic resistance to antibiotics. The outer leaflet of this membrane is composed of a glycolipid called lipopolysaccharide (LPS). Here, we report the development of an imaging method to track the transport of LPS to the E. coli outer membrane. The results indicate that transport occurs throughout the cell cylinder and at the division site, but not at the cell poles. A similar pattern was observed previously when cell wall synthesis and the insertion of proteins into the OM were tracked. Our results therefore suggest that LPS transport to the OM is coordinated with other essential processes that underly gram-negative cell envelope biogenesis.
Collapse
Affiliation(s)
- Laurent Dubois
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Vettiger
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jackson A. Buss
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
2
|
Nanninga N. Molecular Cytology of 'Little Animals': Personal Recollections of Escherichia coli (and Bacillus subtilis). Life (Basel) 2023; 13:1782. [PMID: 37629639 PMCID: PMC10455606 DOI: 10.3390/life13081782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This article relates personal recollections and starts with the origin of electron microscopy in the sixties of the previous century at the University of Amsterdam. Novel fixation and embedding techniques marked the discovery of the internal bacterial structures not visible by light microscopy. A special status became reserved for the freeze-fracture technique. By freeze-fracturing chemically fixed cells, it proved possible to examine the morphological effects of fixation. From there on, the focus switched from bacterial structure as such to their cell cycle. This invoked bacterial physiology and steady-state growth combined with electron microscopy. Electron-microscopic autoradiography with pulses of [3H] Dap revealed that segregation of replicating DNA cannot proceed according to a model of zonal growth (with envelope-attached DNA). This stimulated us to further investigate the sacculus, the peptidoglycan macromolecule. In particular, we focused on the involvement of penicillin-binding proteins such as PBP2 and PBP3, and their role in division. Adding aztreonam (an inhibitor of PBP3) blocked ongoing divisions but not the initiation of new ones. A PBP3-independent peptidoglycan synthesis (PIPS) appeared to precede a PBP3-dependent step. The possible chemical nature of PIPS is discussed.
Collapse
Affiliation(s)
- Nanne Nanninga
- Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Servais C, Vassen V, Verhaeghe A, Küster N, Carlier E, Phégnon L, Mayard A, Auberger N, Vincent S, De Bolle X. Lipopolysaccharide biosynthesis and traffic in the envelope of the pathogen Brucella abortus. Nat Commun 2023; 14:911. [PMID: 36806059 PMCID: PMC9938171 DOI: 10.1038/s41467-023-36442-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Lipopolysaccharide is essential for most Gram-negative bacteria as it is a main component of the outer membrane. In the pathogen Brucella abortus, smooth lipopolysaccharide containing the O-antigen is required for virulence. Being part of the Rhizobiales, Brucella spp. display unipolar growth and lipopolysaccharide was shown to be incorporated at the active growth sites, i.e. the new pole and the division site. By localizing proteins involved in the lipopolysaccharide transport across the cell envelope, from the inner to the outer membrane, we show that the lipopolysaccharide incorporation sites are determined by the inner membrane complex of the lipopolysaccharide transport system. Moreover, we identify the main O-antigen ligase of Brucella spp. involved in smooth lipopolysaccharide synthesis. Altogether, our data highlight a layer of spatiotemporal organization of the lipopolysaccharide biosynthesis pathway and identify an original class of bifunctional O-antigen ligases.
Collapse
Affiliation(s)
- Caroline Servais
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Victoria Vassen
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Audrey Verhaeghe
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Nina Küster
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Elodie Carlier
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Léa Phégnon
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Aurélie Mayard
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie, 4 rue Michel Brunet, 86073, Poitiers, France
| | - Stéphane Vincent
- Bio-organic Chemistry Unit (CBO), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
4
|
Atze H, Liang Y, Hugonnet JE, Gutierrez A, Rusconi F, Arthur M. Heavy isotope labeling and mass spectrometry reveal unexpected remodeling of bacterial cell wall expansion in response to drugs. eLife 2022; 11:72863. [PMID: 35678393 PMCID: PMC9249393 DOI: 10.7554/elife.72863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics of the β-lactam (penicillin) family inactivate target enzymes called D,D-transpeptidases or penicillin-binding proteins (PBPs) that catalyze the last cross-linking step of peptidoglycan synthesis. The resulting net-like macromolecule is the essential component of bacterial cell walls that sustains the osmotic pressure of the cytoplasm. In Escherichia coli, bypass of PBPs by the YcbB L,D-transpeptidase leads to resistance to these drugs. We developed a new method based on heavy isotope labeling and mass spectrometry to elucidate PBP- and YcbB-mediated peptidoglycan polymerization. PBPs and YcbB similarly participated in single-strand insertion of glycan chains into the expanding bacterial side wall. This absence of any transpeptidase-specific signature suggests that the peptidoglycan expansion mode is determined by other components of polymerization complexes. YcbB did mediate β-lactam resistance by insertion of multiple strands that were exclusively cross-linked to existing tripeptide-containing acceptors. We propose that this undocumented mode of polymerization depends upon accumulation of linear glycan chains due to PBP inactivation, formation of tripeptides due to cleavage of existing cross-links by a β-lactam-insensitive endopeptidase, and concerted cross-linking by YcbB.
Collapse
Affiliation(s)
- Heiner Atze
- INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Arnaud Gutierrez
- INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | - Michel Arthur
- INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
5
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
6
|
The Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis. mBio 2020; 11:mBio.03197-19. [PMID: 32184253 PMCID: PMC7078482 DOI: 10.1128/mbio.03197-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.
Collapse
|
7
|
Vassen V, Valotteau C, Feuillie C, Formosa-Dague C, Dufrêne YF, De Bolle X. Localized incorporation of outer membrane components in the pathogen Brucella abortus. EMBO J 2019; 38:e100323. [PMID: 30635335 PMCID: PMC6396147 DOI: 10.15252/embj.2018100323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
The zoonotic pathogen Brucella abortus is part of the Rhizobiales, which are alpha-proteobacteria displaying unipolar growth. Here, we show that this bacterium exhibits heterogeneity in its outer membrane composition, with clusters of rough lipopolysaccharide co-localizing with the essential outer membrane porin Omp2b, which is proposed to allow facilitated diffusion of solutes through the porin. We also show that the major outer membrane protein Omp25 and peptidoglycan are incorporated at the new pole and the division site, the expected growth sites. Interestingly, lipopolysaccharide is also inserted at the same growth sites. The absence of long-range diffusion of main components of the outer membrane could explain the apparent immobility of the Omp2b clusters, as well as unipolar and mid-cell localizations of newly incorporated outer membrane proteins and lipopolysaccharide. Unipolar growth and limited mobility of surface structures also suggest that new surface variants could arise in a few generations without the need of diluting pre-existing surface antigens.
Collapse
Affiliation(s)
- Victoria Vassen
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Xavier De Bolle
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
8
|
Abstract
Replicative aging has been demonstrated in asymmetrically dividing unicellular organisms, seemingly caused by unequal damage partitioning. Although asymmetric segregation and inheritance of potential aging factors also occur in symmetrically dividing species, it nevertheless remains controversial whether this results in aging. Based on large-scale single-cell lineage data obtained by time-lapse microscopy with a microfluidic device, in this report, we demonstrate the absence of replicative aging in old-pole cell lineages of Schizosaccharomyces pombe cultured under constant favorable conditions. By monitoring more than 1,500 cell lineages in 7 different culture conditions, we showed that both cell division and death rates are remarkably constant for at least 50–80 generations. Our measurements revealed that the death rate per cellular generation increases with the division rate, pointing to a physiological trade-off with fast growth under balanced growth conditions. We also observed the formation and inheritance of Hsp104-associated protein aggregates, which are a potential aging factor in old-pole cell lineages, and found that these aggregates exhibited a tendency to preferentially remain at the old poles for several generations. However, the aggregates were eventually segregated from old-pole cells upon cell division and probabilistically allocated to new-pole cells. We found that cell deaths were typically preceded by sudden acceleration of protein aggregation; thus, a relatively large amount of protein aggregates existed at the very ends of the dead cell lineages. Our lineage tracking analyses, however, revealed that the quantity and inheritance of protein aggregates increased neither cellular generation time nor cell death initiation rates. Furthermore, our results demonstrated that unusually large amounts of protein aggregates induced by oxidative stress exposure did not result in aging; old-pole cells resumed normal growth upon stress removal, despite the fact that most of them inherited significant quantities of aggregates. These results collectively indicate that protein aggregates are not a major determinant of triggering cell death in S. pombe and thus cannot be an appropriate molecular marker or index for replicative aging under both favorable and stressful environmental conditions. Multicellular organisms universally senesce and must produce rejuvenated progenies in order to transmit life. Although similar age-related deterioration in physiological functions and reproduction is also found in unicellular organisms that divide asymmetrically to produce morphologically distinct aged and younger cells, it has been unclear whether symmetrically dividing microbes—such as fission yeast—exhibit the same traits. Using long-term live-cell microscopy combined with a microfluidic device, we monitor the growth and death of a large number of fission yeast cells and demonstrate the existence of aging-free lineages. These lineages are, however, not immortal, and the probability of death increases as the cells grow more rapidly; thus, the “live fast, die fast” trade-off exists in fission yeast. We further characterize the segregation and inheritance of protein aggregates, which are commonly thought of as “aging factors.” The aging-free lineages bear the aggregate load for some generations with no apparent adverse effects on growth. We also show that there is no threshold amount of protein aggregate above which cells are destined to death in both normal and stressed conditions: protein aggregate is thus not a direct initiation signal for cell death. Our data reveal that protein aggregation might not be an appropriate index for aging and that we should revisit its role in cell physiology.
Collapse
Affiliation(s)
- Hidenori Nakaoka
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- Research Center for Complex Systems Biology, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
9
|
|
10
|
Abstract
Peptidoglycan (PG) recycling allows Escherichia coli to reuse the massive amounts of sacculus components that are released during elongation. Goodell and Schwarz, in 1985, labeled E. coli cells with 3H-diaminopimelic acid (DAP) and chased. During the chase, the DAP pool dropped dramatically, whereas the precursor pool dropped only slightly. This could only occur if DAP from the sacculi was being used to produce more precursor. They calculated that the cells were recycling about 45% of their wall DAP (actually, 60% of the side walls, since the poles are stable). Thus, recycling was discovered. Goodell went on to show that the tripeptide, L-Ala-D-Glu-DAP, could be taken up via opp and used directly to form PG. It was subsequently shown that uptake was predominantly via a permease, AmpG, that was specific for GlcNAc-anhMurNAc with attached peptides. Eleven genes have been identified which appear to have as their sole function the recovery of degradation products from PG. PG represents only 2.5% of the cell mass, so the reason for this investment in recycling is obscure. Recycling enzymes exist that are specific for every bond in the principal product taken up by AmpG, namely, GlcNAc-anh-MurNAc-tetrapeptide. However, most of the tripeptide, L-Ala-D-Glu-DAP, is used by murein peptide ligase (Mpl) to form the precursor intermediate UDP-MurNAc-tripeptide. anh-MurNAc can be converted to GlcNAc by a two-step process and thus is available for use. Surprisingly, in the absence of AmpD, an enzyme that cleaves the anh-MurNAc-L-Ala bond, anh-MurNAc-tripeptide accumulates, resulting in induction of beta-lactamase. However, this has nothing to do with the induction of beta-lactamase by beta-lactam antibiotics. Uehara, Suefuji, and Park (unpublished data) have some evidence suggesting that murein pentapeptide may be involved. The presence of orthologs suggests that recycling also exists in many Gram-negative bacteria. Surprisingly, the ortholog search also revealed that all mammals may have an AmpG ortholog! Hence, mammalian AmpG may be involved in the process of innate immunity.
Collapse
|
11
|
ZipA is required for FtsZ-dependent preseptal peptidoglycan synthesis prior to invagination during cell division. J Bacteriol 2012; 194:5334-42. [PMID: 22843850 DOI: 10.1128/jb.00859-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rod-shaped bacteria grow by a repetitive cycle of elongation followed by division, and the mechanisms responsible for these two processes have been studied for decades. However, little is known about what happens during the transition between the two activities. At least one event occurs after elongation ends and before division commences, that being the insertion of new cell wall peptidoglycan into a narrowly circumscribed ribbon around midcell where septation is destined to take place. This insertion does not depend on the presence of the septation-specific protein PBP3 and is therefore known as PBP3-independent peptidoglycan synthesis (PIPS). Here we report that only FtsZ and ZipA are required to generate PIPS in wild-type Escherichia coli. PIPS does not require the participation of other members of the divisome, the MreB-directed cell wall elongation complex, alternate peptidoglycan synthases, the major peptidoglycan amidases, or any of the low-molecular-weight penicillin binding proteins. ZipA-directed PIPS may represent an intermediate stage that connects cell wall elongation to septal invagination and may be the reason ZipA is essential in the gammaproteobacteria.
Collapse
|
12
|
Martínez-Peñafiel E, Fernández-Ramírez F, Ishida C, Reyes-Cortés R, Sepúlveda-Robles O, Guarneros-Peña G, Bermúdez-Cruz RM, Kameyama L. Overexpression of Ipe protein from the coliphage mEp021 induces pleiotropic effects involving haemolysis by HlyE-containing vesicles and cell death. Biochimie 2012; 94:1262-73. [PMID: 22365985 DOI: 10.1016/j.biochi.2012.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/02/2012] [Indexed: 12/21/2022]
Abstract
Lysogenic Escherichia coli K-12 harbouring the prophage mEp021 displays haemolytic activity. From a genomic library of mEp021, we identified an open reading frame (ORF 4) that was responsible for the haemolytic activity. However, the ORF 4 sequence contains four initiation codons in the same frame: ORF 4.1-ORF 4.4, coding for 83-a.a., 82-a.a., 77-a.a. and 72-a.a. products, respectively. The expression of the cloned ORF 4.3, or inducer of pleiotropic effects (ipe), reproduced the haemolytic phenotype in a native strain carrying the gene hlyE(+), but not in the mutant hlyE(-) strain. The overexpression of Ipe induced several pleiotropic effects, such as the inhibition of cell growth and the deregulation of cell division, which resulted in a mixture of normal and desiccated-like cells: normal-filamentous, desiccated-like-filamentous bacilli, minicells etc. Other effects included abnormalities of the cell membrane, the production of vesicles containing HlyE, and finally, cell death. These events were analysed at the molecular level by microarray assays. The global transcription profile of E. coli K-12 strain MC4100, which expressed Ipe after 4 h, revealed differential expression of various genes, most of which were related either to cell membrane and murein biosynthesis or to cell division. The up-regulation of some of these transcripts was confirmed by qRT-PCR. Additional research is needed to determine whether these effects are directly related to Ipe activity or are consequences of the cellular responses to putative structural damage induced by Ipe.
Collapse
Affiliation(s)
- Eva Martínez-Peñafiel
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 07360, México D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Reith J, Mayer C. Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl Microbiol Biotechnol 2011; 92:1-11. [PMID: 21796380 DOI: 10.1007/s00253-011-3486-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/02/2011] [Accepted: 07/13/2011] [Indexed: 11/24/2022]
Abstract
Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.
Collapse
Affiliation(s)
- Jan Reith
- Fachbereich Biologie, Molekulare Mikrobiologie, University of Konstanz, Germany
| | | |
Collapse
|
14
|
Patti GJ, Chen J, Gross ML. Method revealing bacterial cell-wall architecture by time-dependent isotope labeling and quantitative liquid chromatography/mass spectrometry. Anal Chem 2009; 81:2437-45. [PMID: 19281243 PMCID: PMC2715431 DOI: 10.1021/ac802587r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular details of the biosynthesis and resulting architecture of the bacterial cell wall remain unclear but are essential to understanding the activity of glycopeptide antibiotics, the recognition of pathogens by hosts, and the processes of bacterial growth and division. Here we report a new strategy to elucidate bacterial cell-wall architecture based on time-dependent isotope labeling of bacterial cells quantified by liquid chromatography/accurate mass measurement mass spectrometry. The results allow us to track the fate of cell-wall precursors (which contain the vancomycin-binding site) in Enterococcus faecium, a leading antibiotic-resistant pathogen. By comparing isotopic enrichments of postinsertionally modified cell-wall precursors, we find that tripeptides and species without aspartic acid/asparagine (Asp/Asn, Asx) bridges are specific to mature cell wall. Additionally, we find that the sequence of cell-wall maturation varies throughout a cell cycle. We suggest that actively dividing E. faecium cells have three zones of unique peptidoglycan processing. Our results reveal new organizational characteristics of the bacterial cell wall that are important to understanding tertiary structure and designing novel drugs for antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| |
Collapse
|
15
|
How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 2008; 72:211-27, table of contents. [PMID: 18535144 DOI: 10.1128/mmbr.00027-07] [Citation(s) in RCA: 319] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SUMMARY The phenomenon of peptidoglycan recycling is reviewed. Gram-negative bacteria such as Escherichia coli break down and reuse over 60% of the peptidoglycan of their side wall each generation. Recycling of newly made peptidoglycan during septum synthesis occurs at an even faster rate. Nine enzymes, one permease, and one periplasmic binding protein in E. coli that appear to have as their sole function the recovery of degradation products from peptidoglycan, thereby making them available for the cell to resynthesize more peptidoglycan or to use as an energy source, have been identified. It is shown that all of the amino acids and amino sugars of peptidoglycan are recycled. The discovery and properties of the individual proteins and the pathways involved are presented. In addition, the possible role of various peptidoglycan degradation products in the induction of beta-lactamase is discussed.
Collapse
|
16
|
Growth of Escherichia coli: significance of peptidoglycan degradation during elongation and septation. J Bacteriol 2008; 190:3914-22. [PMID: 18390656 DOI: 10.1128/jb.00207-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have found a striking difference between the modes of action of amdinocillin (mecillinam) and compound A22, both of which inhibit cell elongation. This was made possible by employment of a new method using an Escherichia coli peptidoglycan (PG)-recycling mutant, lacking ampD, to analyze PG degradation during cell elongation and septation. Using this method, we have found that A22, which is known to prevent MreB function, strongly inhibited PG synthesis during elongation. In contrast, treatment of elongating cells with amdinocillin, which inhibits penicillin-binding protein 2 (PBP2), allowed PG glycan synthesis to proceed at a nearly normal rate with concomitant rapid degradation of the new glycan strands. By treating cells with A22 to inhibit sidewall synthesis, the method could also be applied to study septum synthesis. To our surprise, over 30% of newly synthesized septal PG was degraded during septation. Thus, excess PG sufficient to form at least one additional pole was being synthesized and rapidly degraded during septation. We propose that during cell division, rapid removal of the excess PG serves to separate the new poles of the daughter cells. We have also employed this new method to demonstrate that PBP2 and RodA are required for the synthesis of glycan strands during elongation and that the periplasmic amidases that aid in cell separation are minor players, cleaving only one-sixth of the PG that is turned over by the lytic transglycosylases.
Collapse
|
17
|
Den Blaauwen T, de Pedro MA, Nguyen-Distèche M, Ayala JA. Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 2008; 32:321-44. [DOI: 10.1111/j.1574-6976.2007.00090.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Aaron M, Charbon G, Lam H, Schwarz H, Vollmer W, Jacobs-Wagner C. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol Microbiol 2007; 64:938-52. [PMID: 17501919 DOI: 10.1111/j.1365-2958.2007.05720.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The tubulin homologue FtsZ is well known for its essential function in bacterial cell division. Here, we show that in Caulobacter crescentus, FtsZ also plays a major role in cell elongation by spatially regulating the location of MurG, which produces the essential lipid II peptidoglycan cell wall precursor. The early assembly of FtsZ into a highly mobile ring-like structure during cell elongation is quickly followed by the recruitment of MurG and a major redirection of peptidoglycan precursor synthesis to the midcell region. These FtsZ-dependent events occur well before cell constriction and contribute to cell elongation. In the absence of FtsZ, MurG fails to accumulate near midcell and cell elongation proceeds unperturbed in appearance by insertion of peptidoglycan material along the entire sidewalls. Evidence suggests that bacteria use both a FtsZ-independent and a FtsZ-dependent mode of peptidoglycan synthesis to elongate, the importance of each mode depending on the timing of FtsZ assembly during elongation.
Collapse
Affiliation(s)
- Michelle Aaron
- Department of Molecular, Cellular, and Developmental Biology, and Microbiology Program, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Recent advances have shown conclusively that bacterial cells possess distant but true homologues of actin (MreB, ParM, and the recently uncovered MamK protein). Despite weak amino acid sequence similarity, MreB and ParM exhibit high structural homology to actin. Just like F-actin in eukaryotes, MreB and ParM assemble into highly dynamic filamentous structures in vivo and in vitro. MreB-like proteins are essential for cell viability and have been implicated in major cellular processes, including cell morphogenesis, chromosome segregation, and cell polarity. ParM (a plasmid-encoded actin homologue) is responsible for driving plasmid-DNA partitioning. The dynamic prokaryotic actin-like cytoskeleton is thought to serve as a central organizer for the targeting and accurate positioning of proteins and nucleoprotein complexes, thereby (and by analogy to the eukaryotic cytoskeleton) spatially and temporally controlling macromolecular trafficking in bacterial cells. In this paper, the general properties and known functions of the actin orthologues in bacteria are reviewed.
Collapse
Affiliation(s)
- Rut Carballido-López
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| |
Collapse
|
20
|
Abstract
Why do bacteria have shape? Is morphology valuable or just a trivial secondary characteristic? Why should bacteria have one shape instead of another? Three broad considerations suggest that bacterial shapes are not accidental but are biologically important: cells adopt uniform morphologies from among a wide variety of possibilities, some cells modify their shape as conditions demand, and morphology can be tracked through evolutionary lineages. All of these imply that shape is a selectable feature that aids survival. The aim of this review is to spell out the physical, environmental, and biological forces that favor different bacterial morphologies and which, therefore, contribute to natural selection. Specifically, cell shape is driven by eight general considerations: nutrient access, cell division and segregation, attachment to surfaces, passive dispersal, active motility, polar differentiation, the need to escape predators, and the advantages of cellular differentiation. Bacteria respond to these forces by performing a type of calculus, integrating over a number of environmental and behavioral factors to produce a size and shape that are optimal for the circumstances in which they live. Just as we are beginning to answer how bacteria create their shapes, it seems reasonable and essential that we expand our efforts to understand why they do so.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
21
|
Carballido-López R, Formstone A, Li Y, Ehrlich SD, Noirot P, Errington J. Actin Homolog MreBH Governs Cell Morphogenesis by Localization of the Cell Wall Hydrolase LytE. Dev Cell 2006; 11:399-409. [PMID: 16950129 DOI: 10.1016/j.devcel.2006.07.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 06/27/2006] [Accepted: 07/22/2006] [Indexed: 11/23/2022]
Abstract
MreB proteins are bacterial actin homologs involved in cell morphogenesis and various other cellular processes. However, the effector proteins used by MreBs remain largely unknown. Bacillus subtilis has three MreB isoforms. Mbl and possibly MreB have previously been shown to be implicated in cell wall synthesis. We have now found that the third isoform, MreBH, colocalizes with the two other MreB isoforms in B. subtilis and also has an important role in cell morphogenesis. MreBH can physically interact with a cell wall hydrolase, LytE, and is required for its helical pattern of extracellular localization. Moreover, lytE and mreBH mutants exhibit similar cell-wall-related defects. We propose that controlled elongation of rod-shaped B. subtilis depends on the coordination of cell wall synthesis and hydrolysis in helical tracts defined by MreB proteins. Our data also suggest that physical interactions with intracellular actin bundles can influence the later localization pattern of extracellular effectors.
Collapse
Affiliation(s)
- Rut Carballido-López
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | | | | | |
Collapse
|
22
|
Tiyanont K, Doan T, Lazarus MB, Fang X, Rudner DZ, Walker S. Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. Proc Natl Acad Sci U S A 2006; 103:11033-8. [PMID: 16832063 PMCID: PMC1544169 DOI: 10.1073/pnas.0600829103] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells.
Collapse
Affiliation(s)
- Kittichoat Tiyanont
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Thierry Doan
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Michael B. Lazarus
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Xiao Fang
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - David Z. Rudner
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Suzanne Walker
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Scheffers DJ, Pinho MG. Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 2006; 69:585-607. [PMID: 16339737 PMCID: PMC1306805 DOI: 10.1128/mmbr.69.4.585-607.2005] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to maintain shape and withstand intracellular pressure, most bacteria are surrounded by a cell wall that consists mainly of the cross-linked polymer peptidoglycan (PG). The importance of PG for the maintenance of bacterial cell shape is underscored by the fact that, for various bacteria, several mutations affecting PG synthesis are associated with cell shape defects. In recent years, the application of fluorescence microscopy to the field of PG synthesis has led to an enormous increase in data on the relationship between cell wall synthesis and bacterial cell shape. First, a novel staining method enabled the visualization of PG precursor incorporation in live cells. Second, penicillin-binding proteins (PBPs), which mediate the final stages of PG synthesis, have been localized in various model organisms by means of immunofluorescence microscopy or green fluorescent protein fusions. In this review, we integrate the knowledge on the last stages of PG synthesis obtained in previous studies with the new data available on localization of PG synthesis and PBPs, in both rod-shaped and coccoid cells. We discuss a model in which, at least for a subset of PBPs, the presence of substrate is a major factor in determining PBP localization.
Collapse
Affiliation(s)
- Dirk-Jan Scheffers
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
24
|
Ogino H, Wachi M, Ishii A, Iwai N, Nishida T, Yamada S, Nagai K, Sugai M. FtsZ-dependent localization of GroEL protein at possible division sites. Genes Cells 2004; 9:765-71. [PMID: 15330853 DOI: 10.1111/j.1365-2443.2004.00770.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When Escherichia coli is treated with penicillin, the envelopes bulge at the centre of the cells and the cells then lyse. The bulges expand into vesicle-like structures termed penicillin-induced vesicles. We have developed a method to isolate these structures and have shown that they contain mainly membrane proteins plus a high concentration of a 60 kDa protein. The N-terminal amino acid sequence of the protein is identical to that of GroEL protein. Western blotting analysis using anti-GroEL antibody showed that GroEL is indeed concentrated in the vesicles. Indirect immuno-fluorescence microscopy showed that GroEL protein is localized at the centre of the cells at the site of formation of FtsZ-rings. Localization of GroEL is dependent on FtsZ but not other Fts proteins. GroEL mutants formed elongated cells having no or asymmetrically localized FtsZ-rings at the restrictive temperature. These findings suggest a possible role of the GroEL protein in cell division.
Collapse
Affiliation(s)
- Hidetaka Ogino
- Department of Bioengineering, Tokyo Institute of Technology, 4259-B-38 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pinho MG, Errington J. Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol Microbiol 2004; 50:871-81. [PMID: 14617148 DOI: 10.1046/j.1365-2958.2003.03719.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed several new fluorescent staining procedures that enabled us to study the synthesis of cell wall material in the spherical Gram-positive bacterium Staphylococcus aureus. The results obtained support previous proposals that these cells synthesize new wall material specifically at cell division sites, in the form of a flat circular plate that is subsequently cleaved and remodelled to produce the new hemispherical poles of the daughter cells. We have shown that formation of the septal peptidoglycan is dependent on the key cell division protein FtsZ, which recruits penicillin-binding protein (PBP) 2. Unexpectedly, in FtsZ-depleted cells, the cell wall synthetic machinery becomes dispersed and new wall material is made in dispersed patches over the entire surface of the cells, which increase in volume by up to eightfold before lysing. The results have implications for understanding the nature of S. aureus morphogenesis and for inhibitors of cell division proteins as drug targets.
Collapse
Affiliation(s)
- Mariana G Pinho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
26
|
Morlot C, Zapun A, Dideberg O, Vernet T. Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol Microbiol 2004; 50:845-55. [PMID: 14617146 DOI: 10.1046/j.1365-2958.2003.03767.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterial peptidoglycan, the main component of the cell wall, is synthesized by the penicillin-binding proteins (PBPs). We used immunofluorescence microscopy to determine the cellular localization of all the high molecular weight PBPs of the human pathogen Streptococcus pneumoniae, for a wild type and for several PBP-deficient strains. Progression through the cell cycle was investigated by the simultaneous labelling of DNA and the FtsZ protein. Our main findings are: (i) the temporal dissociation of cell wall synthesis, inferred by the localization of PBP2x and PBP1a, from the constriction of the FtsZ-ring; (ii) the localization of PBP2b and PBP2a at duplicated equatorial sites indicating the existence of peripheral peptidoglycan synthesis, which implies a similarity between the mechanism of cell division in bacilli and streptococci; (iii) the abnormal localization of some class A PBPs in PBP-defective mutants which may explain the apparent redundancy of these proteins in S. pneumoniae.
Collapse
Affiliation(s)
- Cécile Morlot
- Institut de Biologie Structurale J. -P. Ebel (CEA/CNRS/UJF, UMR 5075), 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | |
Collapse
|
27
|
Scheffers DJ, Jones LJF, Errington J. Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol Microbiol 2003; 51:749-64. [PMID: 14731276 DOI: 10.1046/j.1365-2958.2003.03854.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial cell shape is determined by a rigid external cell wall. In most non-coccoid bacteria, this shape is also determined by an internal cytoskeleton formed by the actin homologues MreB and/or Mbl. To gain further insights into the topological control of cell wall synthesis in bacteria, we have constructed green fluorescent protein (GFP) fusions to all 11 penicillin-binding proteins (PBPs) expressed during vegetative growth of Bacillus subtilis. The localization of these fusions was studied in a wild-type background as well as in strains deficient in FtsZ, MreB or Mbl. PBP3 and PBP4a localized specifically to the lateral wall, in distinct foci, whereas PBP1 and PBP2b localized specifically to the septum. All other PBPs localized to both the septum and the lateral cell wall, sometimes with irregular distribution along the lateral wall or a preference for the septum. This suggests that cell wall synthesis is not dispersed but occurs at specific places along the lateral cell wall. The results implicate PBP3, PBP5 and PBP4a, and possibly PBP4, in lateral wall growth. Localization of PBPs to the septum was found to be dependent on FtsZ, but the GFP-PBP fluorescence patterns were not detectably altered in the absence of MreB or Mbl.
Collapse
Affiliation(s)
- Dirk-Jan Scheffers
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
28
|
Abstract
The penicillin-binding proteins (PBPs) polymerize and modify peptidoglycan, the stress-bearing component of the bacterial cell wall. As part of this process, the PBPs help to create the morphology of the peptidoglycan exoskeleton together with cytoskeleton proteins that regulate septum formation and cell shape. Genetic and microscopic studies reveal clear morphological responsibilities for class A and class B PBPs and suggest that the mechanism of shape determination involves differential protein localization and interactions with specific cell components. In addition, the low molecular weight PBPs, by varying the substrates on which other PBPs act, alter peptidoglycan synthesis or turnover, with profound effects on morphology.
Collapse
Affiliation(s)
- David L Popham
- Department of Biology, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
29
|
Zhang C, Zhang M, Ju J, Nietfeldt J, Wise J, Terry PM, Olson M, Kachman SD, Wiedmann M, Samadpour M, Benson AK. Genome diversification in phylogenetic lineages I and II of Listeria monocytogenes: identification of segments unique to lineage II populations. J Bacteriol 2003; 185:5573-84. [PMID: 12949110 PMCID: PMC193770 DOI: 10.1128/jb.185.18.5573-5584.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thirteen different serotypes of Listeria monocytogenes can be distinguished on the basis of variation in somatic and flagellar antigens. Although the known virulence genes are present in all serotypes, greater than 90% of human cases of listeriosis are caused by serotypes 1/2a, 1/2b, and 4b and nearly all outbreaks of food-borne listeriosis have been caused by serotype 4b strains. Phylogenetic analysis of these three common clinical serotypes places them into two different lineages, with serotypes 1/2b and 4b belonging to lineage I and 1/2a belonging to lineage II. To begin examining evolution of the genome in these serotypes, DNA microarray analysis was used to identify lineage-specific and serotype-specific differences in genome content. A set of 44 strains representing serotypes 1/2a, 1/2b, and 4b was probed with a shotgun DNA microarray constructed from the serotype 1/2a strain 10403s. Clones spanning 47 different genes in 16 different contiguous segments relative to the lineage II 1/2a genome were found to be absent in all lineage I strains tested (serotype 4b and 1/2b) and an additional nine were altered exclusively in 4b strains. Southern hybridization confirmed that conserved alterations were, in all but two loci, due to absence of the segments from the genome. Genes within these contiguous segments comprise five functional categories, including genes involved in synthesis of cell surface molecules and regulation of virulence gene expression. Phylogenetic reconstruction and examination of compositional bias in the regions of difference are consistent with a model in which the ancestor of the two lineages had the 1/2 somatic serotype and the regions absent in the lineage I genome arose by loss of ancestral sequences.
Collapse
Affiliation(s)
- Chaomei Zhang
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68583, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Daniel RA, Errington J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 2003; 113:767-76. [PMID: 12809607 DOI: 10.1016/s0092-8674(03)00421-5] [Citation(s) in RCA: 599] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell shape in most eubacteria is maintained by a tough external peptidoglycan cell wall. Recently, cell shape determining proteins of the MreB family were shown to form helical, actin-like cables in the cell. We used a fluorescent derivative of the antibiotic vancomycin as a probe for nascent peptidoglycan synthesis in unfixed cells of various Gram-positive bacteria. In the rod-shaped bacterium B. subtilis, synthesis of the cylindrical part of the cell wall occurs in a helical pattern governed by an MreB homolog, Mbl. However, a few rod-shaped bacteria have no MreB system. Here, a rod-like shape can be achieved by a completely different mechanism based on use of polar growth zones derived from the division machinery. These results provide insights into the diverse molecular strategies used by bacteria to control their cellular morphology, as well as suggesting ways in which these strategies may impact on growth rates and cell envelope structure.
Collapse
Affiliation(s)
- Richard A Daniel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | | |
Collapse
|
31
|
Uehara T, Park JT. Role of the murein precursor UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-diaminopimelic acid-D-Ala-D-Ala in repression of beta-lactamase induction in cell division mutants. J Bacteriol 2002; 184:4233-9. [PMID: 12107141 PMCID: PMC135216 DOI: 10.1128/jb.184.15.4233-4239.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain beta-lactam antibiotics induce the chromosomal ampC beta-lactamase of many gram-negative bacteria. The natural inducer, though not yet unequivocally identified, is a cell wall breakdown product which enters the cell via the AmpG permease component of the murein recycling pathway. Surprisingly, it has been reported that beta-lactamase is not induced by cefoxitin in the absence of FtsZ, which is required for cell division, or in the absence of penicillin-binding protein 2 (PBP2), which is required for cell elongation. Since these results remain unexplained, we examined an ftsZ mutant and other cell division mutants (ftsA, ftsQ, and ftsI) and a PBP2 mutant for induction of beta-lactamase. In all mutants, beta-lactamase was not induced by cefoxitin, which confirms the initial reports. The murein precursor, UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-diaminopimelic acid-D-Ala-D-Ala (UDP-MurNAc-pentapeptide), has been shown to serve as a corepressor with AmpR to repress beta-lactamase expression in vitro. Our results suggest that beta-lactamase is not induced because the fts mutants contain a greatly increased amount of corepressor which the inducer cannot displace. In the PBP2(Ts) mutant, in addition to accumulation of corepressor, cell wall turnover and recycling were greatly reduced so that little or no inducer was available. Hence, in both cases, a high ratio of repressor to inducer presumably prevents induction.
Collapse
Affiliation(s)
- Tsuyoshi Uehara
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
32
|
Park JT. Identification of a dedicated recycling pathway for anhydro-N-acetylmuramic acid and N-acetylglucosamine derived from Escherichia coli cell wall murein. J Bacteriol 2001; 183:3842-7. [PMID: 11395446 PMCID: PMC95265 DOI: 10.1128/jb.183.13.3842-3847.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Turnover and recycling of the cell wall murein represent a major metabolic pathway of Escherichia coli. It is known that E. coli efficiently reuses, i.e., recycles, its murein tripeptide, L-alanyl-gamma-D-glutamyl-meso-diaminopimelate, to form new murein. However, the question of whether the cells also recycle the amino sugar moieties of cell wall murein has remained unanswered. It is demonstrated here that E. coli recycles the N-acetylglucosamine present in cell wall murein degradation products for de novo murein and lipopolysaccharide synthesis. Furthermore, E. coli also recycles the anhydro-N-acetylmuramic acid moiety by first converting it into N-acetylglucosamine. Based on the results obtained by studying mutants unable to recycle amino sugars, the pathway for recycling is revealed.
Collapse
Affiliation(s)
- J T Park
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| |
Collapse
|
33
|
de Pedro MA, Donachie WD, Höltje JV, Schwarz H. Constitutive septal murein synthesis in Escherichia coli with impaired activity of the morphogenetic proteins RodA and penicillin-binding protein 2. J Bacteriol 2001; 183:4115-26. [PMID: 11418550 PMCID: PMC95299 DOI: 10.1128/jb.183.14.4115-4126.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pattern of peptidoglycan (murein) segregation in cells of Escherichia coli with impaired activity of the morphogenetic proteins penicillin-binding protein 2 and RodA has been investigated by the D-cysteine-biotin immunolabeling technique (M. A. de Pedro, J. C. Quintela, J.-V. Höltje, and H. Schwarz, J. Bacteriol. 179:2823-2834, 1997). Inactivation of these proteins either by amdinocillin treatment or by mutations in the corresponding genes, pbpA and rodA, respectively, leads to the generation of round, osmotically stable cells. In normal rod-shaped cells, new murein precursors are incorporated all over the lateral wall in a diffuse manner, being mixed up homogeneously with preexisting material, except during septation, when strictly localized murein synthesis occurs. In contrast, in rounded cells, incorporation of new precursors is apparently a zonal process, localized at positions at which division had previously taken place. Consequently, there is no mixing of new and old murein. Old murein is preserved for long periods of time in large, well-defined areas. We propose that the observed patterns are the result of a failure to switch off septal murein synthesis at the end of septation events. Furthermore, the segregation results confirm that round cells of rodA mutants do divide in alternate, perpendicular planes as previously proposed (K. J. Begg and W. D. Donachie, J. Bacteriol. 180:2564-2567, 1998).
Collapse
Affiliation(s)
- M A de Pedro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
34
|
Bernhardt TG, Roof WD, Young R. Genetic evidence that the bacteriophage phi X174 lysis protein inhibits cell wall synthesis. Proc Natl Acad Sci U S A 2000; 97:4297-302. [PMID: 10760296 PMCID: PMC18234 DOI: 10.1073/pnas.97.8.4297] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein E, a 91-residue membrane protein of phiX174, causes lysis of the host in a growth-dependent manner reminiscent of cell wall antibiotics, suggesting E acts by inhibiting peptidoglycan synthesis. In a search for the cellular target of E, we previously have isolated recessive mutations in the host gene slyD (sensitivity to lysis) that block the lytic effects of E. The role of slyD, which encodes a FK506 binding protein-type peptidyl-prolyl cis-trans isomerase, is not fully understood. However, E mutants referred to as Epos (plates on slyD) lack a slyD requirement, indicating that slyD is not crucial for lysis. To identify the gene encoding the cellular target, we selected for survivors of Epos. In this study, we describe the isolation of dominant mutations in the essential host gene mraY that result in a general lysis-defective phenotype. mraY encodes translocase I, which catalyzes the formation of the first lipid-linked intermediate in cell wall biosynthesis. The isolation of these lysis-defective mutants supports a model in which translocase I is the cellular target of E and that inhibition of cell wall synthesis is the mechanism of lysis.
Collapse
Affiliation(s)
- T G Bernhardt
- Biochemistry and Biophysics Department, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
35
|
Höltje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 1998; 62:181-203. [PMID: 9529891 PMCID: PMC98910 DOI: 10.1128/mmbr.62.1.181-203.1998] [Citation(s) in RCA: 874] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To withstand the high intracellular pressure, the cell wall of most bacteria is stabilized by a unique cross-linked biopolymer called murein or peptidoglycan. It is made of glycan strands [poly-(GlcNAc-MurNAc)], which are linked by short peptides to form a covalently closed net. Completely surrounding the cell, the murein represents a kind of bacterial exoskeleton known as the murein sacculus. Not only does the sacculus endow bacteria with mechanical stability, but in addition it maintains the specific shape of the cell. Enlargement and division of the murein sacculus is a prerequisite for growth of the bacterium. Two groups of enzymes, hydrolases and synthases, have to cooperate to allow the insertion of new subunits into the murein net. The action of these enzymes must be well coordinated to guarantee growth of the stress-bearing sacculus without risking bacteriolysis. Protein-protein interaction studies suggest that this is accomplished by the formation of a multienzyme complex, a murein-synthesizing machinery combining murein hydrolases and synthases. Enlargement of both the multilayered murein of gram-positive and the thin, single-layered murein of gram-negative bacteria seems to follow an inside-to-outside growth strategy. New material is hooked in a relaxed state underneath the stress-bearing sacculus before it becomes inserted upon cleavage of covalent bonds in the layer(s) under tension. A model is presented that postulates that maintenance of bacterial shape is achieved by the enzyme complex copying the preexisting murein sacculus that plays the role of a template.
Collapse
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany.
| |
Collapse
|
36
|
Abstract
Peptidoglycan (murein) segregation has been studied by means of a new labeling method. The method relies on the ability of Escherichia coli cells to incorporate D-Cys into macromolecular murein. The incorporation depends on a periplasmic amino acid exchange reaction. At low concentrations, D-Cys is innocuous to the cell. The distribution of modified murein in purified sacculi can be traced and visualized by immunodetection of the -SH groups by fluorescence and electron microscopy techniques. Analysis of murein segregation in wild-type and cell division mutant strains revealed that murein in polar caps is metabolically inert and is segregated in a conservative fashion. Elongation of the sacculus apparently occurs by diffuse insertion of precursors over the cylindrical part of the cell surface. At the initiation of cell division, there is a FtsZ-dependent localized activation of murein synthesis at the potential division sites. Penicillin-binding protein 3 and the products of the division genes ftsA and ftsQ are dispensable for the activation of division sites. As a consequence, under restrictive conditions ftsA,ftsI,or ftsQ mutants generate filamentous sacculi with rings of all-new murein at the positions where septa would otherwise develop.
Collapse
Affiliation(s)
- M A de Pedro
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Facultad de Ciencias, Spain.
| | | | | | | |
Collapse
|
37
|
Cooper S. Synthesis of the cell surface during the division cycle of rod-shaped, gram-negative bacteria. Microbiol Rev 1991; 55:649-74. [PMID: 1779930 PMCID: PMC372841 DOI: 10.1128/mr.55.4.649-674.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
When the growth of the gram-negative bacterial cell wall is considered in relation to the synthesis of the other components of the cell, a new understanding of the pattern of wall synthesis emerges. Rather than a switch in synthesis between the side wall and pole, there is a partitioning of synthesis such that the volume of the cell increases exponentially and thus perfectly encloses the exponentially increasing cytoplasm. This allows the density of the cell to remain constant during the division cycle. This model is explored at both the cellular and molecular levels to give a unified description of wall synthesis which has the following components: (i) there is no demonstrable turnover of peptidoglycan during cell growth, (ii) the side wall grows by diffuse intercalation, (iii) pole synthesis starts by some mechanism and is preferentially synthesized compared with side wall, and (iv) the combined side wall and pole syntheses enclose the newly synthesized cytoplasm at a constant cell density. The central role of the surface stress model in wall growth is distinguished from, and preferred to, models that propose cell-cycle-specific signals as triggers of changes in the rate of wall synthesis. The actual rate of wall synthesis during the division cycle is neither exponential nor linear, but is close to exponential when compared with protein synthesis during the division cycle.
Collapse
Affiliation(s)
- S Cooper
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| |
Collapse
|
38
|
Abstract
Research on bacterial cell division has recently gained renewed impetus because of new information about peptidoglycan assembly and about specific cell-division genes and their products. This paper concerns aspects of cell division that specifically concern the peptidoglycan. It is shown that upon division, peptidoglycan assembly switches from lateral wall location to the cell centre, that assembly takes place at the leading edge of the invaginating constriction, that the mode of glycan strand insertion changes from a single-stranded mode to a multi-stranded mode, and that the initiation of division (in contrast to its continuation) requires penicillin-insensitive peptidoglycan synthesis (PIPS). A membrane component X (possibly FtsQ) is proposed to coordinate PIPS with the cell division-initiating protein FtsZ. It is suggested that a largely proteinaceous macromolecular complex (divisome) at the leading edge of constriction encompasses three compartments (cytoplasm, membrane and periplasm). The composition of this complex is proposed to vary depending on whether division is being initiated or completed.
Collapse
Affiliation(s)
- N Nanninga
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| |
Collapse
|
39
|
Abstract
We recognize organisms first and foremost by their forms, but how they grow and shape themselves still largely passes understanding. The objective of this article is to survey what has been learned of morphogenesis of walled eucaryotic microorganisms as a set of problems in cellular heredity, biochemistry, physiology, and organization. Despite the diversity of microbial forms and habits, some common principles can be discerned. (i) That the form of each organism represents the expression of a genetic program is almost universally taken for granted. However, reflection on the findings with morphologically aberrant mutants suggests that the metaphor of a genetic program is misleading. Cellular form is generated by a web of interacting chemical and physical processes, whose every strand is woven of multiple gene products. The relationship between genes and form is indirect and cumulative; therefore, morphogenesis must be addressed as a problem not of molecular genetics but of cellular physiology. (ii) The shape of walled cells is determined by the manner in which the wall is laid down during growth and development. Turgor pressure commonly, perhaps always, supplies the driving force for surface enlargement. Cells yield to this scalar force by localized, controlled wall synthesis; their forms represent variations on the theme of local compliance with global force. (iii) Growth and division in bacteria display most immediately the interplay of hydrostatic pressure, localized wall synthesis, and structural constraints. Koch's surface stress theory provides a comprehensive and quantitative framework for understanding bacterial shapes. (iv) In the larger and more versatile eucaryotic cells, expansion is mediated by the secretion of vesicles. Secretion and ancillary processes, such as cytoplasmic transport, are spatially organized on the micrometer scale. The diversity of vectorial physiology and of the forms it generates is illustrated by examples: apical growth of fungal hyphae, bud formation in yeasts, germination of fucoid zygotes, and development of cells of Nitella, Closterium, and other unicellular algae. (v) Unicellular organisms, no less than embryos, have a remarkable capacity to impose spatial order upon themselves with or without the help of directional cues. Self-organization is reviewed here from two perspectives: the theoretical exploration of morphogens, gradients, and fields, and experimental study of polarization in Fucus cells, extension of hyphal tips, and pattern formation in ciliates. Here is the heart of the matter, yet self-organization remains nearly as mysterious as it was a century ago, a subject in search of a paradigm.
Collapse
Affiliation(s)
- F M Harold
- Department of Biochemistry, Colorado State University, Fort Collins 80523
| |
Collapse
|
40
|
Abstract
Thirteen temperature-sensitive lethal mutations of Salmonella typhimurium map near metC at 65 min and form the clmF (conditional lethal mutation) locus. The mutations in this region were ordered by three-point transduction crosses. After a shift to the nonpermissive temperature, many of these clmF mutants failed to complete the segregation of nucleoids into daughter cells; daughter nucleoids appeared incompletely separated and asymmetrically positioned within cells. Some clmF mutants showed instability of F' episomes at permissive growth temperatures yet showed no detectable defect with smaller multicopy plasmids such as pSC101 or pBR322. In addition, many of the clmF mutants rapidly lost viability yet continued DNA replication at the nonpermissive temperature. These results suggest that the clmF locus encodes at least one indispensable gene product that is required for faithful partitioning of the bacterial nucleoid and F-plasmid replicons.
Collapse
Affiliation(s)
- M B Schmid
- Department of Biology, Princeton University, New Jersey 08544
| |
Collapse
|
41
|
Lleo MM, Canepari P, Satta G. Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rod-shaped mutants from some wild-type cocci. J Bacteriol 1990; 172:3758-71. [PMID: 2361946 PMCID: PMC213354 DOI: 10.1128/jb.172.7.3758-3771.1990] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The two-competing-sites model for peptidoglycan assembly for bacterial cell shape regulation suggests that in rods, bacterial cell shape depends on the balance between two reactions (sites), one responsible for lateral wall elongation and the other responsible for septum formation. The two reactions compete with each other so that no lateral wall can be formed during septum formation and vice versa. When the site for lateral wall elongation overcomes that for septum formation, long rods or filaments are formed and cell division may be blocked. When the reaction leading to septum formation is hyperactive compared with the other, coccobacilli or cocci are formed. Other bacteria carry only one site for peptidoglycan assembly and can grow only as cocci. The two-competing-sites model predicts that two different types of cocci exist (among both morphology mutants and wild-type strains); one carries only the site for septum formation, whereas the other also carries the site for lateral wall elongation, the former site predominating over the latter. As a consequence of the inhibition (by antibiotics or by mutations) of septum formation in wild-type cocci of various species and in coccoid morphology mutants, some cocci are expected to undergo transition to rod shape and others are not. We have evaluated these predictions and show that they are in agreement. In fact, we found that among wild-type cocci belonging to 13 species, those of 6 species formed rods, whereas the remaining organisms maintained their coccal shape when septa were inhibited by antibiotics. Some coccoid morphology mutants of rod-shaped bacteria underwent coccus-to-rod transition after septum inhibition by antibiotics, whereas others maintained their coccal shape. When a mutation that causes septum inhibition was expressed in a morphology mutant of Klebsiella pneumoniae grown as a coccus, transition to rod shape was observed. A total of 914 mutants unable to form colonies at 42 degrees C were isolated from the coccoid species mentioned above. Between 75 and 95% of the mutants isolated from the species that formed rods when septum formation was inhibited by antibiotics but none of those isolated from the others underwent coccus-to-rod transition upon incubation at the nonpermissive temperature.
Collapse
Affiliation(s)
- M M Lleo
- Istituto di Microbiologia dell'Università di Verona, Italy
| | | | | |
Collapse
|
42
|
Koch AL. Additional arguments for the key role of "smart" autolysins in the enlargement of the wall of gram-negative bacteria. Res Microbiol 1990; 141:529-41. [PMID: 2218058 DOI: 10.1016/0923-2508(90)90017-k] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Because the wall of Gram-negative bacteria is thin, the mechanism for safe enlargement of the cell is subject to strong constraints. Several models for wall growth have been proposed; in the order that they have been proposed, these include: 1) an "allosteric" model in which the critical autolysin is only functional if the bond to be cleaved is near a covalently cross-linked, but unstretched oligopeptide; 2) a model in which the cell wall is thick enough to enlarge by the "inside-to-outside" mode characteristic of Gram-positive rods; 3) a "patches" model, recently proposed by Höltje, in which only parts of the cell wall are thickened at any one time; 4) a new multienzyme model in which the transpeptidase/autolysin complex cleaves one cross-linked oligopeptidoglycan chain for every two nascent chains covalently polymerized to the sacculus. These models are considered and contrasted. While none can be rigourously excluded, no. 4 is favoured. All models as applied to the Gram-negative rod-shaped bacteria require special, extraordinary features for their autolysins. These features have not been found with any other class of enzymes, but are essential to permit safe cell expansion.
Collapse
Affiliation(s)
- A L Koch
- Biology Department, Indiana University, Bloomington 47405
| |
Collapse
|
43
|
Gray KM, Ruby EG. Unbalanced growth as a normal feature of development of Bdellovibrio bacteriovorus. Arch Microbiol 1989; 152:420-4. [PMID: 2818131 DOI: 10.1007/bf00446922] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study we have investigated the rates and spatial patterns of chromosome replication and cell elongation during the growth phase of wild-type facultatively prey-independent mutant strains of Bdellovibrio bacteriovorus. For the facultatively prey-independent mutants, the total DNA content of synchronously growing cultures was found to increase exponentially, as the multiple chromosomes within each filamentous cell replicated simultaneously. Cell mass, measured as total cellular protein, also increased exponentially during this period, apparently by means of multiple elongation sites along the filament wall. The relative rates of DNA and protein synthesis were unbalanced during growth, however, with the cellular concentration of DNA increasing slightly faster than that of protein. The original cellular DNA: protein ratio was restored in the progeny cells by continued protein synthesis during the septation period that follows the termination of DNA replication. Because of technical problems, these experiments could not be conducted on the wild-type cells, but similar results are assumed. This unusual pattern of unbalanced growth may represent an adaptation by bdellovibrios to maximize their progeny yield from the determinate amount of substrate available within a given prey cell.
Collapse
Affiliation(s)
- K M Gray
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
44
|
Wientjes FB, Nanninga N. Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: concept of a leading edge. J Bacteriol 1989; 171:3412-9. [PMID: 2656655 PMCID: PMC210065 DOI: 10.1128/jb.171.6.3412-3419.1989] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The rate at which the peptidoglycan of Escherichia coli is synthesized during the division cycle was studied with two methods. One method involved synchronization of E. coli MC4100 lysA cultures by centrifugal elutriation and subsequent pulse-labeling of the synchronously growing cultures with [meso-3H]diaminopimelic acid ([3H]Dap). The second method was autoradiography of cells pulse-labeled with [3H]Dap. It was found that the peptidoglycan is synthesized at a more or less exponentially increasing rate during the division cycle with a slight acceleration in this rate as the cells start to constrict. Apparently, polar cap formation requires synthesis of extra surface components, presumably to accommodate for a change in the surface-to-volume ratio. Furthermore, it was found that the pool size of Dap was constant during the division cycle. Close analysis of the topography of [3H]Dap incorporation at the constriction site revealed that constriction proceeded by synthesis of peptidoglycan at the leading edge of the invaginating cell envelope. During constriction, no reallocation of incorporation occurred, i.e., the incorporation at the leading edge remained high throughout the process of constriction. Impairment of penicillin-binding protein 3 by mutation or by the specific beta-lactam antibiotic furazlocillin did not affect [3H]Dap incorporation during initiation of constriction. However, the incorporation at the constriction site was inhibited in later stages of the constriction process. It is concluded that during division at least two peptidoglycan-synthesizing systems are operating sequentially.
Collapse
Affiliation(s)
- F B Wientjes
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | |
Collapse
|
45
|
Chatterjee AP, Dasgupta A, Chatterjee AN. Spatial dependence of stress distribution for rod-shaped bacteria. J Theor Biol 1988; 135:309-21. [PMID: 3256723 DOI: 10.1016/s0022-5193(88)80247-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The stress distribution in the cylindrical portion of the cell envelope of a rod-shaped bacterial cell was compared with that at its polar ends. Using a symmetry argument it is shown that the critical internal pressure for the initiation of yielding of the envelope material has a non-uniform distribution and is significantly higher for the polar regions.
Collapse
Affiliation(s)
- A P Chatterjee
- Department of Chemistry, Indian Institute of Technology, Kanpur
| | | | | |
Collapse
|
46
|
|
47
|
Segregation of elongation potential inEscherichia coli mediated by thewee genetic system. Curr Microbiol 1988. [DOI: 10.1007/bf01570871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
|
49
|
Cooper S. Rate and topography of cell wall synthesis during the division cycle of Salmonella typhimurium. J Bacteriol 1988; 170:422-30. [PMID: 3275624 PMCID: PMC210659 DOI: 10.1128/jb.170.1.422-430.1988] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rates of synthesis of peptidoglycan and protein during the division cycle of Salmonella typhimurium have been measured by using the membrane elution technique and differentially labeled diaminopimelic acid and leucine. The cells were labeled during unperturbed exponential growth and then bound to a nitrocellulose membrane by filtration. Newborn cells were eluted from the membrane with fresh medium. The radioactivity in the newborn cells in successive fractions was determined. As the cells are eluted from the membrane as a function of their cell cycle age at the time of labeling, the rate of incorporation of the different radioactive compounds as a function of cell cycle age can be determined. During the first part of the division cycle, the ratio of the rates of protein and peptidoglycan synthesis was constant. During the latter part of the division cycle, there was an increase in the rate of peptidoglycan synthesis relative to the rate of protein synthesis. These results support a simple, bipartite model of cell surface increase in rod-shaped cells. Before the start of constriction, the cell surface increased only by cylindrical extension. After cell constriction started, the cell surface increased by both cylinder and pole growth. The increase in surface area was partitioned between the cylinder and the pole so that the volume of the cell increased exponentially. No variation in cell density occurred because the increase in surface allowed a continuous exponential increase in cell volume that accommodated the exponential increase in cell mass. Protein was synthesized exponentially during the division cycle. The rate of cell surface increase was described by a complex equation which is neither linear nor exponential.
Collapse
Affiliation(s)
- S Cooper
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| |
Collapse
|
50
|
Helmstetter CE, Leonard AC. Mechanism for chromosome and minichromosome segregation in Escherichia coli. J Mol Biol 1987; 197:195-204. [PMID: 3316668 DOI: 10.1016/0022-2836(87)90118-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A mechanism for the segregation of chromosomes and minichromosomes into daughter cells during division of Escherichia coli is presented. It is based on the idea that the cell envelope contains a large number of sites capable of binding to the chromosomal replication origin, oriC, and that a polymerizing DNA strand becomes attached to one of the sites at initiation of a round of replication. The attachment sites are distributed throughout the actively growing cell envelope, i.e. lateral envelope and septum, but not in the existing cell poles. This asymmetric distribution of oriC attachment sites accounts for the experimentally observed non-random chromosome and minichromosome segregation, and for the variation in the degree of non-random segregation with cell strain and growth rate. The multi-site attachment concept also accounts for the unstable maintenance of minichromosomes.
Collapse
Affiliation(s)
- C E Helmstetter
- Department of Experimental Biology, Roswell Park Memorial Institute, Buffalo, NY 14263
| | | |
Collapse
|