1
|
Chatterjee D, Panda AP, Daya Manasi AR, Ghosh AS. P-type ATPase zinc transporter Rv3270 of Mycobacterium tuberculosis enhances multi-drug efflux activity. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001441. [PMID: 38373028 PMCID: PMC10924464 DOI: 10.1099/mic.0.001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Metal homeostasis is maintained by the uptake, storage and efflux of metal ions that are necessary for the survival of the bacterium. Homeostasis is mostly regulated by a group of transporters categorized as ABC transporters and P-type ATPases. On the other hand, efflux pumps often play a role in drug-metal cross-resistance. Here, with the help of antibiotic sensitivity, antibiotic/dye accumulation and semi-quantitative biofilm formation assessments we report the ability of Rv3270, a P-type ATPase known for its role in combating Mn2+ and Zn2+ metal ion toxicity in Mycobacterium tuberculosis, in influencing the extrusion of multiple structurally unrelated drugs and enhancing the biofilm formation of Escherichia coli and Mycobacterium smegmatis. Overexpression of Rv3270 increased the tolerance of host cells to norfloxacin, ofloxacin, sparfloxacin, ampicillin, oxacillin, amikacin and isoniazid. A significantly lower accumulation of norfloxacin, ethidium bromide, bocillin FL and levofloxacin in cells harbouring Rv3270 as compared to host cells indicated its role in enhancing efflux activity. Although over-expression of Rv3270 did not alter the susceptibility levels of levofloxacin, rifampicin and apramycin, the presence of a sub-inhibitory concentration of Zn2+ resulted in low-level tolerance towards these drugs. Of note, the expression of Rv3270 enhanced the biofilm-forming ability of the host cells strengthening its role in antimicrobial resistance. Therefore, the study indicated that the over-expression of Rv3270 enhances the drug efflux activity of the micro-organism where zinc might facilitate drug-metal cross-resistance for some antibiotics.
Collapse
Affiliation(s)
- Debasmita Chatterjee
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aditya Prasad Panda
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - A. R. Daya Manasi
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Anindya S. Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Chumjan W, Sangchalee A, Somwang C, Mookda N, Yaikeaw S, Somsakeesit LO. Outer membrane protein N expressed in Gram-negative bacterial strain of Escherichia coli BL21 (DE3) Omp8 Rosetta strains under osmoregulation by salts, sugars, and pHs. PLoS One 2023; 18:e0288096. [PMID: 37535641 PMCID: PMC10399875 DOI: 10.1371/journal.pone.0288096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
This study presented the expression of the outer membrane protein N in E. coli BL21 (DE3) Omp8 Rosetta under its growth condition and by osmoregulation. The effects of osmotic stress caused by salts, sugars, or pH values on the survival of the target Gram-negative bacterial strain of E. coli BL21 (DE3) Omp8 Rosetta and OmpN expression remain unknown. Here, tryptone yeast extract with varied salts and concentrations was initially used to generate an LB broth medium. To show how salts and concentration affect bacterial growth, the optical density at 600 nm was measured. The findings supported the hypothesis that salts and concentrations control bacterial growth. Moreover, a Western blotting study revealed that OmpN overexpression was present in all tested salts after stimulation with both glucose and fructose after being treated individually with anti-OmpN and anti-histidine tag polyclonal antibodies on transferred nitrocellulose membrane containing crude OmpN. Following the presence of the plasmid pET21b(+)/ompN-BOR into E. coli BL21 (DE3) Omp8 Rosetta, which was expressed in the recombinant OmpN protein (BOR), OmpN expression was demonstrated for all monovalent cations as well as MgCl2. All of the tested salts, except for BaCl2, NaH2PO4, and KH2PO4, showed overexpression of recombinant BOR after Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. Using CH3COONa, both with and without IPTG induction, there was very little bacterial growth and no OmpN expression. With NaCl, a pH value of 7 was suitable for bacterial development, whereas KCl required a pH value of 8. According to this research, bacterial growth in addition to salts, sugars, and pH values influences how the OmpN protein is produced.
Collapse
Affiliation(s)
- Watcharin Chumjan
- Department of Chemistry, Rajamangala University of Technology Isan Khon Kaen Campus, Khon Kaen, Thailand
| | - Akira Sangchalee
- Department of Chemistry, Rajamangala University of Technology Isan Khon Kaen Campus, Khon Kaen, Thailand
| | - Cholthicha Somwang
- Department of Chemistry, Rajamangala University of Technology Isan Khon Kaen Campus, Khon Kaen, Thailand
| | - Nattida Mookda
- Department of Chemistry, Rajamangala University of Technology Isan Khon Kaen Campus, Khon Kaen, Thailand
| | - Sriwannee Yaikeaw
- Department of Chemistry, Rajamangala University of Technology Isan Khon Kaen Campus, Khon Kaen, Thailand
| | - La-Or Somsakeesit
- Department of Chemistry, Rajamangala University of Technology Isan Khon Kaen Campus, Khon Kaen, Thailand
| |
Collapse
|
3
|
Doranga S, Conway T. OmpC-Dependent Bile Tolerance Contributes to E. coli Colonization of the Mammalian Intestine. Microbiol Spectr 2023; 11:e0524122. [PMID: 37014216 PMCID: PMC10269588 DOI: 10.1128/spectrum.05241-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Escherichia coli persistently colonizes the mammalian intestine by mechanisms that are not fully understood. Previously, we found when streptomycin-treated mice were fed E. coli MG1655, the intestine selected for envZ missense mutants that outcompeted the wild type. The better-colonizing envZ mutants had a higher level of OmpC and reduced OmpF. This suggested the EnvZ/OmpR two-component system and outer membrane proteins play a role in colonization. In this study, we show that wild-type E. coli MG1655 outcompetes an envZ-ompR knockout mutant. Moreover, ompA and ompC knockout mutants are outcompeted by the wild type, while an ompF knockout mutant colonizes better than the wild type. Outer membrane protein gels show the ompF mutant overproduces OmpC. An ompC mutant is more sensitive to bile salts than the wild type and ompF mutant. The ompC mutant initiates colonization slowly because it is sensitive to physiological concentrations of bile salts in the intestine. Overexpression of ompC under the control of a constitutive promoter confers a colonization advantage only when ompF is deleted. These results indicate that fine-tuning of OmpC and OmpF levels is needed to maximize competitive fitness in the intestine. RNA sequencing reveals the EnvZ/OmpR two-component system is active in the intestine: ompC is upregulated and ompF is downregulated. While other factors could also contribute to the advantage provided by OmpC, we provide evidence that OmpC is important for E. coli to colonize the intestine because its smaller pore size excludes bile salts or other unknown toxic substances, while OmpF is deleterious because its larger pore size allows bile salts or other unknown toxic substances to enter the periplasm. IMPORTANCE Every mammalian intestine is colonized with Escherichia coli. Although E. coli is one of the most studied model organisms, how it colonizes the intestine is not fully understood. Here, we investigated the role of the EnvZ/OmpR two-component system and outer membrane proteins in colonization of the mouse intestine by E. coli. We report that an ompC mutant is a poor colonizer, while an ompF mutant, which overproduces OmpC, outcompetes the wild type. OmpF has a larger pore size that allows toxic bile salts or other toxic compounds into the cell and is deleterious for colonization of the intestine. OmpC has a smaller pore size and excludes bile salts. Our findings provide insights into why E. coli fine-tunes the levels of OmpC and OmpF during colonization via the EnvZ/OmpR two-component system.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Adhikary A, Chatterjee D, Ghosh AS. ABC superfamily transporter Rv1273c of Mycobacterium tuberculosis acts as a multidrug efflux pump. FEMS Microbiol Lett 2023; 370:fnad114. [PMID: 37881010 DOI: 10.1093/femsle/fnad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023] Open
Abstract
Efflux pump-mediated drug resistance in bacteria is a common occurrence effective for the general survival of the organism. The Mycobacterium tuberculosis genome has an abundance of adenosine triphosphate (ATP) dependent cassette transporter genes but only a handful of them are documented for their contribution to drug resistance. In this study, we inspected the potential of an ABC transporter Rv1273c from M. tuberculosis as a multidrug efflux pump and a contributor to intrinsic drug resistance. Expression of Rv1273c in Escherichia coli and M. smegmatis conferred tolerance to various structurally unrelated antibiotics. Lower accumulation of fluoroquinolones in intact E. coli and M. smegmatis cells expressing the transporter implied its active efflux activity. Energy-dependent efflux by Rv1273c was observed in real time using the lipophilic dye Nile Red. Expression of Rv1273c also resulted in an increase in biofilm formation by E. coli and M. smegmatis cells. Overall, the results indicate the possibility that Rv1273c might be a multidrug transporter with a wide substrate range and a probable contributor to biofilm formation.
Collapse
Affiliation(s)
- Anwesha Adhikary
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Debasmita Chatterjee
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Anindya Sundar Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
5
|
Adhikary A, Biswal S, Chatterjee D, Ghosh AS. A NiCoT family metal transporter of Mycobacterium tuberculosis (Rv2856/NicT) behaves as a drug efflux pump that facilitates cross-resistance to antibiotics. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36282241 DOI: 10.1099/mic.0.001260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metals often act as a facilitator in the proliferation and persistence of antibiotic resistance. Efflux pumps play key roles in the co-selection of metal and antibiotic resistance. Here, we report the ability of a putative nickel/cobalt transporter (NiCoT family), Rv2856 or NicT of Mycobacterium tuberculosis (Mtb), to transport metal and antibiotics and identified some key amino acid residues that are important for its function. Ectopic expression of NicT in Escherichia coli CS109 resulted in the increase of intracellular nickel uptake. Additionally, enhanced tolerance towards several antibiotics (norfloxacin, sparfloxacin, ofloxacin, gentamicin, nalidixic acid and isoniazid) was observed with NicT overexpression in E. coli and Mycobacterium smegmatis. A comparatively lower intracellular accumulation of norfloxacin upon NicT overexpression than that of the cells without NicT indicated the involvement of NicT in an active efflux process. Although expression of NicT did not alter the sensitivity towards kanamycin, doxycycline, tetracycline, apramycin, neomycin and ethambutol, the presence of a sub-inhibitory dose of Ni2+ resulted in the manifestation of low-level tolerance towards these drugs. Further, substitution of four residues (H77I, D82I, H83L and D227I) in the conserved regions of NicT by isoleucine and leucine resulted in reduced to nearly complete loss of the transport function for both metals and antimicrobials. Therefore, the study suggests that nickel transporter Rv2856/NicT may actively export different drugs and the presence of nickel might drive the cross-resistance to some of the antibiotics.
Collapse
Affiliation(s)
- Anwesha Adhikary
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Sarmistha Biswal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Debasmita Chatterjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
6
|
The Putative Major Facilitator Superfamily (MFS) Protein Named Rv1877 in Mycobacterium tuberculosis Behaves as a Multidrug Efflux Pump. Curr Microbiol 2022; 79:324. [PMID: 36125560 DOI: 10.1007/s00284-022-03021-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/30/2022] [Indexed: 11/03/2022]
Abstract
Efflux pumps are one of the major contributors in the intrinsic multidrug resistance of Mycobacterium tuberculosis. These active transporters, localized in the cytoplasmic membrane, often carry an array of unrelated substances, from toxic substances to metabolites and maintain cellular homeostasis. Rv1877, a putative Major Facilitator Superfamily efflux pump from M. tuberculosis, was investigated in this study. Expression of Rv1877 in Escherichia coli resulted in elevated resistance towards antibiotics of various families. A reversal of this resistance was observed in the presence of sub-inhibitory concentration of the uncoupler carbonyl cyanide-m-chlorophenylhydrazone, indicating its dependence on proton motive force (pmf). Lower intracellular accumulation of the fluoroquinolones ofloxacin and levofloxacin in E. coli cells harbouring Rv1877 implied an active efflux of the drugs. Interestingly, real time, energy-dependent efflux was demonstrated by cells expressing Rv1877 with a lipophilic dye Nile Red. In addition, expression of Rv1877 in trans increased the biofilm formation by the host E. coli cells. Moreover, in silico docking analysis of the molecular interactions between Rv1877 and antibiotics corroborated the experimental observations. Based on the in vivo analyses of Rv1877 in E. coli, it could be designated as a pmf-dependent multidrug transporter with the ability of extruding structurally unrelated antibiotics, preferably some of the fluoroquinolones, and a facilitator of biofilm formation.
Collapse
|
7
|
Alattas H, Wong S, Slavcev RA. Identification of Escherichia coli Host Genes That Influence the Bacteriophage Lambda (λ) T4 rII Exclusion (Rex) Phenotype. Genetics 2020; 216:1087-1102. [PMID: 33033112 PMCID: PMC7768251 DOI: 10.1534/genetics.120.303643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
The T4rII exclusion (Rex) phenotype is the inability of T4rII mutant bacteriophage to propagate in hosts (Escherichia coli) lysogenized by bacteriophage lambda (λ). The Rex phenotype, triggered by T4rII infection of a rex+ λ lysogen, results in rapid membrane depolarization imposing a harsh cellular environment that resembles stationary phase. Rex "activation" has been proposed as an altruistic cell death system to protect the λ prophage and its host from T4rII superinfection. Although well studied for over 60 years, the mechanism behind Rex still remains unclear. We have identified key nonessential genes involved in this enigmatic exclusion system by examining T4rII infection across a collection of rex+ single-gene knockouts. We further developed a system for rapid, one-step isolation of host mutations that could attenuate/abrogate the Rex phenotype. For the first time, we identified host mutations that influence Rex activity and rex+ host sensitivity to T4rII infection. Among others, notable genes include tolA, ompA, ompF, ompW, ompX, ompT, lpp, mglC, and rpoS They are critical players in cellular osmotic balance and are part of the stationary phase and/or membrane distress regulons. Based on these findings, we propose a new model that connects Rex to the σS, σE regulons and key membrane proteins.
Collapse
Affiliation(s)
- Hibah Alattas
- School of Pharmacy, University of Waterloo, Ontario N2L 3G1, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
8
|
Kortright KE, Chan BK, Turner PE. High-throughput discovery of phage receptors using transposon insertion sequencing of bacteria. Proc Natl Acad Sci U S A 2020; 117:18670-18679. [PMID: 32675236 PMCID: PMC7414163 DOI: 10.1073/pnas.2001888117] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As the most abundant microbes on Earth, novel bacteriophages (phages; bacteria-specific viruses) are readily isolated from environmental samples. However, it remains challenging to characterize phage-bacteria interactions, such as the host receptor(s) phages bind to initiate infection. Here, we tested whether transposon insertion sequencing (INSeq) could be used to identify bacterial genes involved in phage binding. As proof of concept, results showed that INSeq screens successfully identified genes encoding known receptors for previously characterized viruses of Escherichia coli (phages T6, T2, T4, and T7). INSeq screens were then used to identify genes involved during infection of six newly isolated coliphages. Results showed that candidate receptors could be successfully identified for the majority (five of six) of the phages; furthermore, genes encoding the phage receptor(s) were the top hit(s) in the analyses of the successful screens. INSeq screens provide a generally useful method for high-throughput discovery of phage receptors. We discuss limitations of our approach when examining uncharacterized phages, as well as usefulness of the method for exploring the evolution of broad versus narrow use of cellular receptors among phages in the biosphere.
Collapse
Affiliation(s)
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| | - Paul E Turner
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
9
|
Evaluation of Acquired Antibiotic Resistance in Escherichia coli Exposed to Long-Term Low-Shear Modeled Microgravity and Background Antibiotic Exposure. mBio 2019; 10:mBio.02637-18. [PMID: 30647159 PMCID: PMC6336426 DOI: 10.1128/mbio.02637-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stress factors experienced during space include microgravity, sleep deprivation, radiation, isolation, and microbial contamination, all of which can promote immune suppression (1, 2). Under these conditions, the risk of infection from opportunistic pathogens increases significantly, particularly during long-term missions (3). If infection occurs, it is important that the infectious agent should not be antibiotic resistant. Minimizing the occurrence of antibiotic resistance is, therefore, highly desirable. To facilitate this, it is important to better understand the long-term response of bacteria to the microgravity environment. This study demonstrated that the use of antibiotics as a preventive measure could be counterproductive and would likely result in persistent resistance to that antibiotic. In addition, unintended resistance to other antimicrobials might also occur as well as permanent genome changes that might have other unanticipated and undesirable consequences. The long-term response of microbial communities to the microgravity environment of space is not yet fully understood. Of special interest is the possibility that members of these communities may acquire antibiotic resistance. In this study, Escherichia coli cells were grown under low-shear modeled microgravity (LSMMG) conditions for over 1,000 generations (1000G) using chloramphenicol treatment between cycles to prevent contamination. The results were compared with data from an earlier control study done under identical conditions using steam sterilization between cycles rather than chloramphenicol. The sensitivity of the final 1000G-adapted strain to a variety of antibiotics was determined using Vitek analysis. In addition to resistance to chloramphenicol, the adapted strain acquired resistance to cefalotin, cefuroxime, cefuroxime axetil, cefoxitin, and tetracycline. In fact, the resistance to chloramphenicol and cefalotin persisted for over 110 generations despite the removal of both LSMMG conditions and trace antibiotic exposure. Genome sequencing of the adapted strain revealed 22 major changes, including 3 transposon-mediated rearrangements (TMRs). Two TMRs disrupted coding genes (involved in bacterial adhesion), while the third resulted in the deletion of an entire segment (14,314 bp) of the genome, which includes 14 genes involved with motility and chemotaxis. These results are in stark contrast with data from our earlier control study in which cells grown under the identical conditions without antibiotic exposure never acquired antibiotic resistance. Overall, LSMMG does not appear to alter the antibiotic stress resistance seen in microbial ecosystems not exposed to microgravity.
Collapse
|
10
|
Kipper K, Lundius EG, Ćurić V, Nikić I, Wiessler M, Lemke EA, Elf J. Application of Noncanonical Amino Acids for Protein Labeling in a Genomically Recoded Escherichia coli. ACS Synth Biol 2017; 6:233-255. [PMID: 27775882 DOI: 10.1021/acssynbio.6b00138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small synthetic fluorophores are in many ways superior to fluorescent proteins as labels for imaging. A major challenge is to use them for a protein-specific labeling in living cells. Here, we report on our use of noncanonical amino acids that are genetically encoded via the pyrrolysyl-tRNA/pyrrolysyl-RNA synthetase pair at artificially introduced TAG codons in a recoded E. coli strain. The strain is lacking endogenous TAG codons and the TAG-specific release factor RF1. The amino acids contain bioorthogonal groups that can be clicked to externally supplied dyes, thus enabling protein-specific labeling in live cells. We find that the noncanonical amino acid incorporation into the target protein is robust for diverse amino acids and that the usefulness of the recoded E. coli strain mainly derives from the absence of release factor RF1. However, the membrane permeable dyes display high nonspecific binding in intracellular environment and the electroporation of hydrophilic nonmembrane permeable dyes severely impairs growth of the recoded strain. In contrast, proteins exposed on the outer membrane of E. coli can be labeled with hydrophilic dyes with a high specificity as demonstrated by labeling of the osmoporin OmpC. Here, labeling can be made sufficiently specific to enable single molecule studies as exemplified by OmpC single particle tracking.
Collapse
Affiliation(s)
- Kalle Kipper
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ebba G. Lundius
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Vladimir Ćurić
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ivana Nikić
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Manfred Wiessler
- Biological
Chemistry, Deutsche Krebsforschungszentrum, Heidelberg, 69120, Germany
| | - Edward A. Lemke
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Johan Elf
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| |
Collapse
|
11
|
Klebsiella pneumoniae Major Porins OmpK35 and OmpK36 Allow More Efficient Diffusion of β-Lactams than Their Escherichia coli Homologs OmpF and OmpC. J Bacteriol 2016; 198:3200-3208. [PMID: 27645385 PMCID: PMC5105900 DOI: 10.1128/jb.00590-16] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/13/2016] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae, one of the most important nosocomial pathogens, is becoming a major problem in health care because of its resistance to multiple antibiotics, including cephalosporins of the latest generation and, more recently, even carbapenems. This is largely due to the spread of plasmid-encoded extended-spectrum β-lactamases. However, antimicrobial agents must first penetrate the outer membrane barrier in order to reach their targets, and hydrophilic and charged β-lactams presumably diffuse through the porin channels. Unfortunately, the properties of K. pneumoniae porin channels are largely unknown. In this study, we made clean deletions of K. pneumoniae porin genes ompK35 and ompK36 and examined the antibiotic susceptibilities and diffusion rates of β-lactams. The results showed that OmpK35 and OmpK36 produced larger more permeable channels than their Escherichia coli homologs OmpF and OmpC; OmpK35 especially produced a diffusion channel of remarkably high permeability toward lipophilic (benzylpenicillin) and large (cefepime) compounds. These results were also confirmed by expressing various porins in an E. coli strain lacking major porins and the major multidrug efflux pump AcrAB. Our data explain why the development of drug resistance in K. pneumoniae is so often accompanied by the mutational loss of its porins, especially OmpK35, in addition to the various plasmid-carried genes of antibiotic resistance, because even hydrolysis by β-lactamases becomes inefficient in producing high levels of resistance if the bacterium continues to allow a rapid influx of β-lactams through its wide porin channels. IMPORTANCE In Gram-negative bacteria, drugs must first enter the outer membrane, usually through porin channels. Thus, the quantitative examination of influx rates is essential for the assessment of resistance mechanisms, yet no such studies exist for a very important nosocomial pathogen, Klebsiella pneumoniae We found that the larger channel porin of this organism, OmpK35, produces a significantly larger channel than its Escherichia coli homolog, OmpF. This makes unmodified K. pneumoniae strains more susceptible to relatively large antibiotics, such as the third- and fourth-generation cephalosporins. Also, even the acquisition of powerful β-lactamases is not likely to make them fully resistant in the presence of such an effective influx process, explaining why so many clinical isolates of this organism lack porins.
Collapse
|
12
|
Kojima S, Nikaido H. High salt concentrations increase permeability through OmpC channels of Escherichia coli. J Biol Chem 2014; 289:26464-26473. [PMID: 25086034 DOI: 10.1074/jbc.m114.585869] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OmpF and OmpC porin channels are responsible for the passage of small hydrophilic solutes across the outer membrane of Escherichia coli. Although these channels are two of the most extensively studied porin channels, what had yet remained elusive was the reason why OmpC shows markedly lower permeability than OmpF, despite having little difference in its channel size. The OmpC channel, however, is known to contain a larger number of ionizable residues than the OmpF channel. In this study, we examined the channel property of OmpF and OmpC using the intact cell of E. coli, and we found that the permeability of several β-lactams and lactose through OmpC became increased to the level comparable with OmpF with up to 0.3 m salt that may increase the Debye-Hückel shielding or with 2% ethanol or 0.3 m urea that may perturb the short range ordering of water molecules. Replacing 10 pore-lining residues that show different ionization behavior between OmpC and OmpF led to substantial conversion of channel property with respect to their permeability and response to external salt concentration. We thus propose that the overall configuration of ionizable residues in the channel that may orient water molecules and the electrostatic profile of the channel play a decisive role in defining the channel property of the OmpC porin rather than its channel size.
Collapse
Affiliation(s)
- Seiji Kojima
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720.
| |
Collapse
|
13
|
Eliminating a set of four penicillin binding proteins triggers the Rcs phosphorelay and Cpx stress responses in Escherichia coli. J Bacteriol 2013; 195:4415-24. [PMID: 23893115 DOI: 10.1128/jb.00596-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin binding proteins (PBPs) are responsible for synthesizing and modifying the bacterial cell wall, and in Escherichia coli the loss of several nonessential low-molecular-weight PBPs gives rise to abnormalities in cell shape and division. To determine whether these proteins help connect the flagellar basal body to the peptidoglycan wall, we surveyed a set of PBP mutants and found that motility in an agar migration assay was compromised by the simultaneous absence of four enzymes: PBP4, PBP5, PBP7, and AmpH. A wild-type copy of any one of these restored migration, and complementation depended on the integrity of the PBP active-site serine. However, the migration defect was caused by the absence of flagella instead of improper flagellar assembly. Migration was restored if the flhDC genes were overexpressed or if the rcsB or cpxR genes were deleted. Thus, migration was inhibited because the Rcs and Cpx stress response systems were induced in the absence of these four specific PBPs. Furthermore, in this situation Rcs induction depended on the presence of CpxR. The results imply that small changes in peptidoglycan structure are sufficient to activate these stress responses, suggesting that a specific cell wall fragment may be the signal being sensed. The fact that four PBPs must be inactivated may explain why large perturbations to the envelope are required to induce stress responses.
Collapse
|
14
|
Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc Natl Acad Sci U S A 2013; 110:E2629-34. [PMID: 23798411 DOI: 10.1073/pnas.1310333110] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small, hydrophilic compounds such as β-lactams diffuse across the outer membrane of Gram-negative bacteria through porin channels, which were originally thought to be nonspecific channels devoid of any specificity. However, since the discovery of an ampicillin-binding site within the OmpF channel in 2002, much attention has been focused on the potential specificity of the channel, where the binding site was assumed either to facilitate or to retard the penetration of β-lactams. Since the earlier studies on porin permeability were done without the knowledge of the contribution of multidrug efflux pumps in the overall flux process across the cell envelope, in this study we have carefully studied both the porin permeability and active efflux of ampicillin and benzylpenicillin. We found that the influx occurs apparently by a spontaneous passive diffusion without any indication of specific binding within the concentration range relevant to the antibiotic action of these drugs, and that the higher permeability for ampicillin is totally as expected from the gross property of this drug as a zwitterionic compound. The active efflux by AcrAB was more effective for benzylpenicillin due to the stronger affinity and high degree of positive cooperativity. Our data now give a complete quantitative picture of the influx, efflux, and periplasmic degradation (catalyzed by AmpC β-lactamase) of these two compounds, and correlate closely with the susceptibility of Escherichia coli strains used here, thus validating not only our model but also the parameters obtained in this study.
Collapse
|
15
|
Cell sorting enriches Escherichia coli mutants that rely on peptidoglycan endopeptidases to suppress highly aberrant morphologies. J Bacteriol 2012; 195:855-66. [PMID: 23243305 DOI: 10.1128/jb.01450-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial morphology imparts physiological advantages to cells in different environments and, judging by the fidelity with which shape is passed to daughter cells, is a tightly regulated characteristic. Surprisingly, only in the past 10 to 15 years has significant headway been made in identifying the mechanisms by which cells create and maintain particular shapes. One reason for this is that the relevant discoveries have relied heavily on the arduous, somewhat subjective process of manual microscopy. Here, we show that flow cytometry, coupled with the sorting capability of fluorescence-activated cell sorting (FACS), can detect, quantify, and enrich bacteria with morphological alterations. The light scattering properties of several highly aberrant morphological mutants of Escherichia coli were characterized by flow cytometry. Cells from a region that overlapped the distribution of normal rod-shaped cells were collected by FACS and reincubated. After 4 to 15 iterations of this enrichment process, suppressor mutants were isolated that returned almost all the population to a near-normal shape. Suppressors were successfully isolated from strains lacking three or four penicillin binding proteins (PBPs) but not from a mutant lacking a total of seven PBPs. The peptidoglycan endopeptidase, AmpH, was identified as being important for the suppression process, as was a related endopeptidase, MepA. The results validate the use of cell sorting as a means for studying bacterial morphology and identify at least one new class of enzymes required for the suppression of cell shape defects.
Collapse
|
16
|
Arhin A, Boucher C. The outer membrane protein OprQ and adherence of Pseudomonas aeruginosa to human fibronectin. Microbiology (Reading) 2010; 156:1415-1423. [DOI: 10.1099/mic.0.033472-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Outer membrane proteins of the Gram-negative organism Pseudomonas aeruginosa play a significant role in membrane permeability, antibiotic resistance, nutrient uptake, and virulence in the infection site. In this study, we show that the P. aeruginosa outer membrane protein OprQ, a member of the OprD superfamily, is involved in the binding of human fibronectin (Fn). Some members of the OprD subfamily have been reported to be important in the uptake of nutrients from the environment. Comparison of wild-type and mutant strains of P. aeruginosa revealed that inactivation of the oprQ gene does not reduce the growth rate. Although it does not appear to be involved in nutrient uptake, an increased doubling time was reproducibly observed with the loss of OprQ in P. aeruginosa. Utilizing an oprQ–xylE transcriptional fusion, we determined that the PA2760 gene, encoding OprQ, was upregulated under conditions of decreased iron and magnesium. This upregulation appears to occur in early exponential phase. Insertional inactivation of PA2760 in the P. aeruginosa wild-type background did not produce a significant increase in resistance to any antibiotic tested, a phenotype that is typical of OprD family members. Interestingly, the in trans expression of OprQ in the ΔoprQ PAO1 mutant resulted in increased sensitivity to certain antibiotics. These findings suggest that OprQ is under dual regulation with other P. aeruginosa genes. Intact P. aeruginosa cells are capable of binding human Fn. We found that loss of OprQ resulted in a reduction of binding to plasmatic Fn in vitro. Finally, we present a discussion of the possible role of the P. aeruginosa outer membrane protein OprQ in adhesion to epithelial cells, thereby increasing colonization and subsequently enhancing lung destruction by P. aeruginosa.
Collapse
Affiliation(s)
- Abraham Arhin
- The University of Texas at Tyler, 3900 University Blvd, Tyler, TX 75701, USA
| | - Cliff Boucher
- The University of Texas at Tyler, 3900 University Blvd, Tyler, TX 75701, USA
| |
Collapse
|
17
|
Ishiwa A, Komano T. PilV Adhesins of Plasmid R64 Thin Pili Specifically Bind to the Lipopolysaccharides of Recipient Cells. J Mol Biol 2004; 343:615-25. [PMID: 15465049 DOI: 10.1016/j.jmb.2004.08.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 10/26/2022]
Abstract
IncI1 plasmid R64 encodes type IV pili or thin pili, which contain PilV adhesins. The C-terminal segments of PilV adhesins are exchanged into seven types by shufflon multiple DNA inversion. PilV adhesins determine recipient specificity in R64 liquid matings through the recognition of lipopolysaccharides (LPSs) on the surface of recipient cells. Using various waa mutants of Escherichia coli R1 as recipient cells, liquid mating experiments suggest that PilVA adhesin recognizes the GlcNAc(beta1-3)Glc moiety of E.coli R1 type LPS. The direct binding of PilV adhesins to LPSs of the recipient bacterial strains was demonstrated using filter overlay assays. The specificity of PilV-LPS binding is in close agreement with the recipient specificity determined by R64 liquid matings. The C-terminal segments of PilVA, PilVC, PilVC', and PilVD' adhesins were expressed as fusion proteins with glutathione-S-transferase (GST). GST-A, GST-C, GST-C', and GST-D' proteins bound to their respective LPSs with the specificities identical with those determined in the R64 liquid matings, indicating that the C-terminal segments of PilV adhesins bind to specific moieties of LPS molecules.
Collapse
Affiliation(s)
- Akiko Ishiwa
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
18
|
Ishiwa A, Komano T. Thin pilus PilV adhesins of plasmid R64 recognize specific structures of the lipopolysaccharide molecules of recipient cells. J Bacteriol 2003; 185:5192-9. [PMID: 12923092 PMCID: PMC181018 DOI: 10.1128/jb.185.17.5192-5199.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IncI1 plasmid R64 encodes a type IV pilus called a thin pilus, which includes PilV adhesins. Seven different sequences for the C-terminal segments of PilV adhesins can be produced by shufflon DNA rearrangement. The expression of the seven PilV adhesins determines the recipient specificity in liquid matings of plasmid R64. Salmonella enterica serovar Typhimurium LT2 was recognized by the PilVA' and PilVB' adhesins, while Escherichia coli K-12 was recognized by the PilVA', PilVC, and PilVC' adhesins. Lipopolysaccharide (LPS) on the surfaces of recipient cells was previously shown to be the specific receptor for the seven PilV adhesins. To identify the specific receptor structures of LPS for various PilV adhesins, R64 liquid matings were carried out with recipient cells consisting of various S. enterica serovar Typhimurium LT2 and E. coli K-12 waa mutants and their derivatives carrying various waa genes of different origins. From the mating experiments, including inhibition experiments, we propose that the GlcNAc(alpha1-2)Glc and Glc(alpha1-2)Gal structures of the LPS core of S. enterica serovar Typhimurium LT2 function as receptors for the PilVB' and PilVC' adhesins, respectively, while the PilVC' receptor in the wild-type LT2 LPS core may be masked. We further propose that the GlcNAc(beta1-7)Hep and Glc(alpha1-2)Glc structures of the LPS core of E. coli K-12 function as receptors for the PilVC and PilVC' adhesins, respectively.
Collapse
Affiliation(s)
- Akiko Ishiwa
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
19
|
Abstract
Mutations in the Salmonella enterica serovar Typhimurium ompC gene conferred resistance to Gifsy-1 and Gifsy-2 bacteriophages. Selection for complementing plasmids yielded clones of ompC. Introduction of an ompC clone into Escherichia coli conferred the ability to adsorb Gifsy phage. These data show that OmpC is the receptor for Gifsy-1 and Gifsy-2 phages.
Collapse
Affiliation(s)
- T D Ho
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
20
|
Henderson IR, Owen P. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR. J Bacteriol 1999; 181:2132-41. [PMID: 10094691 PMCID: PMC93626 DOI: 10.1128/jb.181.7.2132-2141.1999] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report the characterization of an Escherichia coli gene (agn43) which encodes the principal phase-variable outer membrane protein termed antigen 43 (Ag43). The agn43 gene encodes a precursor protein of 107 kDa containing a 52-amino-acid signal sequence. Posttranslational processing generates an alpha43 subunit (predicted Mr of 49,789) and a C-terminal domain (beta43) with features typical of a bacterial integral outer membrane protein (predicted Mr of 51, 642). Secondary structure analysis predicts that beta43 exists as an 18-stranded beta barrel and that Ag43 shows structural organization closely resembling that of immunoglobulin A1 protease type of exoprotein produced by pathogenic Neisseria and Haemophilus spp. The correct processing of the polyprotein to alpha43 and beta43 in OmpT, OmpP, and DegP protease-deficient E. coli strains points to an autocatalytic cleavage mechanism, a hypothesis supported by the occurrence of an aspartyl protease active site within alpha43. Ag43, a species-specific antigen, possesses two RGD motifs of the type implicated in binding to human integrins. The mechanism of reversible phase variation was studied by immunochemical analysis of a panel of well-defined regulatory mutants and by analysis of DNA sequences upstream of agn43. Evidence strongly suggests that phase variation is regulated by both deoxyadenosine methylase (Dam) and by OxyR. Thus, oxyR mutants are locked on for Ag43 expression, whereas dam mutants are locked off for Ag43 expression. We propose a novel mechanism for the regulation of phase switching in which OxyR competes with Dam for unmethylated GATC sites in the regulatory region of the agn43 gene.
Collapse
MESH Headings
- Adhesins, Bacterial
- Adhesins, Escherichia coli
- Amino Acid Sequence
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Base Sequence
- DNA, Bacterial
- DNA-Binding Proteins
- Enterobacteriaceae/genetics
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli Proteins
- Immunoglobulin A/chemistry
- Immunoglobulin A/genetics
- Molecular Sequence Data
- Protein Processing, Post-Translational
- Protein Structure, Secondary
- Repressor Proteins/metabolism
- Sequence Homology, Amino Acid
- Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- I R Henderson
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
21
|
Mills SD, Ruschkowski SR, Stein MA, Finlay BB. Trafficking of porin-deficient Salmonella typhimurium mutants inside HeLa cells: ompR and envZ mutants are defective for the formation of Salmonella-induced filaments. Infect Immun 1998; 66:1806-11. [PMID: 9529120 PMCID: PMC108127 DOI: 10.1128/iai.66.4.1806-1811.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Outer membrane porin genes of Salmonella typhimurium, including ompC, ompF, and tppB, are regulated by the products of ompB, a two-component regulatory locus encoding OmpR and EnvZ. S. typhimurium ompR mutants are attenuated in mice, but to date no one has studied the intracellular trafficking of S. typhimurium porin-deficient mutants. In this study, isogenic transposon mutants of S. typhimurium with insertions in ompR, envZ, ompF, ompC, ompD, osmZ, and tppB were compared with wild-type SL1344 for trafficking in the human epithelial cell line HeLa. We found that ompR and envZ mutants were reduced or completely inhibited for the formation of Salmonella-induced filaments (Sifs). This result was confirmed with an ompB deletion mutant. Sifs are tubular structures containing lysosomal glycoprotein which are induced specifically by intracellular Salmonella. Genetic analysis showed that the ompR mutation could be complemented in trans by cloned ompR to restore its ability to induce Sifs. In contrast, mutations in the known ompR-regulated genes ompF, ompC, and tppB (as well as the ompR-independent porin gene, ompD) had no effect on Sif formation relative to that of wild-type SL1344, thus indicating that OmpR does not exert its role on these genes to induce Sif formation. The omp mutants studied were able to invade and replicate in HeLa cells at levels comparable to those in wild-type SL1344. We conclude that OmpR and EnvZ appear to regulate Sif formation triggered by intracellular S. typhimurium.
Collapse
Affiliation(s)
- S D Mills
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
22
|
Inoue K, Matsuzaki H, Matsumoto K, Shibuya I. Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli. J Bacteriol 1997; 179:2872-8. [PMID: 9139902 PMCID: PMC179048 DOI: 10.1128/jb.179.9.2872-2878.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The amount of porin protein OmpF in the outer membrane of Escherichia coli was reduced to one-third by the pgsA3 mutation that diminishes the amount of phosphatidylglycerol and cardiolipin in the membrane, whereas a cls (cardiolipin synthase) null mutation had no effect. Osmoregulation of OmpF was functional in the pgsA3 mutant. As assessed by the beta-galactosidase activities of lacZ fusions, the ompF expression was not reduced at the transcriptional level but was reduced about threefold at the posttranscriptional level by pgsA3. This reduction was mostly restored by a micF null mutation, and the micF RNA that inhibits the ompF mRNA translation was present 1.3 to 1.4 times more in the pgsA3 mutant, as assayed by RNase protection and Northern blot analyses. Elevation of the level of micF RNA was not restricted to acidic-phospholipid deficiency: OmpF was hardly detected and micF RNA was present 2.7 to 2.8 times more in a pssA null mutant that lacked phosphatidylethanolamine. Other common phenotypes of pgsA3 and pssA null mutants, reduced rates of cell growth and phospholipid synthesis, were not the cause of micF activation. Salicylate, which activates micF expression and inhibits cell motility, did not repress the flagellar master operon. These results imply that an unbalanced phospholipid composition, rather than a decrease or increase in the amount of specific phospholipid species, induces a phospholipid-specific stress signal to which certain regulatory genes respond positively or negatively according to their intrinsic mechanisms.
Collapse
Affiliation(s)
- K Inoue
- Department of Biochemistry and Molecular Biology, Saitama University, Urawa, Japan
| | | | | | | |
Collapse
|
23
|
Abstract
Enteric bacteria such as Escherichia coli must tolerate high levels of bile salts, powerful detergents that disrupt biological membranes. The outer membrane barrier of gram-negative bacteria plays an important role in this resistance, but ultimately it can only retard the influx of bile salts. We therefore examined whether E. coli possessed an energy-dependent efflux mechanism for these compounds. Intact cells of E. coli K-12 appeared to pump out chenodeoxycholate, since its intracellular accumulation increased more than twofold upon deenergization of the cytoplasmic membrane by a proton conductor. Growth inhibition by bile salts and accumulation levels of chenodeoxycholate increased when mutations inactivating the acrAB and emrAB gene clusters were introduced. The AcrAB system especially appeared to play a significant role in bile acid efflux. However, another efflux system(s) also plays an important role, since the accumulation level of chenodeoxycholate increased strongly upon deenergization of acrA emrB double mutant cells. Everted membrane vesicles accumulated taurocholate in an energy-dependent manner, apparently consuming delta pH without affecting delta psi. The efflux thus appears to be catalyzed by a proton antiporter. Accumulation by the everted membrane vesicles was not decreased by mutations in acr and emrB genes and presumably reflects activity of the unknown system seen in intact cells. It followed saturation kinetics with Vmax and Km values in the neighborhood of 0.3 nmol min(-1) mg of protein(-1) and 50 microM, respectively.
Collapse
Affiliation(s)
- D G Thanassi
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206, USA
| | | | | |
Collapse
|
24
|
Bradford PA, Sanders CC. Development of test panel of beta-lactamases expressed in a common Escherichia coli host background for evaluation of new beta-lactam antibiotics. Antimicrob Agents Chemother 1995; 39:308-13. [PMID: 7726487 PMCID: PMC162532 DOI: 10.1128/aac.39.2.308] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A test panel of 35 different beta-lactamases expressed in a common Escherichia coli host was created to compare the effect that each beta-lactamase had on susceptibility to various beta-lactam antibiotics. A comparison of the MICs obtained with this panel generally reflected differences in the substrate profiles of the various beta-lactamases examined. In addition, several strains of the panel were subjected to selection with porin-specific bacteriophages to obtain mutants lacking either the OmpC or OmpF porin protein. A mutation in either OmpC or OmpF did change the susceptibilities of certain strains expressing beta-lactamase to certain beta-lactam antibiotics. However, the loss of a single porin did not predictably alter susceptibility to any given beta-lactam drug. This panel of strains producing various beta-lactamases was found to be a useful tool for comparing the effects of different beta-lactamases and outer membrane permeability upon susceptibility to beta-lactam drugs.
Collapse
Affiliation(s)
- P A Bradford
- Department of Medical Microbiology, Creighton University, Omaha, Nebraska 68178, USA
| | | |
Collapse
|
25
|
Chapman JS, Bertasso A, Cummings LM, Georgopapadakou NH. Low-level resistance to the cephalosporin 3'-quinolone ester Ro 23-9424 in Escherichia coli. Antimicrob Agents Chemother 1995; 39:564-6. [PMID: 7726536 PMCID: PMC162583 DOI: 10.1128/aac.39.2.564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Four spontaneous, single-step mutants of Escherichia coli K-12 resistant to low levels of the cephalosporin 3'-quinolone ester Ro 23-9424 were isolated at a frequency of 10(-10) to 10(-11) mutants per CFU plated. The mutants were cross-resistant to both cephalosporin (cefotaxime) and quinolone (fleroxacin) components. Accordingly, they had altered porins and replicative DNA biosynthesis resistant to fleroxacin. There was no increase in beta-lactamase activity when tested with nitrocephin, and the penicillin-binding protein profiles were normal.
Collapse
Affiliation(s)
- J S Chapman
- Roche Research Center, Nutley, New Jersey 07110, USA
| | | | | | | |
Collapse
|
26
|
Abstract
In Escherichia coli, OmpR and EnvZ comprise a two component regulatory system that controls the relative expression of the outer membrane porin proteins, OmpF and OmpC. In this system, OmpR functions as a transcriptional regulator, serving as an activator of ompC, and as both an activator and a repressor of ompF. Previous evidence suggests that OmpR-mediated transcriptional activation involves direct interaction between OmpR and the C-terminal domain of the alpha subunit of RNA polymerase. However, it has remained unclear what region(s) of OmpR is directly involved in this proposed interaction. Moreover, little else is known about how OmpR activates transcription. To identify residues important for transcriptional activation, we screened for mutations in ompR that render the protein specifically defective in its ability to activate transcription. The isolated ompR alleles were characterized through haploid and diploid analyses at both the ompF and ompC promoters, and through an in vivo DNA binding assay. Through this approach, we have identified five amino acid residues in OmpR that are specifically required for transcriptional activation; R42, P179, E193, A196 and E198. We propose that these mutations define a region(s) in OmpR that may contact the C-terminal domain of alpha to mediate transcriptional activation.
Collapse
Affiliation(s)
- L A Pratt
- Department of Molecular Biology, Princeton University, NJ 08544
| | | |
Collapse
|
27
|
Ramani N, Hedeshian M, Freundlich M. micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli. J Bacteriol 1994; 176:5005-10. [PMID: 7519595 PMCID: PMC196339 DOI: 10.1128/jb.176.16.5005-5010.1994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
micF RNA, produced from a multicopy plasmid, was originally shown to be a major factor in negative osmoregulation of the OmpF outer membrane protein in Escherichia coli. However, subsequent experiments with a micF deletion strain suggested that chromosomal micF RNA was not a key component in this process. We report here that micF RNA is essential for the reduction in OmpF levels in cells grown in media of low-to-intermediate levels of osmolarity. Under these conditions, the amount of OmpF was reduced up to 60% in the parent strain while OmpF levels were not altered in the micF deletion mutant. In medium of higher osmolarity, OmpF synthesis was strongly inhibited in both strains. RNA measurements showed that micF RNA levels rose rapidly in cells grown in low-to-intermediate levels of osmolarity concomitant with the reduction in OmpF protein, while ompF mRNA decreased strongly only during high-osmolarity conditions. Taken together, these results strongly suggest that the negative osmoregulation of OmpF at low-to-intermediate osmolarity levels requires micF RNA and that this is masked at higher osmolarity by the known strong inhibition of OmpF transcription by OmpR. Results consistent with this model were also obtained by using procaine, a compound reported to inhibit ompF expression by a mechanism very similar to that involved in osmoregulation.
Collapse
Affiliation(s)
- N Ramani
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
28
|
Kaufmann A, Stierhof YD, Henning U. New outer membrane-associated protease of Escherichia coli K-12. J Bacteriol 1994; 176:359-67. [PMID: 8288530 PMCID: PMC205058 DOI: 10.1128/jb.176.2.359-367.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene for a new outer membrane-associated protease, designated OmpP, of Escherichia coli has been cloned and sequenced. The gene encodes a 315-residue precursor protein possessing a 23-residue signal sequence. Including conservative substitutions and omitting the signal peptides, OmpP is 87% identical to the outer membrane protease OmpT. OmpP possessed the same enzymatic activity as OmpT. Immuno-electron microscopy demonstrated the exposure of the protein at the cell surface. Digestion of intact cells with proteinase K removed 155 N-terminal residues of OmpP, while the C-terminal half remained protected. It is possible that much of this N-terminal part is cell surface exposed and carries the enzymatic activity. Synthesis of OmpP was found to be thermoregulated, as is the expression of ompT (i.e., there is a low rate of synthesis at low temperatures) and, in addition, was found to be controlled by the cyclic AMP system.
Collapse
Affiliation(s)
- A Kaufmann
- Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | |
Collapse
|
29
|
Bernardini ML, Sanna MG, Fontaine A, Sansonetti PJ. OmpC is involved in invasion of epithelial cells by Shigella flexneri. Infect Immun 1993; 61:3625-35. [PMID: 8359885 PMCID: PMC281057 DOI: 10.1128/iai.61.9.3625-3635.1993] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Osmoregulation of the Shigella flexneri ompC gene and the role of OmpC in Shigella virulence have been investigated. OmpC was highly expressed when bacteria were grown in medium of either low or high osmolarity. This constitutive expression is in contrast with the regulation observed in Escherichia coli, in which the expression of OmpC is repressed at low osmolarity and induced at high osmolarity. In addition, the Shigella ompC gene was barely expressed by a delta ompB (delta ompR and delta envZ) mutant. We described in a previous report that such a mutant was severely impaired in virulence both in vitro and in vivo. Starting from this observation, and in order to assess which gene(s) regulated by ompR and envZ are involved in virulence, we constructed an S. flexneri delta ompC mutant. Three S. flexneri mutants, ompF'-lacZ, delta ompC, and delta ompB, were compared for virulence. The ompF'lacZ mutant behaved like the S. flexneri serotype 5 wild-type strain M90T in all in vitro and in vivo virulence tests. On the contrary, the delta ompB and delta ompC strains were considerably impaired in their virulence phenotypes. The ability of these two mutants to spread from cell to cell and to kill epithelial cells was severely affected. Consequently delta ompC, as previously described for delta ompB, was unable to elicit a positive Sereny test. The delta ompB mutant was restored to virulence by introducing a recombinant multicopy plasmid carrying the cloned E. coli ompC gene, indicating that a functional OmpC protein was necessary and sufficient to restore virulence to this mutant of S. flexneri.
Collapse
Affiliation(s)
- M L Bernardini
- Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale, U 199, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
30
|
Klena JD, Schnaitman CA. Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by Shigella dysenteriae 1. Mol Microbiol 1993; 9:393-402. [PMID: 7692219 DOI: 10.1111/j.1365-2958.1993.tb01700.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A plasmid that included both an 8.9 kb chromosomal DNA insert containing genes from the rfb cluster of Shigella dysenteriae 1 and a smaller insert containing the rfp gene from a S. dysenteriae 1 multicopy plasmid resulted in efficient expression of O antigen in an rfb-deleted strain of Escherichia coli K-12. Eight genes were identified in the rfb fragment: the rfbB-CAD cluster which encodes dTDP-rhamnose synthesis, rfbX which encodes a hydrophobic protein involved in assembly of the O antigen, rfc which encodes the O antigen polymerase, and two sugar transferase genes. The production of an O antigen also required the E. coli K-12 rfe gene, which is known to encode a transferase which adds N-acetylglucosamine phosphate to the carrier lipid undecaprenol phosphate. Thus Rfe protein appears to function as an analogue of the Salmonella RfbP protein to provide the first sugar of the O unit. Functional analysis of the other genes was facilitated by the fact that partial O units of one, two or three sugars were efficiently transferred to the lipopolysaccharide core. This analysis indicated that the plasmid-encoded Rfp protein is the transferase that adds the second sugar of the O unit while the two rfb transferases add the distal sugars to make an O antigen whose structure is (Rha-Rha-Gal-GlcNAc)n. The use of the rfe gene product as the transferase that adds the first sugar of an O unit is a novel mechanism which may be used for the synthesis of other enteric O antigens.
Collapse
Affiliation(s)
- J D Klena
- Department of Microbiology, Arizona State University, Tempe 85287
| | | |
Collapse
|
31
|
Rivera M, Bertasso A, McCaffrey C, Georgopapadakou NH. Porins and lipopolysaccharide of Escherichia coli ATCC 25922 and isogenic rough mutants. FEMS Microbiol Lett 1993; 108:183-7. [PMID: 8387443 DOI: 10.1111/j.1574-6968.1993.tb06096.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The lipopolysaccharide and porin profile of Escherichia coli ATCC 25922, a smooth strain commonly used in antibiotic susceptibility testing, and five isogenic rough mutants was examined. The lipopolysaccharide of the parent strain had the characteristic ladder pattern on polyacrylamide gels, while that of the mutants appeared similar to chemotypes Ra and Rc of Salmonella typhimurium with some changes in chemical composition. Of the porins, OmpC appeared markedly reduced in the parent strain while OmpF appeared markedly reduced in the mutants. In addition, a new outer-membrane protein of size intermediate to that of OmpC and OmpF was detected in all mutants. Neither parent nor mutants were susceptible to the LPS core-specific P1 phage or the porin-specific PA2 and K20 phages.
Collapse
Affiliation(s)
- M Rivera
- Roche Research Center, Nutley, New Jersey
| | | | | | | |
Collapse
|
32
|
Bernard P, Couturier M. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 1992; 226:735-45. [PMID: 1324324 DOI: 10.1016/0022-2836(92)90629-x] [Citation(s) in RCA: 350] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Escherichia coli, the miniF plasmid CcdB protein is responsible for cell death when its action is not prevented by polypeptide CcdA. We report the isolation, localization, sequencing and properties of a bacterial mutant resistant to the cytotoxic activity of the CcdB protein. This mutation is located in the gene encoding the A subunit of topoisomerase II and produces an Arg462----Cys substitution in the amino acid sequence of the GyrA polypeptide. Hence, the mutation was called gyrA462. We show that in the wild-type strain, the CcdB protein promotes plasmid linearization; in the gyrA462 strain, this double-stranded DNA cleavage is suppressed. This indicates that the CcdB protein is responsible for gyrase-mediated double-stranded DNA breakage. CcdB, in the absence of CcdA, induces the SOS pathway. SOS induction is a biological response to DNA-damaging agents. We show that the gyrA462 mutation suppresses this SOS activation, indicating that SOS induction is a consequence of DNA damages promoted by the CcdB protein on gyrase-DNA complexes. In addition, we observe that the CcdBS sensitive phenotype dominates over the resistant phenotype. This is better explained by the conversion, in gyrA+/gyrA462 merodiploid strains, of the wild-type gyrase into a DNA-damaging agent. These results strongly suggest that the CcdB protein, like quinolone antibiotics and a variety of antitumoral drugs, is a DNA topoisomerase II poison. This is the first proteinic poison-antipoison mechanism that has been found to act via the DNA topoisomerase II.
Collapse
Affiliation(s)
- P Bernard
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|
33
|
Stein MA, McAllister SA, Torian BE, Diedrich DL. Acquisition of apparently intact and unmodified lipopolysaccharides from Escherichia coli by Bdellovibrio bacteriovorus. J Bacteriol 1992; 174:2858-64. [PMID: 1373716 PMCID: PMC205937 DOI: 10.1128/jb.174.9.2858-2864.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability of Bdellovibrio bacteriovorus to relocalize the OmpF major outer membrane porins from its Escherichia coli prey to its own outer membranes is diminished in prey expressing smooth lipopolysaccharide (S-LPS). Since porins exist in the membrane complexed with LPS, we examined the LPS associated with relocalized porin to determine whether it had been acquired intact, mixed or replaced with Bdellovibrio LPS, or derivatized by the bdellovibrios. The relocalized trimers were found associated with the same LPS originally bound to them in the E. coli. The bulk-phase LPS from bdellovibrios grown on various chemotypes of rough prey was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine whether more than the trimer-bound LPS was acquired by the bdellovibrios. This analysis revealed bands of Bdellovibrio LPS matching the LPS chemotype of the prey. One or two other bands were identical in migration to the LPS of prey-independent mutants of B. bacteriovorus and represented bdellovibrio-synthesized LPS. The LPS of bdellovibrios grown on prey with radiolabeled lipid A showed radioactivity only in gel band positions identical with those of the prey's LPS. The amount of this prey-derived LPS was shown by enzyme-linked immunosorbent assay to reach a constant value during the purification of the bdellovibrios, and it represented approximately 25% of the total Bdellovibrio LPS. Immunoelectron microscopy confirmed the presence of prey-derived LPS on the cell surface of bdellovibrios, and no evidence could be found for bdellovibrio-induced modifications of the relocalized prey LPS.
Collapse
Affiliation(s)
- M A Stein
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Medical Center, New Orleans 70112-1393
| | | | | | | |
Collapse
|
34
|
|
35
|
Russo FD, Silhavy TJ. EnvZ controls the concentration of phosphorylated OmpR to mediate osmoregulation of the porin genes. J Mol Biol 1991; 222:567-80. [PMID: 1660927 DOI: 10.1016/0022-2836(91)90497-t] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osmoregulation of the bacterial porin genes ompF and ompC is controlled by a two-component regulatory system. EnvZ, the sensor component of this system, is capable both of phosphorylating and dephosphorylating OmpR, the effector component. Mutations were isolated in envZ that abolish the expression of both porin genes. These mutants appear to have lost the kinase activity of EnvZ while retaining their phosphatase activity, so that in their presence OmpR is completely unphosphorylated. The behavior of these mutants in haploid, and in diploid with other envZ alleles, is consistent with a model in which EnvZ mediates osmoregulation by controlling the concentration of a single species. OmpR-P.
Collapse
Affiliation(s)
- F D Russo
- Department of Molecular Biology, Princeton University, NJ 08544
| | | |
Collapse
|
36
|
Slauch JM, Russo FD, Silhavy TJ. Suppressor mutations in rpoA suggest that OmpR controls transcription by direct interaction with the alpha subunit of RNA polymerase. J Bacteriol 1991; 173:7501-10. [PMID: 1657891 PMCID: PMC212516 DOI: 10.1128/jb.173.23.7501-7510.1991] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have isolated mutations in rpoA, the gene encoding the alpha subunit of RNA polymerase, that specifically affect transcriptional control by OmpR and EnvZ, the two-component regulatory system that controls porin gene expression in Escherichia coli. Characterization of these mutations and a previously isolated rpoA allele suggests that both positive and negative regulation of porin gene transcription involves a direct interaction between OmpR and RNA polymerase through the alpha subunit. Several of the rpoA mutations cluster in the carboxy-terminal portion of the alpha protein, further suggesting that it is this domain of alpha that is involved in interaction with OmpR and perhaps other transcriptional regulators as well.
Collapse
Affiliation(s)
- J M Slauch
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, New Jersey 08544-1014
| | | | | |
Collapse
|
37
|
Benson SA, DeCloux AM, Munro J. Mutant bias in nonlethal selections results from selective recovery of mutants. Genetics 1991; 129:647-58. [PMID: 1661253 PMCID: PMC1204732 DOI: 10.1093/genetics/129.3.647] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have characterized a nonlethal selection for mutations that allow Escherichia coli to grow on large maltodextrins (Dex+) in the absence of the lamB encoded maltoporin LamB. These Dex+ mutations occur before and after imposition of the selection and the selection does not result in a general increase in mutagenesis. The recovered Dex+ mutations are almost exclusively mutations that alter the ompF gene that encodes a major E. coli porin, OmpF even though analogous mutations in the homologous ompC gene, which encodes the OmpC porin, can confer a Dex+ phenotype. We show that the bias for ompF mutations results from a biased recovery and that the genetic background of the starting strain and the selection itself influences the type of mutants that are recovered. When we use a strain carrying an amber mutation in the lamB gene we observe the same preference for ompF mutations as when we start with a lamB deletion strain. In addition, we show that there is no preferential mutagenesis of the lamB gene during the selection which induces transcription of the lamB gene. We present evidence that the biased recovery of mutants observed in this selection does not result from adaptive or directed mutagenesis and that the phenotypic fitness which allows recovery of Dex+ mutants involves more than the increased ability to take up maltodextrins.
Collapse
Affiliation(s)
- S A Benson
- Department of Microbiology, University of Maryland, College Park 20742-4451
| | | | | |
Collapse
|
38
|
Slauch JM, Silhavy TJ. cis-acting ompF mutations that result in OmpR-dependent constitutive expression. J Bacteriol 1991; 173:4039-48. [PMID: 1648075 PMCID: PMC208052 DOI: 10.1128/jb.173.13.4039-4048.1991] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OmpR and EnvZ differentially control the transcription of the major outer membrane porin genes, ompF and ompC, in Escherichia coli in response to the osmolarity of the medium. We have previously provided evidence that OmpR works both positively and negatively at the ompF promoter to give the characteristic switch from OmpF to OmpC production with increasing osmolarity. Here, we describe the isolation of cis-acting ompF mutations that affect negative regulation by OmpR by affecting the three-dimensional structure of the promoter region as measured by agarose gel mobility. These results further clarify the mechanism by which OmpR negatively regulates ompF expression, suggesting a model in which OmpR forms a repressive loop in the ompF promoter region.
Collapse
Affiliation(s)
- J M Slauch
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, New Jersey 08544-1014
| | | |
Collapse
|
39
|
Pace J, Bertasso A, Georgopapadakou NH. Escherichia coli resistant to cephalosporins and quinolones is still susceptible to the cephalosporin-quinolone ester Ro 23-9424. Antimicrob Agents Chemother 1991; 35:910-5. [PMID: 1649574 PMCID: PMC245128 DOI: 10.1128/aac.35.5.910] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ro 23-9424 is a broad-spectrum antibacterial agent consisting of a cephalosporin (desacetylcefotaxime) linked through an ester bond to a fluoroquinolone (fleroxacin). Its activity against mutants of Escherichia coli TE18 resistant to both antibacterial components was examined. E. coli TE18 overproduces the AmpC beta-lactamase and is resistant to several cephalosporins, including desacetylcefotaxime (MIC, 50 micrograms/ml), although it is still susceptible to Ro 23-9424 (MIC, 0.2 microgram/ml). Thirty-five spontaneous, two-step mutants of E. coli TE18 which were resistant to fleroxacin (MIC, 50 micrograms/ml) were isolated. In the mutants, replicative DNA biosynthesis (permeabilized cells) was resistant to fleroxacin, and some mutants had porin abnormalities. However, all remained susceptible to Ro 23-9424 (MIC, 0.5 microgram/ml). Examination of beta-lactamase activity in the parent strain revealed that it hydrolyzes desacetylcefotaxime more rapidly than it does Ro 23-9424. Thus, Ro 23-9424 may be less susceptible to the gram-negative, chromosomal beta-lactamases that hydrolyze several broad-spectrum cephalosporins and may be effective in cases in which neither of its two components is active.
Collapse
Affiliation(s)
- J Pace
- Roche Research Center, Hoffmann-La Roche, Inc., Nutley, New Jersey 07110-1199
| | | | | |
Collapse
|
40
|
Diedrich DL, Stein MA, Schnaitman CA. Associations of Escherichia coli K-12 OmpF trimers with rough and smooth lipopolysaccharides. J Bacteriol 1990; 172:5307-11. [PMID: 2168378 PMCID: PMC213194 DOI: 10.1128/jb.172.9.5307-5311.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The associations of both rough and smooth lipopolysaccharides (LPS) with the OmpF porin of Escherichia coli K-12 were examined in galE strains deleted for ompC. Transformation with pSS37 and growth with galactose conferred the ability to assemble a Shigella dysenteriae O antigen onto the core oligosaccharide of E. coli K-12 LPS. The association of LPS with OmpF trimers was assessed by staining, autoradiography of LPS specifically labeled with [1-14C]galactose, and Western immunoblotting with a monoclonal antibody specific for OmpF trimers. These techniques revealed that the migration distances and multiple banding patterns of OmpF porin trimers in sodium dodecyl sulfate-polyacrylamide gels were dictated by the chemotype of associated LPS. Expression of smooth LPS caused almost all of the trimeric OmpF to run in gels with a slower mobility than trimers from rough strains. The LPS associated with trimers from a smooth strain differed from the bulk-phase LPS by consisting almost exclusively of molecules with O antigen.
Collapse
Affiliation(s)
- D L Diedrich
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Medical Center, New Orleans 70112-1393
| | | | | |
Collapse
|
41
|
Bradbeer C, Gudmundsdottir A. Interdependence of calcium and cobalamin binding by wild-type and mutant BtuB protein in the outer membrane of Escherichia coli. J Bacteriol 1990; 172:4919-26. [PMID: 2168369 PMCID: PMC213146 DOI: 10.1128/jb.172.9.4919-4926.1990] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The binding of calcium and cobalamin to outer membranes from cells of Escherichia coli that contained amplified levels of wild-type or mutant btuB was studied. The mutant (BBam50) had an aspartyl-prolyl dipeptide inserted after the original 50th amino acid residue of the mature BtuB protein, which is within a region that shows extensive homology with the ferric siderophore receptors. This insertion resulted in cleavage of the BtuB in two places. The larger form retained the insertion but had lost 11 amino acid residues from the amino terminus. The smaller form was cut at the insertion site. Both the wild-type protein and the larger form of mutant BtuB showed calcium-dependent cobalamin binding with the same affinity for cobalamin, although the mutant had a much lower affinity for calcium. The smaller form of the mutant BtuB protein had a greatly reduced affinity for cobalamin, which was probably the result of inactivation of the cobalamin-dependent calcium-binding site. Cobalamin-dependent calcium binding was measured in wild-type BtuB preparations and was found to have the same corrinoid specificity and response to various corrinoid concentrations as shown previously for cobalamin binding. The results are consistent with a role for calcium in the cobalamin pump of the outer membrane of E. coli and show that a conserved part of the BtuB protein is required for the cobalamin-dependent binding of calcium.
Collapse
Affiliation(s)
- C Bradbeer
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville 22908
| | | |
Collapse
|
42
|
Austin EA, Graves JF, Hite LA, Parker CT, Schnaitman CA. Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: insertion mutagenesis of the rfa locus. J Bacteriol 1990; 172:5312-25. [PMID: 2168379 PMCID: PMC213195 DOI: 10.1128/jb.172.9.5312-5325.1990] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tn10 insertions were selected on the basis of resistance to the lipopolysaccharide (LPS)-specific bacteriophage U3. The majority of these were located in a 2-kilobase region within the rfa locus, a gene cluster of about 18 kb that contains genes for LPS core biosynthesis. The rfa::Tn10 insertions all exhibited a deep rough phenotype that included hypersensitivity to hydrophobic antibiotics, a reduction in major outer membrane proteins, and production of truncated LPS. These mutations were complemented by a Clarke-Carbon plasmid known to complement rfa mutations of Salmonella typhimurium, and analysis of the insert from this plasmid showed that it contained genes for at least six polypeptides which appear to be arranged in the form of a complex operon. Defects in two of these genes were specifically implicated as the cause of the deep rough phenotype. One of these appeared to be rfaG, which encodes a function required for attachment of the first glucose residue to the heptose region of the core. The other gene did not appear to be directly involved in determination of the sugar composition of the core. We speculate that the product of this gene is involved in the attachment of phosphate or phosphorylethanolamine to the core and that it is the lack of one of these substituents which results in the deep rough phenotype.
Collapse
Affiliation(s)
- E A Austin
- Department of Microbiology, University of Virginia Medical School, Charlottesville 22908
| | | | | | | | | |
Collapse
|
43
|
Stein MA, McAllister SA, Johnston KH, Diedrich DL. Detection of lipopolysaccharides blotted to polyvinylidene difluoride membranes. Anal Biochem 1990; 188:285-7. [PMID: 2221377 DOI: 10.1016/0003-2697(90)90607-b] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial lipopolysaccharide (LPS) blotted to polyvinylidene difluoride (PVDF) membranes was detected by a technique adapted from current methodologies used to detect glycoproteins. PVDF-bound LPS was coupled to a hapten and localized on the membrane by Western blotting with an antibody-alkaline phosphatase conjugate specific for the hapten. Immobilon blots could be made reversibly transparent for photography and densitometry.
Collapse
Affiliation(s)
- M A Stein
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Medical Center, New Orleans 70112-1393
| | | | | | | |
Collapse
|
44
|
Ingham C, Buechner M, Adler J. Effect of outer membrane permeability on chemotaxis in Escherichia coli. J Bacteriol 1990; 172:3577-83. [PMID: 1694521 PMCID: PMC213330 DOI: 10.1128/jb.172.7.3577-3583.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The relationship between outer membrane permeability and chemotaxis in Escherichia coli was studied on mutants in the major porin genes ompF and ompC. Both porins allowed passage of amino acids across the outer membrane sufficiently to be sensed by the methyl-accepting chemotaxis proteins, although OmpF was more effective than OmpC. A mutant deleted for both ompF and ompC, AW740, was almost completely nonchemotactic to amino acids in spatial assays. AW740 required greater stimulation with L-aspartate than did the wild type to achieve full methylation of methyl-accepting chemotaxis protein II. Induction of LamB protein allowed taxis to maltose but not to L-aspartate, which indicates that the maltoporin cannot rapidly pass aspartate. Salt taxis was less severely inhibited by the loss of porins than was amino acid taxis, which implies an additional mechanism of outer membrane permeability. These results show that chemotaxis can be used as a sensitive in vivo assay for outer membrane permeability to a range of compounds and imply that E. coli can regulate chemotactic sensitivity by altering the porin composition of the outer membrane.
Collapse
Affiliation(s)
- C Ingham
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
45
|
Gudmundsdottir A, Bell PE, Lundrigan MD, Bradbeer C, Kadner RJ. Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport. J Bacteriol 1989; 171:6526-33. [PMID: 2687240 PMCID: PMC210543 DOI: 10.1128/jb.171.12.6526-6533.1989] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Uptake of cobalamins and iron chelates in Escherichia coli K-12 is dependent on specific outer membrane transport proteins and the energy-coupling function provided by the TonB protein. The btuB product is the outer membrane receptor for cobalamins, bacteriophage BF23, and the E colicins. A short sequence near the amino terminus of mature BtuB, previously called the TonB box, is conserved in all tonB-dependent receptors and colicins and is the site of the btuB451 mutation (Leu-8----Pro), which prevents energy-coupled cobalamin uptake. This phenotype is partially suppressed by certain mutations in tonB. To examine the role of individual amino acids in the TonB box of BtuB, more than 30 amino acid substitutions in residues 6 to 13 were generated by doped oligonucleotide-directed mutagenesis. Many of the mutations affecting each amino acid did not impair transport activity, although some substitutions reduced cobalamin uptake and the Leu-8----Pro and Val-10----Gly alleles were completely inactive. To test whether the btuB451 mutation affects only cobalamin transport, a hybrid gene was constructed which encodes the signal sequence and first 39 residues of BtuB fused to the bulk of the ferrienterobactin receptor FepA (residues 26 to 723). This hybrid protein conferred all FepA functions but no BtuB functions. The presence of the btuB451 mutation in this fusion gene eliminated all of its tonB-coupled reactions, showing that the TonB box of FepA could be replaced by that from BtuB. These results suggest that the TonB-box region of BtuB is involved in active transport in a manner dependent not on the identity of specific side chains but on the local secondary structure.
Collapse
Affiliation(s)
- A Gudmundsdottir
- Department of Microbiology, School of Medicine, University of Virginia, Charlottesville 22908
| | | | | | | | | |
Collapse
|
46
|
Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53:450-90. [PMID: 2556636 PMCID: PMC372749 DOI: 10.1128/mr.53.4.450-490.1989] [Citation(s) in RCA: 915] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry.
Collapse
|
47
|
Slauch JM, Silhavy TJ. Genetic analysis of the switch that controls porin gene expression in Escherichia coli K-12. J Mol Biol 1989; 210:281-92. [PMID: 2557454 DOI: 10.1016/0022-2836(89)90330-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The two-component regulatory system, OmpR and EnvZ, in Escherichia coli controls the differential expression of ompF and ompC in response to medium osmolarity. Previous studies suggest that EnvZ functions as a membrane sensor relaying information to the DNA-binding protein, OmpR, which in turn activates expression of the appropriate promoter. A strategy has been devised to isolate and characterize a collection of missense mutations in ompR that alter, but do not abolish protein function. Mutants were isolated using strains that contain the ompR and envZ genes in separate chromosomal locations yet maintain the production of both regulatory proteins at physiological levels. Such an arrangement facilitates ompR diploid analysis and tests of epistasis with known envZ mutations. The data obtained indicate that OmpR works in both a positive and negative fashion to control the transcription of ompF and this result forms the basis of a model for porin regulation that explains the switch from OmpF to OmpC production in response to increasing medium osmolarity.
Collapse
Affiliation(s)
- J M Slauch
- Department of Biology, Princeton University, NJ 08544
| | | |
Collapse
|
48
|
Abstract
The capacity of organisms to respond to fluctuations in their osmotic environments is an important physiological process that determines their abilities to thrive in a variety of habitats. The primary response of bacteria to exposure to a high osmotic environment is the accumulation of certain solutes, K+, glutamate, trehalose, proline, and glycinebetaine, at concentrations that are proportional to the osmolarity of the medium. The supposed function of these solutes is to maintain the osmolarity of the cytoplasm at a value greater than the osmolarity of the medium and thus provide turgor pressure within the cells. Accumulation of these metabolites is accomplished by de novo synthesis or by uptake from the medium. Production of proteins that mediate accumulation or uptake of these metabolites is under osmotic control. This review is an account of the processes that mediate adaptation of bacteria to changes in their osmotic environment.
Collapse
|
49
|
Chapman JS, Bertasso A, Georgopapadakou NH. Fleroxacin resistance in Escherichia coli. Antimicrob Agents Chemother 1989; 33:239-41. [PMID: 2541657 PMCID: PMC171465 DOI: 10.1128/aac.33.2.239] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spontaneous fleroxacin-resistant mutants of Escherichia coli K-12 were isolated at a frequency of 10(-10) to 10(-11) mutants per CFU plated. All mutants exhibited quinolone-resistant replicative DNA biosynthesis, and 4 of 11 mutants also had decreased amounts of OmpF or OmpC porin. None of the mutants had changes solely in porin proteins.
Collapse
Affiliation(s)
- J S Chapman
- Roche Research Center, Nutley, New Jersey 07110
| | | | | |
Collapse
|
50
|
Click EM, McDonald GA, Schnaitman CA. Translational control of exported proteins that results from OmpC porin overexpression. J Bacteriol 1988; 170:2005-11. [PMID: 2834318 PMCID: PMC211078 DOI: 10.1128/jb.170.5.2005-2011.1988] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The regulation of synthesis and export of outer membrane proteins of Escherichia coli was examined by overexpressing ompC in multicopy either from its own promoter or from an inducible promoter in an expression vector. Overexpression of OmpC protein resulted in a nearly complete inhibition of synthesis of the OmpA and LamB outer membrane proteins but had no effect on synthesis of the periplasmic maltose-binding protein. Immunoprecipitation of labeled proteins showed no evidence of accumulation of uncleaved precursor forms of OmpA or maltose-binding protein following induction of OmpC overexpression. The inhibition of OmpA and LamB was tightly coupled to OmpC overexpression and occurred very rapidly, reaching a high level within 2 min after induction. OmpC overexpression did not cause a significant decrease in expression of a LamB-LacZ hybrid protein produced from a lamB-lacZ fusion in which the fusion joint was at the second amino acid of the LamB signal sequence. There was no significant decrease in rate of synthesis of ompA mRNA as measured by filter hybridization of pulse-labeled RNA. These results indicate that the inhibition is at the level of translation. We propose that cells are able to monitor expression of exported proteins by sensing occupancy of some limiting component in the export machinery and use this to regulate translation of these proteins.
Collapse
Affiliation(s)
- E M Click
- Department of Microbiology, University of Virginia Medical School, Charlottesville 22908
| | | | | |
Collapse
|