1
|
Zhao H, Sun Y, Cao X, Waigi MG, Liu J. Effects and mechanisms of chlormequat on horizontal transfer of antibiotic resistance genes through plasmid-mediated conjugation in agro-ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135639. [PMID: 39191006 DOI: 10.1016/j.jhazmat.2024.135639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Chlormequat (CCC) is widely used in agricultural production to increase the crop yield. However, the effects of CCC on transfer of ARGs in agricultural system are still unclear. In this study, using E.coli DH5α (carrying RP4 plasmid with AmpR, TetR, KanR) as the donor bacterium, E.coli HB101, endophytic Pseudomonas sp. Ph6 or rhizosphere Pseudomonas putida KT2440 as the recipient strain, three conjugative systems were designed to investigate the effects of CCC on ARG transfer. Meanwhile, hydroponics experiments were designed to study the ARG spread in the rice-nutrient solution system after CCC application. The results showed that CCC significantly promoted the RP4 conjugation by expanding cell membrane permeability and improving the relative transcription levels of trfAp, trbBp, traA and traL genes in RP4. Furthermore, the conjugation frequency between E. coli and Pseudomonas was much higher than that between E. coli cells. Compared with spraying foliage with 2500 mg·L-1 of CCC, soaking seeds with 250 mg·L-1 of CCC was more beneficial to the colonization of ARB in rice, and also increased the abundance of ARGs in rice cultivation system. These results remind that the use of CCC in agricultural production might promote the ARG transmission in agro-ecosystems; however, foliage spraying with 2500 mg·L-1 of CCC could control its spread.
Collapse
Affiliation(s)
- Hui Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yulong Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xi Cao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Qiu X, Wang B, Ren S, Liu X, Wang Y. Regulation of quorum sensing for the manipulation of conjugative transfer of antibiotic resistance genes in wastewater treatment system. WATER RESEARCH 2024; 253:121222. [PMID: 38335841 DOI: 10.1016/j.watres.2024.121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/29/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
The emergence and transmission of antibiotic resistance genes (ARGs) through plasmid-mediated conjugation has become a significant worldwide public health threat. Biofilms are widely recognized as the primary reservoirs for ARGs, providing favorable conditions for horizontal gene transfer. Quorum sensing (QS) plays a critical role in bacterial biofilm formation, which further influences the spread of bacterial resistance. In this study, we examined the effects of vanillin, a QS inhibitor (QSI), at subinhibitory concentrations (sub-MICs) ranging from 0 - 0.1 g/L, on the transfer of ARGs between Escherichia coli and Pseudomonas aeruginosa. Our findings indicated that vanillin at sub-MICs inhibited the conjugative transfer frequency of the RP4 plasmid. This inhibition was supported by the downregulation of plasmid transfer genes. The suppression of conjugation can mainly be attributed to the inhibition of biofilm formation, the synthesis of extracellular polymeric substances (EPS), and the secretion of virulence factors, all of which are regulated by the bacterial QS system. On the other hand, the levels of ROS and cell membrane permeability were not primary explanations for this phenomenon. Furthermore, vanillin also reduced the conjugative transfer frequency of ARGs in wastewater effluent, providing a potential approach to alleviate bacterial resistance in water environments. These findings underscore the regulatory role of QSI in controlling ARGs transfer and have significant implications for manipulating the dissemination of bacterial resistance in the environment.
Collapse
Affiliation(s)
- Xiao Qiu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bingjie Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shaojie Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoli Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Zhao H, Liu X, Sun Y, Liu J, Waigi MG. Effects and mechanisms of plant growth regulators on horizontal transfer of antibiotic resistance genes through plasmid-mediated conjugation. CHEMOSPHERE 2023; 318:137997. [PMID: 36720410 DOI: 10.1016/j.chemosphere.2023.137997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A vast number of bacteria occur in both soil and plants, with some of them harboring antibiotic resistance genes (ARGs). When bacteria congregate on the interface of soil particles or on plant root surfaces, these ARGs can be transferred between bacteria via conjugation, leading to the formation of antibiotic-resistant pathogens that threaten human health. Plant growth regulators (PGRs) are widely used in agricultural production, promoting plant growth and increasing crop yields. However, until now, little information has been known about the effects of PGRs on the horizontal gene transfer (HGT) of ARGs. In this study, with Escherichia coli DH5α (carrying RP4 plasmid with TetR, AmpR, KanR) as the donor and E. coli HB101 as the recipient, a series of diparental conjugation experiments were conducted to investigate the effects of indoleacetic acid (IAA), ethel (ETH) and gibberellin (GA3) on HGT of ARGs via plasmid-mediated conjugation. Furthermore, the mechanisms involved were also clarified. The results showed that all three PGRs affected the ARG transfer frequency by inducing the intracellular reactive oxygen species (ROS) formation, changing the cell membrane permeability, and regulating the gene transcription of traA, traL, trfAp, trbBp, kilA, and korA in plasmid RP4. In detail, 50-100 mg⋅L-1 IAA, 20-50 mg⋅L-1 ETH and 1500-2500 mg⋅L-1 GA3 all significantly promoted the ARG conjugation. This study indicated that widespread use of PGRs in agricultural production could affect the HGT of ARGs via plasmid-mediated conjugation, and the application of reasonable concentrations of PGRs could reduce the ARG transmission in both soil environments and plants.
Collapse
Affiliation(s)
- Hui Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiangyu Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yulong Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
4
|
Liu X, Wang X, Wang R, Guo S, Ahmad S, Song Y, Gao P, Chen J, Liu C, Ding N. Effects comparison between the secondary nanoplastics released from biodegradable and conventional plastics on the transfer of antibiotic resistance genes between bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120680. [PMID: 36414161 DOI: 10.1016/j.envpol.2022.120680] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) have caused widespread concern because of their potential harm to environmental safety and human health. As substitutes for conventional plastics, the toxic effects of short-term degradation products of biodegradable plastics (polylactic acid (PLA) and polyhydroxyalkanoates (PHA)) on bacteria and their impact on ARGs transfer were the focus of this study. After 60 days of degradation, more secondary nanoplastics were released from the biodegradable plastics PLA and PHA than that from the conventional plastics polystyrene (PS). All kinds of nanoplastics, no matter released from biodegradable plastics or conventional plastics, had no significant toxicity to bacteria. Nanoplastic particles from biodegradable plastics could significantly increase the transfer efficiency of ARGs. Although the amount of secondary nanoplastics produced by PHA microplastics was much higher than that of PLA, the transfer frequency after exposure to PLA was much higher, which may be due to the agglomeration of PHA nanoplastics caused by plastic instability in solution. After exposure to the 60 d PLA nanoplastics, the transfer frequency was the highest, which was approximately 28 times higher than that of control. The biodegradable nanoplastics significantly enhanced the expression of the outer membrane pore protein genes ompA and ompC, which could increase cell membrane permeability. The expression levels of trfAp and trbBp were increased by repressed major global regulatory genes korA, korB, and trbA, which eventually led to an increase in conjugative transfer frequency. This study provides important insights into the evaluation of the environmental and health risks caused by secondary nanoplastics released from biodegradable plastics.
Collapse
Affiliation(s)
- Xiaomei Liu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China.
| | - Xiaolong Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - RenJun Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Saisai Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shakeel Ahmad
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuhao Song
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Peike Gao
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Chunchen Liu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Ning Ding
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| |
Collapse
|
5
|
Ye C, Feng M, Chen Y, Zhang Y, Chen Q, Yu X. Dormancy induced by oxidative damage during disinfection facilitates conjugation of ARGs through enhancing efflux and oxidative stress: A lagging response. WATER RESEARCH 2022; 221:118798. [PMID: 35779456 DOI: 10.1016/j.watres.2022.118798] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Disinfection is known to greatly alter bacterial characteristics in water, and high horizontal gene transfer (HGT) frequency occurs in eutrophic conditions. Interestingly, these two seemingly irrelevant phenomena were closely linked by a lagging response of the increased conjugation frequency probably via daily water disinfection in this study. Three disinfection methods (UV, chlorine, and UV/chlorine) were selected to investigate the increased frequency of conjugation of ARGs during the stage of continuing culture after disinfection. The results showed that the conjugative transfer frequency was inhibited for all disinfection treatments after 24 h of co-incubation. Unexpectedly, after 3-7 days of co-cultivation, the HGT frequencies were increased by 2.71-5.61-fold and 5.46-13.96-fold in chlorine (30 min) and UV/chlorine (1 min) groups compared to the control, but not in UV-irradiated groups. A neglected lagging response was found for the first time, i.e., oxidative disinfection-induced dormancy promotes conjugative transfer of ARGs. Furthermore, mechanistic insights were gained from (1) membrane permeability, (2) conjugation-regulated system, (3) efflux pump system, and (4) oxidative stress system, suggesting the critical role of enhancing efflux and oxidative stress in the propagation of ARGs. Finally, the known instantaneous effect of oxidation disinfection was compared to address the controversial debate in this research field, proposing that the dormancy level of donor bacteria is the key to evaluating whether it can promote the HGT process. This study has important environmental implications for elucidating the transmission of ARGs after oxidation disinfection.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Mingbao Feng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Yuqi Chen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yiting Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Qian Chen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
6
|
Tan R, Jin M, Shao Y, Yin J, Li H, Chen T, Shi D, Zhou S, Li J, Yang D. High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Gut Microbes 2022; 14:2022442. [PMID: 35030982 PMCID: PMC8765071 DOI: 10.1080/19490976.2021.2022442] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diet can not only provide nutrition for intestinal microbiota, it can also remodel them. However, is unclear whether and how diet affects the spread of antibiotic resistance genes (ARGs) in the intestinal microbiota. Therefore, we employed selected high-sugar, high-fat, high-protein, and normal diets to explore the effect. The results showed that high-sugar, high-fat, and high-protein diets promoted the amplification and transfer of exogenous ARGs among intestinal microbiota, and up-regulated the expression of trfAp and trbBp while significantly altered the intestinal microbiota and its metabolites. Inflammation-related products were strongly correlated with the spread of ARGs, suggesting the intestinal microenvironment after diet remodeling might be conducive to the spreading of ARGs. This may be attributed to changes in bacterial membrane permeability, the SOS response, and bacterial composition and diversity caused by diet-induced inflammation. In addition, acceptor bacteria (zygotes) screened by flow cytometry were mostly Proteobacteria, Firmicutes and Actinobacteria, and most were derived from dominant intestinal bacteria remodeled by diet, indicating that the transfer of ARGs was closely linked to diet, and had some selectivity. Metagenomic results showed that the gut resistance genome could be affected not only by diet, but by exogenous antibiotic resistant bacteria (ARB). Many ARG markers coincided with bacterial markers in diet groups. Therefore, dominant bacteria in different diets are important hosts of ARGs in specific dietary environments, but the many pathogenic bacteria present may cause serious harm to human health.
Collapse
Affiliation(s)
- Rong Tan
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Yifan Shao
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,CONTACT Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| |
Collapse
|
7
|
Zhou GW, Zheng F, Fan XT, Li MJ, Sun QY, Zhu YG, Yang XR. Host age increased conjugal plasmid transfer in gut microbiota of the soil invertebrate Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127525. [PMID: 34879519 DOI: 10.1016/j.jhazmat.2021.127525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Plasmid conjugation contributes greatly to the spread of antibiotic resistance genes (ARGs) in soils. However, the spread potential in the gut of soil fauna remains poorly studied, and little was known about the impact of host age on ARGs dissemination in the gut microbiota of soil animals. Here, the typical nematode-Caenorhabditis elegans was employed as the model soil animal, aiming to investigate transfer of broad-host-range IncP-1ɛ from Escherichia coli MG1655 to gut microbiota within 6 days under varied temperature gradients (15, 20 and 25 °C) using qPCR combined with plate screening. Results showed that conjugation rates increased with incubation time and rising temperature in the gut of C. elegans, sharing a similar trend with abundances of plasmid conjugation relevant genes such as trbBp (mating pair formation) and trfAp (plasmid replication). Incubation time and temperature significantly shaped the gut microbial community of C. elegans. Core microbiota in the gut of C. elegans, including Enterobacteriaceae, Lactobacillaceae and Leuconostocaceae, constituted a large part of transconjugal pool for plasmid IncP-1ɛ. Our results highlight an important sink of gut microbiota for ARGs dissemination and upregulation of ARGs transfer in the gut microbiota with host age, further potentially stimulating evolution of ARGs in terrestrial environments.
Collapse
Affiliation(s)
- Guo-Wei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fei Zheng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiao-Ting Fan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Jun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Qing-Ye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Ding C, Ma J, Jiang W, Zhao H, Shi M, Cui G, Yan T, Wang Q, Li J, Qiu Z. Chironomidae larvae: A neglected enricher of antibiotic resistance genes in the food chain of freshwater environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117486. [PMID: 34098457 DOI: 10.1016/j.envpol.2021.117486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Infection caused by pathogenic bacteria carrying antibiotic resistance genes (ARGs) is a serious challenge to human health. Water environment, including water and surface sediments, is an important repository of ARGs, and the activity of aquatic animal can affect the development of ARG pollution in the water environment. Macrobenthic invertebrates are an important component of aquatic ecosystems, and their effects on ARG development in aquatic environments remain unreported. The distribution of ARGs, including tetA gene, sul2 gene, and kan gene, in Chironomidae larvae is demonstrated in this study for the first time. The ARG distribution was related to sampling points, metal elements, and seasons. Animal models demonstrated that Chironomidae larvae enriched ARGs from water and passed them on to downstream predators in the food chain. Conjugative transfer mediated by resistant plasmids was crucial in the spread of ARG in Chironomidae larvae, and upregulated expression of trfAp gene and trbBp gene was the molecular mechanism. Escherichia in Proteobacteria and Flavobacterium in Bacteroidetes, which are gram-negative bacteria in Chironomidae larvae, are the primary host bacteria of ARGs confirmed via resistance screening and DNA sequencing of V4 region of 16S rRNA gene. Feeding experiments further confirmed that ARGs from Chironomidae larvae can be enriched in the fish gut. Research gaps in food chain between sediments and fish are addressed in this study, and Chironomidae larvae is an important enricher of ARGs in the freshwater environment.
Collapse
Affiliation(s)
- Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Wanxiang Jiang
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Hanyu Zhao
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Mengmeng Shi
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Guoqing Cui
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Tongdi Yan
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Qi Wang
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
9
|
Xiong R, Liu Y, Pu J, Liu J, Zheng D, Zeng J, Chen C, Lu Y, Huang B. Indole Inhibits IncP-1 Conjugation System Mainly Through Promoting korA and korB Expression. Front Microbiol 2021; 12:628133. [PMID: 33815310 PMCID: PMC8017341 DOI: 10.3389/fmicb.2021.628133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/12/2021] [Indexed: 11/26/2022] Open
Abstract
Indole works as an interspecies signal molecule to regulate multiple physiological activities, like antibiotic resistance, acid resistance, and virulence. However, the effect of indole on conjugation is unknown. Here, with Escherichia coli SM10λπ as a donor strain that carries a chromosomally integrated conjugative RP4 plasmid, we explored the effect of indole on conjugation of a mobilizable pUCP24T plasmid imparting gentamycin resistance. The results showed that exogenous indole treatment inhibited conjugative transfer of pUCP24T from SM10λπ to recipient strains, Pseudomonas aeruginosa PAO1 and E. coli EC600. Furthermore, raising endogenous indole production through overexpression of TnaA, a tryptophanase, in SM10λπ significantly inhibited both SM10λπ-PAO1 and SM10λπ-EC600 conjugation, whereas deficiency of tnaA reversed the phenotype. Subsequent mechanistic studies revealed that exogenous indole significantly inhibited the expression of mating pair formation gene (trbB) and the DNA transfer and replication gene (trfA), mainly due to the promotion of regulatory genes (korA and korB), and the result was confirmed in tnaA knockout and overexpression strains. Additionally, we found that both extracellular indole production and tnaA expression of SM10λπ were downregulated by ciprofloxacin (CIP). Intriguingly, one-eighth minimum inhibitory concentration of CIP treatment clearly facilitated both SM10λπ-PAO1 and SM10λπ-EC600 conjugation, and indole inhibited CIP-induced conjugation frequency. These data suggest that indole may play a negative role in the process of CIP-induced conjugation. This is the first study to reveal the biological function of indole-inhibiting conjugation and its role in CIP-induced conjugation, which may be developed into a new way of controlling the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuyang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieying Pu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jianping Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Dexiang Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Pu Q, Fan XT, Li H, An XL, Lassen SB, Su JQ. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115903. [PMID: 33120155 DOI: 10.1016/j.envpol.2020.115903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 05/11/2023]
Abstract
Co-selection of antibiotic resistance genes (ARGs) by heavy metals might facilitate the spread of ARGs in the environments. Cadmium contamination is ubiquitous, while, it remains unknown the extent to which cadmium (Cd2+) impact plasmid-mediated transfer of ARGs in aquatic bacterial communities. In the present study, we found that Cd2+ amendment at sub-inhibitory concentration significantly increased conjugation frequency of RP4 plasmid from Pseudomonas putida KT2442 to a fresh water microbial community by liquid mating method. Cd2+ treatment (1-100 mg/L) significantly increased the cell membrane permeability and antioxidant activities of conjugation mixtures. Amendments of 10 and 100 mg/L Cd2+ significantly enhanced the mRNA expression levels of mating pair formation gene (trbBp) and the DNA transfer and replication gene (trfAp) due to the repression of regulatory genes (korA, korB and trbA). Phylogenetic analysis of transconjugants indicated that Proteobacteria was the dominant recipients and high concentration of Cd2+ treatment resulted in expanded recipient taxa. This study suggested that sub-inhibitory Cd2+ contamination would facilitate plasmid conjugation and contributed to the maintenance and spread of plasmid associated ARGs, and highlighted the urgent need for effective remediation of Cd2+ in aquatic environments.
Collapse
Affiliation(s)
- Qiang Pu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiao-Ting Fan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Simon Bo Lassen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Sino-Danish Center of Education and Research, Beijing, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
11
|
Song L, Wang X, Zhang W, Ye L, Feng X. Low-intensity ultrasound promotes the horizontal transfer of resistance genes mediated by plasmids in E. coli. 3 Biotech 2018; 8:224. [PMID: 29692961 DOI: 10.1007/s13205-018-1247-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022] Open
Abstract
Widespread of pathogenic bacteria resistant to antibiotics has become a worldwide public health concern. Conjugative transfer between bacteria is an important mechanism for the horizontal transfer of antibiotic resistance genes. Ultrasound has been widely applied in many fields, but the effect of ultrasound on horizontal transfer of antibiotic-resistant genes is still not clear. We discovered that low-intensity (≤ 0.05 W/cm2) ultrasound had no effect on bacterial growth and survival rates, but increased the permeability of cell membrane, and consequentially elevated the transfer rates of plasmid. Low-intensity ultrasound enhanced conjugation between bacteria, induced expression of conjugation genes TrpBp and TrfAp, and inhibited expression of global regulatory genes KorA, KorB, TrbA, and TrbK. In conclusion, low-intensity ultrasound promoted horizontal transfer of antibiotic-resistant genes by enhancing conjugation and regulating expression of horizontal transfer-related genes.
Collapse
|
12
|
Bury K, Wegrzyn K, Konieczny I. Handcuffing reversal is facilitated by proteases and replication initiator monomers. Nucleic Acids Res 2017; 45:3953-3966. [PMID: 28335002 PMCID: PMC5397158 DOI: 10.1093/nar/gkx166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Specific nucleoprotein complexes are formed strictly to prevent over-initiation of DNA replication. An example of those is the so-called handcuff complex, in which two plasmid molecules are coupled together with plasmid-encoded replication initiation protein (Rep). In this work, we elucidate the mechanism of the handcuff complex disruption. In vitro tests, including dissociation progress analysis, demonstrate that the dimeric variants of plasmid RK2 replication initiation protein TrfA are involved in assembling the plasmid handcuff complex which, as we found, reveals high stability. Particular proteases, namely Lon and ClpAP, disrupt the handcuff by degrading TrfA, thus affecting plasmid stability. Moreover, our data demonstrate that TrfA monomers are able to dissociate handcuffed plasmid molecules. Those monomers displace TrfA molecules, which are involved in handcuff formation, and through interaction with the uncoupled plasmid replication origins they re-initiate DNA synthesis. We discuss the relevance of both Rep monomers and host proteases for plasmid maintenance under vegetative and stress conditions.
Collapse
Affiliation(s)
- Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| |
Collapse
|
13
|
Wang Q, Mao D, Luo Y. Ionic Liquid Facilitates the Conjugative Transfer of Antibiotic Resistance Genes Mediated by Plasmid RP4. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8731-8740. [PMID: 26120784 DOI: 10.1021/acs.est.5b01129] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The dissemination and propagation of antibiotic resistance genes (ARGs) is an emerging global health concern. In our previous study, the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) had been proven to facilitate the dissemination of ARGs via horizontal gene transfer. In this study, we further confirm that this compound facilitates the horizontal transfer of plasmid RP4 through a conjugation mechanism and not by natural transformation. The mechanisms for [BMIm][PF6] promoting conjugative transfer are attributable to enhancing the mRNA expression levels of conjugative and global regulatory genes, as well as by inhibiting the genes that are responsible for the vertical transfer of cell growth. [BMIm][PF6] significantly enhanced the expression of the outer membrane porin proteins (OMPs) OmpC and OmpA and the corresponding mRNA expression levels of ompC and ompA genes in recipient bacteria, which contributed to pore formation and increased cell membrane permeability. The increased expression of pilin and pili allowed the donor pilus to attach to and access the recipient cells, thereby assisting cell-to-cell contact to facilitate the conjugative transfer of plasmid RP4. To the best of our knowledge, this is the first insightful exploration of [BMIm][PF6] facilitating the conjugative transfer of ARGs mediated by plasmid RP4 and of several other ILs with different cations or anions that are capable of promoting plasmid transfer. It is therefore suggested that the application of some ILs in industrial processes should be carefully evaluated before their bulk emission into the environment.
Collapse
Affiliation(s)
- Qing Wang
- ‡College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- †School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yi Luo
- ‡College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci U S A 2012; 109:4944-9. [PMID: 22411796 DOI: 10.1073/pnas.1107254109] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibiotic resistance is a worldwide public health concern. Conjugative transfer between closely related strains or species of bacteria is an important method for the horizontal transfer of multidrug-resistance genes. The extent to which nanomaterials are able to cause an increase in antibiotic resistance by the regulation of the conjugative transfer of antibiotic-resistance genes in bacteria, especially across genera, is still unknown. Here we show that nanomaterials in water can significantly promote the horizontal conjugative transfer of multidrug-resistance genes mediated by the RP4, RK2, and pCF10 plasmids. Nanoalumina can promote the conjugative transfer of the RP4 plasmid from Escherichia coli to Salmonella spp. by up to 200-fold compared with untreated cells. We also explored the mechanisms behind this phenomenon and demonstrate that nanoalumina is able to induce oxidative stress, damage bacterial cell membranes, enhance the expression of mating pair formation genes and DNA transfer and replication genes, and depress the expression of global regulatory genes that regulate the conjugative transfer of RP4. These findings are important in assessing the risk of nanomaterials to the environment, particularly from water and wastewater treatment systems, and in the estimation of the effect of manufacture and use of nanomaterials on the environment.
Collapse
|
15
|
Kolatka K, Kubik S, Rajewska M, Konieczny I. Replication and partitioning of the broad-host-range plasmid RK2. Plasmid 2010; 64:119-34. [DOI: 10.1016/j.plasmid.2010.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/08/2010] [Accepted: 06/21/2010] [Indexed: 11/27/2022]
|
16
|
Kim PD, Rosche TM, Firshein W. Identification of a potential membrane-targeting region of the replication initiator protein (TrfA) of broad-host-range plasmid RK2. Plasmid 2000; 43:214-22. [PMID: 10783300 DOI: 10.1006/plas.2000.1467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasmid RK2 codes for two species of the replication initiator protein TrfA (33 and 44 kDa). Both polypeptides are strongly associated with membrane fractions of Escherichia coli host cells (W. Firshein and P. Kim, Mol. Microbiol. 23, 1-10, 1997). We investigated the role of a 12-amino-acid hydrophobic region (HR) in the membrane association of TrfA. Epitope-tagged polypeptide fragments of TrfA that contained HR were expressed and found to be associated with membrane fractions. Site-directed mutagenesis of trfA revealed that changes of specific amino acids in HR can affect both TrfA association with the membrane and its ability to support replication of an RK2 oriV plasmid in vivo. These results are consistent with the hypothesis that membrane association of TrfA is functionally relevant and that the HR region of TrfA is involved in membrane association and DNA replication in vivo.
Collapse
Affiliation(s)
- P D Kim
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
17
|
Holčík M, Iyer VM. Conditionally lethal genes associated with bacterial plasmids. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3403-3416. [PMID: 9387219 DOI: 10.1099/00221287-143-11-3403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Martin Holčík
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| | - V M Iyer
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| |
Collapse
|
18
|
Wilson JW, Sia EA, Figurski DH. The kilE locus of promiscuous IncP alpha plasmid RK2 is required for stable maintenance in Pseudomonas aeruginosa. J Bacteriol 1997; 179:2339-47. [PMID: 9079921 PMCID: PMC178972 DOI: 10.1128/jb.179.7.2339-2347.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eight coordinately regulated operons constitute the kor regulon of the IncP alpha plasmid RK2. Three operons specify functions required for replication initiation, conjugative transfer, and control of gene expression. The functions of the other operons, including those of the four coregulated operons that compose the kilA, kilC, and kilE loci, have not been determined. Here, we present the first evidence that a kil determinant is involved in IncP plasmid maintenance. Elevation of KorC levels specifically to reduce the expression of the KorC-regulated kilC and kilE operons severely affected the maintenance of both the IncP alpha plasmid RK2lac and the IncP beta plasmid R751 in Pseudomonas aeruginosa but had little effect on plasmid maintenance in Escherichia coli. Precise deletion of the two kilE operons from RK2lac was achieved with the VEX mutagenesis system for large genomes. The resulting plasmid showed significant loss of stability in P. aeruginosa only. The defect could be complemented by reintroduction of kilE at a different position on the plasmid. The instability of the RK2lac delta kilE mutant did not result from a reduction in average plasmid copy number, reduced expression of kilC, decreased conjugative transfer, or loss of the korE regulator. We found that both the par and kilE loci are required for full stability of RK2lac in P. aeruginosa and that the par and kilE functions act independently. These results demonstrate a critical role for the kilE locus in the stable inheritance of RK2 in P. aeruginosa.
Collapse
Affiliation(s)
- J W Wilson
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
19
|
Sia EA, Roberts RC, Easter C, Helinski DR, Figurski DH. Different relative importances of the par operons and the effect of conjugal transfer on the maintenance of intact promiscuous plasmid RK2. J Bacteriol 1995; 177:2789-97. [PMID: 7751288 PMCID: PMC176950 DOI: 10.1128/jb.177.10.2789-2797.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The par region of the broad-host-range, IncP alpha plasmid RK2 has been implicated as a stability determinant by its ability to enhance the maintenance of mini-RK2 plasmids or heterologous replicons in a growing population of host cells. The region consists of two operons: parCBA, which encodes a multimer resolution system, and parDE, which specifies a postsegregational response mechanism that is toxic to plasmidless segregants. To assess the importance of this region to the stable maintenance of the complete RK2 plasmid in different hosts, we used the vector-mediated excision (VEX) deletion system to specifically remove the entire par region or each operon separately from an otherwise intact RK2 plasmid carrying a lacZ marker. The par region was found to be important to stable maintenance of RK2lac (pRK2526) in Escherichia coli and five other gram-negative hosts (Agrobacterium tumefaciens, Azotobacter vinelandii, Acinetobacter calcoaceticus, Caulobacter crescentus, and Pseudomonas aeruginosa). However, the relative importance of the parCBA and parDE operons varied from host to host. Deletion of parDE had no effect on the maintenance of pRK2526 in A. calcoaceticus, but it severely reduced pRK2526 maintenance in A. vinelandii and resulted in significant instability in the other hosts. Deletion of parCBA did not alter pRK2526 stability in E. coli, A. tumefaciens, or A. vinelandii but severely reduced plasmid maintenance in A. calcoaceticus and P. aeruginosa. In the latter two hosts and C. crescentus, the delta parCBA mutant caused a notable reduction in growth rate in the absence of selection for the plasmid, indicating that instability resulting from the absence of parCBA may trigger the postsegregational response mediated by parDE. We also examined the effect of the conjugal transfer system on RK2 maintenance in E. coli. Transfer-defective traJ and traG mutants of pRK2526 were stably maintained in rapidly growing broth cultures. On solid medium, which should be optimal for IncP-mediated conjugation, colonies from cells containing the pRK2526 tra mutants displayed significant numbers of white (Lac-) sectors on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates, whereas sectors appeared rarely in colonies from tra+ plasmid-containing cells. Both the traJ and traG mutations further reduced the maintenance of the already unstable deltapar derivative. Thus, these experiments with defined mutations in an intact RK2 plasmid have revealed (i) that the par region allows RK2 to adapt to the different requirements for stable maintenance in various hosts and (ii) that conjugal transfer can contribute to the maintenance of RK2 in a growing population, particularly under conditions that are favorable to RK2 transfer.
Collapse
Affiliation(s)
- E A Sia
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
20
|
Thomas CM, Smith CA, Ibbotson JP, Johnston L, Wang N. Evolution of the korA-oriV segment of promiscuous IncP plasmids. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 5):1201-1210. [PMID: 7773415 DOI: 10.1099/13500872-141-5-1201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasmids belonging to Escherichia coli incompatibility group P are of particular interest because they can transfer between, and be stably maintained in, almost all Gram-negative bacterial species. The segment of the IncP alpha plasmid genome between the key regulatory gene korA and the vegetative replication origin, oriV, encodes a series of operons co-regulated with replication and transfer functions by the KorA protein. To determine which of these genes are likely to have an important role in IncP plasmid survival the equivalent region of the distantly related IncP beta plasmid R751 was sequenced. Sequence comparisons show that the kla operon (formerly the kilA locus, which is also responsible for a cryptic tellurite-resistance determinant) is completely absent from R751. Similarly in the kle region, which encodes genes associated with the KilE+ phenotype of unknown function, kleC and kleD, which we proposed arose by a duplication of kleA and kleB, are also completely absent. The genes that are conserved are klcA (formerly kilC, responsible for the KilC+, and recently proposed to be involved in overcoming restriction barriers during transfer), klcB (an ORF interrupted by Tn1 insertion in RK2), korC (a transcriptional repressor which controls the klcK and kle operons), and kleA, kleB, kleE and kleF. A striking feature of the organization in R751 is the lack of the strong transcriptional termination signals which are present in IncP alpha plasmids. The degree of divergence between the plasmids facilitates the identification of motifs of probable functional importance in the primary protein sequences.
Collapse
Affiliation(s)
- Christopher M Thomas
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher A Smith
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - John P Ibbotson
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lynda Johnston
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Naijin Wang
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
21
|
Fang FC, Durland RH, Helinski DR. Mutations in the gene encoding the replication-initiation protein of plasmid RK2 produce elevated copy numbers of RK2 derivatives in Escherichia coli and distantly related bacteria. Gene X 1993; 133:1-8. [PMID: 8224880 DOI: 10.1016/0378-1119(93)90217-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mini-replicons of the broad-host-range plasmid RK2 with increased copy number (cn) due to mutations in the gene encoding the essential replication initiation protein TrfA are described. The cn of these derivatives have been determined in Escherichia coli, Pseudomonas aeruginosa and Agrobacterium tumefaciens and were found to be elevated in all three bacterial hosts. One of the cn mutations was introduced into the intact 60-kb RK2 plasmid by homologous recombination in vivo, resulting in an approximately twofold cn increase. The expression of trfA from this mutant RK2 plasmid did not respond to the cn change as predicted by a simple transcription rate-limitation, replication control model. Implications for the model of RK2 replication control and the potential use of mutant RK2 mini-replicons as high-copy broad-host-range gene cloning vectors are discussed.
Collapse
Affiliation(s)
- F C Fang
- Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
22
|
Kornacki JA, Chang CH, Figurski DH. kil-kor regulon of promiscuous plasmid RK2: structure, products, and regulation of two operons that constitute the kilE locus. J Bacteriol 1993; 175:5078-90. [PMID: 8349548 PMCID: PMC204974 DOI: 10.1128/jb.175.16.5078-5090.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The kil-kor regulon of IncP plasmid RK2 is a complex regulatory network that includes genes for replication and conjugal transfer, as well as for several potentially host-lethal proteins encoded by the kilA, kilB, and kilC loci. While kilB is known to be involved in conjugal transfer, the functions of kilA and kilC are unknown. The coregulation of kilA and kilC with replication and transfer genes indicates a possible role in the maintenance or broad host range of RK2. In this work, we found that a fourth kil locus, designated kilE, is located in the kb 2.4 to 4.5 region of RK2 and is regulated as part of the kil-kor regulon. The cloned kilE locus cannot be maintained in Escherichia coli host cells, unless korA or korC is also present in trans to control its expression. The nucleotide sequence of the kilE region revealed two potential multicistronic operons. The kleA operon consists of two genes, kleA and kleB, predicted to encode polypeptide products with molecular masses of 8.7 and 7.6 kDa, respectively. The kleC operon contains four genes, kleC, kleD, kleE, and kleF, with predicted products of 9.2, 8.0, 12.2, and 11.3 kDa, respectively. To identify the polypeptide products, each gene was cloned downstream of the phage T7 phi 10 promoter and expressed in vivo in the presence of T7 RNA polymerase. A polypeptide product of the expected size was observed for all six kle genes. In addition, kleF expressed a second polypeptide of 6 kDa that most likely results from the use of a predicted internal translational start site. The kleA and kleC genes are each preceded by sequences resembling strong sigma 70 promoters. Primer extension analysis revealed that the putative kleA and kleC promoters are functional in E. coli and that transcription is initiated at the expected nucleotides. The abundance of transcripts initiated in vivo from both the kleA and kleC promoters was reduced in cells containing korA or korC. When korA and korC were present together, they appeared to act synergistically in reducing the level of transcripts from both promoters. The kleA and kleC promoter regions are highly homologous and contain two palindromic sequences (A and C) that are the predicted targets for KorA and KorC proteins. DNA binding studies showed that protein extracts from korA-containing E. coli cells specifically retarded the electrophoretic mobility of DNA fragments containing palindrome A. Extracts from korC-containing cells altered the mobility of DNA fragments containing palindrome C. These results show that KorA and KorC both act as repressors of the kleAand kleC promoters. In the absence of korA and korC, expression of the cloned kleA operon was lethal to E.coli cells, whereas the cloned kleC operon gave rise to slowly growing, unhealthy colonies. Both phenotypes depended on at least one structural gene in each operon, suggesting that the operons encode genes whose products interact with critical host functions required for normal growth and viability. Thus, the kilA, kilC, and kilE loci of RK2 constitute a cluster of at least 10 genes that are coregulated with the plasmid replication initiator and the conjugal transfer system. Their potential toxicity to the host cell indicates that RK2 is able to establish a variety of intimate plasmid-host interactions that may be important to its survival in nature.
Collapse
Affiliation(s)
- J A Kornacki
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
23
|
Thomson VJ, Jovanovic OS, Pohlman RF, Chang CH, Figurski DH. Structure, function, and regulation of the kilB locus of promiscuous plasmid RK2. J Bacteriol 1993; 175:2423-35. [PMID: 8468300 PMCID: PMC204532 DOI: 10.1128/jb.175.8.2423-2435.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The kil-kor regulon of the self-transmissible, broad-host-range plasmid RK2 is a unique network with eight coregulated operons. Among the genes encoded by the kil-kor regulon are trfA, which encodes the replication initiator, and several kil loci (kilA, kilB, kilC, and kilE), each of which is lethal to the host cell in the absence of appropriate negative regulatory elements encoded by the korA, korB, korC, and korE determinants. We have proposed that the functions of the kil loci are related to RK2 maintenance or host range. Here, we report the nucleotide sequence of a 2.44-kb region that includes the lethal kilB determinant. We identified the first three genes of the kilB operon (designated klbA, klbB, and klbC), and we determined by deletion analysis that the host-lethal phenotype requires klbB. The predicted amino acid sequence of the 34,995-Da klbA product reveals a potential ATP-binding fold. The klbB product is predicted to be a membrane protein with a molecular mass of 15,012 Da with homology to the RK2 KlaC membrane protein encoded by the kilA operon. The amino acid sequence of the 12,085-Da klbC product contains a perfect match to the leucine zipper motif common to eukaryotic regulatory proteins. Primer extension analysis revealed unambiguously that transcription of the kilB operon begins 46 nucleotides upstream of klbA. No transcription was initiated from the sequence previously presumed by other investigators to be the kilB promoter. The abundance of kilB transcripts is reduced in the presence of KorB, consistent with the prediction that KorB acts at the level of transcription. A degenerate KorB-binding site that contains a perfect half-palindrome overlaps the kilB promoter, but this site is insufficient for regulation by KorB. The region containing a KorB-binding site located 183 bp upstream of the transcriptional start is required for regulation by KorB, indicating that KorB acts at a distance to regulate transcription of kilB. Our studies with the mutant plasmid pRP101, a transfer-defective derivative of the RK2-like plasmid RP4, demonstrated that the kilB operon includes the conjugal transfer and surface exclusion genes of the Tra2 region. Nucleotide sequence analysis revealed that the transposon Tn7 insertion in pRP101 is located in the klbC gene, and complementation analysis showed that this mutation has a strong polar effect on the expression of genes for conjugal transfer and surface exclusion located several kilobases downstream. A klbA mutant was constructed and found to be both transfer defective and complementable, thus, demonstrating a requirement was constructed and found to be both transfer defective and complementable, thus demonstrating a requirement for klbA product in plasmid transmissibility. These results have demonstrated a role for the kilB operon in conjugal transfer. The kil-kor regulon of RK2 is the only known example of plasmid-mediated coregulation of replication and transfer.
Collapse
Affiliation(s)
- V J Thomson
- Department of Microbiology and Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | | | |
Collapse
|
24
|
Saltman LH, Kim KS, Figurski DH. Inhibition of bacteriophage lambda development by the klaA gene of broad-host-range plasmid RK2. J Mol Biol 1992; 227:1054-67. [PMID: 1433286 DOI: 10.1016/0022-2836(92)90521-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The kil-kor regulon of broad-host-range plasmid RK2 is an unusual array of eight co-regulated operons that express at least 21 genes, including the plasmid replication initiator gene. Some of the operons were first identified as kil loci because uncontrolled expression in the absence of certain kor regulatory genes leads to death of the host cells. The functions of kilA, C and E are unknown, although co-regulation with the replication initiator gene suggests that they may have importance in the maintenance or host range of the plasmid. Here we report studies on the function of klaA, the first of three host-lethal genes in the kilA operon. We found that lambda pklaA-1, a lambda phage containing the klaA gene, is unable to form plaques unless the host expresses the KorA and KorB repressors needed to regulate transcription from the klaA promoter. The failure to form plaques depends on the klaA gene product and results from the inability of infected cells to produce viable phage particles. Transcription of early, delayed early and late genes or processing of lambda DNA are not affected by klaA overexpression, while cell lysis, lambda DNA replication and production of functional phage heads are reduced. However, the failure to produce viable phage is best explained by the inability to synthesize lambda tails. The finding that klaA strongly inhibits a specific morphogenetic step in the assembly of lambda phage particles has significance with respect to the function of klaA on plasmid RK2.
Collapse
Affiliation(s)
- L H Saltman
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
25
|
Jagura-Burdzy G, Khanim F, Smith CA, Thomas CM. Crosstalk between plasmid vegetative replication and conjugative transfer: repression of the trfA operon by trbA of broad host range plasmid RK2. Nucleic Acids Res 1992; 20:3939-44. [PMID: 1508679 PMCID: PMC334070 DOI: 10.1093/nar/20.15.3939] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous deletion and complementation analysis has indicated that the region between trfA and kilBI (trbB) encodes trans-acting factor, designated trbA, required for conjugative transfer of broad host range plasmid RK2. In analysing the nucleotide sequence of this region we have discovered a gene encoding a 12 kDa polypeptide. The predicted amino acid sequence of this protein shows similarity at its C-terminal to KorA from the central control operon of RK2 and at its N-terminal to immunity repressor protein from phage phi 105 of Bacillus subtilis as well as the Sin protein of B. subtilis which regulates alternate developmental processes including sporulation, motility and competence. We show that TrbA represses transcription of both trfA (vegetative replication) and kilBI (trbB) (required for conjugative transfer and whose product has similarity to ComG, required for competence of B. subtilis) and may help to coordinate expression of both sets of functions. This region has similarities to some temperate bacteriophage immunity regions in modulating divergent transcription required for alternative means of propagation.
Collapse
|
26
|
Jovanovic OS, Ayres EK, Figurski DH. The replication initiator operon of promiscuous plasmid RK2 encodes a gene that complements an Escherichia coli mutant defective in single-stranded DNA-binding protein. J Bacteriol 1992; 174:4842-6. [PMID: 1624472 PMCID: PMC206285 DOI: 10.1128/jb.174.14.4842-4846.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The amino acid sequence of the 13-kDa polypeptide (P116) encoded by the first gene of the trfA operon of IncP plasmid RK2 shows significant similarity to several known single-stranded DNA-binding proteins. We found that unregulated expression of this gene from its natural promoter (trfAp) or induced expression from a strong heterologous promoter (trcp) was sufficient to complement the temperature-sensitive growth phenotype of an Escherichia coli ssb-1 mutant. The RK2 ssb gene is the first example of a plasmid single-stranded DNA-binding protein-encoding gene that is coregulated with replication functions, indicating a possible role in plasmid replication.
Collapse
Affiliation(s)
- O S Jovanovic
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
27
|
Eberl L, Givskov M, Schwab H. The divergent promoters mediating transcription of the par locus of plasmid RP4 are subject to autoregulation. Mol Microbiol 1992; 6:1969-79. [PMID: 1508044 DOI: 10.1111/j.1365-2958.1992.tb01370.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The partitioning region of broad-host-range plasmid RP4 contains four genes (parA, parB, parC, and parD) that encode products essential for partition activity. Two divergently arranged promoters located in the intercistronic region between parC and parD mediate transcription of these genes. The transcriptional initiation sites for both promoters were determined by primer extension. Transcriptional fusions were used to show that parA, parB, and parC are combined in an operon, while parD constitutes a separate transcription unit. Both parCBA (genes in order of transcription) and parD are negatively autoregulated at the level of transcription by the gene products of parA and parD, respectively. parD promoter mutants which have become insensitive to repression by parD were isolated. Comparison of wild type and the mutant parD promoter sequences indicated that three short repeats are likely involved in the negative regulation of this promoter. Potentially these sequence elements comprise target sites for the ParD protein.
Collapse
Affiliation(s)
- L Eberl
- Institut für Biotechnologie, Technische Universität Graz, Austria
| | | | | |
Collapse
|
28
|
Balzer D, Ziegelin G, Pansegrau W, Kruft V, Lanka E. KorB protein of promiscuous plasmid RP4 recognizes inverted sequence repetitions in regions essential for conjugative plasmid transfer. Nucleic Acids Res 1992; 20:1851-8. [PMID: 1579485 PMCID: PMC312297 DOI: 10.1093/nar/20.8.1851] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have constructed a RP4 KorB overproducing strain and purified the protein to near homogeneity. KorB is a DNA binding protein recognizing defined palindromic 13-bp sequences (TTTAGCSGCTAAA). Inverted sequence repetitions of this type, designated OB, are present on RP4 12 times. OB-sequences are localized in replication and maintenance regions as well as in the regions Tra1 and Tra2 essential for conjugative transfer. All sites found in Tra regions by computer search act as targets for specific binding of KorB protein. KorB-DNA complexes were detected by DNA fragment retardation assay using polyacrylamide gels. The 13-bp symmetric arrangement of the consensus OB-sequence constitutes the core for binding KorB protein since any truncation of this sequence prevents complex assembly or leads to a considerable destabilization of the KorB-DNA complexes. A hydroxyl radical footprint analysis demonstrated complex formation of KorB with the OB-sequence directly and suggests the presence of an unusual DNA structure within the nucleoprotein complex.
Collapse
Affiliation(s)
- D Balzer
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Lessl M, Balzer D, Lurz R, Waters VL, Guiney DG, Lanka E. Dissection of IncP conjugative plasmid transfer: definition of the transfer region Tra2 by mobilization of the Tra1 region in trans. J Bacteriol 1992; 174:2493-500. [PMID: 1556069 PMCID: PMC205887 DOI: 10.1128/jb.174.8.2493-2500.1992] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We constructed a transfer system consisting of two compatible multicopy plasmids carrying the transfer regions Tra1 and Tra2 of the broad-host-range IncP plasmid RP4. In this system, the plasmid containing the Tra1 region with the origin of transfer (oriT) was transferred, whereas additional functions essential for the conjugative process were provided from the Tra2 plasmid in trans. The Tra2 region, as determined for matings between Escherichia coli cells, maps between coordinates 18.03 and 29.26 kb of the RP4 standard map. The section of Tra2 required for mobilization of the plasmid RSF1010 (IncQ) and the propagation of bacteriophages Pf3 and PRD1 appears to be the same as that needed for RP4 transfer. Tra2 regions of RP4 (IncP alpha) and R751 (IncP beta) are interchangeable, facilitating mobilization of the plasmid carrying the RP4 Tra1 region. The transfer frequencies of both systems are similar. Transcription of Tra2 proceeds clockwise relative to the standard map of RP4 and is probably initiated at a promoter region located upstream of trbB (kilB). From this promoter region the trfA operon and the Tra2 operon are likely to be transcribed divergently. A second potential promoter has been located immediately upstream of trbB (kilB). Plasmids encoding the functional Tra2 region can only be maintained stably in host cells in the presence of the RP4 regulation region carrying the korA-korB operon or part of it. This indicates the involvement of RP4 key regulatory functions that apparently are active not only in the control of replication but also in conjugation.
Collapse
Affiliation(s)
- M Lessl
- Max-Planck-Institut für Molekulare Genetik, Abteilung Schuster, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Motallebi-Veshareh M, Balzer D, Lanka E, Jagura-Burdzy G, Thomas CM. Conjugative transfer functions of broad-host-range plasmid RK2 are coregulated with vegetative replication. Mol Microbiol 1992; 6:907-20. [PMID: 1376390 DOI: 10.1111/j.1365-2958.1992.tb01541.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The kilB locus (which is unclonable in the absence of korB) of broad-host-range plasmid RK2 (60 kb) lies between the trfA operon (co-ordinates 16.4 to 18.2 kb), which encodes a protein essential for vegetative replication, and the Tra2 block of conjugative transfer genes (co-ordinates 20.0 to 27.0 kb). Promoter probe studies indicated that kilB is transcribed clockwise from a region containing closely spaced divergent promoters, one of which is the trfA promoter. The repression of both promoters by korB suggested that kilB may also play a role in stable maintenance of RK2. We have sequenced the region containing kilB and analysed it by deletion and insertion mutagenesis. Loss of the KilB+ phenotype does not result in decreased stability of mini RK2 plasmids. However insertion in ORFI (kilBI) of the region analysed results in a Tra- phenotype in plasmids which are otherwise competent for transfer, demonstrating that this locus is essential for transfer and is probably the first gene of the Tra2 region. From the kilBI DNA sequence KilBI is predicted to be 34995 Da, in line with M(r) = 36,000 observed by sodium dodecyl sulphate/polyacrylamide gel electrophoresis, and contains a type I ATP-binding motif. The purified product was used to raise antibody which allowed the level of KilBI produced from RK2 to be estimated at approximately 2000 molecules per bacterium. Protein sequence comparisons showed the highest homology score with VirB11, which is essential for the transfer of the Agrobacterium tumefaciens Ti plasmid DNA from bacteria to plant cells. The sequence similarity of both KilBI and VirB11 to a family of protein export functions suggested that KilBI may be involved in assembly of the surface-associated Tra functions. The data presented in this paper provide the first demonstration of coregulation of genes required for vegetative replication and conjugative transfer on a bacterial plasmid.
Collapse
|
31
|
Saltman LH, Kim KS, Figurski DH. The kilA operon of promiscuous plasmid RK2: the use of a transducing phage (lambda pklaA-1) to determine the effects of the lethal klaA gene on Escherichia coli cells. Mol Microbiol 1991; 5:2673-83. [PMID: 1838127 DOI: 10.1111/j.1365-2958.1991.tb01976.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The kil-kor regulon of promiscuous plasmid RK2 includes the replication initiator gene trfA and several potentially host-lethal kil loci (kilA, kilB, kilC, kilE), whose functions may be involved in plasmid maintenance or broad host range. The kilA locus consists of a single operon of three genes (klaA, klaB, klaC), each of which is lethal when expressed from the klaA promoter in the absence of repressors encoded by korA and korB. In this study, we examined the effects of the unregulated klaA gene on the host cell. Bacteriophage lambda was used to construct a transducing phage (lambda pklaA-1) that allows efficient introduction of the klaA gene into Escherichia coli. Cells lacking korA and korB (to allow uncontrolled expression of klaA) and expressing lambda repressor (to prevent phage lytic growth) are killed by lambda pklaA-1. Cell death is dependent on the klaA structural gene, independent of the SOS system of the host, and is prevented by the presence of korA and korB. lambda pklaA-1 was used to synchronously infect cells lacking korA and korB to determine the effects of klaA on the cells over time. The earliest effects, visible at two hours post-infection, are inhibition of growth of the culture, formation of elongated cells, and striking changes in the appearance of the outer membrane. After four to five hours, the viability of the culture declined sharply and macromolecular synthesis ceased. The distinct class of early events is consistent with the hypothesis that the KlaA polypeptide interacts with a specific target in the host cell.
Collapse
Affiliation(s)
- L H Saltman
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
32
|
Goncharoff P, Saadi S, Chang CH, Saltman LH, Figurski DH. Structural, molecular, and genetic analysis of the kilA operon of broad-host-range plasmid RK2. J Bacteriol 1991; 173:3463-77. [PMID: 2045366 PMCID: PMC207960 DOI: 10.1128/jb.173.11.3463-3477.1991] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The kil loci (kilA, kilB, kilC, and kilE) of incompatibility group P (IncP), broad-host-range plasmid RK2 were originally detected by their potential lethality to Escherichia coli host cells. Expression of the kil determinants is controlled by different combinations of kor functions (korA, korB, korC, and korE). This system of regulated genes, known as the kil-kor regulon, includes trfA, which encodes the RK2 replication initiator. The functions of the kil loci are unknown, but their coregulation with an essential replication function suggests that they have a role in the maintenance or host range of RK2. In this study, we have determined the nucleotide sequence of a 3-kb segment of RK2 that encodes the entire kilA locus. The region encodes three genes, designated klaA, klaB, and klaC. The phage T7 RNA polymerase-dependent expression system was use to identify three polypeptide products. The estimated masses of klaA and klaB products were in reasonable agreement with the calculated molecular masses of 28,407 and 42,156 Da, respectively. The klaC product is calculated to be 32,380 Da, but the observed polypeptide exhibited an apparent mass of 28 kDa on sodium dodecyl sulfate-polyacrylamide gels. Mutants of klaC were used to confirm that initiation of translation of the observed product occurs at the first ATG in the klaC open reading frame. Hydrophobicity analysis indicated that the KlaA and KlaB polypeptides are likely to be soluble, whereas the KlaC polypeptide was predicted to have four potential membrane-spanning domains. The only recognizable promoter sequences in the kilA region were those of the kilA promoter located upstream of klaA and the promoter for the korA-korB operon located just downstream of a rho-independent terminatorlike sequence following klaC. The transcriptional start sites for these promoters were determined by primer extension. Using isogenic sets of plasmids with nonpolar mutations, we found that klaA, klaB, and klaC are each able to express a host-lethal (Kil+) phenotype in the absence of kor functions. Inactivation of the kilA promoter causes loss of the lethal phenotype, demonstrating that all three genes are expressed from the kilA promoter as a multicistronic operon. We investigated two other phenotypes that have been mapped to the kilA region of RK2 or the closely related IncP plasmids RP1 and RP4: inhibition of conjugal transfer of IncW plasmids (fwB) and resistance to potassium tellurite. The cloned kilA operon was found to express both phenotypes, even in the presence of korA and korB, whose functions are known to regulate the kilA promoter. In addition, mutant and complementation analyses showed that the kilA promoter and the products of all three kla genes are necessary for expression of both phenotypes. Therefore, host lethality, fertility inhibition, and tellurite resistance are all properties of the kilA operon. We discuss the possible role of the kilA operon for RK2.
Collapse
Affiliation(s)
- P Goncharoff
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | | | |
Collapse
|
33
|
Walter EG, Thomas CM, Ibbotson JP, Taylor DE. Transcriptional analysis, translational analysis, and sequence of the kilA-tellurite resistance region of plasmid RK2Ter. J Bacteriol 1991; 173:1111-9. [PMID: 1846856 PMCID: PMC207231 DOI: 10.1128/jb.173.3.1111-1119.1991] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The tellurite resistance (Ter) determinant of the IncP alpha plasmid RK2Ter, a variant of RK2 (also called RP4), is located between the kilA and korA genes involved in plasmid replication control. Transcriptional and translational fusions were constructed between the gene for beta-galactosidase and the kilA and Ter genes by using the transpositional phage mini-Mu. These fusions indicated that the Ter genes are transcribed in the same direction as kilA and that transcription and translation of the cloned kilA gene are occurring and may not be lethal to the bacterial cell even in the absence of korA. The nucleotide sequence of this region was determined, and three open reading frames (ORFs) were identified. The first ORF codes for KilA, a 28-kDa hydrophilic protein. The second ORF, telA, codes for a hydrophilic protein of 42 kDa. The third ORF, telB, codes for a hydrophobic protein of 32 kDa. This protein appears to be located in the inner membrane of the bacterial cell, since fusions of TelB to alkaline phosphatase were obtained by using TnphoA. All three proteins were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after overproduction using the T7 RNA polymerase/promoter system. The same three proteins were produced when Tes and Ter derivatives of RP4 were expressed in an in vitro transcription-translation system. A single Ser-to-Cys missense mutation in telB was found to be responsible for mutation of RK2 to Ter.
Collapse
Affiliation(s)
- E G Walter
- Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
34
|
The korF region of broad-host-range plasmid RK2 encodes two polypeptides with transcriptional repressor activity. J Bacteriol 1991; 173:826-33. [PMID: 1987165 PMCID: PMC207077 DOI: 10.1128/jb.173.2.826-833.1991] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Broad-host-range IncP plasmid RK2 possesses a series of operons involved in plasmid maintenance, whose expression is coordinated by a number of regulators, most of which are encoded in the central regulatory korA-korB operon. The nucleotide sequence of two new cistrons in this operon, comprising what we have previously designated the korF locus located between coordinates 57.0 and 56.0 kb on the genome of the IncP alpha plasmid RK2, is presented. The cistrons encode polypeptides of 173 and 175 amino acids. Each can repress transcription from the promoters for the kfrA (a monocistronic operon which follows the korA-korB operon) and trfA (a polycistronic operon encoding a putative single-stranded-DNA-binding protein as well as the essential plasmid replication protein TrfA) operons. In addition, the korF loci allow korB to repress kfrA transcription. Both polypeptides contain hydrophobic segments, suggesting that they may be membrane associated. KorFI is highly basic protein whose predicted properties are similar to those of histone like proteins.
Collapse
|
35
|
Ayres EK, Saadi S, Schreiner HC, Thomson VJ, Figurski DH. Differentiation of lethal and nonlethal, kor-regulated functions in the kilB region of broad host-range plasmid RK2. Plasmid 1991; 25:53-63. [PMID: 1852017 DOI: 10.1016/0147-619x(91)90006-i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In broad host-range plasmid RK2, several kil loci (kilA, kilB, kilC, kilE) and the replication initiator gene (trfA) are regulated by combination of kor determinants (korA, korB, korC, korE) in a regulatory network known as the kil-kor region. Although the kil determinants are not essential for replication, their coregulation with trfA suggests an involvement in plasmid maintenance or host-range. Plasmids carrying the cloned kilB region of RK2 cannot be maintained in the absence of korB owing to two phenotypically distinguishable, kor-regulated determinants: (1) kilB1 (kilD), which can be controlled by korA or korB, and (2) kilB2, which requires korB for control. In this study, we have determined the nature of the functions responsible for the kor-sensitive phenotypes of the kilB region. We found that insertion of transcription terminators within or downstream of the trfA operon allows plasmids carrying the kilB1 portion of the kilB region to be maintained in cells lacking korA or korB. In addition, mutants of the kilB1 region that can be maintained in the absence of korA and korB have alterations in the trfA promoter. These results show that the phenotype of the cloned kilB1 region in kor-deficient cells depends on trfA transcription but does not involve expression of any gene of the trfA operon. Therefore, the kilB1 determinant is not a structural gene. The phenotype results from entry of trfA-initiated transcription into adjacent sequences of the plasmid vector. The ability to block the kilB2 phenotype with transcriptional terminators allowed us to show conclusively that the kilB2 determinant is a host-lethal gene (klbA) whose regulation is dependent on korB. These findings have implications for the structure of the basic replicon of RK2.
Collapse
Affiliation(s)
- E K Ayres
- Department of Microbiology and Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | | | |
Collapse
|
36
|
Durland RH, Toukdarian A, Fang F, Helinski DR. Mutations in the trfA replication gene of the broad-host-range plasmid RK2 result in elevated plasmid copy numbers. J Bacteriol 1990; 172:3859-67. [PMID: 2193921 PMCID: PMC213367 DOI: 10.1128/jb.172.7.3859-3867.1990] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutated forms of trfA, the replication protein gene of plasmid RK2, that support a minimal RK2 origin plasmid in Escherichia coli at copy numbers up to 23-fold higher than normal have been isolated. Six such high-copy-number (copy-up) mutations were mapped and sequenced. In each case, a single base transition led to an amino acid substitution in the TrfA protein primary sequence. The six mutations affected different residues of the protein and were located within a 69-base-pair region encoding 24 amino acids. Dominance tests showed that each of the mutants can be suppressed by wild-type trfA in trans, but suppression is highly dependent on the amount of wild-type protein produced. Excess mutant TrfA protein provided in trans significantly increased the copy number of RK2 and other self-replicating derivatives of RK2 that contain a wild-type trfA gene. These observations suggest that the mutations affect a regulatory activity of the TrfA replication protein that is a key factor in the control of initiation of RK2 replication.
Collapse
Affiliation(s)
- R H Durland
- Center for Molecular Genetics, University of California, San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
37
|
Durland RH, Helinski DR. Replication of the broad-host-range plasmid RK2: direct measurement of intracellular concentrations of the essential TrfA replication proteins and their effect on plasmid copy number. J Bacteriol 1990; 172:3849-58. [PMID: 2193920 PMCID: PMC213366 DOI: 10.1128/jb.172.7.3849-3858.1990] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The trfA gene of the broad-host-range plasmid RK2 is essential for initiation of plasmid replication. Two related TrfA proteins of 43 and 32 kilodaltons (kDa) are produced by independent translation initiation at two start codons within the trfA open reading frame. These proteins were o overproduced in Escherichia coli and partially purified. Rabbit antisera raised against the 32-kDa TrfA protein (TrfA-32) and cross-reacting with the 43-kDa protein (TrfA-43) were used in Western blotting (immunoblotting) assays to measure intracellular TrfA levels. In logarithmically growing E. coli HB101, RK2 produced 4.6 +/- 0.6 ng of TrfA-32 and 1.8 +/- 0.2 ng of TrfA-43 per unit of optical density at 600 nm (mean +/- standard deviation). On the basis of determinations of the number of cells per unit of optical density at 600 nm, this corresponds to about 220 molecules of TrfA-32 and 80 molecules of TrfA-43 per cell. Dot blot hybridizations showed that plasmid RK2 is present in about 15 copies per E. coli cell under these conditions. Using plasmid constructs that produce different levels of TrfA proteins, the effect of excess TrfA on RK2 replication was tested. A two- to threefold excess of total TrfA increased the copy number of RK2 by about 30%. Additional increases in TrfA protein concentration had no further effect on copy number, even at levels 170-fold above normal. An RK2 minimal origin plasmid showed a similar response to intracellular TrfA concentration. These results demonstrate that TrfA protein concentration is not strictly rate limiting for RK2 replication and that a mechanism that is independent of TrfA concentration functions to limit RK2 copy number in the presence of excess TrfA.
Collapse
Affiliation(s)
- R H Durland
- Center for Molecular Genetics, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
38
|
Kornacki JA, Burlage RS, Figurski DH. The kil-kor regulon of broad-host-range plasmid RK2: nucleotide sequence, polypeptide product, and expression of regulatory gene korC. J Bacteriol 1990; 172:3040-50. [PMID: 2160936 PMCID: PMC209106 DOI: 10.1128/jb.172.6.3040-3050.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Broad-host-range plasmid RK2 encodes several kil operons (kilA, kilB, kilC, kilE) whose expression is potentially lethal to Escherichia coli host cells. The kil operons and the RK2 replication initiator gene (trfA) are coregulated by various combinations of kor genes (korA, korB, korC, korE). This regulatory network is called the kil-kor regulon. Presented here are studies on the structure, product, and expression of korC. Genetic mapping revealed the precise location of korC in a region near transposon Tn1. We determined the nucleotide sequence of this region and identified the korC structural gene by analysis of korC mutants. Sequence analysis predicts the korC product to be a polypeptide of 85 amino acids with a molecular mass of 9,150 daltons. The KorC polypeptide was identified in vivo by expressing wild-type and mutant korC alleles from a bacteriophage T7 RNA polymerase-dependent promoter. The predicted structure of KorC polypeptide has a net positive charge and a helix-turn-helix region similar to those of known DNA-binding proteins. These properties are consistent with the repressorlike function of KorC protein, and we discuss the evidence that KorA and KorC proteins act as corepressors in the control of the kilC and kilE operons. Finally, we show that korC is expressed from the bla promoters within the upstream transposon Tn1, suggesting that insertion of Tn1 interrupted a plasmid operon that may have originally included korC and kilC.
Collapse
Affiliation(s)
- J A Kornacki
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
39
|
Thomas CM, Theophilus BD, Johnston L, Jagura-Burdzy G, Schilf W, Lurz R, Lanka E. Identification of a seventh operon on plasmid RK2 regulated by the korA gene product. Gene X 1990; 89:29-35. [PMID: 2197180 DOI: 10.1016/0378-1119(90)90202-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Broad-host-range IncP plasmids possess a series of operons involved in plasmid maintenance, whose expression is coordinated by a series of regulators, most of which are encoded in a central regulatory operon. The nucleotide sequence of a new monocistronic operon located between coordinates 55.0 and 56.0 kb on the genome of the IncP alpha plasmids RK2 and RP4 is presented. The operon encodes a 34 kDa protein which has a net negative charge. Transcription of the operon, designated by us kfrA (korF-regulated), is repressed not only by the product of the previously described korA gene but also by the product of a gene which we have designated korF and which has not been described previously. The korF gene is encoded downstream from korB within the key korA/korB regulatory operon. We propose that K or F binds to a novel inverted repeat overlapping the promoter for the kfrA operon.
Collapse
Affiliation(s)
- C M Thomas
- Department of Biological Sciences, University of Birmingham, U.K
| | | | | | | | | | | | | |
Collapse
|
40
|
Marczynski GT, Dingwall A, Shapiro L. Plasmid and chromosomal DNA replication and partitioning during the Caulobacter crescentus cell cycle. J Mol Biol 1990; 212:709-22. [PMID: 2329579 DOI: 10.1016/0022-2836(90)90232-b] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell division in Caulobacter crescentus yields a swarmer and a stalked cell. Only the stalked cell progeny is able to replicate its chromosome, and the swarmer cell progeny must differentiate into a stalked cell before it too can replicate its chromosome. In an effort to understand the mechanisms that limit chromosomal replication to the stalked cell, plasmid DNA synthesis was analyzed during the developmental cell cycle of C. crescentus, and the partitioning of both the plasmids and the chromosomes to the progeny cells was examined. Unlike the chromosome, plasmids from the incompatibility groups Q and P replicated in all C. crescentus cell types. However, all plasmids tested showed a ten- to 20-fold higher replication rate in the stalked cells than the swarmer cells. We observed that all plasmids replicated during the C. crescentus cell cycle with comparable kinetics of DNA synthesis, even though we tested plasmids that encode very different known (and putative) replication proteins. We determined the plasmid copy number in both progeny cell types, and determined that plasmids partitioned equally to the stalked and swarmer cells. We also reexamined chromosome partitioning in a recombination-deficient strain of C. crescentus, and confirmed an earlier report that chromosomes partition to the progeny stalked and swarmer cells in a random manner that does not discriminate between old and new DNA strands.
Collapse
Affiliation(s)
- G T Marczynski
- Department of Developmental Biology, Stanford University School of Medicine, CA 94305
| | | | | |
Collapse
|
41
|
Abstract
Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical data about the initial priming reaction of DNA synthesis exist. Detailed models have been developed for the initiation and regulation of ColE1 replication. For other plasmids, such as pSC101, some hypotheses for priming mechanisms and replication initiation are presented. These hypotheses are based on experimental evidence and speculative comparisons with other systems, e.g., the chromosomal origin of E. coli. In most cases, knowledge concerning plasmid replication is limited to regulation mechanisms. These mechanisms coordinate plasmid replication to the host cell cycle, and they also seem to determine the host range of a plasmid. Most plasmids studied exhibit a narrow host range, limited to E. coli and related bacteria. In contrast, some others, such as the IncP plasmid RK2 and the IncQ plasmid RSF1010, are able to replicate in nearly all gram-negative bacteria. This broad host range may depend on the correct expression of the essential rep genes, which may be mediated by a complex regulatory mechanism (RK2) or by the use of different promoters (RSF1010). Alternatively or additionally, owing to the structure of their origin and/or to different forms of their replication initiation proteins, broad-host-range plasmids may adapt better to the host enzymes that participate in initiation. Furthermore, a broad host range can result when replication initiation is independent of host proteins, as is found in the priming reaction of RSF1010.
Collapse
|
42
|
Shingler V, Thomas CM. Analysis of nonpolar insertion mutations in the trfA gene of IncP plasmid RK2 which affect its broad-host-range property. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1007:301-8. [PMID: 2495025 DOI: 10.1016/0167-4781(89)90152-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Replication of broad-host-range plasmid RK2 requires the protein product(s) of the plasmid-encoded trfA gene to initiate replication at oriV, the vegetative replication origin. The trfA gene contains two translational starts which direct translation of two polypeptides, of 382 and 285 amino acids, which differ by the 97 amino acids at their N-terminus. Nonpolar insertions which abolish expression of the larger TrfA polypeptide but otherwise retain the trfA gene's normal expression signals severely reduce plasmid replication efficiency in Pseudomonas aeruginosa and to a lesser extent in Pseudomonas putida, but have very little effect in Escherichia coli. This indicates that the organization of the trfA gene, producing two polypeptides products, plays an important part in the broad-host-range of plasmid RK2 by providing a degree of flexibility in the way the plasmid's replication system interacts with host biochemistry.
Collapse
Affiliation(s)
- V Shingler
- Department of Genetics, University of Birmingham, U.K
| | | |
Collapse
|
43
|
Schmidhauser TJ, Bechhofer DH, Figurski DH, Helinski DR. Host-specific effects of the korA-korB operon and oriT region on the maintenance of miniplasmid derivatives of broad host-range plasmid RK2. Plasmid 1989; 21:99-112. [PMID: 2740456 DOI: 10.1016/0147-619x(89)90053-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two genetic determinants are sufficient for small derivatives of broad host-range plasmid RK2 to replicate in different Gram-negative bacteria: trfA, which encodes a replication initiator, and oriV, the origin of replication. In this study, nonessential RK2 determinants in the region encoding oriT, the origin of conjugative transfer, and the korA-korB operon, whose products regulate trfA expression, were tested for their effects on the stability of mini-RK2 plasmids in eight different hosts. We found that determinants of both regions can substantially alter plasmid stability, but the effects are not uniform in all hosts. The results also indicate that the effects of the korA-korB operon extend beyond that of the regulation of trfA transcription. This study further illustrates the different requirements for stable plasmid maintenance in diverse bacteria and the ability of wild-type RK2 to adapt to a variety of intracellular environments. The data also provide further evidence for the involvement of different regions of RK2 for stable maintenance in various hosts.
Collapse
Affiliation(s)
- T J Schmidhauser
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
44
|
Abstract
The molecular genetic basis of the promiscuity of the wide host range conjugative IncP-1 alpha plasmids has been investigated by transposon mutagenesis and by the construction of minireplicons. The former has identified the origin of plasmid vegetative replication, the replication genes needed for initiation of plasmid replication, the DNA primase gene and a gene encoding a polypeptide of 52 kDa and mapping near the origin of plasmid transfer as all contributing to promiscuity. Minireplicon constructions confirm this conclusion but in addition establish that the origins of replication, transfer and other genomic regions produce complex interactions with respect to host range. DNA sequence analysis within the origin of replication show that the first direct repeat of the cluster of five repeats and sequences immediately 5' to it appear to be required in some (Escherichia coli) but not in other (Pseudomonas aeruginosa) hosts for plasmid replication.
Collapse
Affiliation(s)
- V Krishnapillai
- Department of Genetics, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
45
|
Thomas CM, Ibbotson JP, Wang NY, Smith CA, Tipping R, Loader NM. Gene regulation on broad host range plasmid RK2: identification of three novel operons whose transcription is repressed by both KorA and KorC. Nucleic Acids Res 1988; 16:5345-59. [PMID: 2838814 PMCID: PMC336771 DOI: 10.1093/nar/16.12.5345] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The product of the korA gene of broad host range plasmid RK2 is a key transcriptional repressor which regulates not only the expression of the essential replication gene trfA but also its own expression and that of the kilA operon. It has previously been proposed that korA also encodes a positive activator of transcription of the korC gene, which may act as a transcriptional antiterminator. Here we show that the action of korA in relation to korC can be explained entirely through the korA protein's property as a transcriptional repressor. The limited ability of the previously cloned korC gene to suppress kilC on its own is shown to be due to the fact that korC in RK2 is transcribed from the bla promoter of Tn1 which was deleted in the original korC clones. We demonstrate that korA is a second repressor along with korC of three operons, one of which encodes kilC, the other two not having been described previously and serving an as yet unknown function. We have designated these operons kcrA, B and C for KorC-regulated. Putative kilC is designated kcrC. The homology between the expression signals of these operons suggests that they have arisen by duplication. This is confirmed in the case of kcrA and B by the existence of considerable homology between the products of the first ORFs in each of these operons.
Collapse
Affiliation(s)
- C M Thomas
- Department of Genetics, University of Birmingham, UK
| | | | | | | | | | | |
Collapse
|
46
|
Thomas CM. Recent studies on the control of plasmid replication. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 949:253-63. [PMID: 2450587 DOI: 10.1016/0167-4781(88)90150-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- C M Thomas
- Department of Genetics, University of Birmingham, U.K
| |
Collapse
|
47
|
Schmidhauser TJ, Ditta G, Helinski DR. Broad-host-range plasmid cloning vectors for gram-negative bacteria. BIOTECHNOLOGY (READING, MASS.) 1988; 10:287-332. [PMID: 2850044 DOI: 10.1016/b978-0-409-90042-2.50021-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Kornacki JA, Balderes PJ, Figurski DH. Nucleotide sequence of korB, a replication control gene of broad host-range plasmid RK2. J Mol Biol 1987; 198:211-22. [PMID: 3430606 DOI: 10.1016/0022-2836(87)90307-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The korB gene is a major regulatory element in the replication and maintenance of broad host-range plasmid RK2. It negatively controls the replication gene trfA, the host-lethal determinants kilA and kilB, and the korA-korB operon. Here, we present the nucleotide sequence of an 1167 base-pair region that encodes korB. Using sequence data from korB mutants, we identified the korB structural gene. The predicted polypeptide product is negatively charged and has a molecular weight of 39,015, which is considerably less than that estimated by its electrophoretic mobility in SDS/polyacrylamide gels. Secondary-structure predictions of korB polypeptide revealed three closely spaced helix-turn-helix regions with significant homology to similar structures in known DNA-binding proteins. The korB gene, like all other sequenced RK2 genes, shows a strong preference for codons ending in a G or C residue. This is similar to codon usage by genes of Klebsiella and Pseudomonas, the original hosts for RK2 and some closely related plasmids. We also sequenced the site of transposon Tn76 insertion in the host-range mutant pRP761 and found it to be located immediately upstream from korB in the incC gene. Finally, we report the presence of sequences resembling a replication origin within the korB structural gene: a cluster of four 19 base-pair direct repeats and a nearby potential binding site for Escherichia coli dna A replication protein.
Collapse
Affiliation(s)
- J A Kornacki
- Department of Microbiology and Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
49
|
Gaylo PJ, Turjman N, Bastia D. DnaA protein is required for replication of the minimal replicon of the broad-host-range plasmid RK2 in Escherichia coli. J Bacteriol 1987; 169:4703-9. [PMID: 2820940 PMCID: PMC213843 DOI: 10.1128/jb.169.10.4703-4709.1987] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The minimal origin of replication of the broad-host-range plasmid RK2 has two potential recognition sequences for the DnaA protein of Escherichia coli. DNA transfer by transformation into a dnaA-null mutant of E. coli showed that DnaA protein is needed for replication or maintenance of mini-RK2. We isolated and purified DnaA protein as a chimeric protein, covalently attached to a piece of collagen and beta-galactosidase. The hybrid protein specifically bound to restriction fragments from the oriV region of RK2, which contained the two dnaA boxes. Deletion of the second dnaA box inactivated the origin and abolished the binding of the hybrid protein to the DNA fragment that had suffered the deletion. When the second dnaA box was replaced with an EcoRI linker of identical length, origin activity was restored. Binding experiments showed that the linker provided a weak dnaA box. An alternative explanation was that the linker restored proper spacing between sequences on either side of the deleted box, thus restoring origin activity.
Collapse
Affiliation(s)
- P J Gaylo
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
50
|
Dodd IB, Egan JB. Systematic method for the detection of potential lambda Cro-like DNA-binding regions in proteins. J Mol Biol 1987; 194:557-64. [PMID: 3625774 DOI: 10.1016/0022-2836(87)90681-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have developed and tested a systematic method for the location and statistical evaluation of potential DNA-binding regions of the lambda Cro type in protein sequences. Using this approach to examine proteins expected to contain such regions, we have been able to compile a statistically homogeneous master set of 37 lambda Cro-like DNA-binding domains. Examination of a protein database revealed other prokaryotic proteins that are similar to this lambda Cro-like group. There are also many DNA-binding proteins that are not found to be significantly similar to the lambda Cro group, consistent with previous suggestions that different types of protein sequence may be able to achieve a similar mode of binding and that there exist other modes of sequence-specific DNA-binding. A useful feature of the method is that it can be applied without a computer.
Collapse
|