1
|
Khadka R, Maravich B, Demarest N, Hartwig M, Tom A, Das NK, Cabeen MT. Stressosome-independent but RsbT-dependent environmental stress sensing in Bacillus subtilis. Nat Commun 2025; 16:1591. [PMID: 39939311 PMCID: PMC11821858 DOI: 10.1038/s41467-025-56871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
Bacillus subtilis uses cytoplasmic complexes called stressosomes to initiate the σB-mediated general stress response to environmental stress. Each stressosome comprises two types of proteins - RsbS and four paralogous RsbR proteins - that are thought to sequester the RsbT protein until stress causes RsbT release and subsequent σB activation. RsbR proteins have been assumed to sense stress, but evidence for their sensing function has been elusive, and the identity of the true sensor has remained unknown. Here, we conduct an alanine-scanning analysis of the putative sensing domain of one of the RsbR paralogs, RsbRA. We find that single substitutions impact but do not abolish the σB response, suggesting that RsbRA has a key role in σB response dynamics and is "tunable" and robust to substitution, but not directly supporting a sensing function. Surprisingly, deletion of the stressosome does not abolish environmental stress-inducible σB activity and instead leads to a stronger and longer-lived response than in strains with stressosomes. Finally, we show that RsbT is necessary for the stressosome-independent response and that its kinase activity is also important. RsbT thus has a previously unappreciated role in initiating stress responses and may itself be a stress sensor in the general stress response.
Collapse
Affiliation(s)
- Rabindra Khadka
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brannon Maravich
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Natalie Demarest
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mitchell Hartwig
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Andrew Tom
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Niloy Kumar Das
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew T Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
2
|
van der Steen JB, Hellingwerf KJ. Activation of the General Stress Response of Bacillus subtilis by Visible Light. Photochem Photobiol 2015; 91:1032-45. [PMID: 26189730 DOI: 10.1111/php.12499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
A key challenge for microbiology is to understand how evolution has shaped the wiring of regulatory networks. This is amplified by the paucity of information of power-spectra of physicochemical stimuli to which microorganisms are exposed. Future studies of genome evolution, driven by altered stimulus regimes, will therefore require a versatile signal transduction system that allows accurate signal dosing. Here, we review the general stress response of Bacillus subtilis, and its upstream signal transduction network, as a candidate system. It can be activated by red and blue light, and by many additional stimuli. Signal integration therefore is an intricate function of this system. The blue-light response is elicited via the photoreceptor YtvA, which forms an integral part of stressosomes, to activate expression of the stress regulon of B. subtilis. Signal transfer through this network can be assayed with reporter enzymes, while intermediate steps can be studied with live-cell imaging of fluorescently tagged proteins. Different parts of this system have been studied in vitro, such that its computational modeling has made significant progress. One can directly relate the microscopic characteristics of YtvA with activation of the general stress regulon, making this system a very well-suited system for network evolution studies.
Collapse
Affiliation(s)
- Jeroen B van der Steen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Abstract
My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery.
Collapse
Affiliation(s)
- Richard Losick
- From the Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| |
Collapse
|
4
|
|
5
|
Abstract
One of the strongest and most noticeable responses of a Bacillus subtilis cell to a range of stress and starvation conditions is the dramatic induction of a large number of general stress proteins. The alternative sigma factor sigma B is responsible for the induction of the genes encoding these general stress proteins that occurs following heat, ethanol, salt or acid stress, or during energy depletion. sigma B was detected more than 20 years ago by Richard Losick and William Haldenwang as the first alternative sigma factor of bacteria, but interest in sigma B declined after it was realized that sigma B is not involved in sporulation. It later turned out that sigma B, whose activity itself is tightly controlled, is absolutely required for the induction of this regulon, not only in B. subtilis, but also in other Gram-positive bacteria. These findings may have been responsible for the recent revival of interest in sigma B. This chapter summarizes the current information on this sigma B response including the latest results on the signal transduction pathways, the structure of the regulon and its physiological role. More than 150 general stress proteins/genes belong to this sigma B regulon, which is believed to provide the non-growing cell with a non-specific, multiple and preventive stress resistance. sigma B-dependent stress proteins are involved in non-specific protection against oxidative stress and also protect cells against heat, acid, alkaline or osmotic stress. A cell in the transition from a growing to a non-growing state induced by energy depletion will be equipped with a comprehensive stress resistance machine to protect it against future stress. The protection against oxidative stress may be an essential part of this response. In addition, preloading of cells with sigma B-dependent stress proteins, induced by mild heat or salt stress, will protect cells against a severe, potentially lethal, future stress. Both the specific protection against an acute emerging stress, as well as the non-specific, prospective protection against future stress, are adaptive functions crucial for surviving stress and starvation in nature. We suggest that the sigma B response is one essential component of a survival strategy that ensures survival in a quiescent, vegetative state as an alternative to sporulation. The role of sigma B in related Gram-positive bacteria (including cyanobacteria) with special emphasis on pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | |
Collapse
|
6
|
Akbar S, Gaidenko TA, Kang CM, O'Reilly M, Devine KM, Price CW. New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J Bacteriol 2001; 183:1329-38. [PMID: 11157946 PMCID: PMC95007 DOI: 10.1128/jb.183.4.1329-1338.2001] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the general stress regulon of Bacillus subtilis is controlled by the alternative transcription factor sigma(B), which is activated when cells encounter growth-limiting energy or environmental stresses. The RsbT serine-threonine kinase is required to convey environmental stress signals to sigma(B), and this kinase activity is magnified in vitro by the RsbR protein, a positive regulator important for full in vivo response to salt or heat stress. Previous genetic analysis suggested that RsbR function is redundant with other unidentified regulators. A search of the translated B. subtilis genome found six paralogous proteins with significant similarity to RsbR: YetI, YezB, YkoB, YojH, YqhA, and YtvA. Their possible regulatory roles were investigated using three different approaches. First, genetic analysis found that null mutations in four of the six paralogous genes have marked effects on the sigma(B) environmental signaling pathway, either singly or in combination. The two exceptions were yetI and yezB, adjacent genes which appear to encode a split paralog. Second, biochemical analysis found that YkoB, YojH, and YqhA are specifically phosphorylated in vitro by the RsbT environmental signaling kinase, as had been previously shown for RsbR, which is phosphorylated on two threonine residues in its C-terminal region. Both residues are conserved in the three phosphorylated paralogs but are absent in the ones that were not substrates of RsbT: YetI and YezB, each of which bears only one of the conserved residues; and YtvA, which lacks both residues and instead possesses an N-terminal PAS domain. Third, analysis in the yeast two-hybrid system suggested that all six paralogs interact with each other and with the RsbR and RsbS environmental regulators. Our data indicate that (i) RsbR, YkoB, YojH, YqhA, and YtvA function in the environmental stress signaling pathway; (ii) YtvA acts as a positive regulator; and (iii) RsbR, YkoB, YojH, and YqhA collectively act as potent negative regulators whose loss increases sigma(B) activity more than 400-fold in unstressed cells.
Collapse
Affiliation(s)
- S Akbar
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
7
|
Fouet A, Namy O, Lambert G. Characterization of the operon encoding the alternative sigma(B) factor from Bacillus anthracis and its role in virulence. J Bacteriol 2000; 182:5036-45. [PMID: 10960085 PMCID: PMC94649 DOI: 10.1128/jb.182.18.5036-5045.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2000] [Accepted: 06/19/2000] [Indexed: 11/20/2022] Open
Abstract
The operon encoding the general stress transcription factor sigma(B) and two proteins of its regulatory network, RsbV and RsbW, was cloned from the gram-positive bacterium Bacillus anthracis by PCR amplification of chromosomal DNA with degenerate primers, by inverse PCR, and by direct cloning. The gene cluster was very similar to the Bacillus subtilis sigB operon both in the primary sequences of the gene products and in the order of its three genes. However, the deduced products of sequences upstream and downstream from this operon showed no similarity to other proteins encoded by the B. subtilis sigB operon. Therefore, the B. anthracis sigB operon contains three genes rather than eight as in B. subtilis. The B. anthracis operon is preceded by a sigma(B)-like promoter sequence, the expression of which depends on an intact sigma(B) transcription factor in B. subtilis. It is followed by another open reading frame that is also preceded by a promoter sequence similarly dependent on B. subtilis sigma(B). We found that in B. anthracis, both these promoters were induced during the stationary phase and induction required an intact sigB gene. The sigB operon was induced by heat shock. Mutants from which sigB was deleted were constructed in a toxinogenic and a plasmidless strain. These mutants differed from the parental strains in terms of morphology. The toxinogenic sigB mutant strain was also less virulent than the parental strain in the mouse model. B. anthracis sigma(B) may therefore be a minor virulence factor.
Collapse
Affiliation(s)
- A Fouet
- Toxines et Pathogénie Bactériennes (URA 1858, CNRS), Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
8
|
Hecker M, Engelmann S. Proteomics, DNA arrays and the analysis of still unknown regulons and unknown proteins of Bacillus subtilis and pathogenic gram-positive bacteria. Int J Med Microbiol 2000; 290:123-34. [PMID: 11045917 DOI: 10.1016/s1438-4221(00)80080-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The complete sequence of the bacterial genomes provides new perspectives for the study of gene expression and gene function. By the combination of the highly sensitive 2-dimensional (2D) protein gel electrophoresis with the identification of the protein spots by microsequencing or mass spectrometry we established a 2D protein index of Bacillus subtilis that currently comprises almost 400 protein entries. A computer-aided evaluation of the 2D gels loaded with radioactively-labelled proteins from growing or stressed/starved cells proved to be a powerful tool in the analysis of global regulation of the expression of the entire genome. For the general stress regulon it is demonstrated how the proteomics approach can be used to analyse the regulation, structure and function of still unknown regulons. The application of this approach is illustrated for the sigmaB dependent general stress regulon. For the comprehensive description of proteins/genes belonging to stimulons or regulons it is generally recommended to complement the proteome approach with DNA array techniques in order to identify and allocate still undiscovered members of individual regulons. This approach is also very attractive to uncover the function of still unknown global regulators and regulons and to dissect the entire genome into its basic modules of global regulation. The same strategy can be used to analyse the regulation, structure and function of regulons encoding virulence factors of pathogenic bacteria for a comprehensive understanding of the pathogenicity and for the identification of new antibacterial targets.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt Universität, Institut für Mikrobiologie, Greifswald, Germany.
| | | |
Collapse
|
9
|
Pichereau V, Hartke A, Auffray Y. Starvation and osmotic stress induced multiresistances. Influence of extracellular compounds. Int J Food Microbiol 2000; 55:19-25. [PMID: 10791712 DOI: 10.1016/s0168-1605(00)00208-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Growth restriction due to stasis and/or hyperosmolarity is a common situation encountered by microorganisms in nature. Therefore, they have developed defence systems allowing them to withstand these periods. Bacteria respond to these conditions by a metabolic reprogramming which leads to a cellular state of enhanced resistance. This communication reviews recent advances in knowledge of the molecular basis of this phenomenon in different bacteria.
Collapse
Affiliation(s)
- V Pichereau
- Laboratoire de Microbiologie de l'Environnement, Institut de Recherche en Biologie appliquée, Université de Caen, France.
| | | | | |
Collapse
|
10
|
Liao CT, Wen YD, Wang WH, Chang BY. Identification and characterization of a stress-responsive promoter in the macromolecular synthesis operon of Bacillus subtilis. Mol Microbiol 1999; 33:377-88. [PMID: 10411753 DOI: 10.1046/j.1365-2958.1999.01480.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis DB1005 is a temperature-sensitive (Ts) sigA mutant. Induction of sigmaA has been observed exclusively in this mutant harbouring extra copies of the plasmid-borne Ts sigA gene transcriptionally controlled by the P1P2 promoters of the B. subtilis macromolecular synthesis (MMS; rpoD or sigA) operon. Investigation of the mechanisms leading to the induction has allowed us to identify a sigmaB-type promoter, P7, in the MMS operon for the first time. Therefore, at least seven promoters in total are responsible for the regulation of the B. subtilis MMS operon, including the four known sigmaA- and sigmaH-type promoters, as well as two incompletely defined promoters. The P7 promoter was activated in B. subtilis after the imposition of heat, ethanol and salt stresses, indicating that the MMS operon of B. subtilis is subjected to the control of general stress. The significant heat induction of P7 in B. subtilis DB1005 harbouring a plasmid-borne Ts sigA gene can be explained by a model of competition between sigmaA and sigmaB for core binding; very probably, the sigmaB factor binds more efficiently to core RNA polymerase under heat shock. This mechanism may provide a means for the expression of the B. subtilis MMS operon when sigmaA becomes defective in core binding.
Collapse
Affiliation(s)
- C T Liao
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | |
Collapse
|
11
|
Völker U, Maul B, Hecker M. Expression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J Bacteriol 1999; 181:3942-8. [PMID: 10383961 PMCID: PMC93883 DOI: 10.1128/jb.181.13.3942-3948.1999] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative sigma factor sigmaB of Bacillus subtilis is required for the induction of approximately 100 genes after the imposition of a whole range of stresses and energy limitation. In this study, we investigated the impact of a null mutation in sigB on the stress and starvation survival of B. subtilis. sigB mutants which failed to induce the regulon following stress displayed an at least 50- to 100-fold decrease in survival of severe heat (54 degrees C) or ethanol (9%) shock, salt (10%) stress, and acid (pH 4.3) stress, as well as freezing and desiccation, compared to the wild type. Preloading cells with sigmaB-dependent general stress proteins prior to growth-inhibiting stress conferred considerable protection against heat and salt. Exhaustion of glucose or phosphate induced the sigmaB response, but surprisingly, sigmaB did not seem to be required for starvation survival. Starved wild-type cells exhibited about 10-fold greater resistance to salt stress than exponentially growing cells. The data argue that the expression of sigmaB-dependent genes provides nonsporulated B. subtilis cells with a nonspecific multiple stress resistance that may be relevant for stress survival in the natural ecosystem.
Collapse
Affiliation(s)
- U Völker
- Laboratorium für Mikrobiologie und MPI für terrestrische Mikrobiologie, Philipps-Universität, 35043 Marburg, Germany
| | | | | |
Collapse
|
12
|
Hecker M, Völker U. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol Microbiol 1998; 29:1129-36. [PMID: 9767581 DOI: 10.1046/j.1365-2958.1998.00977.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bacillus subtilis cells respond almost immediately to different stress conditions by increasing the production of general stress proteins (GSPs). The genes encoding the majority of the GSPs that are induced by heat, ethanol, salt stress or by starvation for glucose, oxygen or phosphate belong to the sigmaB-dependent general stress regulon. Despite a good understanding of the complex regulation of the activity of sigmaB and knowledge of a very large number of general stress genes controlled by sigmaB, first insights into the physiological role of this nonspecific stress response have been obtained only very recently. To explore the physiological role of this reguIon, we and others identified sigmaB-dependent general stress genes and compared the stress tolerance of wild-type cells with mutants lacking sigmaB or general stress proteins. The proteins encoded by sigmaB-dependent general stress genes can be divided into at least five functional groups that most probably provide growth-restricted B. subtilis cells with a multiple stress resistance in anticipation of future stress. In particular, sigB mutants are impaired in non-specific resistance to oxidative stress, which requires the sigmaB-dependent dps gene encoding a DNA-protecting protein. Protection against oxidative damage of membranes, proteins or DNA could be the most essential component of sigmaB mediated general stress resistance in growth-arrested aerobic gram-positive bacteria. Other general stress genes have both a sigmaB-dependent induction pathway and a second sigmaB-independent mechanism of stress induction, thereby partially compensating for a sigmaB deficiency in a sigB mutant. In contrast to sigB mutants, null mutations in genes encoding those proteins, such as cIpP or cIpC, cause extreme sensitivity to salt or heat.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifwald, Institut für Mikrobiologie und Molekularbiologie, Greifswald, Germany.
| | | |
Collapse
|
13
|
Gaidenko TA, Price CW. General stress transcription factor sigmaB and sporulation transcription factor sigmaH each contribute to survival of Bacillus subtilis under extreme growth conditions. J Bacteriol 1998; 180:3730-3. [PMID: 9658024 PMCID: PMC107349 DOI: 10.1128/jb.180.14.3730-3733.1998] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The general stress response of the bacterium Bacillus subtilis is controlled by the sigmaB transcription factor. Here we show that loss of sigmaB reduces stationary-phase viability 10-fold in either alkaline or acidic media and reduces cell yield in media containing ethanol. We further show that loss of the developmental transcription factor sigmaH also has a marked effect on stationary-phase viability under these conditions and that this effect is independent from the simple loss of sporulation ability.
Collapse
Affiliation(s)
- T A Gaidenko
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
14
|
Wiedmann M, Arvik TJ, Hurley RJ, Boor KJ. General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 1998; 180:3650-6. [PMID: 9658010 PMCID: PMC107335 DOI: 10.1128/jb.180.14.3650-3656.1998] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gene encoding the general stress transcription factor sigmaB in the gram-positive bacterium Listeria monocytogenes was isolated with degenerate PCR primers followed by inverse PCR amplification. Evidence for gene identification includes the following: (i) phylogenetic analyses of reported amino acid sequences for sigmaB and the closely related sigmaF proteins grouped L. monocytogenes sigmaB in the same cluster with the sigmaB proteins from Bacillus subtilis and Staphylococcus aureus, (ii) the gene order in the 2, 668-bp portion of the L. monocytogenes sigB operon is rsbU-rsbV-rsbW-sigB-rsbX and is therefore identical to the order of the last five genes of the B. subtilis sigB operon, and (iii) an L. monocytogenes sigmaB mutant had reduced resistance to acid stress in comparison with its isogenic parent strain. The sigB mutant was further characterized in mouse models of listeriosis by determining recovery rates of the wild-type and mutant strains from livers and spleens following intragastric or intraperitoneal infection. Our results suggest that sigmaB-directed genes do not appear to be essential for the spread of L. monocytogenes to mouse liver or spleen at 2 and 4 days following intragastric or intraperitoneal infection.
Collapse
Affiliation(s)
- M Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
15
|
Brody MS, Price CW. Bacillus licheniformis sigB operon encoding the general stress transcription factor sigma B. Gene X 1998; 212:111-8. [PMID: 9661670 DOI: 10.1016/s0378-1119(98)00140-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The general stress response of the Gram-positive soil bacterium Bacillus subtilis is controlled by the sigma B transcription factor. sigma B activity is regulated by the newly discovered partner switching mechanism of signal transduction, which integrates the two different classes of challenges which posttranslationally activate sigma B: environmental stress and energy stress. Our investigation of a possible sigma B homologue in the related soil bacterium B. licheniformis had two goals. First, this study would contribute to understanding the distribution of the sigma B general stress system among Gram-positive bacteria. Second, a phylogenetic comparison of regulatory systems can supplement genetic and biochemical analysis by revealing conserved features that are critical for function. We report here that (1) B. licheniformis cells contain a protein that closely resembles B. subtilis sigma B in size and antigenic properties; (2) the level of this potential sigma B homologue rapidly increases following environmental or energy stress; and (3) the B. licheniformis genome encodes a homologue of the sigB general stress operon, including the sigma B structural gene and seven rsb regulatory genes. Based on these results, B. licheniformis possesses a general stress system likely regulated by two coupled partner switching modules that sense and integrate the two broad classes of activating stress signals.
Collapse
Affiliation(s)
- M S Brody
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | |
Collapse
|
16
|
Watson SP, Clements MO, Foster SJ. Characterization of the starvation-survival response of Staphylococcus aureus. J Bacteriol 1998; 180:1750-8. [PMID: 9537371 PMCID: PMC107086 DOI: 10.1128/jb.180.7.1750-1758.1998] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The starvation-survival response of Staphylococcus aureus as a result of glucose, amino acid, phosphate, or multiple-nutrient limitation was investigated. Glucose and multiple-nutrient limitation resulted in the loss of viability of about 99 to 99.9% of the population within 2 days. The remaining surviving cells developed increased survival potential, remaining viable for months. Amino acid or phosphate limitation did not lead to the development of a stable starvation-survival state, and cells became nonculturable within 7 days. For multiple-nutrient limitation, the development of the starvation-survival state was cell density dependent. Starvation survival was associated with a decrease in cell size and increase in resistance to acid shock and oxidative stress. There was no evidence for the formation of a viable but nonculturable state during starvation as demonstrated by flow cytometry. Long-term survival of cells was dependent on cell wall and protein biosynthesis. Analysis of [35S]methionine incorporation and labelled proteins demonstrated that differential protein synthesis occurred deep into starvation.
Collapse
Affiliation(s)
- S P Watson
- Department of Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | | | | |
Collapse
|
17
|
Moch C, Schrögel O, Allmansberger R. The sigmaD-dependent transcription of the ywcG gene from Bacillus subtilis is dependent on an excess of glucose and glutamate. Mol Microbiol 1998; 27:889-98. [PMID: 9535080 DOI: 10.1046/j.1365-2958.1998.00734.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the function and transcriptional regulation of ywcG. The protein is essential for Bacillus subtilis. Biochemical characterization of the protein revealed that it is an FMN-containing NADPH oxidase. ywcG is transcribed throughout the whole life cycle of B. subtilis. The start point of transcription is preceded by potential promoter sequences for sigmaA, sigmaB and sigmaD. A boost in transcription occurs at the beginning of stationary phase in complex media containing glutamate and glucose. The induction of transcription at the beginning of stationary phase needs the activity of a different alternative sigma-factor sigmaD. ywcG is, therefore, the first gene with a putative role in energy metabolism from B. subtilis that is transcribed in a sigmaD-dependent fashion, but its regulation is unique and the reverse of that described for all other sigmaD-dependent genes.
Collapse
Affiliation(s)
- C Moch
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
18
|
Antelmann H, Engelmann S, Schmid R, Sorokin A, Lapidus A, Hecker M. Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J Bacteriol 1997; 179:7251-6. [PMID: 9393687 PMCID: PMC179673 DOI: 10.1128/jb.179.23.7251-7256.1997] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SigmaB-dependent general stress proteins (Gsps) of Bacillus subtilis are essential for the development of glucose-starvation-induced cross-resistance to oxidative challenge. However, the proteins directly involved in this nonspecific resistance to oxidative stress have to be identified. We found that one prominent Gsp displayed strong sequence similarity to the previously characterized oxidative-stress-inducible MrgA protein of B. subtilis and to the starvation-induced Dps/PexB protein of Escherichia coli. We therefore designated this prominent Gsp Dps. While MrgA belongs to the peroxide-stress-inducible proteins needed for the H2O2-inducible adaptive response to oxidative stress, Dps belongs to the proteins induced by heat, salt, or ethanol stress and after starvation for glucose but not by a sublethal oxidative challenge. Primer extension experiments identified two overlapping promoters upstream of the coding region of dps, one being sigmaB dependent (PB) and the other being sigmaB independent (P1). Both promoters contribute to the basal level of dps during growth. After stress or during entry into the stationary phase, transcription from PB strongly increased whereas transcription from P1 decreased. Mutant strains lacking Dps completely failed to develop glucose-starvation-induced resistance to oxidative stress. These results confirm our suggestion that sigmaB-dependent general stress proteins of B. subtilis are absolutely required for the development of nonspecific resistance to oxidative stress.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Deora R, Tseng T, Misra TK. Alternative transcription factor sigmaSB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar. J Bacteriol 1997; 179:6355-9. [PMID: 9335283 PMCID: PMC179550 DOI: 10.1128/jb.179.20.6355-6359.1997] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A homolog of the multiple-stress-responsive transcription factor sigmaB of Bacillus subtilis was predicted from the DNA sequence analysis of a region of the Staphylococcus aureus chromosome. A hybrid between the coding sequence of the first 11 amino acids of the gene 10 leader peptide of phage T7 (T7.Tag) and the putative sigB gene of S. aureus was constructed and cloned into Escherichia coli BL21(DE3)pLysS for overexpression from a T7 promoter. A homogeneous preparation of the overproduced protein was obtained by affinity chromatography with a T7.Tag monoclonal antibody coupled to agarose. The amino-terminal amino acid sequence of the first 22 residues of the purified protein matched that deduced from the nucleotide sequence. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein, designated sigmaSB, indicated that it migrated as an approximately 39-kDa polypeptide. Promoter-specific transcription from the B. subtilis sigmaB-dependent PB promoter of the sigB operon was stimulated by sigmaSB in a concentration-dependent fashion when reconstituted with the S. aureus core RNA polymerase (RNAP). Specific transcript from the predicted sigmaB-dependent PB promoter of the sigB operon of S. aureus was obtained by the reconstituted RNAP in a runoff transcription reaction. The sar operon of S. aureus contains three promoter elements (P1, P2, and P3) and is known to partly control the synthesis of a number of extracellular toxins and several cell wall proteins. Our in vitro studies revealed that transcription from the P1 promoter is dependent on the primary sigma factor sigmaSA, while that of the P3 promoter is dependent on sigmaSB. As determined by primer extension studies, the 5' end of the sigmaSB-initiated mRNA synthesized in vitro from the sar P3 promoter is in agreement with the 5' end of the cellular RNA.
Collapse
Affiliation(s)
- R Deora
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | |
Collapse
|
20
|
Bernhardt JR, V Lker U, V Lker A, Antelmann H, Schmid R, Mach H, Hecker M. Specific and general stress proteins in Bacillus subtilis--a two-deimensional protein electrophoresis study. MICROBIOLOGY (READING, ENGLAND) 1997; 143:999-1017. [PMID: 9296790 DOI: 10.1099/00221287-143-3-999] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A computer-aided analysis of high resolution two-dimensional polyacrylamide gels was used to investigate the changes in the protein synthesis profile in B. subtilis wild-type strains and sigB mutants in response to heat shock, salt and ethanol stress, and glucose of phosphate starvation. The data provided evidence that the induction of a least 42 general stress proteins absolutely required the alternative sigma factor sigmaB. However, at least seven stress proteins, among them ClpC, ClpP, Sod, AhpC and AhpF, remained stress-inducible in a sigB mutant. Such a detailed analysis also premitted the description of subgroups of general stress proteins which are subject to additional regulatory circuits, indicating a very thorough fine-tuning of this complex response. The relative synthesis rate of the general stress proteins constituted up to 40% of the total protein synthesis of stressed cells and thereby emphasizes the importance of the stress regulon. Besides the induction of these general or rather unspecific stress proteins, the induction of stress-specific proteins is shown and discussed.
Collapse
Affiliation(s)
- J Rg Bernhardt
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Uwe V Lker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Andrea V Lker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Haike Antelmann
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Roland Schmid
- Universit�t Osnabr�ck, Abteilung f�r Mikrobiologie, 49076 Osnabr�ck, Germany
| | - Hiltraut Mach
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Michael Hecker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| |
Collapse
|
21
|
Engelmann S, Hecker M. Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE. FEMS Microbiol Lett 1996; 145:63-9. [PMID: 8931328 DOI: 10.1111/j.1574-6968.1996.tb08557.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two catalases of B. subtilis have been studied which are subject to two different regulatory mechanisms. Whereas KatA belongs to the group of proteins specifically induced by oxidative stress, KatE is a general delta B-dependent stress protein, not induced by oxidative stress. There are two mechanisms of oxidative stress resistance, the adaptive resistance induced by low H2O2 concentrations and an unspecific resistance acquired in glucose-starved cells. Mutants lacking KatA are defective in the adaptive resistance and both exponentially growing and glucose-starved cells are 100-fold more sensitive against lethal concentrations of H2O2. Under both conditions, however, a katE mutant was just as resistant as the wild type. Therefore, the role of KatE in oxidative stress tolerance remains obscure. sigB mutants which are no longer able to induce delta B-dependent general stress proteins in glucose-starved cells are characterized by a strong impairment in the unspecific oxidative stress resistance but not in the H2O2-induced oxidative stress resistance. This is the first evidence that sigB mutants have an obvious phenotype compared to the wild type and indicates that delta B-dependent general stress proteins may function in providing starving cells with resistance against oxidative stress.
Collapse
Affiliation(s)
- S Engelmann
- Institut für Mikrobiologie und Molekularbiologie, Greifswald, Germany
| | | |
Collapse
|
22
|
Antelmann H, Engelmann S, Schmid R, Hecker M. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J Bacteriol 1996; 178:6571-8. [PMID: 8932314 PMCID: PMC178544 DOI: 10.1128/jb.178.22.6571-6578.1996] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The AhpC subunit of the Bacillus subtilis alkyl hydroperoxide reductase was identified as a general stress protein induced in response to heat or salt stress or after entry of the organism into the stationary phase. The ahp operon, encoding the two subunits AhpC and AhpF, was cloned and localized between the gntRKPZ operon and the bglA locus. Two-dimensional gel analyses revealed an especially strong induction of AhpC and AhpF in cells subjected to oxidative stress. Transcriptional studies showed a 3- to 4-fold induction of ahp mRNA after heat or salt stress or starvation for glucose and a 20-fold induction by oxidative stress, thus confirming the protein induction data for AhpC and AhpF. Stress induction occurred at a sigmaA-dependent promoter that overlaps with operator sites similar to the per box. Compared with the wild type, the ahpC mutant was resistant to hydrogen peroxide because of the derepression of the peroxide regulon (N. Bsat, L. Chen, and J. D. Helmann, J. Bacteriol. 178:6579-6586, 1996) but more sensitive to cumene hydroperoxide (CHP) during exponential growth. In contrast, stationary-phase wild-type and ahpC mutant cells displayed complete resistance to treatment with 1 mM CHP. Moreover, a sigmaB mutant was found to be extremely sensitive to CHP during vegetative growth and in stationary phase, which indicates that sigmaB-dependent general stress proteins are involved in the protection of cells against oxidative stress.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | |
Collapse
|
23
|
Wu S, de Lencastre H, Tomasz A. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J Bacteriol 1996; 178:6036-42. [PMID: 8830703 PMCID: PMC178463 DOI: 10.1128/jb.178.20.6036-6042.1996] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have identified a gene cluster located on the chromosomal SmaI I fragment of a highly methicillin resistant strain of Staphylococcus aureus, consisting of four open reading frames (ORFs), named after the number of deduced amino acid residues, in the sequential order orf333-orf108-orf159-orf256. The gene cluster showed close similarities to the Bacillus subtilis sigB operon both in overall organization and in primary sequences of the gene products. The complete gene cluster (provisionally named sigma-B or sigB) was preceded by an sigmaA-like promoter (PA) and had an internal sigmaB-like promoter sequence (PB) between orf333 and orf108, suggesting a complex regulatory mechanism. The polypeptides encoded by orf333, -108, -159, and -256 showed 62, 67, 71, and 77% homologies, respectively, with the RsbU, RsbV, RsbW, and SigB polypeptides encoded by the B. subtilis sigB operon. A Tn551 insertional mutant, RUSA168 (insert in orf256 of the staphylococcal sigma-B operon), showed drastic reduction in methicillin resistance (decrease in MIC from 1,600 microg ml-1 to 12 to 25 microg ml-1off
Collapse
Affiliation(s)
- S Wu
- The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
24
|
Voelker U, Voelker A, Haldenwang WG. Reactivation of the Bacillus subtilis anti-sigma B antagonist, RsbV, by stress- or starvation-induced phosphatase activities. J Bacteriol 1996; 178:5456-63. [PMID: 8808936 PMCID: PMC178367 DOI: 10.1128/jb.178.18.5456-5463.1996] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
sigma B is a secondary sigma factor that controls the general stress regulon in Bacillus subtilis. The regulon is activated when sigma B is released from a complex with an anti-sigma B protein (RsbW) and becomes free to associate with RNA polymerase. Two separate mechanisms cause sigma B release: an ATP-responsive mechanism that correlates with nutritional stress and an ATP-independent mechanism that responds to environmental insult (e.g., heat shock and ethanol treatment). ATP levels are thought to directly affect RsbW's binding preference. Low levels of ATP cause RsbW to release sigma B and bind to an alternative protein (RsbV), while high levels of ATP favor RsbW-sigma B complex formation and inactivation of RsbV by an RsbW-dependent phosphorylation. During growth, most of the RsbV is phosphorylated (RsbV-P) and inactive. Environmental stress induces the release of sigma B and the formation of the RsbW-RsbV complex, regardless of ATP levels. This pathway requires the products of additional genes encoded within the eight-gene operon (sigB) that includes the genes for sigma B, RsbW, and RsbV. By using isoelectric focusing techniques to distinguish RsbV from RsbV-P and chloramphenicol treatment or pulse-chase labeling to identify preexisting RsbV-P, we have now determined that stress induces the dephosphorylation of RsbV-P to reactivate RsbV. RsbV-P was also found to be dephosphorylated upon a drop in intracellular ATP levels. The stress-dependent and ATP-responsive dephosphorylations of RsbV-P differed in their requirements for the products of the first four genes (rsbR, -S, -T, and -U) of the sigB operon. Both dephosphorylation reactions required at least one of the genes included in a deletion that removed rsbR, -S, and -T; however, only an environmental insult required RsbU to reactivate RsbV.
Collapse
Affiliation(s)
- U Voelker
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758, USA
| | | | | |
Collapse
|
25
|
Dufour A, Voelker U, Voelker A, Haldenwang WG. Relative levels and fractionation properties of Bacillus subtilis σ(B) and its regulators during balanced growth and stress. J Bacteriol 1996; 178:3701-9 sigma. [PMID: 8682769 PMCID: PMC232625 DOI: 10.1128/jb.178.13.3701-9sigma.1996] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
sigma B is a secondary sigma factor that controls the general stress response in Bacillus subtilis. sigma B-dependent genes are activated when sigma B is released from an inhibitory complex with an anti-sigma B protein (RsbW) and becomes free to associate with RNA polymerase. Two separate pathways, responding either to a drop in intracellular ATP levels or to environmental stress (e.g., heat, ethanol, or salt), cause the release of sigma B from RsbW. rsbR, rsbS, rsbT, and rsbU are four genes now recognized as the upstream half of an operon that includes sigB (sigma B) and its principal regulators. Using reporter gene assays, we find that none of these four genes are essential for stationary-phase (i.e., ATP-dependent) activation of sigma B, but rsbU and one or more of the genes contained within an rsbR,S,T deletion are needed for stress induction of sigma B. In other experiments, Western blot (immunoblot) analyses showed that the levels of RsbR, RsbS, Rsb, and RsbU, unlike those of the sigB operon's four downstream gene products (RsbV, RsbW, RsbX and sigma B), are not elevated during sigma B activation. Gel filtration and immunoprecipitation studies did not reveal the formation of complexes between any of the four upstream sigB operon products and the products of the downstream half of the operon. Much of the detectable RsbR, RsbS, RsbT, and RsbU did, however, fractionate as a large-molecular-mass (approximately 600-kDa) aggregate which was excluded from our gel filtration matrix. The downstream sigB operon products were not present in this excluded material. The unaggregated RsbR, RsbS, and RsbU, which were retarded by the gel matrix, elated from the column earlier than expected from their molecular weights. The RsbR and RsbS fractionation profile was consistent with homodimers (60 and 30 kDa, respectively), while the RsbU appeared larger, suggesting a protein complex of approximately 90 to 100 kDa.
Collapse
Affiliation(s)
- A Dufour
- Department of Microbiology, University of Texas Health Science Center at San Antonio, Texas 78284-7758, USA
| | | | | | | |
Collapse
|
26
|
Shibata Y, Kuramitsu HK. Identification of the Streptococcus mutans frp gene as a potential regulator of fructosyltransferase expression. FEMS Microbiol Lett 1996; 140:49-54. [PMID: 8666201 DOI: 10.1111/j.1574-6968.1996.tb08313.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Four putative open reading frames (ORFs) were previously identified in the regions flanking the Streptococcus mutans GS-5 fructosyltransferase (FTF) gene. One of these, ORF 3, appeared to code for a low-molecular-mass protein containing amino acid sequences sharing homology with several Gram-positive bacterial DNA-binding proteins and it was suggested that the ORF 3 gene product might be an FTF regulatory protein (FRP). In order to characterize this protein, we have purified the biotinylated tag-FRP fusion protein using the PinPoint protein purification system and this fusion protein was used in gel shift assays with DNA fragments containing the ftf promoter region. FRP bound specifically to the upstream region of the ftf promoter containing the inverted repeat structure that is present upstream of the -35 sequence. In contrast, FRP did not bind to DNA fragments lacking the inverted repeat structure. The results of these experiments suggest that FRP interacts with the inverted repeat region upstream of the ftf promoter and such interactions may regulate FTF expression.
Collapse
Affiliation(s)
- Y Shibata
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo 14214-3092, USA
| | | |
Collapse
|
27
|
Krüger E, Msadek T, Hecker M. Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol 1996; 20:713-23. [PMID: 8793870 DOI: 10.1111/j.1365-2958.1996.tb02511.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
clpC of Bacillus subtilis is part of an operon containing six genes. Northern blot analysis suggested that all genes are co-transcribed and encode stress-inducible proteins. Two promoters (PA and PB) were mapped upstream of the first gene. PA resembles promoters recognized by the vegetative RNA polymerase E sigma A. The other promoter (PB) was shown to be dependent on sigma B, the general stress sigma factor in B. subtilis, suggesting that clpC, a potential chaperone, is expressed in a sigma B-dependent manner. This is the first evidence that sigma B in B. subtilis is involved in controlling the expression of a gene whose counterpart, clpB, is subject to regulation by sigma 32 in Escherichia coli, indicating a new function of sigma B-dependent general stress proteins. PB deviated from the consensus sequence of sigma B promoters and was only slightly induced by starvation conditions. Nevertheless, strong induction by heat, ethanol, and salt stress occurred at the sigma B-dependent promoter, whereas the vegetative promoter was only weakly induced under these conditions. However, in a sigB mutant, the sigma A-like promoter became inducible by heat and ethanol stress, completely compensating for sigB deficiency. Only the downstream sigma A-like promoter was induced by certain stress conditions such as hydrogen peroxide or puromycin. These results suggest that novel stress-induction mechanisms are acting at a vegetative promoter. Involvement of additional elements in this mode of induction are discussed.
Collapse
Affiliation(s)
- E Krüger
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | |
Collapse
|
28
|
Varón D, Brody MS, Price CW. Bacillus subtilis operon under the dual control of the general stress transcription factor sigma B and the sporulation transcription factor sigma H. Mol Microbiol 1996; 20:339-50. [PMID: 8733232 DOI: 10.1111/j.1365-2958.1996.tb02621.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sigma B transcription factor of Bacillus subtilis is activated in response to a variety of environmental stresses, including those imposed by entry into the stationary-growth phase, and by heat, salt or ethanol challenge to logarithmically growing cells. Although sigma B is thought to control a general stress regulon, the range of cellular functions it directs remains largely unknown. Our approach to understand the physiological role of sigma B is to characterize genes that require this factor for all or part of their expression, i.e. the csb genes. In this study, we report that the transposon insertion csb40::Tn917lac identifies an operon with three open reading frames, the second of which resembles plant proteins induced by desiccation stress. Primer-extension and operon-fusion experiments showed that the csb40 operon has a sigma B-dependent promoter which is strongly induced by the addition of salt to logarithmically growing cells. The csb40 operon also has a second, sigma H-dependent promoter that is unaffected by salt addition. These results provide support for the hypothesis that sigma B controls a general stress regulon, and indicate that the sigma B and sigma H regulons partly overlap. We suggest that in addition to its acknowledged role in the sporulation process, sigma H is also involved in controlling a subclass of genes that are broadly involved in a general stress response.
Collapse
Affiliation(s)
- D Varón
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
29
|
Engelmann S, Lindner C, Hecker M. Cloning, nucleotide sequence, and regulation of katE encoding a sigma B-dependent catalase in Bacillus subtilis. J Bacteriol 1995; 177:5598-605. [PMID: 7559348 PMCID: PMC177370 DOI: 10.1128/jb.177.19.5598-5605.1995] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A sigma B-dependent stress gene of Bacillus subtilis was localized downstream of the licS gene. The predicted amino acid sequence exhibited a significant similarity to the sequence of the katE-encoded catalase HPII of Escherichia coli, and we designated it the open reading frame katE. In a B. subtilis katE mutant, catalase 2 could not be detected. The amount of katE-specific mRNA was increased after heat, salt, or ethanol stress or after glucose starvation in a sigma B-dependent manner. As in E. coli, the transcription of the katE gene in B. subtilis was unaffected by the addition of H2O2 to exponentially growing cells. In contrast, the katA gene encoding catalase 1 of B. subtilis showed an induction pattern different from that of katE; katA expression was strongly increased by oxidative stress. The similarity between E. coli sigma S-dependent genes and B. subtilis sigma B-dependent genes suggests that both may confer multiple stress resistance to stationary-phase cells.
Collapse
Affiliation(s)
- S Engelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | |
Collapse
|
30
|
Boor KJ, Duncan ML, Price CW. Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. J Biol Chem 1995; 270:20329-36. [PMID: 7657605 DOI: 10.1074/jbc.270.35.20329] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The gene encoding the beta subunit of Bacillus subtilis RNA polymerase was isolated from a lambda gt11 expression library using an antibody probe. Gene identity was confirmed by the similarity of its predicted product to the Escherichia coli beta subunit and by mapping an alteration conferring rifampicin resistance within the conserved rif coding region. Including the rif region, four colinear blocks of sequence similarity were shared between the B. subtilis and E. coli beta subunits. In E. coli, these conserved blocks are separated by three regions that either were not conserved or were entirely absent from the B. subtilis protein. The B. subtilis beta gene was part of a cluster with the order rplL (encoding ribosomal protein L7/L12), orf23 (encoding a 22,513-dalton protein that is apparently essential for growth), rpoB (beta), and rpoC (beta'). This organization differs from the corresponding region in E. coli by the inclusion of orf23. Experiments using promoter probe vectors and site-directed mutagenesis located a major rpoB promoter overlapping the 3'-coding region of orf23, 250 nucleotides upstream from the beta initiation codon. Thus, the B. subtilis rpoB region differs from its E. coli counterpart in both genetic and transcriptional organization.
Collapse
Affiliation(s)
- K J Boor
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
31
|
Voelker U, Voelker A, Maul B, Hecker M, Dufour A, Haldenwang WG. Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol 1995; 177:3771-80. [PMID: 7601843 PMCID: PMC177095 DOI: 10.1128/jb.177.13.3771-3780.1995] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
sigma B is a secondary sigma factor that controls the general stress response of Bacillus subtilis. sigma B-dependent transcription is induced by the activation of sigma B itself, a process that involves release of sigma B from an inhibitory complex with its primary regulator, RsbW. sigma B becomes available to RNA polymerase when RsbW forms a complex with an additional regulatory protein (RsbV) and, because of this, fails to bind sigma B. Using Western blot (immunoblot) analyses, reporter gene fusion assays, and measurements of nucleotide pool sizes, we provide evidence for two independent processes that promote the binding of RsbW to RsbV. The first occurs during carbon limitation or entry into stationary phase. Activation of sigma B under these circumstances correlates with a drop in the intracellular levels of ATP and may be a direct consequence of ATP levels on RsbW's binding preference. The second activation process relies on the product of a third regulatory gene, rsbU. RsbU is dispensable for sigma B activation during carbon limitation or stationary phase but is needed for activation of sigma B in response to any of a number of different environmental insults (ethanol treatment, salt or acid shock, etc.). RsbU, or a process dependent on it, alters RsbW binding without regard for intracellular levels of ATP. In at least some instances, the effects of multiple inducing stimuli are additive. The data are consistent with RsbW being a regulator at which distinct signals from separate effectors can be integrated to modulate sigma B activity.
Collapse
Affiliation(s)
- U Voelker
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
33
|
Voelker U, Dufour A, Haldenwang WG. The Bacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of sigma B. J Bacteriol 1995; 177:114-22. [PMID: 8002609 PMCID: PMC176563 DOI: 10.1128/jb.177.1.114-122.1995] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
sigma B is a secondary sigma factor of Bacillus subtilis. sigma B-dependent transcription is induced when B. subtilis enters the stationary phase of growth or is exposed to any of a number of different environmental stresses. Three genes (rsbV, rsbW, and rsbX), which are cotranscribed with the sigma B structural gene (sigB), encode regulators of sigma B-dependent gene expression. RsbW and RsbV have been shown to control sigma B activity, functioning as an inhibitory sigma B binding protein and its antagonist, respectively. Using the SPAC promoter (PSPAC) to control the expression of the sigB operon, a ctc::lacZ reporter system to monitor sigma B activity, and monoclonal antibodies to determine the levels of sigB operon products, we have now obtained evidence that RsbX is an indirect regulator of sigma B activity. Genetic data and in vivo measurements argue that RsbX negatively regulates an extension of the RsbV-RsbW pathway that requires the product of an additional regulatory gene (rsbU) which lies immediately upstream of the sigB operon. The results are consistent with RsbU, or a process dependent on RsbU, being able to facilitate the RsbV-dependent release of sigma B from RsbW but normally prevented from doing this by RsbX.
Collapse
Affiliation(s)
- U Voelker
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758
| | | | | |
Collapse
|
34
|
Alper S, Duncan L, Losick R. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 1994; 77:195-205. [PMID: 8168129 DOI: 10.1016/0092-8674(94)90312-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sigma F factor establishes cell type-specific gene transcription during sporulation in B. subtilis. sigma F is negatively regulated by SpollAB, which forms complexes with sigma F or SpollAA. ATP and its nonhydrolyzable analogs stimulate the formation of the SpollAB.sigma F complex, whereas ADP stimulates the formation of the SpollAB.SpollAA complex. Which protein SpollAB associates with is determined by the concentrations of the two nucleotides, on which basis we propose a partner-switching model for the regulation of sigma F: [formula: see text] Consistent with this model, SpollAA reverses SpollAB-mediated inhibition of sigma F-directed transcription in a manner that depends on ADP. Cell-specific activation of sigma F could be due to an alteration in adenosine nucleotide levels in one cell of the sporangium.
Collapse
Affiliation(s)
- S Alper
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
35
|
Dufour A, Haldenwang WG. Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J Bacteriol 1994; 176:1813-20. [PMID: 8144446 PMCID: PMC205282 DOI: 10.1128/jb.176.7.1813-1820.1994] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The activity of sigma B, a secondary sigma factor of Bacillus subtilis, is primarily controlled by an anti-sigma factor protein (RsbW) that binds to sigma B and blocks its ability to form an RNA polymerase holoenzyme (E-sigma B). Inhibition of sigma B by RsbW is counteracted by RsbV, a protein that is essential for the activation of sigma B-dependent transcription. When crude B. subtilis extracts were fractionated by gel filtration chromatography or electrophoresis through nondenaturing polyacrylamide gels, a complex composed of RsbW and RsbV that is distinct from the previously observed RsbW-sigma B complex was detected. In analogous experiments, RsbX, an additional regulator of sigma B-dependent transcription that is thought to act independently of RsbV-RsbW, was not found to associate with any of the other sigB operon products. Two forms of RsbV were visualized when crude cell extracts of B. subtilis were subjected to isoelectric focusing (IEF), with the more negatively charged RsbV species absent from extracts prepared from RsbW- strains. In vitro, RsbV became phosphorylated when incubated with ATP and RsbW but not with ATP alone. The phosphorylated RsbV species comigrated during IEF with the RsbW-dependent form of RsbV found in crude cell extracts. These results suggest that the modified RsbV, present in crude cell extracts, is phosphorylated. When gel filtration fractions containing RsbV-RsbW complexes or RsbV alone were subjected to IEF, only the unmodified form of RsbV was found associated with RsbW. The presumed phosphorylated variant of RsbV was present only in fractions that did not contain RsbW. The data support a model whereby RsbV binds directly to RsbW and blocks its ability to form the RsbW-sigma B complex. This activity of RsbV appears to be inhibited by RsbW-dependent phosphorylation.
Collapse
Affiliation(s)
- A Dufour
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758
| | | |
Collapse
|
36
|
Boylan SA, Redfield AR, Brody MS, Price CW. Stress-induced activation of the sigma B transcription factor of Bacillus subtilis. J Bacteriol 1993; 175:7931-7. [PMID: 8253681 PMCID: PMC206971 DOI: 10.1128/jb.175.24.7931-7937.1993] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The alternative transcription factor sigma B of Bacillus subtilis is activated during the stationary growth phase by a regulatory network responsive to stationary-phase signals. On the basis of the results reported here, we propose that sigma B controls a general stress regulon that is induced when cells encounter a variety of growth-limiting conditions. Expression of genes controlled by sigma B, including the ctc gene and the sigB operon that codes for sigma B and its associated regulatory proteins, was dramatically induced in both the exponential and stationary phases by environmental challenges known to elicit a general stress response. After cells were subjected to salt stress, the increased expression of lacZ transcriptional fusions to the ctc and sigB genes was entirely dependent on sigma B, and primer extension experiments confirmed that the sigma B-dependent transcriptional start site was used during salt induction of sigB operon expression. Western blotting (immunoblotting) experiments measuring the levels of sigma B protein indicated that ethanol addition and heat stress also induced sigma B activity during logarithmic growth. Salt and ethanol induction during logarithmic growth required RsbV, the positive regulator of sigma B activity that is normally necessary for activity in stationary-phase cells. However, heat induction of sigma B activity was largely independent of RsbV, indicating that there are two distinct pathways by which these environmental signals are conveyed to the transcriptional apparatus.
Collapse
Affiliation(s)
- S A Boylan
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | | | |
Collapse
|
37
|
Chang BY, Doi RH. Conformational properties of Bacillus subtilis RNA polymerase sigma A factor during transcription initiation. Biochem J 1993; 294 ( Pt 1):43-7. [PMID: 8363585 PMCID: PMC1134563 DOI: 10.1042/bj2940043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By the use of a partial proteolysis method and Western-blot analysis, the conformational properties of Bacillus subtilis sigma A factor in the transcription initiation stage were studied. From a comparison of the trypsin-digestion patterns of free sigma A and of sigma A associated with core enzyme, it was found that the production of 45 kDa sigma A tryptic-derived fragment was enhanced when sigma A was associated with the core enzyme. More importantly, a 40 kDa sigma A tryptic-derived fragment was found exclusively in this associated state. Based on the change of the digestion kinetics when producing the 45 kDa tryptic fragment and the generation of this new 40 kDa tryptic fragment from sigma A, it was apparent that a conformation change of sigma A occurred during the association of sigma A with the core enzyme. Also, similar patterns were found for the sigma A present in the holoenzyme-promoter DNA complex. These findings suggest that no further distinctive conformational change of sigma A occurs at the step of RNA polymerase holoenzyme and promoter DNA complex formation. Trypsin-digestion patterns of sigma A in different RNA polymerase holoenzyme and promoter DNA complexes were also studied. The presence of similar trypsin digestion-patterns of sigma A in those complexes strongly supports the idea that a similar sigma A conformation is used in the recognition of different sigma A-type promoters and the formation of different open complexes.
Collapse
Affiliation(s)
- B Y Chang
- Agricultural Biotechnology Laboratories, National Chung-Hsin University, Taichung, Taiwan, Republic of China
| | | |
Collapse
|
38
|
Varón D, Boylan SA, Okamoto K, Price CW. Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor sigma B. J Bacteriol 1993; 175:3964-71. [PMID: 8320212 PMCID: PMC204824 DOI: 10.1128/jb.175.13.3964-3971.1993] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcription factor sigma B of Bacillus subtilis controls a large stationary-phase regulon, but in no case has the physiological function of any gene in this regulon been identified. Here we show that transcription of gtaB is partly dependent on sigma B in vivo and that gtaB encodes UDP-glucose pyrophosphorylase. The gtaB reading frame was initially identified by a sigma B-dependent Tn917lacZ fusion, csb42. We cloned the region surrounding the csb42 insertion, identified the reading frame containing the transposon, and found that this frame encoded a predicted 292-residue product that shared 45% identical residues with the UDP-glucose pyrophosphorylase of Acetobacter xylinum. The identified reading frame appeared to lie in a monocistronic transcriptional unit. Primer extension and promoter activity experiments identified tandem promoters, one sigma B dependent and the other sigma B independent, immediately upstream from the proposed coding region. A sequence resembling a factor-independent terminator closely followed the coding region. By polymerase chain reaction amplification of a B. subtilis genomic library carried in yeast artificial chromosomes, we located the UDP-glucose pyrophosphorylase coding region near gtaB, mutations in which confer phage resistance due to decreased glycosylation of cell wall teichoic acids. Restriction mapping showed that the coding region overlapped the known location of gtaB. Sequence analysis of a strain carrying the gtaB290 allele found an alteration that would change the proposed initiation codon from AUG to AUA, and an insertion-deletion mutation in this frame conferred phage resistance indistinguishable from that elicited by the gtaB290 mutation. We conclude that gtaB encodes UDP-glucose pyrophosphorylase and is partly controlled by sigma B. Because this enzyme is important for thermotolerance and osmotolerance in stationary-phase Escherichia coli cells, our results suggest that some genes controlled by sigma B may play a role in stationary-phase survival of B. subtilis.
Collapse
Affiliation(s)
- D Varón
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | | | |
Collapse
|
39
|
Boylan SA, Redfield AR, Price CW. Transcription factor sigma B of Bacillus subtilis controls a large stationary-phase regulon. J Bacteriol 1993; 175:3957-63. [PMID: 8320211 PMCID: PMC204823 DOI: 10.1128/jb.175.13.3957-3963.1993] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcription factor sigma B of Bacillus subtilis is active during the stationary growth phase, but its physiological role remains unknown. Understanding the function and regulation of genes controlled by sigma B (csb genes) should provide important clues to sigma B function in stationary-phase cells. To this end, we used a genetic approach to identify six new csb genes. This strategy relies on two elements: (i) random transcriptional fusions between the Escherichia coli lacZ gene and genes on the B. subtilis chromosome, generated in vivo with transposon Tn917lacZ, and (ii) a plate transformation technique to introduce a null sigB mutation into the fusion-bearing recipients directly on indicator plates. This strategy allowed the comparison of fusion expression in strains that were isogenic save for the presence or absence of a functional sigma B protein. Beginning with 1,400 active fusions, we identified 11 that were wholly or partly controlled by sigma B. These fusions mapped to six different loci that exhibit substantial contrasts in their patterns of expression in the logarithmic and stationary growth phases, suggesting that they participate in diverse cellular functions. However, for all six loci, the sigma B-dependent component of their expression was manifest largely in the stationary phase. The high frequency of six independent csb loci detected in a random collection of 1,400 fusions screened, the fact that four of the six new loci were defined by a single fusion, and the absence of the previously identified ctc and csbA genes in the present collection strongly suggest that sigma B controls a large stationary-phase regulon.
Collapse
Affiliation(s)
- S A Boylan
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | |
Collapse
|
40
|
Benson AK, Haldenwang WG. The sigma B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J Bacteriol 1993; 175:1929-35. [PMID: 8458834 PMCID: PMC204264 DOI: 10.1128/jb.175.7.1929-1935.1993] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
sigma B, a secondary sigma factor of Bacillus subtilis, was found to increase 5- to 10-fold when cultures were shifted from 37 to 48 degrees C. Western blot (immunoblot) analyses, in which monoclonal antibodies specific for the sigB operon products RsbV, RsbW, and sigma B were used to probe extracts from wild-type and mutant B. subtilis strains, revealed that all three proteins increased coordinately after heat shock and that this increase was dependent on sigma B but not RsbV, a positive regulator normally essential for sigma B-dependent sigB expression. Nuclease protection experiments of RNA synthesized after heat shock supported the notion that the shift to 48 degrees C enhanced transcription from the sigB operon's sigma B-dependent promoter. The level of mRNA initiating at the sigma B-dependent ctc promoter was also seen to increase approximately 5- to 10-fold after heat shock. Pulse-labeling of the proteins synthesized after a shift to 48 degrees C demonstrated that sigB wild-type and mutant strains produced the major heat-inducible proteins in similar amounts; however, at least seven additional proteins were present after the temperature shift in the wild-type strain but absent in the sigB null mutant. Thus, although sigma B is not required for the expression of essential heat shock genes, it is activated by heat shock to elevate its own synthesis and possibly the synthesis of several other heat-inducible proteins.
Collapse
Affiliation(s)
- A K Benson
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
41
|
Abstract
The sigB operon of Bacillus subtilis encodes sigma B plus three additional proteins (RsbV, RsbW, and RsbX) that regulate sigma B activity. Using an anti-sigma B monoclonal antibody to monitor the levels of sigma B protein, PSPAC to control the expression of the sigB operon, and a ctc-lacZ reporter system to monitor sigma B activity, we observed that the rsbV and rsbW products control sigma B activity at the ctc promoter independently of their effects on sigma B levels. In contrast, RsbX was found to have no effect on expression of ctc when the sigB operon was controlled by PSPAC. The data are consistent with RsbV and RsbW being regulators of sigma B activity and RsbX acting primarily as a negative regulator of sigB operon expression. Evidence that stationary-phase induction of the sigma B-dependent ctc promoter is accomplished by a reduction in RsbW-dependent inhibition of sigma B activity is also presented. In addition, Western blot (immunoblot) analyses of sigB operon expression demonstrated that sigma B accumulation is coupled to the synthesis of its primary inhibitor (RsbW). This finding is consistent with RsbW and sigma B being present within the cell in equivalent amounts, a circumstance that would permit RsbW to directly influence sigma B activity by a direct protein-protein interaction.
Collapse
Affiliation(s)
- A K Benson
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
42
|
Benson AK, Haldenwang WG. Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci U S A 1993; 90:2330-4. [PMID: 8460143 PMCID: PMC46080 DOI: 10.1073/pnas.90.6.2330] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
sigma B is a secondary sigma factor of Bacillus subtilis. RNA polymerase containing sigma B transcribes a subset of genes that are expressed after heat shock or the onset of the stationary phase of growth. Three genes (rsbV, rsbW, and rsbX), cotranscribed with the sigma B structural gene (sigB), regulate sigma B-dependent gene expression. RsbW is the primary inhibitor of this system with the other gene products acting upstream of RsbW in the sigma B regulatory pathway. Evidence is now presented that RsbW inhibits sigma B-dependent transcription by binding to sigma B and blocking the formation of a sigma B-containing RNA polymerase holoenzyme. Antibodies specific for either RsbW or sigma B will coprecipitate both proteins from crude cell extracts. This is not due to the presence of both proteins on RNA polymerase. Western blot analysis of B. subtilis extracts that had been fractionated by gel-filtration chromatography revealed a single peak of RsbW that did not coelute with RNA polymerase and two peaks of sigma B protein: one that eluted with RNA polymerase and a second that overlapped the fractions that contained RsbW. Reconstitution experiments were performed in which partially purified sigma B and RsbW were added to core RNA polymerase and tested for their ability to influence the transcription of a sigma B-dependent promoter (ctc) in vitro. RsbW efficiently blocked sigma B-dependent transcription but only if it was incubated with sigma B prior to the addition of the core enzyme.
Collapse
Affiliation(s)
- A K Benson
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
43
|
Buttner MJ, Lewis CG. Construction and characterization of Streptomyces coelicolor A3(2) mutants that are multiply deficient in the nonessential hrd-encoded RNA polymerase sigma factors. J Bacteriol 1992; 174:5165-7. [PMID: 1629177 PMCID: PMC206340 DOI: 10.1128/jb.174.15.5165-5167.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies showed that Streptomyces coelicolor A3(2) has four genes (hrdA, hrdB, hrdC, and hrdD) that appear to encode RNA polymerase sigma factors very similar to the sigma 70 subunit of Escherichia coli and that hrdC and hrdD could be individually disrupted without causing obvious phenotypic defects. Here, hrdA was cloned and stable null hrdA and hrdD mutants were constructed by gene replacement. These two mutants and a previously constructed hrdC null mutant were used in crosses to generate hrdAC, hrdAD, hrdCD, and hrdACD strains. The inability to synthesize one, two, or all three of the nonessential hrd-encoded sigma factors had no obvious phenotypic consequences.
Collapse
Affiliation(s)
- M J Buttner
- School of Biological Sciences, University of East Anglia, University Plain, Norwich, United Kingdom
| | | |
Collapse
|
44
|
Boylan SA, Rutherford A, Thomas SM, Price CW. Activation of Bacillus subtilis transcription factor sigma B by a regulatory pathway responsive to stationary-phase signals. J Bacteriol 1992; 174:3695-706. [PMID: 1592822 PMCID: PMC206059 DOI: 10.1128/jb.174.11.3695-3706.1992] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alternative transcription factor sigma B of Bacillus subtilis controls a stationary-phase regulon induced under growth conditions that do not favor sporulation. Little is known about the metabolic signals and protein factors regulating the activity of sigma B. The operon containing the sigma B structural gene has the gene order orfV-orfW-sigB-rsbX, and operon expression is autoregulated positively by sigma B and negatively by the rsbX product (rsbX = regulator of sigma B). To establish the roles of the orfV and orfW products, orfV and orfW null and missense mutations were constructed and tested for their effects on expression of the sigma B-dependent genes ctc and csbA. These mutations were tested in two contexts: in the first, the sigB operon was under control of its wild-type, sigma B-dependent promoter, and in the second, the sigB operon promoter was replaced by the inducible Pspac promoter. The principal findings are that (i) the orfV (now called rsbV) product is a positive regulator of sigma B-dependent gene expression; (ii) the orfW (now called rsbW) product is a negative regultor of such expression; (iii) sigma B is inactive during logarithmic growth unless the rsbW product is absent; (iv) the rsbX, rsbV, and rsbW products have a hierarchical order of action; and (v) both the rsbV and rsbW products appear to regulate sigma B activity posttranslationally. There are likely to be at least two routes by which information can enter the system to regulate sigma B: via the rsbX product, and via the rsbV and rsbW products.
Collapse
Affiliation(s)
- S A Boylan
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | | | |
Collapse
|
45
|
Benson AK, Haldenwang WG. Characterization of a regulatory network that controls sigma B expression in Bacillus subtilis. J Bacteriol 1992; 174:749-57. [PMID: 1732211 PMCID: PMC206151 DOI: 10.1128/jb.174.3.749-757.1992] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sigB operon of Bacillus subtilis encodes sigma B and three additional open reading frames (orfV, orfW, and orfX). Having previously mapped several mutations that alter the induction pattern of a sigma B-dependent promoter (ctc) to regions of cloned B. subtilis DNA which contain these three open reading frames, we directly tested the regulatory potential of orfV, orfW, and orfX by creating null alleles of each of these genes and examining the effects of the mutations, either singly or in pairs, on transcription of ctc and the sigB operon. Using lacZ reporter gene fusions and Northern (RNA) blot analyses, we have determined that all three genes modulate the activation of the sigma B-dependent promoters at both the sigB operon and ctc. Our data are consistent with the three gene products participating in a single pathway of negative control. orfW and orfX single-mutant strains have high levels of sigB and ctc transcription. sigB and ctc transcription in an orfV strain is similar to that found in mutant strains which lack sigma B itself. The orfV mutation is dominant to orfX but recessive to orfW. These results suggest that OrfW is the primary inhibitor of sigma B-dependent transcription and that OrfV is capable of counteracting the negative control of OrfW but is prevented from doing this by the orfX gene product.
Collapse
Affiliation(s)
- A K Benson
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
46
|
Boylan SA, Thomas MD, Price CW. Genetic method to identify regulons controlled by nonessential elements: isolation of a gene dependent on alternate transcription factor sigma B of Bacillus subtilis. J Bacteriol 1991; 173:7856-66. [PMID: 1744042 PMCID: PMC212577 DOI: 10.1128/jb.173.24.7856-7866.1991] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe a general, in vivo method for identifying Bacillus subtilis genes controlled by specific, nonessential regulatory factors. We establish the use of this approach by identifying, isolating, and characterizing a gene dependent on sigma B, an alternate transcription factor which is found early in stationary phase but which is not essential for sporulation. The method relies on two features: (i) a plate transformation technique to introduce a null mutation into the regulatory gene of interest and (ii) random transcriptional fusions to a reporter gene to monitor gene expression in the presence and absence of a functional regulatory product. We applied this genetic approach to isolate genes comprising the sigma B regulon. We screened a random Tn917lacZ library for fusions that required an intact sigma B structural gene (sigB) for greatest expression, converting the library strains from wild-type sigB+ to sigB delta::cat directly on plates selective for chloramphenicol resistance. We isolated one such fusion, csbA::Tn917lacZ (csb for controlled by sigma B), which mapped between hisA and degSU on the B. subtilis chromosome. We cloned the region surrounding the insertion, identified the csbA reading frame containing the transposon, and found that this frame encoded a predicted 76-residue product which was extremely hydrophobic and highly basic. Primer extension and promoter activity experiments identified a sigma B-dependent promoter 83 bp upstream of the csbA coding sequence. A weaker, tandem, sigma A-like promoter was likewise identified 28 bp upstream of csbA. The csbA fusion was maximally expressed during early stationary phase in cells grown in Luria broth containing 5% glucose and 0.2% glutamine. This timing of expression and medium dependence were very similar to those for ctc, the only other recognized gene dependent on sigma B.
Collapse
Affiliation(s)
- S A Boylan
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | |
Collapse
|
47
|
Abstract
Genetic competence may be defined as a physiological state enabling a bacterial culture to bind and take up high-molecular-weight exogenous DNA (transformation). In Bacillus subtilis, competence develops postexponentially and only in certain media. In addition, only a minority of the cells in a competent culture become competent, and these are physiologically distinct. Thus, competence is subject to three regulatory modalities: growth stage specific, nutritionally responsive, and cell type specific. This review summarizes the present state of knowledge concerning competence in B. subtilis. The study of genes required for transformability has permitted their classification into two broad categories. Late competence genes are expressed under competence control and specify products required for the binding, uptake, and processing of transforming DNA. Regulatory genes specify products that are needed for the expression of the late genes. Several of the late competence gene products have been shown to be membrane localized, and others are predicted to be membrane associated on the basis of amino acid sequence data. Several of these predicted protein sequences show a striking resemblance to gene products that are involved in the export and/or assembly of extracellular proteins and structures in gram-negative organisms. This observation is consistent with the idea that the late products are directly involved in transport of DNA and is equally consistent with the notion that they play a morphogenetic role in the assembly of a transport apparatus. The competence regulatory apparatus constitutes an elaborate signal transduction system that senses and interprets environmental information and passes this information to the competence-specific transcriptional machinery. Many of the regulatory gene products have been identified and partially characterized, and their interactions have been studied genetically and in some cases biochemically as well. These include several histidine kinase and response regulator members of the bacterial two-component signal transduction machinery, as well as a number of known transcriptionally active proteins. Results of genetic studies are consistent with the notion that the regulatory proteins interact in a hierarchical way to make up a regulatory pathway, and it is possible to propose a provisional scheme for the organization of this pathway. It is remarkable that almost all of the regulatory gene products appear to play roles in the control of various forms of postexponential expression in addition to competence, e.g., sporulation, degradative-enzyme production, motility, and antibiotic production. This has led to the notion of a signal transduction network which transduces environmental information to determine the levels and timing of expression of the ultimate products characteristic of each of these systems.
Collapse
Affiliation(s)
- D Dubnau
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| |
Collapse
|
48
|
Kalman S, Duncan ML, Thomas SM, Price CW. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J Bacteriol 1990; 172:5575-85. [PMID: 2170324 PMCID: PMC526868 DOI: 10.1128/jb.172.10.5575-5585.1990] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacillus subtilis sigma-B is an alternate sigma factor implicated in controlling stationary-phase gene expression. We characterized the genetic organization and regulation of the region containing the sigma-B structural gene (sigB) to learn which metabolic signals and protein factors govern sigma-B function. sigB lay in an operon with four open reading frames (orfs) in the order orfV-orfW-sigB-orfX, and lacZ gene fusions showed that all four frames were translated in vivo. Experiments with primer extension, S1 nuclease mapping, and lacZ transcriptional fusions found that sigB operon transcription initiated early in stationary phase from a site 32 nucleotides upstream of orfV and terminated 34 nucleotides downstream of orfX. Fusion expression was abolished in a strain carrying an in-frame deletion in sigB, suggesting that sigma-B positively regulated its own synthesis, and deletions in the sigB promoter region showed that sequences identical to the sigma-B-dependent ctc promoter were essential for promoter activity. Fusion expression was greatly enhanced in a strain carrying an insertion mutation in orfX, suggesting that the 22-kilodalton (kDa) orfX product was a negative effector of sigma-B expression or activity. Notably, the genetic organization of the sigB operon was strikingly similar to that of the B. subtilis spoIIA operon, which has the gene order spoIIAA-spoIIAB-spoIIAC, with spoIIAC encoding the sporulation-essential sigma-F. The predicted sequence of the 12-kDa orfV product was 32% identical to that of the 13-kDa SpoIIAA protein, and the 18-kDa orfW product was 27% identical to the 16-kDa SpoIIAB protein. On the basis of this clear evolutionary conservation, we speculate these protein pairs regulate their respective sigma factors by a similar molecular mechanism and that the spoIIA and sigB operons might control divergent branches of stationary-phase gene expression.
Collapse
Affiliation(s)
- S Kalman
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | | | |
Collapse
|
49
|
Merrick MJ, Coppard JR. Mutations in genes downstream of the rpoN gene (encoding sigma 54) of Klebsiella pneumoniae affect expression from sigma 54-dependent promoters. Mol Microbiol 1989; 3:1765-75. [PMID: 2695747 DOI: 10.1111/j.1365-2958.1989.tb00162.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two open reading frames (ORFs), designated ORF95 and ORF162, downstream of the Klebsiella pneumoniae sigma 54 structural gene (rpoN) have been sequenced and shown to encode polypeptides of 12 kD and 16 kD, respectively. ORFs homologous to ORF95 are present downstream of four out of five rpoN genes sequenced to date from a range of Gram-negative bacteria, and ORF162 is also conserved, at least in Pseudomonas putida. Chromosomal mutations have been created in each gene using a kan cassette and both have the same phenotype, i.e. they cause an increase in the level of expression from sigma 54-dependent promoters. We propose that the products of both genes function to modulate the activity of E sigma 54, although a physiological role for these proteins has not yet been identified.
Collapse
Affiliation(s)
- M J Merrick
- AFRC Institute of Plant Science Research, University of Sussex, Brighton, UK
| | | |
Collapse
|
50
|
Masuda ES, Anaguchi H, Yamada K, Kobayashi Y. Two developmental genes encoding sigma factor homologs are arranged in tandem in Bacillus subtilis. Proc Natl Acad Sci U S A 1988; 85:7637-41. [PMID: 2459711 PMCID: PMC282247 DOI: 10.1073/pnas.85.20.7637] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The sporulation-essential gene spoIIG of the Gram-positive bacterium Bacillus subtilis encodes the sporulation-specific sigma factor sigma 29(sigma E). We report here the initial characterization of a gene, referred to as ORF3, located immediately downstream of the spoIIG gene. The results indicate that ORF3 encodes a sigma homolog, whose expression is highly regulated during development. Analysis of the ORF3 nucleotide sequence reveals an open reading frame encoding a polypeptide of 260 amino acid residues (molecular mass of 30.1 kDa). Its predicted amino acid sequence shows significant similarity to that of other RNA polymerase sigma factor sequences. S1 nuclease mapping experiments indicate that ORF3 is initially cotranscribed with spoIIG from about 1 to 4 hr into the sporulation process and that later on ORF3 is transcribed independently from a new site located between spoIIG and ORF3. The role of ORF3 was investigated by constructing a deletion mutation in its structural gene. The mutant exhibits normal growth but is unable to produce heat-resistant spores. We propose that the ORF3 gene product is a sigma factor or a related peptide essential for sporulation at a late stage of development.
Collapse
Affiliation(s)
- E S Masuda
- Department of Applied Biochemistry, Faculty of Applied Biological Science, Hiroshima University, Japan
| | | | | | | |
Collapse
|