1
|
Adewale P, Lang A, Huang F, Zhu D, Sun J, Ngadi M, Yang TC. A novel Bacillus ligniniphilus catechol 2,3-dioxygenase shows unique substrate preference and metal requirement. Sci Rep 2021; 11:23982. [PMID: 34907211 PMCID: PMC8671467 DOI: 10.1038/s41598-021-03144-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
Identification of novel enzymes from lignin degrading microorganisms will help to develop biotechnologies for biomass valorization and aromatic hydrocarbons degradation. Bacillus ligniniphilus L1 grows with alkaline lignin as the single carbon source and is a great candidate for ligninolytic enzyme identification. The first dioxygenase from strain L1 was heterologously expressed, purified, and characterized with an optimal temperature and pH of 32.5 °C and 7.4, respectively. It showed the highest activity with 3-ethylcatechol and significant activities with other substrates in the decreasing order of 3-ethylcatechol > 3-methylcatechol > 3-isopropyl catechol > 2, 3-dihydroxybiphenyl > 4-methylcatechol > catechol. It did not show activities against other tested substrates with similar structures. Most reported catechol 2,3-dioxygenases (C23Os) are Fe2+-dependent whereas Bacillus ligniniphilus catechol 2,3-dioxygenase (BLC23O) is more Mn2+- dependent. At 1 mM, Mn2+ led to 230-fold activity increase and Fe2+ led to 22-fold increase. Sequence comparison and phylogenetic analyses suggested that BL23O is different from other Mn-dependent enzymes and uniquely grouped with an uncharacterized vicinal oxygen chelate (VOC) family protein from Paenibacillus apiaries. Gel filtration analysis showed that BLC23O is a monomer under native condition. This is the first report of a C23O from Bacillus ligniniphilus L1 with unique substrate preference, metal-dependency, and monomeric structure.
Collapse
Affiliation(s)
- Peter Adewale
- Bioprocessing and Biocatalysis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Alice Lang
- Bioprocessing and Biocatalysis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Fang Huang
- Bioprocessing and Biocatalysis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Daochen Zhu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianzhong Sun
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Ngadi
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Trent Chunzhong Yang
- Bioprocessing and Biocatalysis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
2
|
Khalid F, Hashmi MZ, Jamil N, Qadir A, Ali MI. Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10474-10487. [PMID: 33411303 DOI: 10.1007/s11356-020-11996-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 05/21/2023]
Abstract
Electronic waste is termed as e-waste and on recycling it produces environmental pollution. Among these e-waste pollutants, polychlorinated biphenyls (PCBs) are significantly important due to ubiquitous, organic in nature and serious health and environmental hazards. PCBs are used in different electrical equipment such as in transformers and capacitors for the purposes of exchange of heat and hydraulic fluids. Bioremediation is a reassuring technology for the elimination of the PCBs from the environment. In spite of their chemical stability, there are several microbes which can bio-transform or mineralize the PCBs aerobically or anaerobically. In this review paper, our objective was to summarize the information regarding PCB-degrading enzymes and microbes. The review suggested that the most proficient PCB degraders during anaerobic condition are Dehalobacter, Dehalococcoides, and Desulfitobacterium and in aerobic condition are Burkholderia, Achromobacter, Comamonas, Ralstonia, Pseudomonas, Bacillus, and Alcaligenes etc., showing the broadest substrate among bacterial strains. Enzymes found in soil such as dehydrogenases and fluorescein diacetate (FDA) esterases have the capability to breakdown PCBs. Biphenyl upper pathway involves four enzymes: dehydrogenase (bphB), multicomponent dioxygenase (bphA, E, F, and G), second dioxygenase (bphC), hydrolase, and (bphD). Biphenyl dioxygenase is considered as the foremost enzyme used for aerobic degradation of PCBs in metabolic pathway. It has been proved that several micro-organisms are responsible for the PCB metabolization. The review provides novel strategies for e-waste-contaminated soil management.
Collapse
Affiliation(s)
- Foqia Khalid
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaffar Hashmi
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 44000, Pakistan.
- Pakistan Academy of Science, 3-Constitution Avenue Sector G-5/2, Islamabad, Pakistan.
| | - Nadia Jamil
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ishtiaq Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
3
|
Structure Elucidation and Biochemical Characterization of Environmentally Relevant Novel Extradiol Dioxygenases Discovered by a Functional Metagenomics Approach. mSystems 2019; 4:4/6/e00316-19. [PMID: 31771973 PMCID: PMC6880040 DOI: 10.1128/msystems.00316-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The release of synthetic chemical pollutants in the environment is posing serious health risks. Enzymes, including oxygenases, play a crucial role in xenobiotic degradation. In the present study, we employed a functional metagenomics approach to overcome the limitation of cultivability of microbes under standard laboratory conditions in order to isolate novel dioxygenases capable of degrading recalcitrant pollutants. Fosmid clones possessing dioxygenase activity were further sequenced, and their genes were identified using bioinformatics tools. Two positive fosmid clones, SD3 and RW1, suggested the presence of 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC-SD3) and catechol 2,3-dioxygenase (C23O-RW1), respectively. Recombinant versions of these enzymes were purified to examine their pollutant-degrading abilities. The crystal structure of BphC-SD3 was determined at 2.6-Å resolution, revealing a two-domain architecture, i.e., N-terminal and C-terminal domains, with the sequential arrangement of βαβββ in each domain, characteristic of Fe-dependent class II type I extradiol dioxygenases. The structure also reveals the presence of conserved amino acids lining the catalytic pocket and Fe3+ metal ion in the large funnel-shaped active site in the C-terminal domain. Further studies suggest that Fe3+ bound in the BphC-SD3 active site probably imparts aerobic stability. We further demonstrate the potential application of BphC-SD3 in biosensing of catecholic compounds. The halotolerant and oxygen-resistant properties of these enzymes reported in this study make them potential candidates for bioremediation and biosensing applications.IMPORTANCE The disposal and degradation of xenobiotic compounds have been serious issues due to their recalcitrant properties. Microbial oxygenases are the fundamental enzymes involved in biodegradation that oxidize the substrate by transferring oxygen from molecular oxygen. Among oxygenases, catechol dioxygenases are more versatile in biodegradation and are well studied among the bacterial world. The use of catechol dioxygenases in the field is currently not practical due to their aerobically unstable nature. The significance of our research lies in the discovery of aerobically stable and halotolerant catechol dioxygenases that are efficient in degrading the targeted environmental pollutants and, hence, could be used as cost-effective alternatives for the treatment of hypersaline industrial effluents. Moreover, the structural determination of novel catechol dioxygenases would greatly enhance our knowledge of the function of these enzymes and facilitate directed evolution to further enhance or engineer desired properties.
Collapse
|
4
|
Lee N, Kwon DY. Characteristics of a Recombinant 2,3-Dihydroxybiphenyl 1,2-Dioxygenase from Comamonas sp. Expressed in Escherichia coli. Indian J Microbiol 2016; 56:467-475. [PMID: 27784944 DOI: 10.1007/s12088-016-0599-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/17/2016] [Indexed: 10/21/2022] Open
Abstract
2,3-Dihydroxybiphenyl 1,2-dioxygenase (2,3-DBDO) is an extradiol-type dioxygenase that involved in third step of biphenyl degradation pathway. The nucleotide sequence of the bphC gene from Comamonas sp. SMN4, which encodes 2,3-DBDO with His-tag, was cloned into a plasmid pQE30 in E. coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified active 2,3-DBDO showed a single band around 33 kDa, corresponding the molecular mass of 2,3-DBDO subunit. Two fractions around 170 and 100 kDa were separated in gel filtration chromatography, but only former one (the fraction of 170 kDa) has 2,3-DBDO activity. The 2,3-DBDO was reported as the polymeric protein consisted of eight subunits. However, the fraction corresponding octameric protein of 2,3-DBDO was not found in the gel filtration chromatography. The 2,3-DBDO was exhibited the maximum activity at pH 9.0 and was stable at pH 8.0, relatively. The circular dichroism (CD) data showed that 2,3-DBDO had an α-helical folding structures at neutral pHs ranged from pH 4.5 to pH 9.0. However, this high stable folding structure was converted to unfolded structure in acidic region (pH 2.5) or in high pH (pH 12.0). The enzyme was thermally stable and active up to 40 °C. The conformational data by CD spectra were consistent with the stability of 2,3-DBDO by checking the activity. The binding affinity (Km ) for 2,3-dihydroxybiphenyl, 3-metylcatechol, 4-methylcatechol and catechol was 11.7, 24 μM, 50 mM and 625 μM, respectively.
Collapse
Affiliation(s)
- Nari Lee
- Research Group of Gut Microbiome, Korea Food Research Institute, Baekhyun, Bundang, Seongnam, Gyeonggi 13539 Republic of Korea
| | - Dae Yong Kwon
- Research Group of Nutrition and Diet, Korea Food Research Institute, Baekhyun, Bundang, Seongnam, Gyeonggi 13539 Republic of Korea
| |
Collapse
|
5
|
Mitsudome Y, Takahama M, Hirose J, Yoshida N. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes. AMB Express 2014; 4:70. [PMID: 25401071 PMCID: PMC4230895 DOI: 10.1186/s13568-014-0070-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/15/2014] [Indexed: 11/15/2022] Open
Abstract
Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (α-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on α-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, β-lactamase and β-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring β-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the β-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for elucidation of gene function in bacterial species that have been refractory to experimental introduction of exogenous DNA.
Collapse
|
6
|
Qu Y, Shi S, Ma Q, Kong C, Zhou H, Zhang X, Zhou J. Multistep Conversion of para-Substituted Phenols by Phenol Hydroxylase and 2,3-Dihydroxybiphenyl 1,2-Dioxygenase. Appl Biochem Biotechnol 2013; 169:2064-75. [DOI: 10.1007/s12010-013-0112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
7
|
Xiong F, Shuai JJ, Jin XF, Zhang J, Sun J, Peng RH, Yao QH, Xiong AS. Expression and characterization of a recombinant 2,3-dihydroxybiphenyl-1,2-dioxygenase from Pseudomonas. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-012-0046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Xiong F, Shuai JJ, Peng RH, Tian YS, Zhao W, Yao QH, Xiong AS. Expression, purification and functional characterization of a recombinant 2,3-dihydroxybiphenyl-1,2-dioxygenase from Rhodococcus rhodochrous. Mol Biol Rep 2010; 38:4303-8. [PMID: 21113668 DOI: 10.1007/s11033-010-0554-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/17/2010] [Indexed: 11/28/2022]
Abstract
A 2,3-dihydroxybiphenyl (2,3-DHBP) dioxygenase gene from a Rhodococcus sp. strain, named RrbphCI and involved in the degradation of polychlorinated biphenyls (PCBs), was synthesized. RrbphCI was expressed in Escherichia coli and its encoded enzyme was purified. SDS-PAGE analysis indicated that the size of the protein encoded by RrbphCI was about 32 kDa. The activity of the 2,3-DHBP dioxygenase was 82.8 U/mg when the substrate was 2,3-DHBP, with optimum pH 8.0 at 30°C, and optimum temperature was 40°C at pH 8.0. The RrbphCI gene was transformed into Pseudomonas putida strain EG11, to determine the ability of the enzyme to degrade 2,3-DHBP. The wild type EG11 degraded 61.86% of supplied 2,3-DHBP and the transformed EG11 (hosting the RrbphCI gene) utilized 52.68% after 2 min of treatment at 30°C. The overexpressed and purified enzyme was able to degrade 2,3-DHBP. The 2,3-DHBP dioxygenase is a key enzyme in the PCB degradation pathway. RrbphCI and its encoded 2,3-DHBP dioxygenase may have transgenic applications in bioremediation of PCBs.
Collapse
Affiliation(s)
- Fei Xiong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnological Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, 201106 Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Iijima S, Shimomura Y, Haba Y, Kawai F, Tani A, Kimbara K. Flow cytometry-based method for isolating live bacteria with meta-cleavage activity on dihydroxy compounds of biphenyl. J Biosci Bioeng 2010; 109:645-51. [DOI: 10.1016/j.jbiosc.2009.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 11/19/2009] [Accepted: 11/30/2009] [Indexed: 11/29/2022]
|
10
|
Panicker G, Mojib N, Aislabie J, Bej AK. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie van Leeuwenhoek 2009; 97:275-87. [PMID: 20043207 DOI: 10.1007/s10482-009-9408-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 11/29/2022]
Abstract
In this study, 28 hydrocarbon-degrading bacterial isolates from oil-contaminated Antarctic soils were screened for the presence of biodegradative genes such as alkane hydroxylase (alks), the ISPalpha subunit of naphthalene dioxygenase (ndoB), catechol 2,3-dioxygenase (C23DO) and toluene/biphenyl dioxygenase (todC1/bphA1) by using polymerase chain reaction (PCR) methods. All naphthalene degrading bacterial isolates exhibited the presence of a 648 bp amplicon that shared 97% identity to a known ndoB sequence from Pseudomonas putida. Twenty-two out of the twenty-eight isolates screened were positive for one, two or all three different regions of the C23DO gene. For alkane hydroxylase, all 6 Rhodococcus isolates were PCR-positive for a 194 bp and a 552 bp segment of the alkB gene, but exhibited variable results with primers located at different segments of this gene. Three Pseudomonas spp. 4/101, 19/1, 30/3 amplified 552 bp segment of alkB. Only two Pseudomonas sp. 7/156 and 4/101 amplified a segment of alkB exhibiting 89-94% nucleotide sequence identity with the existing sequence of alkB in the GenBank sequence database. Transcripts of three genes, alkB2, C23DO and ndoB, that were amplified by DNA-PCR in three different bacterial isolates also exhibited positive amplification by reverse transcriptase PCR (RT-PCR) method confirming that these genes are functional. A competitive PCR (cPCR) method was developed for a quantitative estimation of ndoB from pure cultures of the naphthalene-degrading Pseudomonas sp. 30/2. A minimum of 1 x 10(7) copies of the ndoB gene was detected based on the comparison of the intensities of the competitor and target DNA bands. It is expected that the identification and characterization of the biodegradative genes will provide a better understanding of the catabolic pathways in Antarctic psychrotolerant bacteria, and thereby help support bioremediation strategies for oil-contaminated Antarctic soils.
Collapse
Affiliation(s)
- Gitika Panicker
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 2008; 105:433-49. [PMID: 18558332 DOI: 10.1263/jbb.105.433] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/04/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Kensuke Furukawa
- Depatment of Food and Bioscience, Faculty of Food and Nutrition, Beppu University, Beppu, Ohita 874-8501, Japan.
| | | |
Collapse
|
13
|
2,3-Dihydroxybiphenyl dioxygenase gene was first discovered in Arthrobacter sp. strain PJ3. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0191-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Siani L, Viggiani A, Notomista E, Pezzella A, Di Donato A. The role of residue Thr249 in modulating the catalytic efficiency and substrate specificity of catechol-2,3-dioxygenase from Pseudomonas stutzeri OX1. FEBS J 2006; 273:2963-76. [PMID: 16734718 DOI: 10.1111/j.1742-4658.2006.05307.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bioremediation strategies use microorganisms to remove hazardous substances, such as aromatic molecules, from polluted sites. The applicability of these techniques would greatly benefit from the expansion of the catabolic ability of these bacteria in transforming a variety of aromatic compounds. Catechol-2,3-dioxygenase (C2,3O) from Pseudomonas stutzeri OX1 is a key enzyme in the catabolic pathway for aromatic molecules. Its specificity and regioselectivity control the range of molecules degraded through the catabolic pathway of the microorganism that is able to use aromatic hydrocarbons as growth substrates. We have used in silico substrate docking procedures to investigate the molecular determinants that direct the enzyme substrate specificity. In particular, we looked for a possible molecular explanation of the inability of catechol-2,3-dioxygenase to cleave 3,5-dimethylcatechol and 3,6-dimethylcatechol and of the efficient cleavage of 3,4-dimethylcatechol. The docking study suggested that reduction in the volume of the side chain of residue 249 could allow the binding of 3,5-dimethylcatechol and 3,6-dimethylcatechol. This information was used to prepare and characterize mutants at position 249. The kinetic and regiospecificity parameters of the mutants confirm the docking predictions, and indicate that this position controls the substrate specificity of catechol-2,3-dioxygenase. Moreover, our results suggest that Thr249 also plays a previously unsuspected role in the catalytic mechanism of substrate cleavage. The hypothesis is advanced that a water molecule bound between one of the hydroxyl groups of the substrate and the side chain of Thr249 favors the deprotonation/protonation of this hydroxyl group, thus assisting the final steps of the cleavage reaction.
Collapse
Affiliation(s)
- Loredana Siani
- Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
15
|
Lambo AJ, Patel TR. Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp. IA3-A. Curr Microbiol 2006; 53:48-52. [PMID: 16775787 DOI: 10.1007/s00284-005-0194-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Accepted: 10/17/2005] [Indexed: 10/24/2022]
Abstract
A biphenyl-utilizing bacterium isolated from polychlorinated biphenyls (PCBs)-contaminated soils grew on tryptic soy at temperatures between 4 and 40 degrees C. The Gram-negative rod bacterium formed yellow colonies on nutrient agar and it denitrified nitrate to nitrogen. Analysis of cellular fatty acids showed that it was most closely related to Hydrogenophaga taeniospiralis. At 5 degrees C, biphenyl-grown cells cometabolically degraded di- and trichlorinated isomers of PCBs in 10 ppm of Aroclor 1248. At 30 degrees C, PCBs that were removed included a congener with four chlorine substituents. At 5 degrees C, cells transformed 2,4'-dichlorobiphenyl (2,4'-DCB) and accumulated ortho-chlorinated meta-cleavage product as a stable metabolite. Analysis of extracts of culture supernatant by gas chromatography-mass spectrometry indicated that products of transformation of 2,4'-DCB included 2- and 4-chlorobenzoic acid (2- and 4-CBA), suggesting that (chloro)biphenyl-degrading upper-pathway enzymes of the bacterium are active at low temperature. The bacterium Hydrogenophaga sp. IA3-A is a PCB-degrading psychrotolerant strain.
Collapse
Affiliation(s)
- Adewale J Lambo
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | |
Collapse
|
16
|
Han J, Kim SY, Jung J, Lim Y, Ahn JH, Kim SI, Hur HG. Epoxide formation on the aromatic B ring of flavanone by biphenyl dioxygenase of Pseudomonas pseudoalcaligenes KF707. Appl Environ Microbiol 2005; 71:5354-61. [PMID: 16151125 PMCID: PMC1214616 DOI: 10.1128/aem.71.9.5354-5361.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prokaryotic dioxygenase is known to catalyze aromatic compounds into their corresponding cis-dihydrodiols without the formation of an epoxide intermediate. Biphenyl dioxygenase from Pseudomonas pseudoalcaligenes KF707 showed novel monooxygenase activity by converting 2(R)- and 2(S)-flavanone to their corresponding epoxides (2-(7-oxabicyclo[4.1.0]hepta-2,4-dien-2-yl)-2, 3-dihydro-4H-chromen-4-one), whereby the epoxide bond was formed between C2' and C3' on the B ring of the flavanone. The enzyme also converted 6-hydroxyflavanone and 7-hydroxyflavanone, which do not contain a hydroxyl group on the B-ring, to their corresponding epoxides. In a previous report (S.-Y. Kim, J. Jung, Y. Lim, J.-H. Ahn, S.-I. Kim, and H.-G. Hur, Antonie Leeuwenhoek 84:261-268, 2003), however, we found that the same enzyme showed dioxygenase activity toward flavone, resulting in the production of flavone cis-2',3'-dihydrodiol. Extensive structural identification of the metabolites of flavanone by using high-pressure liquid chromatography, liquid chromatography/mass spectrometry, and nuclear magnetic resonance confirmed the presence of an epoxide functional group on the metabolites. Epoxide formation as the initial activation step of aromatic compounds by oxygenases has been reported to occur only by eukaryotic monooxygenases. To the best of our knowledge, biphenyl dioxygenase from P. pseudoalcaligenes KF707 is the first prokaryotic enzyme detected that can produce an epoxide derivative on the aromatic ring structure of flavanone.
Collapse
Affiliation(s)
- Jaehong Han
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Izzo V, Notomista E, Picardi A, Pennacchio F, Di Donato A. The thermophilic archaeon Sulfolobus solfataricus is able to grow on phenol. Res Microbiol 2005; 156:677-89. [PMID: 15921893 DOI: 10.1016/j.resmic.2005.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 11/16/2022]
Abstract
Many eubacteria use aromatic molecules as a carbon and energy source, but only a few archaea have been reported to grow on aromatics. Degradation of aromatic hydrocarbons by aerobic bacteria is generally divided into an upper pathway, which produces dihydroxylated aromatic intermediates by the action of monooxygenases, and a lower pathway that processes these intermediates down to molecules that enter the citric acid cycle. Recently, analysis of the genome of the thermophilic archaeon Sulfolobus solfataricus revealed the existence of orfs coding for putative enzymes of the degradation pathway of aromatics, i.e., a cluster of orfs coding for the subunits of a hypothetical bacterial multicomponent monooxygenase (SsoMO), an orf coding for a catechol 2,3-dioxygenase (SsoC2,3O), and an orf coding for an enzyme of the lower pathway of the catechol metabolism. In this paper we report that S. solfataricus can efficiently grow on phenol as the sole source of carbon and energy. To our knowledge this is the first report of a thermophilic archaeon able to grow on an aromatic compound under aerobic conditions. Moreover, the cloning and heterologous expression and characterization of the thermophilic SsoC2,3O are reported.
Collapse
Affiliation(s)
- Viviana Izzo
- Dipartimento di Biologia strutturale e funzionale, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | | | | | | | | |
Collapse
|
18
|
Identification of thebphC gene formeta-cleavage of aromatic pollutants from a metagenomic library derived from lake waters. BIOTECHNOL BIOPROC E 2004. [DOI: 10.1007/bf02933064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Hatta T, Mukerjee-Dhar G, Damborsky J, Kiyohara H, Kimbara K. Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8. J Biol Chem 2003; 278:21483-92. [PMID: 12672826 DOI: 10.1074/jbc.m210240200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed of four identical subunits (35 kDa). BphC_JF8 has a temperature optimum of 85 degrees C and a pH optimum of 7.5. It exhibited a half-life of 30 min at 80 degrees C and 81 min at 75 degrees C, making it the most thermostable extradiol dioxygenase studied. Inductively coupled plasma mass spectrometry analysis confirmed the presence of 4.0-4.8 manganese atoms per enzyme molecule. The EPR spectrum of BphC_JF8 exhibited g = 2.02 and g = 4.06 signals having the 6-fold hyperfine splitting characteristic of Mn(II). The enzyme can oxidize a wide range of substrates, and the substrate preference was in the order 2,3-dihydroxybiphenyl > 3-methylcatechol > catechol > 4-methylcatechol > 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mm 2,3-dihydroxybiphenyl. A decrease in Km accompanied an increase in temperature, and the Km value of 0.095 microm for 2,3-dihydroxybiphenyl (at 60 degrees C) is among the lowest reported. The kinetic properties and thermal stability of the native and recombinant enzyme were identical. The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. The metal ligands and active site residues of extradiol dioxygenases are conserved, although several amino acid residues found exclusively in enzymes that preferentially cleave bicyclic substrates are missing in BphC_JF8. A three-dimensional homology model of BphC_JF8 provided a basis for understanding the substrate specificity, quaternary structure, and stability of the enzyme.
Collapse
Affiliation(s)
- Takashi Hatta
- Research Institute of Technology, Okayama University of Science, 401-1 Seki, Okayama 703-8232, Japan.
| | | | | | | | | |
Collapse
|
20
|
Furukawa K. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J GEN APPL MICROBIOL 2000; 46:283-296. [PMID: 12483570 DOI: 10.2323/jgam.46.283] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively conducted by many workers, and the following general results have been obtained. (1) PCBs are degraded oxidatively by aerobic bacteria and other microorganisms such as white rot fungi. PCBs are also reductively dehalogenated by anaerobic microbial consortia. (2) The biodegradability of PCBs is highly dependent on chlorine substitution, i.e., number and position of chlorine. The degradation and dehalogenation capabilities are also highly strain dependent. (3) Biphenyl-utilizing bacteria can cometabolize many PCB congeners to chlorobenzoates by biphenl-catabolic enzymes. (4) Enzymes involved in the PCB degradation were purified and characterized. Biphenyl dioxygenase, ring-cleavage dioxygenase, and hydrolase are crystallized, and two ring-cleavage dioxygenases are being solved by x-ray crystallography. (5) The bph gene clusters responsible for PCB degradation are cloned from a variety of bacterial strains. The structure and function are analyzed with respect to the evolutionary relationship. (6) The molecular engineering of biphenyl dioxygenases is successfully performed by DNA shuffling, domain exchange, and subunit exchange. The evolved enzymes exhibit wide and enhanced degradation capacities for PCBs and other aromatic compounds.
Collapse
Affiliation(s)
- Kensuke Furukawa
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
21
|
Vaillancourt FH, Han S, Fortin PD, Bolin JT, Eltis LD. Molecular basis for the stabilization and inhibition of 2, 3-dihydroxybiphenyl 1,2-dioxygenase by t-butanol. J Biol Chem 1998; 273:34887-95. [PMID: 9857017 DOI: 10.1074/jbc.273.52.34887] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steady-state cleavage of catechols by 2,3-dihydroxybiphenyl 1, 2-dioxygenase (DHBD), the extradiol dioxygenase of the biphenyl biodegradation pathway, was investigated using a highly active, anaerobically purified preparation of enzyme. The kinetic data obtained using 2,3-dihydroxybiphenyl (DHB) fit a compulsory order ternary complex mechanism in which substrate inhibition occurs. The Km for dioxygen was 1280 +/- 70 microM, which is at least 2 orders of magnitude higher than that reported for catechol 2,3-dioxygenases. Km and Kd for DHB were 22 +/- 2 and 8 +/- 1 microM, respectively. DHBD was subject to reversible substrate inhibition and mechanism-based inactivation. In air-saturated buffer, the partition ratios of catecholic substrates substituted at C-3 were inversely related to their apparent specificity constants. Small organic molecules that stabilized DHBD most effectively also inhibited the cleavage reaction most strongly. The steady-state kinetic data and crystallographic results suggest that the stabilization and inhibition are due to specific interactions between the organic molecule and the active site of the enzyme. t-Butanol stabilized the enzyme and inhibited the cleavage of DHB in a mixed fashion, consistent with the distinct binding sites occupied by t-butanol in the crystal structures of the substrate-free form of the enzyme and the enzyme-DHB complex. In contrast, crystal structures of complexes with catechol and 3-methylcatechol revealed relationships between the binding of these smaller substrates and t-butanol that are consistent with the observed competitive inhibition.
Collapse
Affiliation(s)
- F H Vaillancourt
- Department of Biochemistry, Pavillon Marchand, Université Laval, Québec City, P.Q. G1K 7P4, Canada
| | | | | | | | | |
Collapse
|
22
|
Peng X, Egashira T, Hanashiro K, Masai E, Nishikawa S, Katayama Y, Kimbara K, Fukuda M. Cloning of a Sphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme. Appl Environ Microbiol 1998; 64:2520-7. [PMID: 9647824 PMCID: PMC106420 DOI: 10.1128/aem.64.7.2520-2527.1998] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sphingomonas paucimobilis SYK-6 transforms 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-dicarboxybiphenyl (DDVA), a lignin-related biphenyl compound, to 5-carboxyvanillic acid via 2,2',3-trihydroxy-3'-methoxy-5,5'-dicarboxybiphenyl (OH-DDVA) as an intermediate (15). The ring fission of OH-DDVA is an essential step in the DDVA degradative pathway. A 15-kb EcoRI fragment isolated from the cosmid library complemented the growth deficiency of a mutant on OH-DDVA. Subcloning and deletion analysis showed that a 1.4-kb DNA fragment included the gene responsible for the ring fission of OH-DDVA. An open reading frame encoding 334 amino acids was identified and designated ligZ. The deduced amino acid sequence of LigZ had 18 to 21% identity with the class III extradiol dioxygenase family, including the beta subunit (LigB) of protocatechuate 4,5-dioxygenase of SYK-6 (Y. Noda, S. Nishikawa, K.-I. Shiozuka, H. Kadokura, H. Nakajima, K. Yano, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki, J. Bacteriol. 172:2704-2709, 1990), catechol 2,3-dioxygenase I (MpcI) of Alcaligenes eutrophus JMP222 (M. Kabisch and P. Fortnagel, Nucleic Acids Res. 18:3405-3406, 1990), the catalytic subunit of the meta-cleavage enzyme (CarBb) for 2'-aminobiphenyl-2,3-diol from Pseudomonas sp. strain CA10 (S. I. Sato, N. Ouchiyama, T. Kimura, H. Nojiri, H. Yamane, and T. Omori, J. Bacteriol. 179:4841-4849, 1997), and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) of Escherichia coli (E. L. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, and T. D. H. Bugg, J. Bacteriol. 178:5249-5256, 1996). The ring fission product formed from OH-DDVA by LigZ developed a yellow color with an absorption maximum at 455 nm, suggesting meta cleavage. Thus, LigZ was concluded to be a ring cleavage extradiol dioxygenase. LigZ activity was detected only for OH-DDVA and 2,2',3,3'-tetrahydroxy-5,5'-dicarboxybiphenyl and was dependent on the ferrous ion.
Collapse
Affiliation(s)
- X Peng
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hein P, Powlowski J, Barriault D, Hurtubise Y, Ahmad D, Sylvestre M. Biphenyl-associatedmeta-cleavage dioxygenases fromComamonas testosteroniB-356. Can J Microbiol 1998. [DOI: 10.1139/w97-119] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to 2,3-dihydroxybiphenyl 1,2-dioxygenase (B1,2O), biphenyl-grown cells of Comamonas testosteroni B-356 were shown to produce a catechol 2,3-dioxygenase (C2,3O). B1,2O showed strong sequence homology with B1,2Os found in other biphenyl catabolic pathways, while partial sequence analysis of the C2,3O of B-356 suggested a relationship with xylEII-encoded C2,3O. The coexistence of two meta-cleavage dioxygenases in this strain prompted a comparison between the catalytic properties of the two enzymes. C2,3O has a much broader substrate specificity than native or His-tagged B1,2O: both enzymes were inhibited by chlorocatechols, but B1,2O was more sensitive than C2,3O. The results are discussed in terms of the physiological implications of interaction between metabolites from the lower biphenyl-chlorobiphenyl pathway and enzymes of the upper pathway.Key words: chlorobiphenyl, catabolism, dioxygenase, nucleotide sequence, enzyme kinetics.
Collapse
|
24
|
Hatta T, Shimada T, Yoshihara T, Yamada A, Masai E, Fukuda M, Kiyohara H. Meta-fission product hydrolases from a strong PCB degrader Rhodococcus sp. RHA1. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)86763-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Khan AA, Wang RF, Nawaz MS, Cerniglia CE. Nucleotide sequence of the gene encoding cis-biphenyl dihydrodiol dehydrogenase (bphB) and the expression of an active recombinant His-tagged bphB gene product from a PCB degrading bacterium, Pseudomonas putida OU83. FEMS Microbiol Lett 1997; 154:317-24. [PMID: 9311131 DOI: 10.1111/j.1574-6968.1997.tb12662.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleotide sequence of the bphB gene of Pseudomonas putida strain OU83 was determined. The bphB gene, which encodes cis-biphenyl dihydrodiol dehydrogenase (BDDH), was composed of 834 base pairs with an ATG initiation codon and a TGA termination codon. It can encode a polypeptide of 28.91 kDa, containing 277 amino acids. Promoter-like and ribosome-binding sequences were identified upstream of the bphB gene. The bphB nucleotide sequence was used to produce His-tagged BDDH, in Escherichia coli. The His-tagged BDDH construction, carrying a single 6 x His tail on the N-terminal portion, was active. The molecular mass of the native enzyme was 128 kDa and on SDS-PAGE analysis the molecular mass was 31 kDa. This enzyme requires NAD+ for its activity and its optimum pH is 8.5. Nucleotide and the deduced amino acid sequence analyses revealed a high degree of homology between the bphB gene from Pseudomonas putida OU83 and the bphB genes from P. cepacia LB400 and P. pseudoalcaligenes KF707.
Collapse
Affiliation(s)
- A A Khan
- Microbiology Division, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
26
|
Möbus E, Jahn M, Schmid R, Jahn D, Maser E. Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. J Bacteriol 1997; 179:5951-5. [PMID: 9294458 PMCID: PMC179490 DOI: 10.1128/jb.179.18.5951-5955.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effect of testosterone as the sole carbon source on protein expression was analyzed in Comamonas testosteroni. Testosterone simultaneously induced the expression of steroid- and aromatic hydrocarbon-catabolizing enzymes and repressed one amino acid-degrading enzyme. It is suggested that steroids play a regulative role in catabolic enzyme synthesis during adaptive growth of C. testosteroni.
Collapse
Affiliation(s)
- E Möbus
- Department of Pharmacology and Toxicology, Philipps University, Marburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Khan AA, Nawaz MS, Cerniglia CE. Rapid purification of an active recombinant His-tagged 2,3-dihydroxybiphenyl 1,2-dioxygenase from Pseudomonas putida OU83. FEMS Microbiol Lett 1997; 152:23-9. [PMID: 9228766 DOI: 10.1111/j.1574-6968.1997.tb10404.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
2,3-Dihydroxybiphenyl 1,2-dioxygenase (2,3-DBPD) is an extradiol-type dioxygenase that catalyzes the aromatic ring fission of 2,3-dihydroxybiphenyl, the third step in the biphenyl degradation pathway. The nucleotide sequence of the Pseudomonas putida OU83 gene bphC, which encodes 2,3-DBPD, was cloned into a plasmid pQE31. The His-tagged 2,3-DBPD produced by a recombinant Escherichia coli strain, SG13009(pREP4)(pAKC1), and purified with a Ni-nitrilotriacetic acid resin affinity column using the His-bind Qiagen system. The His-tagged 2,3-DBPD construction, carrying a single 6 x His tail on the N-terminal of the polypeptide, was active. SDS-PAGE analysis of the purified active 2,3-DBPD gave a single band of 34 kDa; this is in agreement with the size of the bphC coding region. The K(m) for 2,3-dihydroxybiphenyl was 14.5 +/- 2 microM. The enzyme activity was enhanced by ferrous ion but inhibited by ferric ion. The enzyme activity was inhibited by thiol-blocking reagents and heavy metals HgCl2, CuSO4, NiSO4, and CdCl2. The yield was much higher and the time required to purify recombinant 2,3-DBPD from clone pAKCl was faster than by the conventional chromatography procedures.
Collapse
Affiliation(s)
- A A Khan
- Microbiology Division, Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | |
Collapse
|
28
|
Schmid A, Rothe B, Altenbuchner J, Ludwig W, Engesser KH. Characterization of three distinct extradiol dioxygenases involved in mineralization of dibenzofuran by Terrabacter sp. strain DPO360. J Bacteriol 1997; 179:53-62. [PMID: 8981980 PMCID: PMC178661 DOI: 10.1128/jb.179.1.53-62.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dibenzofuran-degrading bacterial strain DPO360 represents a new species of the genus Terrabacter together with the previously described dibenzofuran-mineralizing bacterial strain DPO1361 (K.-H. Engesser, V. Strubel, K. Christoglou, P. Fischer, and H. G. Rast, FEMS Microbiol. Lett. 65:205-210, 1989; V. Strubel, Ph.D. thesis, University of Stuttgart, Stuttgart, Germany, 1991; V. Strubel, H. G. Rast, W. Fietz, H.-J. Knackmuss, and K.-H. Engesser, FEMS Microbiol. Lett. 58:233-238, 1989). Two 2,3-dihydroxybiphenyl-1,2-dioxygenases (BphC1 and BphC2) and one catechol-2,3-dioxygenase (C23O) were shown to be expressed in Terrabacter sp. strain DPO360 growing with dibenzofuran as a sole source of carbon and energy. These enzymes exhibited strong sensitivity to oxygen. They were purified to apparent homogeneity as homodimers (BphC and BphC2) and as a homotetrameric catechol-2,3-dioxygenase (C23O). According to their specificity constants kcat/Km, both BphC1 and BphC2 were shown to be responsible for the cleavage of 2,2',3-trihydroxybiphenyl, the first metabolite in dibenzofuran mineralization along the angular dioxygenation pathway. With this substrate, BphC2 exhibited a considerably higher kcat/Km, value (183 microM/min) than BphC1 (29 microM/min). Catechol-2,3-dioxygenase was recognized to be not involved in the ring cleavage of 2,2',3-trihydroxybiphenyl (kcat/Km, 1 microM/min). Analysis of deduced amino acid sequence data of bphC1 revealed 36% sequence identity to nahC from Pseudomonas putida PpG7 (S. Harayama and M. Rekik, J. Biol. Chem. 264:15328-15333, 1989) and about 40% sequence identity to various bphC genes from different Pseudomonas and Rhodococcus strains. In addition, another 2,3-dihydroxybiphenyl-1,2-dioxygenase gene (bphC3) was cloned from the genome of Terrabacter sp. strain DPO360. Expression of this gene, however, could not be detected in Terrabacter sp. strain DPO360 after growth with dibenzofuran.
Collapse
Affiliation(s)
- A Schmid
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | | | | | | | |
Collapse
|
29
|
Lendenmann U, Spain JC. 2-aminophenol 1,6-dioxygenase: a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45. J Bacteriol 1996; 178:6227-32. [PMID: 8892823 PMCID: PMC178494 DOI: 10.1128/jb.178.21.6227-6232.1996] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Most bacterial pathways for the degradation of aromatic compounds involve introduction of two hydroxyl groups either ortho or para to each other. Ring fission then occurs at the bond adjacent to one of the hydroxyl groups. In contrast, 2-aminophenol is cleaved to 2-aminomuconic acid semialdehyde in the nitrobenzene-degrading strain Pseudomonas pseudoalcaligenes JS45. To examine the relationship between this enzyme and other dioxygenases, 2-aminophenol 1,6-dioxygenase has been purified by ethanol precipitation, gel filtration, and ion exchange chromatography. The molecular mass determined by gel filtration was 140,000 Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed two subunits of 35,000 and 39,000 Da, which suggested an alpha2beta2 subunit structure. Studies with inhibitors indicated that ferrous iron was the sole cofactor. The Km values for 2-aminophenol and oxygen were 4.2 and 710 microM, respectively. The enzyme catalyzed the oxidation of catechol, 6-amino-m-cresol, 2-amino-m-cresol, and 2-amino-4-chlorophenol. 3-Hydroxyanthranilate, protocatechuate, gentisate, and 3- and 4-methylcatechol were not substrates. The substrate range and the subunit structure are unique among those of the known ring cleavage dioxygenases.
Collapse
Affiliation(s)
- U Lendenmann
- AL/EQL, Tyndall Air Force Base, Florida 32403-5323, USA
| | | |
Collapse
|
30
|
Hauschild JE, Masai E, Sugiyama K, Hatta T, Kimbara K, Fukuda M, Yano K. Identification of an alternative 2,3-dihydroxybiphenyl 1,2-dioxygenase in Rhodococcus sp. strain RHA1 and cloning of the gene. Appl Environ Microbiol 1996; 62:2940-6. [PMID: 8702287 PMCID: PMC168081 DOI: 10.1128/aem.62.8.2940-2946.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gram-positive Rhodococcus sp. strain RHA1 possesses strong polychlorinated biphenyl-degrading capabilities. An RHA1 bphC gene mutant, strain RDC1, had been previously constructed (E. Masai, A. Yamada, J. M. Healy, T. Hatta, K. Kimbara, M. Fukuda, and K. Yano, Appl. Environ. Microbiol. 61:2079-2085, 1995). An alternative 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD), designated EtbC, was identified in RDC1 cells grown on ethylbenzene. EtbC contained the broadest substrate specificity of any meta cleavage dioxygenase identified in a Rhodococcus strain to date, including RHA1 BphC. EtbC was purified to near homogeneity from RDC1 cells grown on ethylbenzene, and a 58-amino-acid NH2-terminal sequence was determined. The NH2-terminal amino acid sequence was used for the identification of the etbC gene from an RDC1 chromosomal DNA 2,3-DHBD expression library. The etbC gene was successfully cloned, and we report here the determination of its nucleotide sequence. The substrate specificity patterns of cell extract and native nondenaturing polyacrylamide gel electrophoresis analysis identified the coexpression of two 2,3-DHBDs (BphC and EtbC) in RHA1 cells grown on either biphenyl or ethylbenzene. The possible implication of coexpressed BphC extradiol dioxygenases in the strong polychlorinated-biphenyl degradation activity of RHA1 was suggested.
Collapse
Affiliation(s)
- J E Hauschild
- Center for Microbial Ecology, Michigan State University, East Lansing 48824-1325, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sylvestre M, Hurtubise Y, Barriault D, Bergeron J, Ahmad D. Characterization of active recombinant 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase from Comamonas testosteroni B-356 and sequence of the encoding gene (bphB). Appl Environ Microbiol 1996; 62:2710-5. [PMID: 8702262 PMCID: PMC168055 DOI: 10.1128/aem.62.8.2710-2715.1996] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
2,3-Dihydro-2,3-dihydroxybiphenyl-2,3-dehydrogenase (B2,3D) catalyzes the second step in the biphenyl degradation pathway. The nucleotide sequence of Comamonas testosteroni B-356 bphB, which encodes B2,3D, was determined. Structural analysis showed that the dehydrogenases involved in the bacterial degradation of aromatic compounds are related to each other and that their phylogenetic relationships are very similar to the relationships observed for dioxygenases that catalyze the initial reaction in the degradation pathway. The bphB sequence was used to produce recombinant active His-tagged B2,3D, which allowed us to describe for the first time some of the main features of a B2,3D. This enzyme requires NAD+, its optimal pH is 9.5, and its native M(r) was found to be 123,000, which makes it a tetramer. These characteristics are very similar to those reported for the related enzyme cis-toluene dihydrodiol dehydrogenase. The Km value and maximum rate of metabolism for 2,3-dihydro-2,3-dihydroxybiphenyl were 73 +/- 16 microM and 46 +/- 4 nmol min-1 microgram-1, respectively. Compared with the cis-toluene dihydrodiol dehydrogenase, B2,3D appeared to be more substrate specific since it was unable to attack cis-1,2-dihydroxy-cyclohexa-3,5-diene.
Collapse
Affiliation(s)
- M Sylvestre
- Institut National de la Recherche Scientifique-Santé, Université du Québec, Canada.
| | | | | | | | | |
Collapse
|
32
|
Khan AA, Wang RF, Nawaz MS, Cao WW, Cerniglia CE. Purification of 2,3-dihydroxybiphenyl 1,2-dioxygenase from Pseudomonas putida OU83 and characterization of the gene (bphC). Appl Environ Microbiol 1996; 62:1825-30. [PMID: 8633883 PMCID: PMC167959 DOI: 10.1128/aem.62.5.1825-1830.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DBPD) of Pseudomonas putida OU83 was constitutively expressed and purified to apparent homogeneity. The apparent molecular mass of the native enzyme was 256 kDa, and the subunit molecular mass was 32 kDa. The data suggested that 2,3-DBPD was an octamer of identical subunits. The nucleotide sequence of a DNA fragment containing the bphC region was determined. The deduced protein sequence for 2,3-DBPD consisted of 292 amino acid residues, with a calculated molecular mass of 31.9 kDa, which was in agreement with data for the purified 2,3-DBPD. Nucleotide and amino acid sequence analyses of the bphC gene and its product, respectively, revealed that there was a high degree of homology between the OU83 bphC gene and the bphC genes of Pseudomonas cepacia LB400 and Pseudomonas pseudoalcaligenes KF707.
Collapse
Affiliation(s)
- A A Khan
- Microbiology Division, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | | | |
Collapse
|
33
|
Heiss G, Stolz A, Kuhm AE, Müller C, Klein J, Altenbuchner J, Knackmuss HJ. Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J Bacteriol 1995; 177:5865-71. [PMID: 7592336 PMCID: PMC177411 DOI: 10.1128/jb.177.20.5865-5871.1995] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An extradiol dioxygenase was cloned from the naphthalenesulfonate-degrading bacterial strain BN6 by screening a gene bank for colonies with 2,3-dihydroxybiphenyl dioxygenase activity. DNA sequence analysis of a 1,358-bp fragment revealed an open reading frame of only 486 bp. This is the smallest gene encoding an extradiol dioxygenase found until now. Expression of the gene in a T7 expression vector enabled purification of the enzyme. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the protein was a dimer with a subunit size of 21.7 kDa. The enzyme oxidized 2,3-dihydroxybiphenyl, 3-isopropylcatechol, 3- and 4-chlorocatechol, and 3- and 4-methylcatechol. Since the ability to convert 3-chlorocatechol is an unusual characteristic for an extradiol-cleaving dioxygenase, this reaction was analyzed in more detail. The deduced amino-terminal amino acid sequence differed from the corresponding sequence of the 1,2-dihydroxynaphthalene dioxygenase, which had been determined earlier from the enzyme purified from this strain. This indicates that strain BN6 carries at least two different extradiol dioxygenases.
Collapse
Affiliation(s)
- G Heiss
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Biophysical investigation of bacterial aromatic extradiol dioxygenases involved in biodegradation processes. Coord Chem Rev 1995. [DOI: 10.1016/0010-8545(95)01149-j] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Kim E, Zylstra GJ. Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1. J Bacteriol 1995; 177:3095-103. [PMID: 7768806 PMCID: PMC176998 DOI: 10.1128/jb.177.11.3095-3103.1995] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Beijerinckia sp. strain B1 is able to grow on either biphenyl or m-xylene as the sole source of carbon and is capable of cooxidizing many polycyclic aromatic hydrocarbons. The catabolic pathways for biphenyl and m-xylene degradation are coinduced and share common downstream enzymatic reactions. The catabolic pathway for biphenyl degradation involves two meta-cleavage steps, one for 2,3-dihydroxybiphenyl and a second for catechol. The catabolic pathway for m-xylene involves one m-cleavage step for 3-methylcatechol. The genes for two meta-cleavage dioxygenases were cloned from Beijerinckia sp. strain B1 on a single fragment of genomic DNA. The two genes are located approximately 5.5 kb away from one another. Expression of each gene separately in Escherichia coli and analysis of the meta-cleavage dioxygenase produced showed that one enzyme was more specific for 2,3-dihydroxybiphenyl while the second was more specific for catechol. The genes for the two meta-cleavage enzymes were thus labeled bphC and xylE for 2,3-dihydroxybiphenyl 1,2-dioxygenase and catechol 2,3-dioxygenase, respectively. Nondenaturing polyacrylamide gel electrophoresis followed by enzyme activity staining showed that the two meta-cleavage dioxygenases could be easily separated from each other. Similar analyses of Beijerinckia sp. strain B1 grown on succinate, biphenyl, or m-xylene indicate that both meta-cleavage enzymes are induced when cells are grown on either biphenyl or m-xylene. The nucleotide sequence was determined for both bphC and xylE. The two genes are transcribed in opposite directions, demonstrating that at least two operons must be involved in biphenyl degradation by Beijerinckia sp. strain B1. Analysis of the deduced amino acid sequence indicates that 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) falls into the class of meta-cleavage dioxygenases acting on dihydroxylated polycyclic aromatic hydrocarbons and is somewhat distinct from the main group of meta-cleavage dioxygenases acting on 2,3-dihydroxybiphenyl. Catechol 2,3-dioxygenase (XyIE) falls into the class of meta-cleavage enzymes acting on dihydroxylated monocyclic aromatic hydrocarbons but shows little similarity to the canonical TOL plasmid-encoded catechol 2,3-dioxygenase.
Collapse
Affiliation(s)
- E Kim
- Center for Agricultural Molecular Biology, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231, USA
| | | |
Collapse
|
36
|
Lloyd-Jones G, Ogden RC, Williams PA. Inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase fromPseudomonas sp. strain CB406 by 3,4-dihydroxybiphenyl (4-phenylcatechol). Biodegradation 1995. [DOI: 10.1007/bf00702294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Abstract
Biphenyl-utilizing soil bacteria are ubiquitously distributed in the natural environment. They cometabolize a variety of polychlorinated biphenyl (PCB) congeners to chlorobenzoic acids through a 2,3-dioxygenase pathway, or alternatively through a 3,4-dioxygenase system. The bph genes coding for the metabolism of biphenyl have been cloned from several pseudomonads. The biochemistry and molecular genetics of PCB degradation are reviewed and discussed from the viewpoint of an evolutionary relationship.
Collapse
Affiliation(s)
- K Furukawa
- Department of Agricultural Chemistry, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Abstract
Genetic construction of recombinant strains with expanded degradative abilities may be useful for bioremedation of recalcitrant compounds, such as polychlorinated biphenyls (PCBs). Some degradative genes have been found either on conjugative plasmids or on transposons, which would facilitate their genetic transfer. The catabolic pathway for the total degradation of PCBs is encoded by two different sets of genes that are not normally found in the same organism. The bphABCD genes normally reside on the chromosome and encode for the four enzymes involved in the production of benzoate and chlorobenzoates from the respective catabolism of biphenyl and chlorobiphenyls. The genes encoding for chlorobenzoate catabolism have been found on both plasmids and the chromosome, often in association with transposable elements. Ring fission of chlorobiphenyls and chlorobenzoates involves the meta-fission pathway (3-phenylcatechol 2,3-dioxygenase) and the ortho-fission pathway (chlorocatechol 1,2-dioxygenase), respectively. As the catecholic intermediates of both pathways are frequently inhibitory to each other, incompatibilities result. Presently, all hybrid strains constructed by in vivo matings metabolize simple chlorobiphenyls through complementary pathways by comprising the bph, benzoate, and chlorocatechol genes of parental strains. No strains have yet been verified which are able to utilize PCBs having at least one chlorine on each ring as growth substrates. The possible incompatibilities of hybrid pathways are evaluated with respect to product toxicity, and the efficiency of both in vivo and in vitro genetic methods for the construction of recombinant strains able to degrade PCBs is discussed.
Collapse
Affiliation(s)
- V Brenner
- Department of Soil and Environmental Sciences, University of California, Riverside 92521-0424
| | | | | |
Collapse
|
39
|
Lee J, Kyung Sung T, Moon J, Rak Min K, Kim CK, Kim Y. Comparison of enzymatic and immunochemical properties of 2,3-dihydroxybiphenyl-1,2-dioxygenases from fourPseudomonasstrains. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07058.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Asturias J, Eltis L, Prucha M, Timmis K. Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37358-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Happe B, Eltis LD, Poth H, Hedderich R, Timmis KN. Characterization of 2,2',3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran- and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J Bacteriol 1993; 175:7313-20. [PMID: 8226678 PMCID: PMC206875 DOI: 10.1128/jb.175.22.7313-7320.1993] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A key enzyme in the degradation pathways of dibenzo-p-dioxin and dibenzofuran, namely, 2,2',3-trihydroxybiphenyl dioxygenase, which is responsible for meta cleavage of the first aromatic ring, has been genetically and biochemically analyzed. The dbfB gene of this enzyme has been cloned from a cosmid library of the dibenzo-p-dioxin- and dibenzofuran-degrading bacterium Sphingomonas sp. strain RW1 (R. M. Wittich, H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel, Appl. Environ. Microbiol. 58:1005-1010, 1992) and sequenced. The amino acid sequence of this enzyme is typical of those of extradiol dioxygenases. This enzyme, which is extremely oxygen labile, was purified anaerobically to apparent homogeneity from an Escherichia coli strain that had been engineered to hyperexpress dbfB. Unlike most extradiol dioxygenases, which have an oligomeric quaternary structure, the 2,2',3-trihydroxybiphenyl dioxygenase is a monomeric protein. Kinetic measurements with the purified enzyme produced similar Km values for 2,2',3-trihydroxybiphenyl and 2,3-dihydroxybiphenyl, and both of these compounds exhibited strong substrate inhibition. 2,2',3-Trihydroxydiphenyl ether, catechol, 3-methylcatechol, and 4-methylcatechol were oxidized less efficiently and 3,4-dihydroxybiphenyl was oxidized considerably less efficiently.
Collapse
Affiliation(s)
- B Happe
- Department of Microbiology, GBF-National Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
42
|
Furukawa K, Hirose J, Suyama A, Zaiki T, Hayashida S. Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J Bacteriol 1993; 175:5224-32. [PMID: 8349562 PMCID: PMC204990 DOI: 10.1128/jb.175.16.5224-5232.1993] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
bph operons coding for biphenyl-polychlorinated biphenyl degradation in Pseudomonas pseudoalcaligenes KF707 and Pseudomonas putida KF715 and tod operons coding for toluene-benzene metabolism in P. putida F1 are very similar in gene organization as well as size and homology of the corresponding enzymes (G. J. Zylstra and D. T. Gibson, J. Biol. Chem. 264:14940-14946, 1989; K. Taira, J. Hirose, S. Hayashida, and K. Furukawa, J. Biol. Chem. 267:4844-4853, 1992), despite their discrete substrate ranges for metabolism. The gene components responsible for substrate specificity between the bph and tod operons were investigated. The large subunit of the terminal dioxygenase (encoded by bphA1 and todC1) and the ring meta-cleavage compound hydrolase (bphD and todF) were critical for their discrete metabolic specificities, as shown by the following results. (i) Introduction of todC1C2 (coding for the large and small subunits of the terminal dioxygenase in toluene metabolism) or even only todC1 into biphenyl-utilizing P. pseudoalcaligenes KF707 and P. putida KF715 allowed them to grow on toluene-benzene by coupling with the lower benzoate meta-cleavage pathway. Introduction of the bphD gene (coding for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase) into toluene-utilizing P. putida F1 permitted growth on biphenyl. (ii) With various bph and tod mutant strains, it was shown that enzyme components of ferredoxin (encoded by bphA3 and todB), ferredoxin reductase (bphA4 and todA), and dihydrodiol dehydrogenase (bphB and todD) were complementary with one another. (iii) Escherichia coli cells carrying a hybrid gene cluster of todClbphA2A3A4BC (constructed by replacing bphA1 with todC1) converted toluene to a ring meta-cleavage 2-hydroxy-6-oxo-hepta-2,4-dienoic acid, indicating that TodC1 formed a functional multicomponent dioxygenase associated with BphA2 (a small subunit of the terminal dioxygenase in biphenyl metabolism), BphA3, and BphA4.
Collapse
Affiliation(s)
- K Furukawa
- Department of Agricultural Chemistry, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
43
|
Asturias JA, Timmis KN. Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J Bacteriol 1993; 175:4631-40. [PMID: 8335622 PMCID: PMC204914 DOI: 10.1128/jb.175.15.4631-4640.1993] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rhodococcus globerulus P6 (previously designated Acinetobacter sp. strain P6, Arthrobacter sp. strain M5, and Corynebacterium sp. strain MB1) is able to degrade a wide range of polychlorinated biphenyl (PCB) congeners. The genetic and biochemical analyses of the PCB catabolic pathway reported here have revealed the existence of a PCB gene cluster--bphBC1D--and two further bphC genes--bphC2 and bphC3--that encode three narrow-substrate-specificity enzymes (2,3-dihydroxybiphenyl dioxygenases) that meta cleave the first aromatic ring. None of the bphC genes show by hybridization homology to each other or to bphC genes in other bacteria, and the three bphC gene products have different kinetic parameters and sensitivities to inactivation by 3-chlorocatechol. This suggests that there exists a wide diversity in PCB meta cleavage enzymes.
Collapse
Affiliation(s)
- J A Asturias
- Department of Microbiology, National Research Center for Biotechnology, Braunschweig, Germany
| | | |
Collapse
|
44
|
Pfeifer F, Trüper HG, Klein J, Schacht S. Degradation of diphenylether by Pseudomonas cepacia Et4: enzymatic release of phenol from 2,3-dihydroxydiphenylether. Arch Microbiol 1993; 159:323-9. [PMID: 7683455 DOI: 10.1007/bf00290914] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
2,3-Dihydroxybiphenyl dioxygenase from Pseudomonas cepacia Et 4 was found to catalyze the ring fission of 2,3-dihydroxydiphenylether in the course of diphenylether degradation. The enzyme was purified and characterized. It had a molecular mass of 240 kDa and is dissociated by SDS into eight subunits of equal mass (31 kDa). The purified enzyme was found to be most active with 2,3-dihydroxybiphenyl as substrate and showed moderate activity with 2,3-dihydroxydiphenylether, catechol and some 3-substituted catechols. The Km-value of 1 microM for 2,3-dihydroxydiphenylether indicated a high affinity of the enzyme towards this substrate. The cleavage of 2,3-dihydroxydiphenylether by 2,3-dihydroxybiphenyl dioxygenase lead to the formation of phenol and 2-pyrone-6-carboxylate as products of ring fission and ether cleavage without participation of free intermediates. Isotope labeling experiments carried out with 18O2 and H2(18)O indicated the incorporation of 18O from the atmosphere into the carboxyl residue as well as into the carbonyl oxygen of the lactone moiety of 2-pyrone-6-carboxylate. Based on these experimental findings the reaction mechanism for the formation of phenol and 2-pyrone-6-carboxylate is proposed in accordance with the mechanism suggested by Kersten et al. (1982).
Collapse
Affiliation(s)
- F Pfeifer
- DMT-Gesellschaft für Forschung und Prüfung mbH, Institut für chemische Umwelttechnologie, Essen, Germany
| | | | | | | |
Collapse
|
45
|
|
46
|
de Lorenzo V, Eltis L, Kessler B, Timmis KN. Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 1993; 123:17-24. [PMID: 8380783 DOI: 10.1016/0378-1119(93)90533-9] [Citation(s) in RCA: 366] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Novel transposon and plasmid-based broad-host-range expression systems have been developed to facilitate the genetic analysis of gene products of Pseudomonas and related Gram- bacteria. The properties of lacIq/Ptrp-lac were used to construct mini-Tn5 expression vector transposons and RSF1010-derived plasmids for controlled expression and generation of conditional phenotypes. These plasmids were used to hyper-express the XylS regulator of the meta operon of the TOL plasmid of P. putida or the bphB and bphC genes of the polychlorobiphenyl-degrading pathway of Pseudomonas sp. LB400 in different strains of Pseudomonas instead of in Escherichia coli. Specific activity of 2.3 dihydroxybiphenyl dioxygenase (bphC gene product) was increased tenfold when hyperproduced in its native host as compared to E. coli, but under the same in vivo conditions, the XylS regulator formed protein aggregates. The other lacIq/Ptrp-lac-based expression vector presented here, transposon mini-Tn5 lacIq/Ptrc, facilitates the insertion of genetic cassettes containing heterologous genes under the control of lac inducers in the chromosome of target bacteria, as shown by monitoring expression of a lacZ reporter cloned in mini-Tn5 lacIq/Ptrc and inserted in the chromosome of P. putida.
Collapse
Affiliation(s)
- V de Lorenzo
- Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
47
|
Block DW, Lingens F. Microbial metabolism of quinoline and related compounds. XIV. Purification and properties of 1H-3-hydroxy-4-oxoquinoline oxygenase, a new extradiol cleavage enzyme from Pseudomonas putida strain 33/1. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1992; 373:343-9. [PMID: 1515060 DOI: 10.1515/bchm3.1992.373.1.343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1H-3-Hydroxy-4-oxoquinoline oxygenase was purified to apparent homogeneity from Pseudomonas putida strain 33/1 which can use 1H-4-oxoquinoline as sole source of carbon. The molecular mass of the enzyme was determined to 26,000 Da by gel chromatography and by SDS polyacrylamide gel electrophoresis. The enzyme is labile at temperatures above 30 degrees C and has a pH optimum of 8.0. It requires oxygen for the reaction and is significantly inhibited by metal ions like Cu2+, Zn2+, Hg2+ and by 4-chloromercuribenzoate. The enzyme is specific only for 1H-3-Hydroxy-4-oxoquinoline; the apparent Km value for this substrate is 24 microM.
Collapse
Affiliation(s)
- D W Block
- Institut für Mikrobiologie, Universität Hohenheim
| | | |
Collapse
|
48
|
Chen CM, Tomasek PH. 3,4-Dihydroxyxanthone dioxygenase from Arthrobacter sp. strain GFB100. Appl Environ Microbiol 1991; 57:2217-22. [PMID: 1768091 PMCID: PMC183553 DOI: 10.1128/aem.57.8.2217-2222.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial extradiol ring-fission dioxygenases play a critical role in the transformation of multiring aromatic compounds to more readily biodegradable aromatic or aliphatic intermediates. Arthrobacter sp. strain GFB100 utilizes an extradiol meta-fission dioxygenase, 3,4-dihydroxyxanthone dioxygenase (DHXD), in the catabolism of the three-ring oxygen heterocyclic compound xanthone. In this paper, we show that DHXD is a cytosolic enzyme, induced by growth on xanthone and maximally expressed during the stationary phase of growth. In addition, we characterize the DHXD activity in terms of its basic enzymological properties. 1,10-Phenanthroline and H2O2 treatments eliminated DHXD activity, indicating that the enzyme required Fe2+ ions for activity. Other divalent cations were either inhibitory or had no effect on activity. DHXD had a temperature optimum of 30 degrees C and a pH optimum of 7.0. DHXD followed typical saturation kinetics and had an apparent Km of 10 microM for 3,4-dihydroxyxanthone. The dye celestine blue served as a noncompetitive DHXD inhibitor (Ki, 5 microM). Several other structural analogs served neither as substrates nor inhibitors. DHXD was thermally labile at temperatures above 40 degrees C. The half-life for thermal DHXD inactivation was 5 min at 40 degrees C. DHXD activity was completely stable through one freeze-thaw cycle, and about 80% of the DHXD activity remained after 2 days of incubation at 0 degree C. The apparent tight binding of the Fe2+ cofactor to DHXD may be a factor contributing to the stability of this extradiol dioxygenase when it is stored.
Collapse
Affiliation(s)
- C M Chen
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick 08903
| | | |
Collapse
|
49
|
Abstract
In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant compounds. Recent developments in designing recombinant microorganisms and hybrid metabolic pathways are discussed.
Collapse
Affiliation(s)
- G R Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309
| | | |
Collapse
|
50
|
Hayase N, Taira K, Furukawa K. Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J Bacteriol 1990; 172:1160-4. [PMID: 2105297 PMCID: PMC208555 DOI: 10.1128/jb.172.2.1160-1164.1990] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We cloned the entire bphABCD genes encoding degradation of biphenyl and polychlorinated biphenyls to benzoate and chlorobenzoates from the chromosomal DNA of Pseudomonas putida KF715. The nucleotide sequence revealed two open reading frames corresponding to the bphC gene encoding 2,3-dihydroxybiphenyl dioxygenase and the bphD gene encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (ring-meta-cleavage compound) hydrolase.
Collapse
Affiliation(s)
- N Hayase
- Fermentation Research Institute, Agency of Industrial Science and Technology, Ibaraki, Japan
| | | | | |
Collapse
|