1
|
Udaondo Z, Schilder KA, Blesa ARM, Tena-Garitaonaindia M, Mangana JC, Daddaoua A. Transcriptional Regulatory Systems in Pseudomonas: A Comparative Analysis of Helix-Turn-Helix Domains and Two-Component Signal Transduction Networks. Int J Mol Sci 2025; 26:4677. [PMID: 40429820 PMCID: PMC12112638 DOI: 10.3390/ijms26104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Bacterial communities in diverse environmental niches respond to various external stimuli for survival. A primary means of communication between bacterial cells involves one-component (OC) and two-component signal transduction systems (TCSs). These systems are key for sensing environmental changes and regulating bacterial physiology. TCSs, which are the more complex of the two, consist of a sensor histidine kinase for receiving an external input and a response regulator to convey changes in bacterial cell physiology. For numerous reasons, TCSs have emerged as significant targets for antibacterial drug design due to their role in regulating expression level, bacterial viability, growth, and virulence. Diverse studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this study, we performed a thorough analysis of the data from multiple public databases to assemble a comprehensive catalog of the principal detection systems present in both the non-pathogenic Pseudomonas putida KT2440 and the pathogenic Pseudomonas aeruginosa PAO1 strains. Additionally, we conducted a sequence analysis of regulatory elements associated with transcriptional proteins. These were classified into regulatory families based on Helix-turn-Helix (HTH) protein domain information, a common structural motif for DNA-binding proteins. Moreover, we highlight the function of bacterial TCSs and their involvement in functions essential for bacterial survival and virulence. This comparison aims to identify novel targets that can be exploited for the development of advanced biotherapeutic strategies, potentially leading to new treatments for bacterial infections.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidin, 18008 Granada, Spain
| | - Kelsey Aguirre Schilder
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Ana Rosa Márquez Blesa
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - José Canto Mangana
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Pharmacy Services, A.S. Hospital de Poniente de Almería, 04700 El Ejido, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (IBS), 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
| |
Collapse
|
2
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Higuera‐Llantén S, Alcalde‐Rico M, Vasquez‐Ponce F, Ibacache‐Quiroga C, Blazquez J, Olivares‐Pacheco J. A whole-cell hypersensitive biosensor for beta-lactams based on the AmpR-AmpC regulatory circuit from the Antarctic Pseudomonas sp. IB20. Microb Biotechnol 2024; 17:e14385. [PMID: 38197486 PMCID: PMC10832568 DOI: 10.1111/1751-7915.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 01/11/2024] Open
Abstract
Detecting antibiotic residues is vital to minimize their impact. Yet, existing methods are complex and costly. Biosensors offer an alternative. While many biosensors detect various antibiotics, specific ones for beta-lactams are lacking. To address this gap, a biosensor based on the AmpC beta-lactamase regulation system (ampR-ampC) from Pseudomonas sp. IB20, an Antarctic isolate, was developed in this study. The AmpR-AmpC system is well-conserved in the genus Pseudomonas and has been extensively studied for its involvement in peptidoglycan recycling and beta-lactam resistance. To create the biosensor, the ampC coding sequence was replaced with the mCherry fluorescent protein as a reporter, resulting in a transcriptional fusion. This construct was then inserted into Escherichia coli SN0301, a beta-lactam hypersensitive strain, generating a whole-cell biosensor. The biosensor demonstrated dose-dependent detection of penicillins, cephalosporins and carbapenems. However, the most interesting aspect of this work is the high sensitivity presented by the biosensor in the detection of carbapenems, as it was able to detect 8 pg/mL of meropenem and 40 pg/mL of imipenem and reach levels of 1-10 ng/mL for penicillins and cephalosporins. This makes the biosensor a powerful tool for the detection of beta-lactam antibiotics, specifically carbapenems, in different matrices.
Collapse
Affiliation(s)
- Sebastián Higuera‐Llantén
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
| | - Manuel Alcalde‐Rico
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena, CSIC, Universidad de SevillaSevillaSpain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Felipe Vasquez‐Ponce
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
- Department of Microbiology, Institute of Biomedical SciencesUniversidade de São PauloSão PauloBrazil
| | - Claudia Ibacache‐Quiroga
- Escuela de Nutrición y Dietética, Facultad de FarmaciaUniversidad de ValparaísoValparaísoChile
- Centro de Micro‐BioinnovaciónUniversidad de ValparaísoValparaísoChile
| | - Jesús Blazquez
- National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Jorge Olivares‐Pacheco
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R)ValparaísoChile
| |
Collapse
|
4
|
Tariq FN, Shafiq M, Khawar N, Habib G, Gul H, Hayat A, Rehman MU, Moussa IM, Mahmoud EA, Elansary HO. The functional repertoire of AmpR in the AmpC β-lactamase high expression and decreasing β-lactam and aminoglycosides resistance in ESBL Citrobacter freundii. Heliyon 2023; 9:e19486. [PMID: 37662790 PMCID: PMC10472055 DOI: 10.1016/j.heliyon.2023.e19486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Citrobacter freundii is characterized by AmpC β-lactamases that develop resistance to β-lactam antibiotics. The production of extended-spectrum β-lactamase (ESBL) is substantially high in Escherichia coli, C. freundii, Enterobacter cloacae, and Serratia marcescens, but infrequently explored in C. freundii. The present investigation characterized the ESBL C. freundii and delineated the genes involved in decrease in antibiotics resistance. We used the VITEK-2 system and Analytical Profile Index (API) kit to characterize and identify the Citrobacter isolates. The mRNA level of AmpC and AmpR was determined by RT-qPCR, and gel-shift assay was performed to evaluate protein-DNA binding. Here, a total of 26 Citrobacter strains were isolated from COVID-19 patients that showed varying degrees of antibiotic resistance. We examined and characterized the multidrug resistant C. freundii that showed ESBL production. The RT-qPCR analysis revealed that the AmpC mRNA expression is significantly high followed by a high level of AmpR. We sequenced the AmpC and AmpR genes that revealed the AmpR has four novel mutations in comparison to the reference genome namely; Thr64Ile, Arg86Ser, Asp135Val, and Ile183Leu while AmpC remained intact. The ΔAmpR mutant analysis revealed that the AmpR positively regulates oxidative stress response and decreases β-lactam and aminoglycosides resistance. The AmpC and AmpR high expression was associated with resistance to tazobactam, ampicillin, gentamicin, nitrofurantoin, and cephalosporins whereas AmpR deletion reduced β-lactam and aminoglycosides resistance. We conclude that AmpR is a positive regulator of AmpC that stimulates β-lactamases which inactivate multiple antibiotics.
Collapse
Affiliation(s)
- Falak Naz Tariq
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Mehreen Shafiq
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Nadeem Khawar
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, 25000, Pakistan
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Haji Gul
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Azam Hayat
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Demeester W, De Baets J, Duchi D, De Mey M, De Paepe B. MoBioS: Modular Platform Technology for High-Throughput Construction and Characterization of Tunable Transcriptional Biological Sensors. BIOSENSORS 2023; 13:590. [PMID: 37366955 DOI: 10.3390/bios13060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
All living organisms have evolved and fine-tuned specialized mechanisms to precisely monitor a vast array of different types of molecules. These natural mechanisms can be sourced by researchers to build Biological Sensors (BioS) by combining them with an easily measurable output, such as fluorescence. Because they are genetically encoded, BioS are cheap, fast, sustainable, portable, self-generating and highly sensitive and specific. Therefore, BioS hold the potential to become key enabling tools that stimulate innovation and scientific exploration in various disciplines. However, the main bottleneck in unlocking the full potential of BioS is the fact that there is no standardized, efficient and tunable platform available for the high-throughput construction and characterization of biosensors. Therefore, a modular, Golden Gate-based construction platform, called MoBioS, is introduced in this article. It allows for the fast and easy creation of transcription factor-based biosensor plasmids. As a proof of concept, its potential is demonstrated by creating eight different, functional and standardized biosensors that detect eight diverse molecules of industrial interest. In addition, the platform contains novel built-in features to facilitate fast and efficient biosensor engineering and response curve tuning.
Collapse
Affiliation(s)
- Wouter Demeester
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Jasmine De Baets
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Dries Duchi
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Rizi KS, Aryan E, Youssefi M, Ghazvini K, Meshkat Z, Amini Y, Safdari H, Derakhshan M, Farsiani H. Characterization of carbapenem-resistant Escherichia coli and Klebsiella: a role for AmpC-producing isolates. Future Microbiol 2023; 18:215-223. [PMID: 37129534 DOI: 10.2217/fmb-2021-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Aim: This study aimed to investigate the role of AmpC enzymes in carbapenem resistance among AmpC/extended-spectrum β-lactamase (ESBL)-producing clinical isolates of Escherichia coli and Klebsiella spp. Methods: Fifty-six bacterial strains that were AmpC producers were examined. The antibiotic susceptibility test was performed by the disk diffusion and E-test. The prevalence of the plasmid carbapenemase was determined using PCR. Results: The resistance to meropenem in the AmpC+/ESBL+ group was 64%, higher than that reported for the AmpC-/ESBL+ group. Ten isolates of the carbapenem-resistant AmpC producers were negative for carbapenemase-encoding genes. Conclusion: Carbapenem resistance among AmpC-producing isolates with negative results for carbapenemase-encoding genes potentially demonstrates the role of AmpC enzymes among these isolates.
Collapse
Affiliation(s)
- Kobra S Rizi
- Department of Microbiology & Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Amini
- Infectious Disease & Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hadi Safdari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Mallik D, Jain D, Bhakta S, Ghosh AS. Role of AmpC-Inducing Genes in Modulating Other Serine Beta-Lactamases in Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11010067. [PMID: 35052944 PMCID: PMC8772759 DOI: 10.3390/antibiotics11010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
The consistently mutating bacterial genotypes appear to have accelerated the global challenge with antimicrobial resistance (AMR); it is therefore timely to investigate certain less-explored fields of targeting AMR mechanisms in bacterial pathogens. One of such areas is beta-lactamase (BLA) induction that can provide us with a collection of prospective therapeutic targets. The key genes (ampD, ampE and ampG) to which the AmpC induction mechanism is linked are also involved in regulating the production of fragmented muropeptides generated during cell-wall peptidoglycan recycling. Although the involvement of these genes in inducing class C BLAs is apparent, their effect on serine beta-lactamase (serine-BLA) induction is little known. Here, by using ∆ampD and ∆ampE mutants of E. coli, we attempted to elucidate the effects of ampD and ampE on the expression of serine-BLAs originating from Enterobacteriaceae, viz., CTX-M-15, TEM-1 and OXA-2. Results show that cefotaxime is the preferred inducer for CTX-M-15 and amoxicillin for TEM-1, whereas oxacillin for OXA-2. Surprisingly, exogenous BLA expressions are elevated in ∆ampD and ∆ampE mutants but do not always alter their beta-lactam susceptibility. Moreover, the beta-lactam resistance is increased upon in trans expression of ampD, whereas the same is decreased upon ampE expression, indicating a differential effect of ampD and ampE overexpression. In a nutshell, depending on the BLA, AmpD amidase moderately facilitates a varying level of serine-BLA expression whereas AmpE transporter acts likely as a negative regulator of serine-BLA.
Collapse
Affiliation(s)
- Dhriti Mallik
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (D.M.); (D.J.)
| | - Diamond Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (D.M.); (D.J.)
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK;
| | - Anindya Sundar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (D.M.); (D.J.)
- Correspondence:
| |
Collapse
|
8
|
Yoshimura M, Tokushige C, Maruyama JI, Kawano Y, Ishikura H, Matsunaga A, Takata T, Hiromatsu K, Yanagihara I, Togawa A, Takamatsu Y. Emerging Resistance to Beta-lactams in Pantoea ananatis Isolated from an Immunocompetent Patient with Bacteremia. Diagn Microbiol Infect Dis 2022; 102:115633. [DOI: 10.1016/j.diagmicrobio.2022.115633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 01/04/2023]
|
9
|
Structural analysis of the sensor domain of the β-lactam antibiotic receptor VbrK from Vibrio parahaemolyticus. Biochem Biophys Res Commun 2020; 533:155-161. [DOI: 10.1016/j.bbrc.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 01/16/2023]
|
10
|
Singhal N, Pandey D, Singh NS, Kumar M, Virdi JS. Exploring the genetic determinants underlying the differential production of an inducible chromosomal cephalosporinase - BlaB in Yersinia enterocolitica biotypes 1A, 1B, 2 and 4. Sci Rep 2020; 10:10167. [PMID: 32576927 PMCID: PMC7311522 DOI: 10.1038/s41598-020-67174-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/02/2020] [Indexed: 12/01/2022] Open
Abstract
Yersinia enterocolitica is an enteric bacterium which can cause severe gastroenteritis. Beta-lactams are the most widely used antibiotics against Y. enterocolitica. Y. enterocolitica produces two chromosomal β-lactamases, BlaA and BlaB. BlaB is an Ambler Class C inducible broad spectrum cephlaosporinase which showed differential enzyme activity in different biotypes of Y. enterocolitica. The expression of blaB is mainly regulated by ampR- the transcriptional regulator and, ampD - which helps in peptidoglycan recycling. The aim of this study was to identify and characterize genetic determinants underlying differential enzyme activity of BlaB in Y. enterocolitica biotypes 1 A, IB, 2 and 4. Thus, ampR, blaB and ampD were PCR-amplified and modeled in silico. The intercistronic region containing promoters of ampR and blaB was also investigated. Our results indicated that blaB was more inducible in biotypes 2 and 4, than in biotypes 1 A and 1B. Superimposition of in silico modeled proteins suggested that variations in amino acid sequences of AmpR, BlaB and AmpD were not responsible for hyper-production of BlaB in biotypes 2 and 4. Analysis of promoter regions of ampR and blaB revealed variations at -30, -37 and -58 positions from blaB transcription start site. Studies on relative expression levels of blaB in different biotypes by qRT-PCR indicated that nucleotide variations at these positions might contribute to a higher enzyme activity of BlaB in biotypes 2 and 4. However, this is a preliminary study and further studies including more strains of each biotype are required to strengthen our findings. Nevertheless, to the best of our knowledge, this is the first study which has investigated the genetic determinants underlying differential inducible production of BlaB in different biotypes of Y. enterocolitica.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| | - Deeksha Pandey
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | | | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India.
| | - Jugsharan Singh Virdi
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
11
|
Fisher JF, Mobashery S. Constructing and deconstructing the bacterial cell wall. Protein Sci 2020; 29:629-646. [PMID: 31747090 PMCID: PMC7021008 DOI: 10.1002/pro.3737] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
The history of modern medicine cannot be written apart from the history of the antibiotics. Antibiotics are cytotoxic secondary metabolites that are isolated from Nature. The antibacterial antibiotics disproportionately target bacterial protein structure that is distinct from eukaryotic protein structure, notably within the ribosome and within the pathways for bacterial cell-wall biosynthesis (for which there is not a eukaryotic counterpart). This review focuses on a pre-eminent class of antibiotics-the β-lactams, exemplified by the penicillins and cephalosporins-from the perspective of the evolving mechanisms for bacterial resistance. The mechanism of action of the β-lactams is bacterial cell-wall destruction. In the monoderm (single membrane, Gram-positive staining) pathogen Staphylococcus aureus the dominant resistance mechanism is expression of a β-lactam-unreactive transpeptidase enzyme that functions in cell-wall construction. In the diderm (dual membrane, Gram-negative staining) pathogen Pseudomonas aeruginosa a dominant resistance mechanism (among several) is expression of a hydrolytic enzyme that destroys the critical β-lactam ring of the antibiotic. The key sensing mechanism used by P. aeruginosa is monitoring the molecular difference between cell-wall construction and cell-wall deconstruction. In both bacteria, the resistance pathways are manifested only when the bacteria detect the presence of β-lactams. This review summarizes how the β-lactams are sensed and how the resistance mechanisms are manifested, with the expectation that preventing these processes will be critical to future chemotherapeutic control of multidrug resistant bacteria.
Collapse
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndiana
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndiana
| |
Collapse
|
12
|
Park H, Do E, Kim M, Park HJ, Lee J, Han SW. A LysR-Type Transcriptional Regulator LcrX Is Involved in Virulence, Biofilm Formation, Swimming Motility, Siderophore Secretion, and Growth in Sugar Sources in Xanthomonas axonopodis Pv. glycines. FRONTIERS IN PLANT SCIENCE 2020; 10:1657. [PMID: 31998344 PMCID: PMC6965072 DOI: 10.3389/fpls.2019.01657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
Xanthomonas axonopodis pv. glycines (Xag) is a Gram-negative bacterium that causes bacterial pustule disease in soybean. To acclimate to new environments, the expression of genes in bacteria is controlled directly or indirectly by diverse transcriptional factors. Among them, LysR type transcriptional regulators are well-characterized and abundant in bacteria. In a previous study, comparative proteomic analysis revealed that LysR type carbohydrate-related transcriptional regulator in Xag (LcrX) was more abundant in XVM2, which is a minimal medium, compared with a rich medium. However, the functions of LcrX in Xag have not been characterized. In this study, we generated an LcrX-overexpressing strain, Xag(LcrX), and the knockout mutant strain, XagΔlcrX(EV), to elucidate the functions of LcrX. Bacterial multiplication of Xag(LcrX) in soybean was significantly impaired, indicating that LcrX is related to virulence. Comparative proteomic analysis revealed that LcrX is mainly involved in carbohydrate metabolism/transport and inorganic ion transport/metabolism. Based on the results of proteomics analysis, diverse phenotypic assays were carried out. A gel electrophoresis mobility shift assay demonstrated that LcrX specifically bound to the putative promoter regions of genes encoding putative fructose 1,6-bisphosphatase and protease. Through a 96-well plate assay under various conditions, we confirmed that the growth of Xag(LcrX) was dramatically affected in the presence of various carbon sources, while the growth of XagΔlcrX(EV) was only slightly changed. Biofilm formation activity was reduced in Xag(LcrX) but enhanced in XagΔlcrX(EV). The production of siderophores was also decreased in Xag(LcrX) but not altered in XagΔlcrX(EV). In contrast, LcrX was not associated with exopolysaccharide production, protease activity, or bacterial motility. These findings provide new insights into the functions of a carbohydrate-related transcriptional regulator in Xag.
Collapse
Affiliation(s)
- Hanbi Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Minyoung Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Hye-Jee Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
13
|
Torrens G, Hernández SB, Ayala JA, Moya B, Juan C, Cava F, Oliver A. Regulation of AmpC-Driven β-Lactam Resistance in Pseudomonas aeruginosa: Different Pathways, Different Signaling. mSystems 2019; 4:e00524-19. [PMID: 31796566 PMCID: PMC6890930 DOI: 10.1128/msystems.00524-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
The hyperproduction of the chromosomal AmpC β-lactamase is the main mechanism driving β-lactam resistance in Pseudomonas aeruginosa, one of the leading opportunistic pathogens causing nosocomial acute and chronic infections in patients with underlying respiratory diseases. In the current scenario of the shortage of effective antipseudomonal drugs, understanding the molecular mechanisms mediating AmpC hyperproduction in order to develop new therapeutics against this fearsome pathogen is of great importance. It has been accepted for decades that certain cell wall-derived soluble fragments (muropeptides) modulate AmpC production by complexing with the transcriptional regulator AmpR and acquiring different conformations that activate/repress ampC expression. However, these peptidoglycan-derived signals have never been characterized in the highly prevalent P. aeruginosa stable AmpC hyperproducer mutants. Here, we demonstrate that the previously described fragments enabling the transient ampC hyperexpression during cefoxitin induction (1,6-anhydro-N-acetylmuramyl-pentapeptides) also underlie the dacB (penicillin binding protein 4 [PBP4]) mutation-driven stable hyperproduction but differ from the 1,6-anhydro-N-acetylmuramyl-tripeptides notably overaccumulated in the ampD knockout mutant. In addition, a simultaneous greater accumulation of both activators appears linked to higher levels of AmpC hyperproduction, although our results suggest a much stronger AmpC-activating potency for the 1,6-anhydro-N-acetylmuramyl-pentapeptide. Collectively, our results propose a model of AmpC control where the activator fragments, with qualitative and quantitative particularities depending on the pathways and levels of β-lactamase production, dominate over the repressor (UDP-N-acetylmuramyl-pentapeptide). This study represents a major step in understanding the foundations of AmpC-dependent β-lactam resistance in P. aeruginosa, potentially useful to open new therapeutic conceptions intended to interfere with the abovementioned cell wall-derived signaling.IMPORTANCE The extensive use of β-lactam antibiotics and the bacterial adaptive capacity have led to the apparently unstoppable increase of antimicrobial resistance, one of the current major global health challenges. In the leading nosocomial pathogen Pseudomonas aeruginosa, the mutation-driven AmpC β-lactamase hyperproduction stands out as the main resistance mechanism, but the molecular cues enabling this system have remained elusive until now. Here, we provide for the first time direct and quantitative information about the soluble cell wall-derived fragments accounting for the different levels and pathways of AmpC hyperproduction. Based on these results, we propose a hierarchical model of signals which ultimately govern ampC hyperexpression and resistance.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Sara Belén Hernández
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Juan Alfonso Ayala
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| |
Collapse
|
14
|
Singhal N, Pandey D, Kumar M, Virdi JS. Molecular analysis of ampR and ampD to understand variability in inducible expression of "BlaB-like" cephalosporinase in Yersinia enterocolitica biotype 1A. Gene 2019; 704:25-30. [PMID: 30980942 DOI: 10.1016/j.gene.2019.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/25/2022]
Abstract
Yersinia enterocolitica strains produce two chromosomal β‑lactamases, BlaA - a constitutively produced penicillinase, and BlaB - an inducible "AmpC-type" cephalosporinase. As in other members of Enterobacteriaceae, expression of ampC in Y. enterocolitica is regulated by the genes - ampR and ampD. The ampR encodes a transcriptional regulator which represses the expression of ampC and, ampD encodes a cytoplasmic N‑acetyl‑anhydromuramyl‑l‑alanine amidase which participates in recycling of peptidoglycan. Exposure of bacteria to antibiotics like imipenem and cefoxitin results in generation and accumulation of large quantities of muropeptides in cytoplasm which is beyond the recycling capability of AmpD. These muropeptides bind to AmpR, converting it into an activator of ampC expression (ampC de-repression). Earlier studies from our laboratory indicated that instead of BlaB, Y. enterocolitica biotype 1A strains produced a "BlaB-like" enzyme which was non-heterogeneous and showed a differential expression when induced with imipenem. The detection of "BlaB-like" cephalosporinase which was also induced differentially in Y. enterocolitica biotype 1A strains presented an opportunity to discern newer mechanisms, if any, which may underlie inducible expression of "AmpC-type" cephalosporinases. Thus, the objective of the present study was to understand the role of ampR and ampD in regulating differential expression of "BlaB-like" cephalosporinases in biotype 1A strains. Analysis of promoters and amino acid sequences of AmpR revealed that these were conserved in all strains of biotype 1A. Analysis of AmpD amino acid sequences revealed that five variants of AmpD were present which did not contribute to hyper-inducible production of "BlaB-like" enzyme. In-silico prediction of the mRNA secondary structures of ampD revealed significant differences, which might have affected the rate of translation of ampD and accumulation of un-recycled muropeptides inside the cell leading to hyper production of "BlaB-like" cephalosporinases in some Y. enterocolitica biotype 1A strains. The findings provide newer insights to our understanding of the mechanisms underlying regulation of expression of "AmpC-type" β‑lactamases.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Deeksha Pandey
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| | - Jugsharan Singh Virdi
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
15
|
Palmer AC, Chait R, Kishony R. Nonoptimal Gene Expression Creates Latent Potential for Antibiotic Resistance. Mol Biol Evol 2019; 35:2669-2684. [PMID: 30169679 PMCID: PMC6231494 DOI: 10.1093/molbev/msy163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteria regulate genes to survive antibiotic stress, but regulation can be far from perfect. When regulation is not optimal, mutations that change gene expression can contribute to antibiotic resistance. It is not systematically understood to what extent natural gene regulation is or is not optimal for distinct antibiotics, and how changes in expression of specific genes quantitatively affect antibiotic resistance. Here we discover a simple quantitative relation between fitness, gene expression, and antibiotic potency, which rationalizes our observation that a multitude of genes and even innate antibiotic defense mechanisms have expression that is critically nonoptimal under antibiotic treatment. First, we developed a pooled-strain drug-diffusion assay and screened Escherichia coli overexpression and knockout libraries, finding that resistance to a range of 31 antibiotics could result from changing expression of a large and functionally diverse set of genes, in a primarily but not exclusively drug-specific manner. Second, by synthetically controlling the expression of single-drug and multidrug resistance genes, we observed that their fitness–expression functions changed dramatically under antibiotic treatment in accordance with a log-sensitivity relation. Thus, because many genes are nonoptimally expressed under antibiotic treatment, many regulatory mutations can contribute to resistance by altering expression and by activating latent defenses.
Collapse
Affiliation(s)
- Adam C Palmer
- Department of Systems Biology, Harvard Medical School, Boston, MA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA
| | - Remy Chait
- Department of Systems Biology, Harvard Medical School, Boston, MA.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roy Kishony
- Department of Systems Biology, Harvard Medical School, Boston, MA.,Departments of Biology and Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Geraskina NV, Sycheva EV, Samsonov VV, Eremina NS, Hook CD, Serebrianyi VA, Stoynova NV. Engineering Escherichia coli for autoinducible production of L-valine: An example of an artificial positive feedback loop in amino acid biosynthesis. PLoS One 2019; 14:e0215777. [PMID: 31022249 PMCID: PMC6483228 DOI: 10.1371/journal.pone.0215777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Artificial metabolically regulated inducible expression systems are often used for the production of essential compounds. In most cases, the application of such systems enables regulating the expression of an entire group of genes in response to any internal signal such as an aerobic/anaerobic switch, a transition to stationary phase, or the exhausting of essential compounds. In this work, we demonstrate an example of another type of artificial autoinducible module, denoted a positive feedback module. This positive feedback module generates an inducer molecule that in turn enhances its own synthesis, promoting an activation signal. Due to the use of acetolactate, an intermediate of the L-valine biosynthetic pathway, as a specific inducer molecule, we realized a positive feedback loop in the biosynthetic pathway of branched chain amino acids. Such positive feedback was demonstrated to improve the production of a target compound.
Collapse
Affiliation(s)
| | - Elena V. Sycheva
- Ajinomoto-Genetika Research Institute, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
17
|
Juan C, Torrens G, Barceló IM, Oliver A. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev 2018; 82:e00033-18. [PMID: 30209071 PMCID: PMC6298613 DOI: 10.1128/mmbr.00033-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The clinical and epidemiological threat of the growing antimicrobial resistance in Gram-negative pathogens, particularly for β-lactams, the most frequently used and relevant antibiotics, urges research to find new therapeutic weapons to combat the infections caused by these microorganisms. An essential previous step in the development of these therapeutic solutions is to identify their potential targets in the biology of the pathogen. This is precisely what we sought to do in this review specifically regarding the barely exploited field analyzing the interplay among the biology of the peptidoglycan and related processes, such as β-lactamase regulation and virulence. Hence, here we gather, analyze, and integrate the knowledge derived from published works that provide information on the topic, starting with those dealing with the historically neglected essential role of the Gram-negative peptidoglycan in virulence, including structural, biogenesis, remodeling, and recycling aspects, in addition to proinflammatory and other interactions with the host. We also review the complex link between intrinsic β-lactamase production and peptidoglycan metabolism, as well as the biological costs potentially associated with the expression of horizontally acquired β-lactamases. Finally, we analyze the existing evidence from multiple perspectives to provide useful clues for identifying targets enabling the future development of therapeutic options attacking the peptidoglycan-virulence interconnection as a key weak point of the Gram-negative pathogens to be used, if not to kill the bacteria, to mitigate their capacity to produce severe infections.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Isabel Maria Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| |
Collapse
|
18
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
19
|
Zhuang W, Liu H, Li J, Chen L, Wang G. Regulation of Class A β-Lactamase CzoA by CzoR and IscR in Comamonas testosteroni S44. Front Microbiol 2017; 8:2573. [PMID: 29312251 PMCID: PMC5744064 DOI: 10.3389/fmicb.2017.02573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
A genomic analysis of Comamonas testosteroni S44 revealed a gene that encodes a LysR family transcriptional regulator (here named czoR, czo for cefazolin) located upstream of a putative class A β-lactamase encoding gene (here named czoA). A putative DNA-binding motif of the Fe-S cluster assembly regulator IscR was identified in the czoR-czoA intergenic region. Real-time RT-PCR and lacZ fusion expression assays indicated that transcription of czoA and czoR were induced by multiple β-lactams. CzoA expressed in Escherichia coli was shown to contribute to susceptibility to a wide range of β-lactams judged from minimum inhibitory concentrations. In vitro enzymatic assays showed that CzoA hydrolyzed seven β-lactams, including benzylpenicillin, ampicillin, cefalexin, cefazolin, cefuroxime, ceftriaxone, and cefepime. Deletion of either iscR or czoR increased susceptibility to cefalexin and cefazolin, while complemented strains restored their wild-type susceptibility levels. Electrophoretic mobility shift assays (EMSA) demonstrated that CzoR and IscR bind to different sites of the czoR-czoA intergenic region. Precise CzoR- and IscR-binding sites were confirmed via DNase I footprinting or short fragment EMSA. When cefalexin or cefazolin was added to cultures, czoR deletion completely inhibited czoA expression but did not affect iscR transcription, while iscR deletion decreased the expressions of both czoR and czoA. These results reveal that CzoR positively affects the expression of czoA with its own expression upregulated by IscR.
Collapse
Affiliation(s)
- Weiping Zhuang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongliang Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Jingxin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
The Vibrio cholerae var regulon encodes a metallo-β-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor. PLoS One 2017; 12:e0184255. [PMID: 28898293 PMCID: PMC5595328 DOI: 10.1371/journal.pone.0184255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The genome sequence of V. cholerae O1 Biovar Eltor strain N16961 has revealed a putative antibiotic resistance (var) regulon that is predicted to encode a transcriptional activator (VarR), which is divergently transcribed relative to the putative resistance genes for both a metallo-β-lactamase (VarG) and an antibiotic efflux-pump (VarABCDEF). We sought to test whether these genes could confer antibiotic resistance and are organised as a regulon under the control of VarR. VarG was overexpressed and purified and shown to have β-lactamase activity against penicillins, cephalosporins and carbapenems, having the highest activity against meropenem. The expression of VarABCDEF in the Escherichia coli (ΔacrAB) strain KAM3 conferred resistance to a range of drugs, but most significant resistance was to the macrolide spiramycin. A gel-shift analysis was used to determine if VarR bound to the promoter regions of the resistance genes. Consistent with the regulation of these resistance genes, VarR binds to three distinct intergenic regions, varRG, varGA and varBC located upstream and adjacent to varG, varA and varC, respectively. VarR can act as a repressor at the varRG promoter region; whilst this repression was relieved upon addition of β-lactams, these did not dissociate the VarR/varRG-DNA complex, indicating that the de-repression of varR by β-lactams is indirect. Considering that the genomic arrangement of VarR-VarG is strikingly similar to that of AmpR-AmpC system, it is possible that V. cholerae has evolved a system for resistance to the newer β-lactams that would prove more beneficial to the bacterium in light of current selective pressures.
Collapse
|
21
|
Boonma S, Romsang A, Duang-Nkern J, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa. PLoS One 2017; 12:e0172071. [PMID: 28187184 PMCID: PMC5302815 DOI: 10.1371/journal.pone.0172071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa has two genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. We show here that P. aeruginosa fprA is an essential gene. However, the ΔfprA mutant could only be successfully constructed in PAO1 strains containing an extra copy of fprA on a mini-Tn7 vector integrated into the chromosome or carrying it on a temperature-sensitive plasmid. The strain containing an extra copy of the ferredoxin gene (fdx1) could suppress the essentiality of FprA. Other ferredoxin genes could not suppress the requirement for FprA, suggesting that Fdx1 mediates the essentiality of FprA. The expression of fprA was highly induced in response to treatments with a superoxide generator, paraquat, or sodium hypochlorite (NaOCl). The induction of fprA by these treatments depended on FinR, a LysR-family transcription regulator. In vivo and in vitro analysis suggested that oxidized FinR acted as a transcriptional activator of fprA expression by binding to its regulatory box, located 20 bases upstream of the fprA -35 promoter motif. This location of the FinR box also placed it between the -35 and -10 motifs of the finR promoter, where the reduced regulator functions as a repressor. Under uninduced conditions, binding of FinR repressed its own transcription but had no effect on fprA expression. Exposure to paraquat or NaOCl converted FinR to a transcriptional activator, leading to the expression of both fprA and finR. The ΔfinR mutant showed an increased paraquat sensitivity phenotype and attenuated virulence in the Drosophila melanogaster host model. These phenotypes could be complemented by high expression of fprA, indicating that the observed phenotypes of the ΔfinR mutant arose from the inability to up-regulate fprA expression. In addition, increased expression of fprB was unable to rescue essentiality of fprA or the superoxide-sensitive phenotype of the ΔfinR mutant, suggesting distinct mechanisms of the FprA and FprB enzymes.
Collapse
Affiliation(s)
- Siriwan Boonma
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | | | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Domínguez-Gil T, Molina R, Alcorlo M, Hermoso JA. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens. Drug Resist Updat 2016; 28:91-104. [PMID: 27620957 DOI: 10.1016/j.drup.2016.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway.
Collapse
Affiliation(s)
- Teresa Domínguez-Gil
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Martín Alcorlo
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| |
Collapse
|
23
|
Li L, Wang Q, Zhang H, Yang M, Khan MI, Zhou X. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics. Proc Natl Acad Sci U S A 2016; 113:1648-53. [PMID: 26831117 PMCID: PMC4760793 DOI: 10.1073/pnas.1520300113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
β-Lactams disrupt bacterial cell wall synthesis, and these agents are the most widely used antibiotics. One of the principle mechanisms by which bacteria resist the action of β-lactams is by producing β-lactamases, enzymes that degrade β-lactams. In Gram-negative bacteria, production of β-lactamases is often induced in response to the antibiotic-associated damage to the cell wall. Here, we have identified a previously unidentified mechanism that governs β-lactamase production. In the Gram-negative enteric pathogen Vibrio parahaemolyticus, we found a histidine kinase/response regulator pair (VbrK/VbrR) that controls expression of a β-lactamase. Mutants lacking either VbrK or VbrR do not produce the β-lactamase and are no longer resistant to β-lactam antibiotics. Notably, VbrK autophosphorylation is activated by β-lactam antibiotics, but not by other lactams. However, single amino acid substitutions in the putative periplasmic binding pocket of VbrK leads its phosphorylation in response to both β-lactam and other lactams, suggesting that this kinase is a β-lactam receptor that can directly detect β-lactam antibiotics instead of detecting the damage to cell wall resulting from β-lactams. In strong support of this idea, we found that purified periplasmic sensor domain of VbrK binds penicillin, and that such binding is critical for VbrK autophosphorylation and β-lactamase production. Direct recognition of β-lactam antibiotics by a histidine kinase receptor may represent an evolutionarily favorable mechanism to defend against β-lactam antibiotics.
Collapse
Affiliation(s)
- Lu Li
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Zhang
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089; Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Minjun Yang
- Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Mazhar I Khan
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089;
| |
Collapse
|
24
|
Zavil’gel’skii GB, Kotova VY, Mironov AS. Lux biosensors for antibiotic detection: The contribution from reactive oxygen species to the bactericidal activity of antibiotics. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2015. [DOI: 10.1134/s1990793115030239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Santiago AS, Santos CA, Mendes JS, Toledo MAS, Beloti LL, Souza AA, Souza AP. Characterization of the LysR-type transcriptional regulator YcjZ-like from Xylella fastidiosa overexpressed in Escherichia coli. Protein Expr Purif 2015; 113:72-8. [PMID: 25979465 DOI: 10.1016/j.pep.2015.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022]
Abstract
The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/β fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress.
Collapse
Affiliation(s)
- André S Santiago
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliano S Mendes
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo A S Toledo
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alessandra A Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, Brazil
| | - Anete P Souza
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia (IB), Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
26
|
PBP1a/LpoA but not PBP1b/LpoB are involved in regulation of the major β-lactamase gene blaA in Shewanella oneidensis. Antimicrob Agents Chemother 2015; 59:3357-64. [PMID: 25824223 DOI: 10.1128/aac.04669-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 03/19/2015] [Indexed: 11/20/2022] Open
Abstract
β-Lactamase production is one of the most important strategies for Gram-negative bacteria to combat β-lactam antibiotics. Studies of the regulation of β-lactamase expression have largely been focused on the class C β-lactamase AmpC, whose induction by β-lactams requires LysR-type regulator AmpR and permease AmpG-dependent peptidoglycan recycling intermediates. In Shewanella, which is ubiquitous in aquatic environments and is a reservoir for antibiotic resistance, production of the class D β-lactamase BlaA confers bacteria with natural resistance to many β-lactams. Expression of the blaA gene in the genus representative Shewanella oneidensis is distinct from the AmpC paradigm because of the lack of an AmpR homologue and the presence of an additional AmpG-independent regulatory pathway. In this study, using transposon mutagenesis, we identify proteins that are involved in blaA regulation. Inactivation of mrcA and lpoA, which encode penicillin binding protein 1a (PBP1a) and its lipoprotein cofactor, LpoA, respectively, drastically enhances blaA expression in the absence of β-lactams. Although PBP1b and its cognate, LpoB, also exist in S. oneidensis, their roles in blaA induction are dispensable. We further show that the mrcA-mediated blaA expression is independent of AmpG.
Collapse
|
27
|
Manageiro V, Ferreira E, Pinto M, Fonseca F, Ferreira M, Bonnet R, Caniça M. Two novel CMY-2-type β-lactamases encountered in clinical Escherichia coli isolates. Ann Clin Microbiol Antimicrob 2015; 14:12. [PMID: 25885413 PMCID: PMC4399151 DOI: 10.1186/s12941-015-0070-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/24/2015] [Indexed: 02/04/2023] Open
Abstract
Background Chromosomally encoded AmpC β-lactamases may be acquired by transmissible plasmids which consequently can disseminate into bacteria lacking or poorly expressing a chromosomal blaAmpC gene. Nowadays, these plasmid-mediated AmpC β-lactamases are found in different bacterial species, namely Enterobacteriaceae, which typically do not express these types of β-lactamase such as Klebsiella spp. or Escherichia coli. This study was performed to characterize two E. coli isolates collected in two different Portuguese hospitals, both carrying a novel CMY-2-type β-lactamase-encoding gene. Findings Both isolates, INSRA1169 and INSRA3413, and their respective transformants, were non-susceptible to amoxicillin, amoxicillin plus clavulanic acid, cephalothin, cefoxitin, ceftazidime and cefotaxime, but susceptible to cefepime and imipenem, and presented evidence of synergy between cloxacilin and cefoxitin and/or ceftazidime. The genetic characterization of both isolates revealed the presence of blaCMY-46 and blaCMY-50 genes, respectively, and the following three resistance-encoding regions: a Citrobacter freundii chromosome-type structure encompassing a blc-sugE-blaCMY-2-type-ampR platform; a sul1-type class 1 integron with two antibiotic resistance gene cassettes (dfrA1 and aadA1); and a truncated mercury resistance operon. Conclusions This study describes two new blaCMY-2-type genes in E. coli isolates, located within a C. freundii-derived fragment, which may suggest their mobilization through mobile genetic elements. The presence of the three different resistance regions in these isolates, with diverse genetic determinants of resistance and mobile elements, may further contribute to the emergence and spread of these genes, both at a chromosomal or/and plasmid level.
Collapse
Affiliation(s)
- Vera Manageiro
- Department of Infectious Diseases, National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal. .,Centre for the Study of Animal Sciences (ICETA), University of Oporto, Oporto, Portugal.
| | - Eugénia Ferreira
- Department of Infectious Diseases, National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Margarida Pinto
- Laboratory of Microbiology, Hospital Garcia de Orta, EPE, Almada, Portugal. .,Present address: Laboratory of Microbiology, Centro Hospitalar de Lisboa Central, EPE, Lisbon, Portugal.
| | - Fernando Fonseca
- Laboratory of Clinical Pathology, Hospital de Santa Luzia, Viana do Castelo, Portugal. .,Present address: Laboratory of Clinical Pathology, Centro Hospitalar de Póvoa de Varzim-Vila do Conde, EPE, Póvoa de Varzim, Portugal.
| | - Mónica Ferreira
- Department of Infectious Diseases, National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Richard Bonnet
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Clermont-Ferrand, France.
| | - Manuela Caniça
- Department of Infectious Diseases, National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| |
Collapse
|
28
|
Balasubramanian D, Kumari H, Mathee K. Pseudomonas aeruginosa AmpR: an acute-chronic switch regulator. Pathog Dis 2015; 73:1-14. [PMID: 25066236 DOI: 10.1111/2049-632x.12208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most intractable human pathogens that pose serious clinical challenge due to extensive prevalence of multidrug-resistant clinical isolates. Armed with abundant virulence and antibiotic resistance mechanisms, it is a major etiologic agent in a number of acute and chronic infections. A complex and intricate network of regulators dictates the expression of pathogenicity factors in P. aeruginosa. Some proteins within the network play key roles and control multiple pathways. This review discusses the role of one such protein, AmpR, which was initially recognized for its role in antibiotic resistance by regulating AmpC β-lactamase. Recent genomic, proteomic and phenotypic analyses demonstrate that AmpR regulates expression of hundreds of genes that are involved in diverse pathways such as β-lactam and non-β-lactam resistance, quorum sensing and associated virulence phenotypes, protein phosphorylation, and physiological processes. Finally, ampR mutations in clinical isolates are reviewed to shed light on important residues required for its function in antibiotic resistance. The prevalence and evolutionary implications of AmpR in pathogenic and nonpathogenic proteobacteria are also discussed. A comprehensive understanding of proteins at nodal positions in the P. aeruginosa regulatory network is crucial in understanding, and ultimately targeting, the pathogenic stratagems of this organism.
Collapse
Affiliation(s)
| | - Hansi Kumari
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Kalai Mathee
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
29
|
Vadlamani G, Thomas MD, Patel TR, Donald LJ, Reeve TM, Stetefeld J, Standing KG, Vocadlo DJ, Mark BL. The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. J Biol Chem 2014; 290:2630-43. [PMID: 25480792 DOI: 10.1074/jbc.m114.618199] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inducible expression of chromosomal AmpC β-lactamase is a major cause of β-lactam antibiotic resistance in the Gram-negative bacteria Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is induced by the LysR-type transcriptional regulator (LTTR) AmpR, which activates ampC expression in response to changes in peptidoglycan (PG) metabolite levels that occur during exposure to β-lactams. Under normal conditions, AmpR represses ampC transcription by binding the PG precursor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. When exposed to β-lactams, however, PG catabolites (1,6-anhydroMurNAc-peptides) accumulate in the cytosol, which have been proposed to competitively displace UDP-MurNAc-pentapeptide from AmpR and convert it into an activator of ampC transcription. Here we describe the molecular interactions between AmpR (from Citrobacter freundii), its DNA operator, and repressor UDP-MurNAc-pentapeptide. Non-denaturing mass spectrometry revealed AmpR to be a homotetramer that is stabilized by DNA containing the T-N11-A LTTR binding motif and revealed that it can bind four repressor molecules in an apparently stepwise manner. A crystal structure of the AmpR effector-binding domain bound to UDP-MurNAc-pentapeptide revealed that the terminal D-Ala-D-Ala motif of the repressor forms the primary contacts with the protein. This observation suggests that 1,6-anhydroMurNAc-pentapeptide may convert AmpR into an activator of ampC transcription more effectively than 1,6-anhydroMurNAc-tripeptide (which lacks the D-Ala-D-Ala motif). Finally, small angle x-ray scattering demonstrates that the AmpR·DNA complex adopts a flat conformation similar to the LTTR protein AphB and undergoes only a slight conformational change when binding UDP-MurNAc-pentapeptide. Modeling the AmpR·DNA tetramer bound to UDP-MurNAc-pentapeptide predicts that the UDP-MurNAc moiety of the repressor participates in modulating AmpR function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kenneth G Standing
- Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - David J Vocadlo
- the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
30
|
|
31
|
Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR. J Bacteriol 2014; 196:3890-902. [PMID: 25182487 DOI: 10.1128/jb.01997-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a dreaded pathogen in many clinical settings. Its inherent and acquired antibiotic resistance thwarts therapy. In particular, derepression of the AmpC β-lactamase is a common mechanism of β-lactam resistance among clinical isolates. The inducible expression of ampC is controlled by the global LysR-type transcriptional regulator (LTTR) AmpR. In the present study, we investigated the genetic and structural elements that are important for ampC induction. Specifically, the ampC (PampC) and ampR (PampR) promoters and the AmpR protein were characterized. The transcription start sites (TSSs) of the divergent transcripts were mapped using 5' rapid amplification of cDNA ends-PCR (RACE-PCR), and strong σ(54) and σ(70) consensus sequences were identified at PampR and PampC, respectively. Sigma factor RpoN was found to negatively regulate ampR expression, possibly through promoter blocking. Deletion mapping revealed that the minimal PampC extends 98 bp upstream of the TSS. Gel shifts using membrane fractions showed that AmpR binds to PampC in vitro whereas in vivo binding was demonstrated using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR). Additionally, site-directed mutagenesis of the AmpR helix-turn-helix (HTH) motif identified residues critical for binding and function (Ser38 and Lys42) and critical for function but not binding (His39). Amino acids Gly102 and Asp135, previously implicated in the repression state of AmpR in the enterobacteria, were also shown to play a structural role in P. aeruginosa AmpR. Alkaline phosphatase fusion and shaving experiments suggest that AmpR is likely to be membrane associated. Lastly, an in vivo cross-linking study shows that AmpR dimerizes. In conclusion, a potential membrane-associated AmpR dimer regulates ampC expression by direct binding.
Collapse
|
32
|
The sentinel role of peptidoglycan recycling in the β-lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa. Bioorg Chem 2014; 56:41-8. [PMID: 24955547 DOI: 10.1016/j.bioorg.2014.05.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 01/16/2023]
Abstract
The peptidoglycan is the structural polymer of the bacterial cell envelope. In contrast to an expectation of a structural stasis for this polymer, during the growth of the Gram-negative bacterium this polymer is in a constant state of remodeling and extension. Our current understanding of this peptidoglycan "turnover" intertwines with the deeply related phenomena of the liberation of small peptidoglycan segments (muropeptides) during turnover, the presence of dedicated recycling pathways for reuse of these muropeptides, β-lactam inactivation of specific penicillin-binding proteins as a mechanism for the perturbation of the muropeptide pool, and this perturbation as a controlling mechanism for signal transduction leading to the expression of β-lactamase(s) as a key resistance mechanism against the β-lactam antibiotics. The nexus for many of these events is the control of the AmpR transcription factor by the composition of the muropeptide pool generated during peptidoglycan recycling. In this review we connect the seminal observations of the past decades to new observations that resolve some, but certainly not all, of the key structures and mechanisms that connect to AmpR.
Collapse
|
33
|
Kumari H, Balasubramanian D, Zincke D, Mathee K. Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics. J Med Microbiol 2014; 63:544-555. [PMID: 24464693 DOI: 10.1099/jmm.0.070185-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most dreaded opportunistic pathogens accounting for 10 % of hospital-acquired infections, with a 50 % mortality rate in chronically ill patients. The increased prevalence of drug-resistant isolates is a major cause of concern. Resistance in P. aeruginosa is mediated by various mechanisms, some of which are shared among different classes of antibiotics and which raise the possibility of cross-resistance. The goal of this study was to explore the effect of subinhibitory concentrations (SICs) of clinically relevant antibiotics and the role of a global antibiotic resistance and virulence regulator, AmpR, in developing cross-resistance. We investigated the induction of transient cross-resistance in P. aeruginosa PAO1 upon exposure to SICs of antibiotics. Pre-exposure to carbapenems, specifically imipenem, even at 3 ng ml(-1), adversely affected the efficacy of clinically used penicillins and cephalosporins. The high β-lactam resistance was due to elevated expression of both ampC and ampR, encoding a chromosomal β-lactamase and its regulator, respectively. Differences in the susceptibility of ampR and ampC mutants suggested non-AmpC-mediated regulation of β-lactam resistance by AmpR. The increased susceptibility of P. aeruginosa in the absence of ampR to various antibiotics upon SIC exposure suggests that AmpR plays a major role in the cross-resistance. AmpR was shown previously to be involved in resistance to quinolones by regulating MexEF-OprN efflux pump. The data here further indicate the role of AmpR in cross-resistance between quinolones and aminoglycosides. This was confirmed using quantitative PCR, where expression of the mexEF efflux pump was further induced by ciprofloxacin and tobramycin, its substrate and a non-substrate, respectively, in the absence of ampR. The data presented here highlight the intricate cross-regulation of antibiotic resistance pathways at SICs of antibiotics and the need for careful assessment of the order of antibiotic regimens as this may have dire consequences. Targeting a global regulator such as AmpR that connects diverse pathways is a feasible therapeutic approach to combat P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Hansi Kumari
- Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL, USA.,Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Diansy Zincke
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL, USA.,Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Kalai Mathee
- Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
34
|
Kotova VY, Ryzhenkova KV, Manukhov IV, Zavilgelsky GB. Inducible specific lux-biosensors for the detection of antibiotics: Construction and main parameters. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683814010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Zeng X, Lin J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol 2013; 4:128. [PMID: 23734147 PMCID: PMC3660660 DOI: 10.3389/fmicb.2013.00128] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/04/2013] [Indexed: 11/13/2022] Open
Abstract
Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG-AmpR-AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted.
Collapse
Affiliation(s)
| | - Jun Lin
- Department of Animal Science, The University of TennesseeKnoxville, TN, USA
| |
Collapse
|
36
|
Abstract
Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many--and quite possibly all--bacteria, the peptidoglycan fragments are recovered and recycled. Although cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall-targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall-recycling inhibitors.
Collapse
Affiliation(s)
- Jarrod W Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
37
|
Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S, Mathee K. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes. PLoS One 2012; 7:e34067. [PMID: 22479525 PMCID: PMC3315558 DOI: 10.1371/journal.pone.0034067] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/27/2012] [Indexed: 01/19/2023] Open
Abstract
In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors in response to antibiotic exposure.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, Florida, United States of America
| | - Lisa Schneper
- Molecular Microbiology and Infectious Diseases (Herbert Werthiem College of Medicine), Florida International University, Miami, Florida, United States of America
| | - Massimo Merighi
- Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachussetts, United States of America
| | - Roger Smith
- Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachussetts, United States of America
| | - Giri Narasimhan
- School of Computing and Information Science, College of Engineering and Computing, Florida International University, Miami, Florida, United States of America
| | - Stephen Lory
- Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachussetts, United States of America
| | - Kalai Mathee
- Molecular Microbiology and Infectious Diseases (Herbert Werthiem College of Medicine), Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
38
|
Mark BL, Vocadlo DJ, Oliver A. Providing β-lactams a helping hand: targeting the AmpC β-lactamase induction pathway. Future Microbiol 2012; 6:1415-27. [PMID: 22122439 DOI: 10.2217/fmb.11.128] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A major cause of the clinical failure of broad-spectrum β-lactam antibiotics against Pseudomonas aeruginosa and many Enterobacteriaceae species are chromosomal mutations that lead to the hyperproduction of AmpC β-lactamase. These mutations typically affect proteins within the peptidoglycan (PG) recycling pathway, as well as proteins that are modulated by metabolic intermediates of this pathway. Blocking PG recycling and associated sensing mechanisms with small-molecule inhibitors holds promise as a strategy for overcoming AmpC-mediated resistance that results from the selection of mutations during β-lactam therapy, or from the direct acquisition of infections by AmpC-producing mutants. Here we report on the structural and functional biology of potential drug targets within the Gram-negative PG recycling pathway and the utility of blocking PG recycling as a means of attenuating AmpC-mediated resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | |
Collapse
|
39
|
Identification and characterization of the LysR-type transcriptional regulator HsdR for steroid-inducible expression of the 3α-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comamonas testosteroni. Appl Environ Microbiol 2011; 78:941-50. [PMID: 22156416 DOI: 10.1128/aem.06872-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3α-Hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) from Comamonas testosteroni is a key enzyme in steroid degradation in soil and water. 3α-HSD/CR gene (hsdA) expression can be induced by steroids like testosterone and progesterone. Previously, we have shown that the induction of hsdA expression by steroids is a derepression where steroidal inducers bind to two repressors, RepA and RepB, thereby preventing the blocking of hsdA transcription and translation, respectively (G. Xiong and E. Maser, J. Biol. Chem. 276:9961-9970, 2001; G. Xiong, H. J. Martin, and E. Maser, J. Biol. Chem. 278:47400-47407, 2003). In the present study, a new LysR-type transcriptional factor, HsdR, for 3α-HSD/CR expression in C. testosteroni has been identified. The hsdR gene is located 2.58 kb downstream from hsdA on the C. testosteroni ATCC 11996 chromosome with an orientation opposite that of hsdA. The hsdR gene was cloned and recombinant HsdR protein was produced, as was anti-HsdR polyclonal antibodies. While heterologous transformation systems revealed that HsdR activates the expression of the hsdA gene, electrophoresis mobility shift assays showed that HsdR specifically binds to the hsdA promoter region. Interestingly, the activity of HsdR is dependent on decreased repression by RepA. Furthermore, in vitro binding assays indicated that HsdR can come into contact with RNA polymerase. As expected, an hsdR knockout mutant expressed low levels of 3α-HSD/CR compared to that of wild-type C. testosteroni after testosterone induction. In conclusion, HsdR is a positive transcription factor for the hsdA gene and promotes the induction of 3α-HSD/CR expression in C. testosteroni.
Collapse
|
40
|
Characterization of a DHA-1-producing Klebsiella pneumoniae strain involved in an outbreak and role of the AmpR regulator in virulence. Antimicrob Agents Chemother 2011; 56:288-94. [PMID: 21986829 DOI: 10.1128/aac.00164-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A clonal strain of Klebsiella pneumoniae producing the plasmid-encoded cephalosporinase DHA-1 was isolated from four patients admitted to the teaching hospital of Clermont-Ferrand, France, in 2006. It was responsible for severe infections in three of the patients; the fourth was colonized only in the gastrointestinal tract. The strain had at least two plasmids encoding resistance to antibiotics (quinolones, aminoglycosides, chloramphenicol, sulfonamides, and trimethoprim), as shown by disk diffusion assay, and harbored only a few genes for virulence factors (wabG and mrkD), as shown by PCRs. DHA-1 synthesis is regulated by an upstream, divergently transcribed gene, ampR, which is also involved in the expression of virulence factors in Pseudomonas aeruginosa. To investigate the role of AmpR in K. pneumoniae, we cloned the wild-type ampR gene from the DHA-1 clonal isolate into a previously characterized K. pneumoniae background plasmid-cured strain, CH608. ampR was also introduced into a CH608 isogenic mutant deleted of ampD, in which AmpR is present only in its activator form, resulting in constitutive hyperproduction of the β-lactamase. We showed that ampR was involved in the upregulation of capsule synthesis and therefore in resistance to killing by serum. AmpR also modulated biofilm formation and type 3 fimbrial gene expression, as well as colonization of the murine gastrointestinal tract and adhesion to HT-29 intestinal epithelial cells. These results show the pleiotropic role of ampR in the pathogenesis process of K. pneumoniae.
Collapse
|
41
|
Balasubramanian D, Kong KF, Jayawardena SR, Leal SM, Sautter RT, Mathee K. Co-regulation of {beta}-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa. J Med Microbiol 2011; 60:147-156. [PMID: 20965918 PMCID: PMC3081088 DOI: 10.1099/jmm.0.021600-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/18/2010] [Indexed: 12/11/2022] Open
Abstract
Development of β-lactam resistance, production of alginate and modulation of virulence factor expression that alters host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. In this study, we propose that a co-regulatory network exists between these mechanisms. We compared the promoter activities of ampR, algT/U, lasR, lasI, rhlR, rhlI and lasA genes, representing the β-lactam antibiotic resistance master regulatory gene, the alginate switch operon, the las and rhl quorum-sensing (QS) genes, and the LasA staphylolytic protease, respectively. Four isogenic P. aeruginosa strains, the prototypic Alg(-) PAO1, Alg(-) PAOampR, the mucoid Alg(+) PAOmucA22 (Alg(+) PDO300) and Alg(+) PAOmucA22ampR (Alg(+) PDOampR) were used. We found that in the presence of AmpR regulator and β-lactam antibiotic, the extracytoplasmic function sigma factor AlgT/U positively regulated P(ampR), whereas AmpR negatively regulated P(algT/U). On the basis of this finding we suggest the presence of a negative feedback loop to limit algT/U expression. In addition, the functional AlgT/U caused a significant decrease in the expression of QS genes, whereas loss of ampR only resulted in increased P(lasI) and P(lasR) transcription. The upregulation of the las QS system is likely to be responsible for the increased lasA promoter and the LasA protease activities in Alg(-) PAOampR and Alg(+) PDOampR. The enhanced expression of virulence factors in the ampR strains correlated with a higher rate of Caenorhabditis elegans paralysis. Hence, this study shows that the loss of ampR results in increased virulence, and is indicative of the existence of a co-regulatory network between β-lactam resistance, alginate production, QS and virulence factor production, with AmpR playing a central role.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Kok-Fai Kong
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Suriya Ravi Jayawardena
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Sixto Manuel Leal
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Robert Todd Sautter
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | - Kalai Mathee
- Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
42
|
Kendall MM, Rasko DA, Sperandio V. The LysR-type regulator QseA regulates both characterized and putative virulence genes in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 2010; 76:1306-21. [PMID: 20444105 PMCID: PMC2936457 DOI: 10.1111/j.1365-2958.2010.07174.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) colonizes the large intestine, causing attaching and effacing (AE) lesions. Most of the genes involved in AE lesion formation are encoded within a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). The LysR-type transcriptional factor QseA regulates the LEE by binding to the regulatory region of ler. We performed transcriptome analyses comparing wild-type (WT) EHEC and the qseA mutant to elucidate QseA's role in gene regulation. During both growth phases, several genes carried in O-islands were activated by QseA, whereas genes involved in cell metabolism were repressed. During late-logarithmic growth, QseA activated expression of the LEE genes as well as non-LEE-encoded effector proteins. We also performed electrophoretic mobility shift assays, competition experiments and DNase I footprints. The results demonstrated that QseA directly binds both the ler proximal and distal promoters, its own promoter, as well as promoters of genes encoded in EHEC-specific O-islands. Additionally, we mapped the transcriptional start site of qseA, leading to the identification of two promoter sequences. Taken together, these results indicate that QseA acts as a global regulator in EHEC, co-ordinating expression of virulence genes.
Collapse
Affiliation(s)
- Melissa M. Kendall
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 5323 Harry Hines Blvd., 75390-9048, U.S.A
| | - David A. Rasko
- Institute for Genome Sciences, Department of Microbiology & Immunology, University of Maryland School of Medicine, BioPark Building II, 801 West Baltimore Street, Suite 619, Baltimore, MD 21201
| | - Vanessa Sperandio
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 5323 Harry Hines Blvd., 75390-9048, U.S.A
| |
Collapse
|
43
|
Balcewich MD, Reeve TM, Orlikow EA, Donald LJ, Vocadlo DJ, Mark BL. Crystal structure of the AmpR effector binding domain provides insight into the molecular regulation of inducible ampc beta-lactamase. J Mol Biol 2010; 400:998-1010. [PMID: 20594961 DOI: 10.1016/j.jmb.2010.05.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
Hyperproduction of AmpC beta-lactamase (AmpC) is a formidable mechanism of resistance to penicillins and cephalosporins in Gram-negative bacteria such as Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is regulated by the LysR-type transcriptional regulator AmpR. ampR and ampC genes form a divergent operon with overlapping promoters to which AmpR binds and regulates the transcription of both genes. AmpR induces ampC by binding to one member of the family of 1,6-anhydro-N-acetylmuramyl peptides, which are cytosolic catabolites of peptidoglycan that accumulate during beta-lactam challenge. To gain structural insights into AmpR regulation, we determined the crystal structure of the effector binding domain (EBD) of AmpR from Citrobacter freundii up to 1.83 A resolution. The AmpR EBD is dimeric and each monomer comprises two subdomains that adopt alpha/beta Rossmann-like folds. Located between the monomer subdomains is a pocket that was found to bind the crystallization buffer molecule 2-(N-morpholino)ethanesulfonic acid. The pocket, together with a groove along the surface of subdomain I, forms a putative effector binding site into which a molecule of 1,6-anhydro-N-acetylmuramyl pentapeptide could be modeled. Amino acid substitutions at the base of the interdomain pocket either were found to render AmpR incapable of inducing ampC (Thr103Val, Ser221Ala and Tyr264Phe) or resulted in constitutive ampC expression (Gly102Glu). While the substitutions that prevented ampC induction did not alter the overall AmpR EBD structure, circular dichroism spectroscopy revealed that the nonconservative Gly102Glu mutation affected EBD secondary structure, confirming previous work suggesting that Gly102Glu induces a conformational change to result in constitutive AmpC production.
Collapse
Affiliation(s)
- Misty D Balcewich
- Department of Microbiology, University of Manitoba, 418 Buller Building, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | | | | | | | |
Collapse
|
44
|
Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2010; 22:582-610. [PMID: 19822890 DOI: 10.1128/cmr.00040-09] [Citation(s) in RCA: 1222] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment of infectious diseases becomes more challenging with each passing year. This is especially true for infections caused by the opportunistic pathogen Pseudomonas aeruginosa, with its ability to rapidly develop resistance to multiple classes of antibiotics. Although the import of resistance mechanisms on mobile genetic elements is always a concern, the most difficult challenge we face with P. aeruginosa is its ability to rapidly develop resistance during the course of treating an infection. The chromosomally encoded AmpC cephalosporinase, the outer membrane porin OprD, and the multidrug efflux pumps are particularly relevant to this therapeutic challenge. The discussion presented in this review highlights the clinical significance of these chromosomally encoded resistance mechanisms, as well as the complex mechanisms/pathways by which P. aeruginosa regulates their expression. Although a great deal of knowledge has been gained toward understanding the regulation of AmpC, OprD, and efflux pumps in P. aeruginosa, it is clear that we have much to learn about how this resourceful pathogen coregulates different resistance mechanisms to overcome the antibacterial challenges it faces.
Collapse
|
45
|
Abstract
This review focuses on the era of antibiosis that led to a better understanding of bacterial morphology, in particular the cell wall component peptidoglycan. This is an effort to take readers on a tour de force from the concept of antibiosis, to the serendipity of antibiotics, evolution of beta-lactam development, and the molecular biology of antibiotic resistance. These areas of research have culminated in a deeper understanding of microbiology, particularly in the area of bacterial cell wall synthesis and recycling. In spite of this knowledge, which has enabled design of new even more effective therapeutics to combat bacterial infection and has provided new research tools, antibiotic resistance remains a worldwide health care problem.
Collapse
Affiliation(s)
- Kok-Fai Kong
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | | |
Collapse
|
46
|
Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009. [PMID: 19822890 DOI: 10.1128/cmr.00040-09.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of infectious diseases becomes more challenging with each passing year. This is especially true for infections caused by the opportunistic pathogen Pseudomonas aeruginosa, with its ability to rapidly develop resistance to multiple classes of antibiotics. Although the import of resistance mechanisms on mobile genetic elements is always a concern, the most difficult challenge we face with P. aeruginosa is its ability to rapidly develop resistance during the course of treating an infection. The chromosomally encoded AmpC cephalosporinase, the outer membrane porin OprD, and the multidrug efflux pumps are particularly relevant to this therapeutic challenge. The discussion presented in this review highlights the clinical significance of these chromosomally encoded resistance mechanisms, as well as the complex mechanisms/pathways by which P. aeruginosa regulates their expression. Although a great deal of knowledge has been gained toward understanding the regulation of AmpC, OprD, and efflux pumps in P. aeruginosa, it is clear that we have much to learn about how this resourceful pathogen coregulates different resistance mechanisms to overcome the antibacterial challenges it faces.
Collapse
|
47
|
Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53:2274-82. [PMID: 19273679 DOI: 10.1128/aac.01617-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The overproduction of chromosomal AmpC beta-lactamase poses a serious challenge to the successful treatment of Pseudomonas aeruginosa infections with beta-lactam antibiotics. The induction of ampC expression by beta-lactams is mediated by the disruption of peptidoglycan (PG) recycling and the accumulation of cytosolic 1,6-anhydro-N-acetylmuramyl peptides, catabolites of PG recycling that are generated by an N-acetyl-beta-D-glucosaminidase encoded by nagZ (PA3005). In the absence of beta-lactams, ampC expression is repressed by three AmpD amidases encoded by ampD, ampDh2, and ampDh3, which act to degrade these 1,6-anhydro-N-acetylmuramyl peptide inducer molecules. The inactivation of ampD genes results in the stepwise upregulation of ampC expression and clinical resistance to antipseudomonal beta-lactams due to the accumulation of the ampC inducer anhydromuropeptides. To examine the role of NagZ on AmpC-mediated beta-lactam resistance in P. aeruginosa, we inactivated nagZ in P. aeruginosa PAO1 and in an isogenic triple ampD null mutant. We show that the inactivation of nagZ represses both the intrinsic beta-lactam resistance (up to 4-fold) and the high antipseudomonal beta-lactam resistance (up to 16-fold) that is associated with the loss of AmpD activity. We also demonstrate that AmpC-mediated resistance to antipseudomonal beta-lactams can be attenuated in PAO1 and in a series of ampD null mutants using a selective small-molecule inhibitor of NagZ. Our results suggest that the blockage of NagZ activity could provide a strategy to enhance the efficacies of beta-lactams against P. aeruginosa and other gram-negative organisms that encode inducible chromosomal ampC and to counteract the hyperinduction of ampC that occurs from the selection of ampD null mutations during beta-lactam therapy.
Collapse
|
48
|
Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. MICROBIOLOGY-SGM 2009; 154:3609-3623. [PMID: 19047729 DOI: 10.1099/mic.0.2008/022772-0] [Citation(s) in RCA: 658] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The LysR family of transcriptional regulators represents the most abundant type of transcriptional regulator in the prokaryotic kingdom. Members of this family have a conserved structure with an N-terminal DNA-binding helix-turn-helix motif and a C-terminal co-inducer-binding domain. Despite considerable conservation both structurally and functionally, LysR-type transcriptional regulators (LTTRs) regulate a diverse set of genes, including those involved in virulence, metabolism, quorum sensing and motility. Numerous structural and transcriptional studies of members of the LTTR family are helping to unravel a compelling paradigm that has evolved from the original observations and conclusions that were made about this family of transcriptional regulators.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | |
Collapse
|
49
|
Lin CW, Huang YW, Hu RM, Chiang KH, Yang TC. The role of AmpR in regulation of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia. Res Microbiol 2008; 160:152-8. [PMID: 19071216 DOI: 10.1016/j.resmic.2008.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/02/2008] [Accepted: 11/07/2008] [Indexed: 11/18/2022]
Abstract
Stenotrophomonas maltophilia is known to produce at least two chromosomal-mediated inducible beta-lactamases, L1 and L2. Gene L2, which encodes a class A beta-lactamase, and the adjacent ampR gene form an ampR-class A beta-lactamase module. L1 belongs to the class B beta-lactamase and has no neighbor ampR-like regulatory gene. In this study, the ampR-L2 module from S. maltophilia KH was compared with ampR-beta-lactamase modules from several microorganisms with respect to the AmpR and beta-lactamase proteins and the intergenic (IG) region. S. maltophilia and Xanthomonas campestris showed the most closely phylogenetic relationship among the microorganisms considered. The regulatory role of AmpR towards L1 and L2 was further analyzed. In the absence of an inducer, AmpR acted as an activator for L1 expression and as a repressor for L2 expression, whereas AmpR was an activator for both genes in an induced state. In addition, inducibility of L1 and L2 genes depended on the presence of AmpR. The ampR transcript was weakly and constitutively expressed, but was not autoregulated.
Collapse
Affiliation(s)
- Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Wiedemann B, Pfeifle D, Wiegand I, Janas E. beta-Lactamase induction and cell wall recycling in gram-negative bacteria. Drug Resist Updat 2007; 1:223-6. [PMID: 16904404 DOI: 10.1016/s1368-7646(98)80002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1998] [Revised: 05/20/1998] [Accepted: 05/25/1998] [Indexed: 10/25/2022]
Abstract
beta-Lactams with the ability to induce beta-lactamase in gram-negative bacteria bind to essential penicillin-binding proteins (PBPs) after entering the periplasmic space. This leads to inactivation of transpeptidase activities and thereby a decrease in the number of peptide cross-links, allowing further degradation of murein by soluble lytic transglycosylases. If all DD-carboxypeptidases (PBP 4, 5, 6a and 6b) are inhibited as well, the degradation product aD-pentapeptide (N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic-acid-D-alanyl-D- alanine) accumulates, which is the case with inducing beta-lactams such as imipenem. These molecules in addition to tri- and tetrapeptides (N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic-acid-[D-alanine]) which are the usual degradation products of peptidoglycan, are released into the cytoplasm and displace the UDP-pentapeptide (UDP-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic-acid-D-alanyl-D-alanine) from the DNA-binding protein AmpR, converting it into an activator of AmpC beta-lactamase expression.
Collapse
Affiliation(s)
- B Wiedemann
- Pharmazeutische Mikrobiologie, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|