1
|
Liu B, Peng X, Bennett MR, Lakin MR, Chappell J. Engineering Plasmids with Synthetic Origins of Replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639468. [PMID: 40027650 PMCID: PMC11870631 DOI: 10.1101/2025.02.21.639468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Plasmids remain by far the most common medium for delivering engineered DNA to microorganisms. However, the reliance on natural plasmid replication mechanisms limits their tunability, compatibility, and modularity. Here we refactor the natural pMB1 origin and create plasmids with customizable copy numbers by tuning refactored components. We then create compatible origins that use synthetic RNA regulators to implement independent copy control. We further demonstrate that the synthetic origin of replication (SynORI) can be engineered modularly to respond to various signals, allowing for multiplexed copy-based reporting of environmental signals. Lastly, a library of 6 orthogonal SynORI plasmids is created and co-maintained in E. coli for a week. This work establishes the feasibility of creating plasmids with SynORI that can serve as a new biotechnology for synthetic biology.
Collapse
Affiliation(s)
- Baiyang Liu
- Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, 77005, TX, USA
| | - Xiao Peng
- Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, 77005, TX, USA
| | - Matthew R. Bennett
- Department of Biosciences, Rice University, Houston, 77005, TX, USA
- Department of Bioengineering, Rice University, Houston, 77005, TX, USA
- Rice Institute of Synthetic Biology, Houston, 77005, TX, USA
| | - Matthew R. Lakin
- Department of Computer Science, University of New Mexico, Albuquerque, 87106, NM, USA
- Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, 87106, NM, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, 77005, TX, USA
- Department of Bioengineering, Rice University, Houston, 77005, TX, USA
- Rice Institute of Synthetic Biology, Houston, 77005, TX, USA
| |
Collapse
|
2
|
Fournes F, Campos M, Cury J, Schiavon C, Pagès C, Touchon M, Rocha EC, Rousseau P, Cornet F. The pathway to resolve dimeric forms distinguishes plasmids from megaplasmids in Enterobacteriaceae. Nucleic Acids Res 2025; 53:gkae1300. [PMID: 39797729 PMCID: PMC11724359 DOI: 10.1093/nar/gkae1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases. Among these, the XerCD recombinase resolves dimers of chromosomes and certain plasmids, using different modes of regulation. We have analyzed the dimer resolution functions in enterobacterial secondary replicons and show that, in addition to the main chromosomes, XerCD is preferentially used by small plasmids and by the largest secondary replicons, megaplasmids and secondary chromosomes. Indeed, all replicons longer than 250 kb host an active XerCD recombination site. These sites, in contrast to those of small plasmids, use the same control as chromosomes, coupled to cell division by the FtsK protein. We conclude that a chromosome-like mode of dimer resolution is mandatory for the faithful inheritance of large plasmids and chromids, its acquisition being a prerequisite for the genesis of secondary chromosomes from plasmids.
Collapse
Affiliation(s)
- Florian Fournes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - Manuel Campos
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, 25-28 Rue du Dr Roux, 75015 Paris Cedex, Paris, France
| | - Caroline Schiavon
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - Carine Pagès
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, 25-28 Rue du Dr Roux, 75015 Paris Cedex, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, 25-28 Rue du Dr Roux, 75015 Paris Cedex, Paris, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - François Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| |
Collapse
|
3
|
Mobile Element Integration Reveals a Chromosome Dimer Resolution System in Legionellales. mBio 2022; 13:e0217122. [PMID: 36314797 PMCID: PMC9765430 DOI: 10.1128/mbio.02171-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In bacteria, the mechanisms used to repair DNA lesions during genome replication include homologous recombination between sister chromosomes. This can lead to the formation of chromosome dimers if an odd number of crossover events occurs. The dimers must be resolved before cell separation to ensure genomic stability and cell viability. Dimer resolution is achieved by the broadly conserved dif/Xer system, which catalyzes one additional crossover event immediately prior to cell separation. While dif/Xer systems have been characterized or predicted in the vast majority of proteobacteria, no homologs to dif or xer have been identified in the order Legionellales. Here, we report the discovery of a distinct single-recombinase dif/Xer system in the intracellular pathogen Legionella pneumophila. The dif site was uncovered by our analysis of Legionella mobile element-1 (LME-1), which harbors a dif site mimic and integrates into the L. pneumophila genome via site-specific recombination. We demonstrate that lpg1867 (here named xerL) encodes a tyrosine recombinase that is necessary and sufficient for catalyzing recombination at the dif site and that deletion of dif or xerL causes filamentation along with extracellular and intracellular growth defects. We show that the dif/XerL system is present throughout Legionellales and that Coxiella burnetii XerL and its cognate dif site can functionally substitute for the native system in L. pneumophila. Finally, we describe an unexpected link between C. burnetii dif/Xer and the maintenance of its virulence plasmids. IMPORTANCE The maintenance of circular chromosomes depends on the ability to resolve aberrant chromosome dimers after they form. In most proteobacteria, broadly conserved Xer recombinases catalyze single crossovers at short, species-specific dif sites located near the replication terminus. Chromosomal dimerization leads to the formation of two copies of dif within the same molecule, leading to rapid site-specific recombination and conversion back into chromosome monomers. The apparent absence of chromosome dimer resolution mechanisms in Legionellales has been a mystery to date. By studying a phage-like mobile genetic element, LME-1, we have identified a previously unknown single-recombinase dif/Xer system that is not only widespread across Legionellales but whose activity is linked to virulence in two important human pathogens.
Collapse
|
4
|
Miele S, Provan JI, Vergne J, Possoz C, Ochsenbein F, Barre FX. The Xer activation factor of TLCΦ expands the possibilities for Xer recombination. Nucleic Acids Res 2022; 50:6368-6383. [PMID: 35657090 PMCID: PMC9226527 DOI: 10.1093/nar/gkac429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The chromosome dimer resolution machinery of bacteria is generally composed of two tyrosine recombinases, XerC and XerD. They resolve chromosome dimers by adding a crossover between sister copies of a specific site, dif. The reaction depends on a cell division protein, FtsK, which activates XerD by protein-protein interactions. The toxin-linked cryptic satellite phage (TLCΦ) of Vibrio cholerae, which participates in the emergence of cholera epidemic strains, carries a dif-like attachment site (attP). TLCΦ exploits the Xer machinery to integrate into the dif site of its host chromosomes. The TLCΦ integration reaction escapes the control of FtsK because TLCΦ encodes for its own XerD-activation factor, XafT. Additionally, TLCΦ attP is a poor substrate for XerD binding, in apparent contradiction with the high integration efficiency of the phage. Here, we present a sequencing-based methodology to analyse the integration and excision efficiency of thousands of synthetic mini-TLCΦ plasmids with differing attP sites in vivo. This methodology is applicable to the fine-grained analyses of DNA transactions on a wider scale. In addition, we compared the efficiency with which XafT and the XerD-activation domain of FtsK drive recombination reactions in vitro. Our results suggest that XafT not only activates XerD-catalysis but also helps form and/or stabilize synaptic complexes between imperfect Xer recombination sites.
Collapse
Affiliation(s)
- Solange Miele
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - James Iain Provan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Justine Vergne
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Knezevic P, Petrovic Fabijan A, Gavric D, Pejic J, Doffkay Z, Rakhely G. Phages from Genus Bruynoghevirus and Phage Therapy: Pseudomonas Phage Delta Case. Viruses 2021; 13:1965. [PMID: 34696396 PMCID: PMC8540360 DOI: 10.3390/v13101965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
The applicability and safety of bacteriophage Delta as a potential anti-Pseudomonas aeruginosa agent belonging to genus Bruynoghevirus (family Podoviridae) was characterised. Phage Delta belongs to the species Pseudomonas virus PaP3, which has been described as a temperate, with cos sites at the end of the genome. The phage Delta possesses a genome of 45,970 bp that encodes tRNA for proline (Pro), aspartic acid (Asp) and asparagine (Asn) and does not encode any known protein involved in lysogeny formation or persistence. Analysis showed that phage Delta has 182 bp direct terminal repeats at the end of genome and lysogeny was confirmed, neither upon infection at low nor at high multiplicity of infection (MOI). The turbid plaques that appear on certain host lawns can result from bacteriophage insensitive mutants that occur with higher frequency (10-4). In silico analysis showed that the genome of Delta phage does not encode any known bacterial toxin or virulence factor, determinants of antibiotic resistance and known human allergens. Based on the broad host range and high lytic activity against planktonic and biofilm cells, phage Delta represents a promising candidate for phage therapy.
Collapse
Affiliation(s)
- Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia; (A.P.F.); (D.G.); (J.P.)
| | - Aleksandra Petrovic Fabijan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia; (A.P.F.); (D.G.); (J.P.)
| | - Damir Gavric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia; (A.P.F.); (D.G.); (J.P.)
| | - Jovana Pejic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia; (A.P.F.); (D.G.); (J.P.)
| | - Zsolt Doffkay
- Department of Biotechnology, University of Szeged, Temesvari krt. 62, H-6726 Szeged, Hungary; (Z.D.); (G.R.)
| | - Gábor Rakhely
- Department of Biotechnology, University of Szeged, Temesvari krt. 62, H-6726 Szeged, Hungary; (Z.D.); (G.R.)
| |
Collapse
|
6
|
Badel C, Da Cunha V, Oberto J. Archaeal tyrosine recombinases. FEMS Microbiol Rev 2021; 45:fuab004. [PMID: 33524101 PMCID: PMC8371274 DOI: 10.1093/femsre/fuab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.
Collapse
Affiliation(s)
- Catherine Badel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Balalovski P, Grainge I. Mobilization of p
dif
modules in
Acinetobacter
: A novel mechanism for antibiotic resistance gene shuffling? Mol Microbiol 2020; 114:699-709. [DOI: 10.1111/mmi.14563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Phillip Balalovski
- Biological Sciences School of Environmental and Life Sciences University of Newcastle Callaghan NSW Australia
| | - Ian Grainge
- Biological Sciences School of Environmental and Life Sciences University of Newcastle Callaghan NSW Australia
| |
Collapse
|
8
|
Piligrimova EG, Kazantseva OA, Nikulin NA, Shadrin AM. Bacillus Phage vB_BtS_B83 Previously Designated as a Plasmid May Represent a New Siphoviridae Genus. Viruses 2019; 11:v11070624. [PMID: 31284652 PMCID: PMC6669507 DOI: 10.3390/v11070624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/25/2022] Open
Abstract
The Bacillus cereus group of bacteria includes, inter alia, the species known to be associated with human diseases and food poisoning. Here, we describe the Bacillus phage vB_BtS_B83 (abbreviated as B83) infecting the species of this group. Transmission electron microscopy (TEM) micrographs indicate that B83 belongs to the Siphoviridae family. B83 is a temperate phage using an arbitrium system for the regulation of the lysis–lysogeny switch, and is probably capable of forming a circular plasmid prophage. Comparative analysis shows that it has been previously sequenced, but was mistaken for a plasmid. B83 shares common genome organization and >46% of proteins with other the Bacillus phage, BMBtp14. Phylograms constructed using large terminase subunits and a pan-genome presence–absence matrix show that these phages form a clade distinct from the closest viruses. Based on the above, we propose the creation of a new genus named Bembunaquatrovirus that includes B83 and BMBtp14.
Collapse
Affiliation(s)
- Emma G Piligrimova
- Laboratory of Bacteriophage Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290 Pushchino, Russia.
- Department of Microbiology, Federal State Budgetary Educational Institution of Higher Education "Vyatka State University", 610000 Kirov, Russia.
| | - Olesya A Kazantseva
- Laboratory of Bacteriophage Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290 Pushchino, Russia
| | - Nikita A Nikulin
- Laboratory of Bacteriophage Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290 Pushchino, Russia
- Department of Microbiology, Federal State Budgetary Educational Institution of Higher Education "Vyatka State University", 610000 Kirov, Russia
| | - Andrey M Shadrin
- Laboratory of Bacteriophage Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290 Pushchino, Russia.
| |
Collapse
|
9
|
Hernandez EP, Kusakisako K, Hatta T, Tanaka T. Characterization of an iron-inducible Haemaphysalis longicornis tick-derived promoter in an Ixodes scapularis-derived tick cell line (ISE6). Parasit Vectors 2019; 12:321. [PMID: 31238993 PMCID: PMC6593522 DOI: 10.1186/s13071-019-3574-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background Ticks are important vectors of disease-causing pathogens. With the rise of resistance to chemical acaricides, alternative methods in tick control are warranted. Gene manipulation has been successful in controlling mosquitoes and mosquito-borne diseases and is now looked upon as a candidate method to control ticks and tick-borne pathogens. Our previous study has identified the actin and ferritin promoter regions in the Haemaphysalis longicornis tick. Results Here, the ferritin-derived promoter from the H. longicornis tick was characterized in silico, and the core promoter sequences and some of its important components were identified. Several truncations of the promoter region were created and inserted to a reporter plasmid to determine the important components for its activity. The activities of the truncated promoters on the Ixodes scapularis tick cell line (ISE6) were measured via a dual luciferase assay using experimental and control reporter genes. To induce the promoter’s activity, transfected ISE6 cells were exposed to ferrous sulfate. The 639 nucleotides truncated promoter showed the highest activity on ISE6 cells when exposed to 1 mM ferrous sulfate. Conclusion In this study, we characterized an iron-inducible tick promoter that could be a valuable tool in the development of a gene-manipulation system to control ticks and tick-borne pathogens. Electronic supplementary material The online version of this article (10.1186/s13071-019-3574-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Laboratory of Parasitology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Takeshi Hatta
- Department of Parasitology, Kitasato University School of Medicine, Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan. .,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
10
|
Phenotypes of dnaXE145A Mutant Cells Indicate that the Escherichia coli Clamp Loader Has a Role in the Restart of Stalled Replication Forks. J Bacteriol 2017; 199:JB.00412-17. [PMID: 28947673 DOI: 10.1128/jb.00412-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022] Open
Abstract
The Escherichia colidnaXE145A mutation was discovered in connection with a screen for multicopy suppressors of the temperature-sensitive topoisomerase IV mutation parE10 The gene for the clamp loader subunits τ and γ, dnaX, but not the mutant dnaXE145A , was found to suppress parE10(Ts) when overexpressed. Purified mutant protein was found to be functional in vitro, and few phenotypes were found in vivo apart from problems with partitioning of DNA in rich medium. We show here that a large number of the replication forks that initiate at oriC never reach the terminus in dnaXE145A mutant cells. The SOS response was found to be induced, and a combination of the dnaXE145A mutation with recBC and recA mutations led to reduced viability. The mutant cells exhibited extensive chromosome fragmentation and degradation upon inactivation of recBC and recA, respectively. The results indicate that the dnaXE145A mutant cells suffer from broken replication forks and that these need to be repaired by homologous recombination. We suggest that the dnaX-encoded τ and γ subunits of the clamp loader, or the clamp loader complex itself, has a role in the restart of stalled replication forks without extensive homologous recombination.IMPORTANCE The E. coli clamp loader complex has a role in coordinating the activity of the replisome at the replication fork and loading β-clamps for lagging-strand synthesis. Replication forks frequently encounter obstacles, such as template lesions, secondary structures, and tightly bound protein complexes, which will lead to fork stalling. Some pathways of fork restart have been characterized, but much is still unknown about the actors and mechanisms involved. We have in this work characterized the dnaXE145A clamp loader mutant. We find that the naturally occurring obstacles encountered by a replication fork are not tackled in a proper way by the mutant clamp loader and suggest a role for the clamp loader in the restart of stalled replication forks.
Collapse
|
11
|
Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017; 8:453. [PMID: 28373867 PMCID: PMC5357621 DOI: 10.3389/fmicb.2017.00453] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). XerCD recombinases act at a 28 bp recombination site dif, which is located at the replication terminus region of the chromosome. The septal protein FtsK controls the initiation of the dimer resolution reaction, so that recombination occurs at the right time (immediately prior to cell division) and at the right place (cell division septum). XerCD and FtsK have been detected in nearly all sequenced eubacterial genomes including Proteobacteria, Archaea, and Firmicutes. However, in Streptococci and Lactococci, an alternative system has been found, composed of a single recombinase (XerS) genetically linked to an atypical 31 bp recombination site (difSL). A similar recombination system has also been found in 𝜀-proteobacteria such as Campylobacter and Helicobacter, where a single recombinase (XerH) acts at a resolution site called difH. Most Archaea contain a recombinase called XerA that acts on a highly conserved 28 bp sequence dif, which appears to act independently of FtsK. Additionally, several mobile elements have been found to exploit the dif/Xer system to integrate their genomes into the host chromosome in Vibrio cholerae, Neisseria gonorrhoeae, and Enterobacter cloacae. This review highlights the versatility of dif/Xer recombinase systems in prokaryotes and summarizes our current understanding of homologs of dif/Xer machineries.
Collapse
Affiliation(s)
- Fabio Castillo
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| | | | - George Szatmari
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| |
Collapse
|
12
|
Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2016; 2. [PMID: 26104463 DOI: 10.1128/microbiolspec.mdna3-0056-2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two related tyrosine recombinases, XerC and XerD, are encoded in the genome of most bacteria where they serve to resolve dimers of circular chromosomes by the addition of a crossover at a specific site, dif. From a structural and biochemical point of view they belong to the Cre resolvase family of tyrosine recombinases. Correspondingly, they are exploited for the resolution of multimers of numerous plasmids. In addition, they are exploited by mobile DNA elements to integrate into the genome of their host. Exploitation of Xer is likely to be advantageous to mobile elements because the conservation of the Xer recombinases and of the sequence of their chromosomal target should permit a quite easy extension of their host range. However, it requires means to overcome the cellular mechanisms that normally restrict recombination to dif sites harbored by a chromosome dimer and, in the case of integrative mobile elements, to convert dedicated tyrosine resolvases into integrases.
Collapse
|
13
|
Abstract
One of the disadvantages of circular plasmids and chromosomes is their high sensitivity to rearrangements caused by homologous recombination. Odd numbers of crossing-over occurring during or after replication of a circular replicon result in the formation of a dimeric molecule in which the two copies of the replicon are fused. If they are not converted back to monomers, the dimers of replicons may fail to correctly segregate at the time of cell division. Resolution of multimeric forms of circular plasmids and chromosomes is mediated by site-specific recombination, and the enzymes that catalyze this type of reaction fall into two families of proteins: the serine and tyrosine recombinase families. Here we give an overview of the variety of site-specific resolution systems found on circular plasmids and chromosomes.
Collapse
|
14
|
Werbowy O, Kaczorowski T. Plasmid pEC156, a Naturally Occurring Escherichia coli Genetic Element That Carries Genes of the EcoVIII Restriction-Modification System, Is Mobilizable among Enterobacteria. PLoS One 2016; 11:e0148355. [PMID: 26848973 PMCID: PMC4743918 DOI: 10.1371/journal.pone.0148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
Abstract
Type II restriction-modification systems are ubiquitous in prokaryotes. Some of them are present in naturally occurring plasmids, which may facilitate the spread of these systems in bacterial populations by horizontal gene transfer. However, little is known about the routes of their dissemination. As a model to study this, we have chosen an Escherichia coli natural plasmid pEC156 that carries the EcoVIII restriction modification system. The presence of this system as well as the cis-acting cer site involved in resolution of plasmid multimers determines the stable maintenance of pEC156 not only in Escherichia coli but also in other enterobacteria. We have shown that due to the presence of oriT-type F and oriT-type R64 loci it is possible to mobilize pEC156 by conjugative plasmids (F and R64, respectively). The highest mobilization frequency was observed when pEC156-derivatives were transferred between Escherichia coli strains, Enterobacter cloacae and Citrobacter freundii representing coliform bacteria. We found that a pEC156-derivative with a functional EcoVIII restriction-modification system was mobilized in enterobacteria at a frequency lower than a plasmid lacking this system. In addition, we found that bacteria that possess the EcoVIII restriction-modification system can efficiently release plasmid content to the environment. We have shown that E. coli cells can be naturally transformed with pEC156-derivatives, however, with low efficiency. The transformation protocol employed neither involved chemical agents (e.g. CaCl2) nor temperature shift which could induce plasmid DNA uptake.
Collapse
Affiliation(s)
- Olesia Werbowy
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
- * E-mail:
| |
Collapse
|
15
|
Werbowy O, Boratynski R, Dekowska A, Kaczorowski T. Genetic analysis of maintenance of pEC156, a naturally occurring Escherichia coli plasmid that carries genes of the EcoVIII restriction-modification system. Plasmid 2014; 77:39-50. [PMID: 25500017 DOI: 10.1016/j.plasmid.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
In the present study the role of the mechanisms responsible for maintenance of a natural plasmid pEC156, that carries genes of the EcoVIII restriction-modification system was investigated. Analysis of this plasmid's genetic content revealed the presence of genetic determinants suggesting two such mechanisms. The first of them relies on site specific recombination utilizing the Xer/cer molecular machinery, while the second involves a restriction-modification system as an addiction module. Our analysis indicated that three factors affect the maintenance of pEC156: (i) a cis-acting cer site involved in resolution of plasmid multimers, (ii) a gene coding for EcoVIII endonuclease, and (iii) plasmid copy number control. The lowest stability was observed with pEC156 derivatives deprived of the cer site. Decreased stability of pEC156 derivatives was also observed in E.coli strains deficient in genes coding for proteins involved in plasmid multimer resolution (XerC, XerD, ArgR and PepA). A similar effect, but to a much lesser extent was observed for the pEC156 derivative without a functional gene coding for EcoVIII endonuclease. Our results indicate that the presence of the cer site is more important for pEC156 stable maintenance than the presence of a functional gene coding for EcoVIII endonuclease. In our work we also tested maintenance of pEC156 possessing a ColE1-type replicon in bacteria belonging to Enterobacteriaceae family. We have found that pEC156 was most stably maintained in Enterobacter cloacae and Klebsiella oxytoca representing coli-type enterobacteria. We have found that in all enterobacteria tested pEC156 derivatives deficient in the cer site were significantly less stably maintained than cer(+) variants.
Collapse
Affiliation(s)
- Olesia Werbowy
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Robert Boratynski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Agnieszka Dekowska
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
16
|
Gaimster H, Summers D. Plasmids in the driving seat: The regulatory RNA Rcd gives plasmid ColE1 control over division and growth of its E. coli host. Plasmid 2014; 78:59-64. [PMID: 25446541 PMCID: PMC4393325 DOI: 10.1016/j.plasmid.2014.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
Abstract
Regulation by non-coding RNAs was found to be widespread among plasmids and other mobile elements of bacteria well before its ubiquity in the eukaryotic world was suspected. As an increasing number of examples was characterised, a common mechanism began to emerge. Non-coding RNAs, such as CopA and Sok from plasmid R1, or RNAI from ColE1, exerted regulation by refolding the secondary structures of their target RNAs or modifying their translation. One regulatory RNA that seemed to swim against the tide was Rcd, encoded within the multimer resolution site of ColE1. Required for high fidelity maintenance of the plasmid in recombination-proficient hosts, Rcd was found to have a protein target, elevating indole production by stimulating tryptophanase. Rcd production is up-regulated in dimer-containing cells and the consequent increase in indole is part of the response to the rapid accumulation of dimers by over-replication (known as the dimer catastrophe). It is proposed that indole simultaneously inhibits cell division and plasmid replication, stopping the catastrophe and allowing time for the resolution of dimers to monomers. The idea of a plasmid-mediated cell division checkpoint, proposed but then discarded in the 1980s, appears to be enjoying a revival.
Collapse
Affiliation(s)
- Hannah Gaimster
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, United Kingdom.
| | - David Summers
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
17
|
Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm. Microbiol Spectr 2014; 2:1-15. [PMID: 25705573 DOI: 10.1128/microbiolspec.plas-0016-2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae. This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.
Collapse
|
18
|
Wolfe A, Phipps K, Weitao T. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions. Cell Biosci 2014; 4:31. [PMID: 24995125 PMCID: PMC4080785 DOI: 10.1186/2045-3701-4-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 01/15/2023] Open
Abstract
DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.
Collapse
Affiliation(s)
- Annie Wolfe
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Kara Phipps
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| |
Collapse
|
19
|
Abstract
FtsK is a multifunctional protein, which, in Escherichia coli, co-ordinates the essential functions of cell division, DNA unlinking and chromosome segregation. Its C-terminus is a DNA translocase, the fastest yet characterized, which acts as a septum-localized DNA pump. FtsK's C-terminus also interacts with the XerCD site-specific recombinases which act at the dif site, located in the terminus region. The motor domain of FtsK is an active translocase in vitro, and, when incubated with XerCD and a supercoiled plasmid containing two dif sites, recombination occurs to give unlinked circular products. Despite years of research the mechanism for this novel form of topological filter remains unknown.
Collapse
|
20
|
Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol 2012; 21:23-30. [PMID: 23127381 DOI: 10.1016/j.tim.2012.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/30/2022]
Abstract
Integrative mobile genetic elements directly participate in the rapid response of bacteria to environmental challenges. They generally encode their own dedicated recombination machineries. CTXφ, a filamentous bacteriophage that harbors the genes encoding cholera toxin in Vibrio cholerae provided the first notable exception to this rule: it hijacks XerC and XerD, two chromosome-encoded tyrosine recombinases for lysogenic conversion. XerC and XerD are highly conserved in bacteria because of their role in the topological maintenance of circular chromosomes and, with the advent of high throughput sequencing, numerous other integrative mobile elements exploiting them have been discovered. Here, we review our understanding of the molecular mechanisms of integration of the different integrative mobile elements exploiting Xer (IMEXs) so far described.
Collapse
Affiliation(s)
- Bhabatosh Das
- CNRS, Centre de Génétique Moléculaire, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
21
|
Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012; 31:3757-67. [PMID: 22863778 PMCID: PMC3442271 DOI: 10.1038/emboj.2012.219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/13/2012] [Indexed: 02/02/2023] Open
Abstract
Integration of toxin-producing phage into the Vibrio cholerae genome co-opts not only bacterial recombinases, but also a host excision repair enzyme, assigning it an unsuspected structural role. Toxigenic conversion of Vibrio cholerae bacteria results from the integration of a filamentous phage, CTXϕ. Integration is driven by the bacterial Xer recombinases, which catalyse the exchange of a single pair of strands between the phage single-stranded DNA and the host double-stranded DNA genomes; replication is thought to convert the resulting pseudo-Holliday junction (HJ) intermediate into the final recombination product. The natural tendency of the Xer recombinases to recycle HJ intermediates back into substrate should thwart this integration strategy, which prompted a search for additional co-factors aiding directionality of the process. Here, we show that Endo III, a ubiquitous base excision repair enzyme, facilitates CTXϕ-integration in vivo. In vitro, we show that it prevents futile Xer recombination cycles by impeding new rounds of strand exchanges once the pseudo-HJ is formed. We further demonstrate that this activity relies on the unexpected ability of Endo III to bind to HJs even in the absence of the recombinases. These results explain how tandem copies of the phage genome can be created, which is crucial for subsequent virion production.
Collapse
|
22
|
Site-specific recombination systems in filamentous phages. Mol Genet Genomics 2012; 287:525-30. [DOI: 10.1007/s00438-012-0700-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/21/2012] [Indexed: 12/18/2022]
|
23
|
Instability of Escherichia coli R-factors in Salmonella enterica serovar Typhi involves formation of recombinant composite plasmid structures. Plasmid 2012; 68:125-32. [PMID: 22579995 DOI: 10.1016/j.plasmid.2012.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 04/10/2012] [Accepted: 04/30/2012] [Indexed: 11/23/2022]
Abstract
In spite of a well-documented ability of Samonella enterica Typhi strains to receive R factors from Escherichia coli and other enterobacteria, epidemiological data show that Typhi is a rather poor host of antibiotic-resistance genes and in fact, of plasmids, suggesting that most of the plasmids naturally acquired by Typhi strains become unstable and eventually segregate. We have previously reported evidence that each of three plasmids conjugatively transferred to S. enterica Typhi experienced deletion-mediated loss of a resistance determinant before plasmid segregation occurred. We now report that in Typhi strains containing these unstable plasmids a superhelical DNA species of lower mobility is detected, probably representing plasmid dimer structures. Plasmid deletion is a RecA-dependent process since it is not detected in derivatives of a recA1 S. enterica Typhi strain containing the corresponding plasmids, and in such strains we were unable to detect either the low-mobility species. We propose that the deletable segments contain key information for plasmid stability in S. enterica Typhi, possibly a multimer resolution system.
Collapse
|
24
|
Field CM, Summers DK. Indole inhibition of ColE1 replication contributes to stable plasmid maintenance. Plasmid 2012; 67:88-94. [DOI: 10.1016/j.plasmid.2011.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 11/16/2022]
|
25
|
Sénéchal H, Delesques J, Szatmari G. Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding. FEMS Microbiol Lett 2010; 305:162-9. [PMID: 20659168 DOI: 10.1111/j.1574-6968.2010.01921.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Escherichia coli arginine repressor (ArgR) is an L-arginine-dependent DNA-binding protein that controls the expression of the arginine biosynthetic genes and is required as an accessory factor for Xer site-specific recombination at cer and related recombination sites in plasmids. We used the technique of pentapeptide scanning mutagenesis to isolate a series of ArgR mutants that were considerably reduced in cer recombination, but were still able to repress an argA::lacZ fusion. DNA sequence analysis showed that all of the mutants mapped to the same nucleotide, resulting in a five amino acid insertion between residues 149 and 150 of ArgR, corresponding to the end of the alpha6 helix. A truncated ArgR containing a stop codon at residue 150 displayed the same phenotype as the protein with the five amino acid insertion, and both mutants displayed sequence-specific DNA-binding activity that was L-arginine dependent. These results show that the C-terminus of ArgR is more important in cer/Xer site-specific recombination than in DNA binding.
Collapse
Affiliation(s)
- Hélène Sénéchal
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
| | | | | |
Collapse
|
26
|
Rozhon W, Petutschnig E, Khan M, Summers DK, Poppenberger B. Frequency and diversity of small cryptic plasmids in the genus Rahnella. BMC Microbiol 2010; 10:56. [PMID: 20170524 PMCID: PMC2831885 DOI: 10.1186/1471-2180-10-56] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 02/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rahnella is a widely distributed genus belonging to the Enterobacteriaceae and frequently present on vegetables. Although Rahnella has interesting agro-economical and industrial properties and several strains possess antibiotic resistances and toxin genes which might spread within microbial communities, little is known about plasmids of this genus. Thus, we isolated a number of Rahnella strains and investigated their complements of small plasmids. RESULTS In total 53 strains were investigated and 11 plasmids observed. Seven belonged to the ColE1 family; one was ColE2-like and three shared homology to rolling circle plasmids. One of them belonged to the pC194/pUB110 family and two showed similarity to poorly characterised plasmid groups. The G+C content of two rolling circle plasmids deviated considerably from that of Rahnella, indicating that their usual hosts might belong to other genera. Most ColE1-like plasmids formed a subgroup within the ColE1 family that seems to be fairly specific for Rahnella. Intriguingly, the multimer resolution sites of all ColE1-like plasmids had the same orientation with respect to the origin of replication. This arrangement might be necessary to prevent inappropriate synthesis of a small regulatory RNA that regulates cell division. Although the ColE1-like plasmids did not possess any mobilisation system, they shared large parts with high sequence identity in coding and non-coding regions. In addition, highly homologous regions of plasmids isolated from Rahnella and the chromosomes of Erwinia tasmaniensis and Photorhabdus luminescens could be identified. CONCLUSIONS For the genus Rahnella we observed plasmid-containing isolates at a frequency of 19%, which is in the average range for Enterobacteriaceae. These plasmids belonged to different groups with members of the ColE1-family most frequently found. Regions of striking sequence homology of plasmids and bacterial chromosomes highlight the importance of plasmids for lateral gene transfer (including chromosomal sequences) to distinct genera.
Collapse
Affiliation(s)
- Wilfried Rozhon
- Max F Perutz Laboratories, University of Vienna, Dr Bohrgasse 9, Vienna, Austria.
| | | | | | | | | |
Collapse
|
27
|
fpr, a deficient Xer recombination site from a Salmonella plasmid, fails to confer stability by dimer resolution: comparative studies with the pJHCMW1 mwr site. J Bacteriol 2009; 192:883-7. [PMID: 19966005 DOI: 10.1128/jb.01082-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella plasmid pFPTB1 includes a Tn3-like transposon and a Xer recombination site, fpr, which mediates site-specific recombination at efficiencies lower than those required for stabilizing a plasmid by dimer resolution. Mutagenesis and comparative studies with mwr, a site closely related to fpr, indicate that there is an interdependence of the sequences in the XerC binding region and the central region in Xer site-specific recombination sites.
Collapse
|
28
|
The role of FIS in the Rcd checkpoint and stable maintenance of plasmid ColE1. Microbiology (Reading) 2009; 155:2676-2682. [DOI: 10.1099/mic.0.029777-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli plasmid ColE1 lacks active partitioning, and copies are distributed randomly to daughter cells at division. The plasmid is maintained stably in the bacterial population as long as its copy number remains high. The accumulation of plasmid dimers and higher multimers depresses copy number, and is an important cause of multicopy plasmid instability. ColE1 dimers are restored to the monomeric state by site-specific recombination, which requires the host-encoded proteins XerCD, ArgR and PepA acting at the plasmid cer site. In addition, a 70 nt RNA expressed from the cer site of plasmid dimers delays the division of dimer-containing cells. Here, we report that the global regulator FIS binds to cer in a sequence-specific manner, close to the Rcd promoter (P
cer
). FIS is not required for plasmid dimer resolution, but is essential for repression of P
cer
in plasmid monomers. Repression also requires the XerCD recombinase, but not ArgR or PepA. We propose a model for monomer–dimer control of P
cer
in which the promoter is repressed in plasmid monomers by the concerted action of FIS and XerCD. Rcd transcription is triggered in plasmid dimers by the lifting of XerCD-mediated repression in the synaptic complex.
Collapse
|
29
|
Trigueros S, Tran T, Sorto N, Newmark J, Colloms SD, Sherratt DJ, Tolmasky ME. mwr Xer site-specific recombination is hypersensitive to DNA supercoiling. Nucleic Acids Res 2009; 37:3580-7. [PMID: 19359357 PMCID: PMC2699498 DOI: 10.1093/nar/gkp208] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The multiresistance plasmid pJHCMW1, first identified in a Klebsiella pneumoniae strain isolated from a neonate with meningitis, includes a Xer recombination site, mwr, with unique characteristics. Efficiency of resolution of mwr-containing plasmid dimers is strongly dependent on the osmotic pressure of the growth medium. An increase in supercoiling density of plasmid DNA was observed as the osmotic pressure of the growth culture decreased. Reporter plasmids containing directly repeated mwr, or the related cer sites were used to test if DNA topological changes were correlated with significant changes in efficiency of Xer recombination. Quantification of Holliday junctions showed that while recombination at cer was efficient at all levels of negative supercoiling, recombination at mwr became markedly less efficient as the level of supercoiling was reduced. These results support a model in which modifications at the level of supercoiling density caused by changes in the osmotic pressure of the culture medium affects resolution of mwr-containing plasmid dimers, a property that separates mwr from other Xer recombination target sites.
Collapse
Affiliation(s)
- Sonia Trigueros
- Bionanotechnology IRC Department of Physics, University of Oxford, Oxford OX1 3QU, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
MacDonald AI, Lu Y, Kilbride EA, Akopian A, Colloms SD. PepA and ArgR do not regulate Cre recombination at the bacteriophage P1 loxP site. Plasmid 2008; 59:119-26. [PMID: 18226834 PMCID: PMC2409434 DOI: 10.1016/j.plasmid.2007.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/27/2007] [Accepted: 12/04/2007] [Indexed: 11/17/2022]
Abstract
In the lysogenic state, bacteriophage P1 is maintained as a low copy-number circular plasmid. Site-specific recombination at loxP by the phage-encoded Cre protein keeps P1 monomeric, thus helping to ensure stable plasmid inheritance. Two Escherichia coli DNA-binding proteins, PepA and ArgR, were recently reported to be necessary for maintenance or establishment of P1 lysogeny. PepA and ArgR bind to regulatory DNA sequences upstream of the ColE1 cer recombination site to regulate site-specific recombination by the XerCD recombinases. This recombination keeps ColE1 in a monomeric state and helps to ensure stable plasmid maintenance. It has been suggested that ArgR and PepA play a similar role in P1 maintenance, regulating Cre recombination by binding to DNA sequences upstream of loxP. Here, we show that ArgR does not bind to its proposed binding site upstream of loxP, and that Cre recombination at loxP in its natural P1 context is not affected by PepA and ArgR in vitro. When sequences upstream of loxP were mutated to allow ArgR binding, PepA and ArgR still had no effect on Cre recombination. Our results demonstrate that PepA requires specific DNA sequences for binding, and that PepA and ArgR have no direct role in Cre recombination at P1 loxP.
Collapse
|
31
|
Chant EL, Summers DK. Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol 2006; 63:35-43. [PMID: 17163976 DOI: 10.1111/j.1365-2958.2006.05481.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The efficient transmission of multicopy plasmids to daughter cells at division requires that a high copy number is maintained. Plasmid multimers depress copy number, thereby causing instability. Various mechanisms exist to counter multimerization and thus ensure stable maintenance. One well-studied example is the multimer resolution system of the Escherichia coli plasmid ColE1 which carries a recombination site (cer) at which multimers are resolved to monomers by the XerCD recombinase. A promoter within cer initiates synthesis of a short transcript (Rcd) in multimer-containing cells. The Rcd checkpoint hypothesis proposes that Rcd delays cell division until multimer resolution is complete. We have identified tryptophanase (which catabolizes tryptophan to pyruvate and indole) as an Rcd binding protein. Furthermore, the stabilization of multicopy plasmids by Rcd is shown to be tryptophanase dependent, and a tryptophanase-deficient strain is resistant to growth inhibition by Rcd overexpression. Rcd increases the affinity of tryptophanase for its substrate tryptophan which causes increased indole production by cells in low-density cultures. Thus Rcd-mediated stabilization of multicopy plasmids is dependent upon indole acting as a signalling molecule. This is an novel role for this molecule which previously has been implicated in quorum sensing-like processes at high cell density.
Collapse
Affiliation(s)
- Eleanor L Chant
- Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EH, UK
| | | |
Collapse
|
32
|
Abstract
Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution may be driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although genes within operons are usually closely spaced because of a neutral bias toward deletion and because of selection against large overlaps, genes in highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution may be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.
Collapse
Affiliation(s)
- Morgan N Price
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Virtual Institute for Microbial Stress and Survival, University of California San Francisco, San Francisco, California, United States of America
| | - Adam P Arkin
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Virtual Institute for Microbial Stress and Survival, University of California San Francisco, San Francisco, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Eric J Alm
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Virtual Institute for Microbial Stress and Survival, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
33
|
Bui D, Ramiscal J, Trigueros S, Newmark JS, Do A, Sherratt DJ, Tolmasky ME. Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes. J Bacteriol 2006; 188:2812-20. [PMID: 16585742 PMCID: PMC1446988 DOI: 10.1128/jb.188.8.2812-2820.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xer-mediated dimer resolution at the mwr site of the multiresistance plasmid pJHCMW1 is osmoregulated in Escherichia coli containing either the Escherichia coli Xer recombination machinery or Xer recombination elements from K. pneumoniae. In the presence of K. pneumoniae XerC (XerC(Kp)), the efficiency of recombination is lower than that in the presence of the E. coli XerC (XerC(Ec)) and the level of dimer resolution is insufficient to stabilize the plasmid, even at low osmolarity. This lower efficiency of recombination at mwr is observed in the presence of E. coli or K. pneumoniae XerD proteins. Mutagenesis experiments identified a region near the N terminus of XerC(Kp) responsible for the lower level of recombination catalyzed by XerC(Kp) at mwr. This region encompasses the second half of the predicted alpha-helix B and the beginning of the predicted alpha-helix C. The efficiencies of recombination at other sites such as dif or cer in the presence of XerC(Kp) or XerC(Ec) are comparable. Therefore, XerC(Kp) is an active recombinase whose action is impaired on the mwr recombination site. This characteristic may result in restriction of the host range of plasmids carrying this site, a phenomenon that may have important implications in the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Duyen Bui
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Akopian A, Gourlay S, James H, Colloms SD. Communication between accessory factors and the Cre recombinase at hybrid psi-loxP sites. J Mol Biol 2006; 357:1394-408. [PMID: 16487975 DOI: 10.1016/j.jmb.2006.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 11/19/2022]
Abstract
By placing loxP adjacent to the accessory sequences from the Xer/psi multimer resolution system, we have imposed topological selectivity and specificity on Cre/loxP recombination. In this hybrid recombination system, the Xer accessory protein PepA binds to psi accessory sequences, interwraps them, and brings the loxP sites together such that the product of recombination is a four-node catenane. Here, we investigate communication between PepA and Cre by varying the distance between loxP and the accessory sequences, and by altering the orientation of loxP. The yield of four-node catenane and the efficiency of recombination in the presence of PepA varied with the helical phase of loxP with respect to the accessory sequences. When the orientation of loxP was reversed, or when half a helical turn was added between the accessory sequences and loxP, PepA reversed the preferred order of strand exchange by Cre at loxP. The results imply that PepA and the accessory sequences define precisely the geometry of the synapse formed by the loxP sites, and that this overcomes the innate preference of Cre to initiate recombination on the bottom strand of loxP. Further analysis of our results demonstrates that PepA can stimulate strand exchange by Cre in two distinct synaptic complexes, with the C-terminal domains of Cre facing either towards or away from PepA. Thus, no specific PepA-recombinase interaction is required, and correct juxtaposition of the loxP sites is sufficient to activate Cre in this system.
Collapse
Affiliation(s)
- Aram Akopian
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, Anderson College, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | | | | | | |
Collapse
|
35
|
Balding C, Blaby I, Summers D. A mutational analysis of the ColE1-encoded cell cycle regulator Rcd confirms its role in plasmid stability. Plasmid 2006; 56:68-73. [PMID: 16442621 DOI: 10.1016/j.plasmid.2005.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/22/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
Multimers of multicopy plasmids cause instability. They arise by homologous recombination and accumulate by over-replication in a process known as the dimer catastrophe. Dimers are resolved to monomers by site-specific recombination systems such as Xer-cer of plasmid ColE1. In addition, the Rcd checkpoint hypothesis proposes that a short transcript (Rcd) coded within ColE1 cer delays the division of multimer-containing cells. The crucial observation underpinning the checkpoint hypothesis is that when the Rcd promoter (P(cer)) is inactivated by mutation of its invariant T, the plasmid becomes unstable. Recently, we discovered that this mutation also alters a potential Fis binding site in cer. ColE1-like plasmids are less stable in fis mutant hosts and it is conceivable that instability caused by the mutation is due to altered Fis binding, rather than the loss of Rcd expression per se. We have therefore undertaken an independent test of the role of P(cer)-Rcd in multicopy plasmid stability. We have generated a series of loss-of-function mutants of Rcd and detailed analysis of two of these shows that they cause a level of instability indistinguishable from P(cer) inactivation. This result is consistent with the predictions of the checkpoint hypothesis and confirms the role of Rcd in plasmid stability.
Collapse
Affiliation(s)
- Claire Balding
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | |
Collapse
|
36
|
McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 2005; 57:347-56. [PMID: 15978069 DOI: 10.1111/j.1365-2958.2005.04676.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genes encoding cholera toxin, one of the principal virulence factors of the diarrhoeal pathogen Vibrio cholerae, are part of the genome of CTXphi, a filamentous bacteriophage. Thus, CTXphi has played a critical role in the evolution of the pathogenicity of V. cholerae. Unlike the well-studied F pilus-specific filamentous coliphages, CTXphi integrates site-specifically into its host chromosome and forms stable lysogens. Here we focus on the CTXphi life cycle and, in particular, on recent studies of the mechanism of CTXphi integration and the factors that govern lysogeny. These and other processes illustrate the remarkable dependence of CTXphi on host-encoded factors.
Collapse
Affiliation(s)
- Sarah M McLeod
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
37
|
Reijns M, Lu Y, Leach S, Colloms SD. Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol 2005; 57:927-41. [PMID: 16091035 DOI: 10.1111/j.1365-2958.2005.04716.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PepA is an aminopeptidase and also functions as a DNA-binding protein in two unrelated systems in Escherichia coli: Xer site-specific recombination and transcriptional regulation of carAB. In these systems, PepA binds to and brings together distant segments of DNA to form interwrapped, nucleosome-like structures. Here we report the selection of PepA mutants that were unable to support efficient Xer recombination. These mutants were defective in DNA-binding and in transcriptional regulation of carAB, but had normal peptidase activity. The mutations define extended patches of basic residues on the surface of the N-terminal domain of PepA that flank a previously proposed DNA-binding groove in the C-terminal domain of PepA. Our results suggest that DNA passes through this C-terminal groove in the PepA hexamer, and is bound by N-terminal DNA-binding determinants at each end of the groove. Based on our data, we propose a new model for the Xer synaptic complex, in which two recombination sites are wrapped around a single hexamer of PepA, bringing the cross-over sites together for strand exchange by the Xer recombinases. In this model, PepA stabilizes negative plectonemic interwrapping between two segments of DNA by passing one segment through the C-terminal groove while the other is held in place in a loop over the groove.
Collapse
Affiliation(s)
- Martin Reijns
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | | | | | | |
Collapse
|
38
|
McLeod SM, Waldor MK. Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Mol Microbiol 2005; 54:935-47. [PMID: 15522078 DOI: 10.1111/j.1365-2958.2004.04309.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CTXphi is a filamentous bacteriophage that encodes cholera toxin and integrates site-specifically into the larger of the two Vibrio cholerae chromosomes. The CTXphi genome lacks an integrase; instead, its integration depends on the chromosome-encoded tyrosine recombinases XerC and XerD. During integration, recombination occurs between regions of homology in CTXphi and the V. cholerae chromosome. Here, we define the elements on the phage genome (attP) and bacterial chromosome (attB) required for CTXphi integration. attB is a short sequence composed of one binding site for XerC and XerD spanning the site of recombination. Together, XerC and XerD bind to two sites within attP. While one XerC/D binding site in attP spans the core recombination region, the other site is approximately 80 bp away. Although integration occurs at the core XerC/D binding site in attP, the second site is required for CTXphi integration, suggesting it performs an architectural role in the integration reaction. In vitro cleavage reactions showed that XerC and XerD are capable of cleaving attB and attP sequences; however, additional cellular processes such as DNA replication or Holliday junction resolution by a host resolvase may contribute to integration in vivo.
Collapse
Affiliation(s)
- Sarah M McLeod
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Howard Hughes Medical Institute, Boston, MA 02111, USA
| | | |
Collapse
|
39
|
Martínez-Granero F, Capdevila S, Sánchez-Contreras M, Martín M, Rivilla R. Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology (Reading) 2005; 151:975-983. [PMID: 15758242 DOI: 10.1099/mic.0.27583-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biocontrol agent Pseudomonas fluorescens F113 undergoes phenotypic variation during rhizosphere colonization, and this variation has been related to the activity of a site-specific recombinase encoded by the sss gene. Here, it is shown that a second recombinase encoded by the xerD gene is also implicated in phenotypic variation. A putative xerD gene from this strain was cloned, and sequence analysis confirmed that it encoded a site-specific recombinase of the λ integrase family. Mutants affected in the sss or xerD genes produced a very low quantity of phenotypic variants compared to the wild-type strain, both under prolonged cultivation in the laboratory and after rhizosphere colonization, and they were severely impaired in competitive root colonization. Overexpression of the genes encoding either recombinase resulted in a substantial increment in the production of phenotypic variants under both culture and rhizosphere colonization conditions, implying that both site-specific recombinases are involved in phenotypic variation. Overexpression of the sss gene suppressed the phenotype of a xerD mutant, but overexpression of the xerD gene had no effect on the phenotype of an sss mutant. Genetic analysis of the phenotypic variants obtained after overexpression of the genes encoding both the recombinases showed that they carried mutations in the gacA/S genes, which are necessary to produce a variety of secondary metabolites. These results indicate that the Gac system is affected by the activity of the site-specific recombinases. Transcriptional fusions of the sss and xerD genes with a promoterless lacZ gene showed that both genes have a similar expression pattern, with maximal expression during stationary phase. Although the expression of both genes was independent of diffusible compounds present in root exudates, it was induced by the plant, since bacteria attached to the root showed enhanced expression.
Collapse
Affiliation(s)
| | - Silvia Capdevila
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - María Sánchez-Contreras
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
40
|
Gourlay SC, Colloms SD. Control of Cre recombination by regulatory elements from Xer recombination systems. Mol Microbiol 2004; 52:53-65. [PMID: 15049810 DOI: 10.1111/j.1365-2958.2003.03962.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-specific recombination by the Cre recombinase takes place at a simple DNA site (loxP), requires no additional proteins and gives topologically simple recombination products. In contrast, cer and psi sites for Xer recombination contain approximately 150 bp of accessory sequences, require accessory proteins PepA, ArgR and ArcA, and the products are specifically linked to form a four-noded catenane. Here, we use hybrid sites consisting of accessory sequences of cer or psi fused to loxP to probe the function of accessory proteins in site-specific recombination. We show that PepA instructs Cre to produce four-noded catenane, but is not required for recombination at these hybrid sites. Mutants of Cre that require PepA and accessory sequences for efficient recombination were selected. PepA-dependent Cre gave products with a specific topology and displayed resolution selectivity. Our results reveal that PepA acts autonomously in the synapsis of psi and cer accessory sequences and is the main architectural element responsible for intertwining accessory site DNA. We suggest that accessory proteins can activate recombinases simply by synapsing the regulatory DNA sequences, thus bringing the recombination sites together with a specific geometry. This may occur without the need for protein-protein interactions between accessory proteins and the recombinases.
Collapse
Affiliation(s)
- Sarah C Gourlay
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | |
Collapse
|
41
|
Abstract
Phage integrases are enzymes that mediate unidirectional site-specific recombination between two DNA recognition sequences, the phage attachment site, attP, and the bacterial attachment site, attB. Integrases may be grouped into two major families, the tyrosine recombinases and the serine recombinases, based on their mode of catalysis. Tyrosine family integrases, such as lambda integrase, utilize a catalytic tyrosine to mediate strand cleavage, tend to recognize longer attP sequences, and require other proteins encoded by the phage or the host bacteria. Phage integrases from the serine family are larger, use a catalytic serine for strand cleavage, recognize shorter attP sequences, and do not require host cofactors. Phage integrases mediate efficient site-specific recombination between two different sequences that are relatively short, yet long enough to be specific on a genomic scale. These properties give phage integrases growing importance for the genetic manipulation of living eukaryotic cells, especially those with large genomes such as mammals and most plants, for which there are few tools for precise manipulation of the genome. Integrases of the serine family have been shown to work efficiently in mammalian cells, mediating efficient integration at introduced att sites or native sequences that have partial identity to att sites. This reaction has applications in areas such as gene therapy, construction of transgenic organisms, and manipulation of cell lines. Directed evolution can be used to increase further the affinity of an integrase for a particular native sequence, opening up additional applications for genomic modification.
Collapse
Affiliation(s)
- Amy C Groth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | |
Collapse
|
42
|
van den Broek D, Chin-A-Woeng TFC, Eijkemans K, Mulders IHM, Bloemberg GV, Lugtenberg BJJ. Biocontrol traits of Pseudomonas spp. are regulated by phase variation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:1003-1012. [PMID: 14601668 DOI: 10.1094/mpmi.2003.16.11.1003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Of 214 Pseudomonas strains isolated from maize rhizosphere, 46 turned out to be antagonistic, of which 43 displayed clear colony phase variation. The latter strains formed both opaque and translucent colonies, designated as phase I and phase II, respectively. It appeared that important biocontrol traits, such as motility and the production of antifungal metabolites, proteases, lipases, chitinases, and biosurfactants, are correlated with phase I morphology and are absent in bacteria with phase II morphology. From a Tn5luxAB transposon library of Pseudomonas sp. strain PCL1171 phase I cells, two mutants exhibiting stable expression of phase II had insertions in gacS. A third mutant, which showed an increased colony phase variation frequency was mutated in mutS. Inoculation of wheat seeds with PCL1171 bacteria of phase I morphology resulted in efficient suppression of take-all disease, whereas disease suppression was absent with phase II bacteria. Neither the gacS nor the mutS mutant was able to suppress take-all, but biocontrol activity was restored after genetic complementation of these mutants. Furthermore, in a number of cases, complementation by gacS of wild-type phase II sectors to phase I phenotype could be shown. A PCL1171 phase I mutant defective in antagonistic activity appeared to have a mutation in a gene encoding a lipopeptide synthetase homologue and had lost its biocontrol activity, suggesting that biocontrol by strain PCL1171 is dependent on the production of a lipopeptide. Our results show that colony phase variation plays a regulatory role in biocontrol by Pseudomonas bacteria by influencing the expression of major biocontrol traits and that the gacS and mutS genes play a role in the colony phase variation process. Therefore phase variation not only plays a role in escaping animal defense but it also appears to play a much broader and vital role in the ecology of bacteria producing exoenzymes, antibiotics, and other secondary metabolites.
Collapse
Affiliation(s)
- Daan van den Broek
- Leiden University, Institute of Biology Leiden, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Villion M, Szatmari G. The XerC recombinase of Proteus mirabilis: characterization and interaction with other tyrosine recombinases. FEMS Microbiol Lett 2003; 226:65-71. [PMID: 13129609 DOI: 10.1016/s0378-1097(03)00577-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
XerC and XerD are two site-specific recombinases, which act on different sites to maintain replicons in a monomeric state. This system, which was first discovered and studied in Escherichia coli, is present in several species including Proteus mirabilis, where the XerD recombinase was previously characterized by our laboratory. In this paper, we report the presence of the xerC gene in P. mirabilis. Using in vitro reactions, we show that the two P. mirabilis recombinases display binding and cleavage activity on the E. coli dif site and the ColE1 cer site, together or in collaboration with E. coli recombinases. In vivo, P. mirabilis XerC and XerD are able to resolve and monomerize a plasmid containing two cer sites, increasing its stability. However, P. mirabilis XerC, in combination with E. coli XerD, is unable to perform these functions.
Collapse
Affiliation(s)
- Manuela Villion
- Département de microbiologie et immunologie, Université de Montréal, CP 6128, Succ. Centre-Ville, H3C 3J7, Montreal, QC, Canada
| | | |
Collapse
|
44
|
Ferreira H, Butler-Cole B, Burgin A, Baker R, Sherratt DJ, Arciszewska LK. Functional analysis of the C-terminal domains of the site-specific recombinases XerC and XerD. J Mol Biol 2003; 330:15-27. [PMID: 12818199 DOI: 10.1016/s0022-2836(03)00558-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The tyrosine family site-specific recombinases XerC and XerD convert dimers of the Escherichia coli chromosome and many natural plasmids to monomers. The heterotetrameric recombination complex contains two molecules of XerC and two of XerD, with each recombinase mediating one pair of DNA strand exchanges. The two pairs of strand exchanges are separated in time and space. This demands that the catalytic activity of the four recombinase molecules be controlled so that only XerC or XerD is active at any given time, there being a switch in the recombinase activity state at the Holliday junction intermediate stage. Here, we analyse chimeras and deletion variants within the recombinase C-terminal domains in order to probe determinants that may be specific to either XerC or XerD, and to further understand how XerC-XerD interactions control catalysis in a recombining heterotetramer. The data confirm that the C-terminal "end" region of each recombinase plays an important role in coordinating catalysis within the XerCD heterotetramer and suggest that the interactions between the end regions of XerC and XerD and their cognate receptors within the partner recombinase are structurally and functionally different. The results support the hypothesis that the "normal" state in the heterotetrameric complex, in which XerC is catalytically active and XerD is inactive, depends on the interactions between the C-terminal end region of XerC and its receptor region within the C-terminal domain of XerD; interference with these interactions leads to a switch in the catalytic state, so that XerD is now preferentially active.
Collapse
Affiliation(s)
- Henrique Ferreira
- Division of Molecular Genetics, Biochemistry Department, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
45
|
Bregu M, Sherratt DJ, Colloms SD. Accessory factors determine the order of strand exchange in Xer recombination at psi. EMBO J 2002; 21:3888-97. [PMID: 12110600 PMCID: PMC126124 DOI: 10.1093/emboj/cdf379] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Xer site-specific recombination in Escherichia coli converts plasmid multimers to monomers, thereby ensuring their correct segregation at cell division. Xer recombination at the psi site of plasmid pSC101 is preferentially intramolecular, giving products of a single topology. This intramolecular selectivity is imposed by accessory proteins, which bind at psi accessory sequences and activate Xer recombination at the psi core. Strand exchange proceeds sequentially within the psi core; XerC first exchanges top strands to produce Holliday junctions, then XerD exchanges bottom strands to give final products. In this study, recombination was analysed at sites in which the psi core was inverted with respect to the accessory sequences. A plasmid containing two inverted-core psi sites recombined with a reversed order of strand exchange, but with unchanged product topology. Thus the architecture of the synapse, formed by accessory proteins binding to accessory sequences, determines the order of strand exchange at psi. This finding has important implications for the way in which accessory proteins interact with the recombinases.
Collapse
Affiliation(s)
| | | | - Sean D. Colloms
- Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
Present address: Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK Corresponding author e-mail:
| |
Collapse
|
46
|
Ron Y, Flitman-Tene R, Dybvig K, Yogev D. Identification and characterization of a site-specific tyrosine recombinase within the variable loci of Mycoplasma bovis, Mycoplasma pulmonis and Mycoplasma agalactiae. Gene 2002; 292:205-11. [PMID: 12119115 DOI: 10.1016/s0378-1119(02)00679-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three highly mutable loci of the wall-less pathogens Mycoplasma bovis, Mycoplasma pulmonis and Mycoplasma agalactiae undergo high-frequency genomic rearrangements and generate extensive antigenic variation of major surface lipoproteins. Adjacent to each locus, an open reading frame exists as a single chromosomal copy and is predicted to encode a site-specific DNA recombinase exhibiting high homology to the recombinases XerD of Escherichia coli and CodV of Bacillus subtilis. Each of the mycoplasmal proteins are members of the lambda integrase family of tyrosine site-specific recombinases and likely mediates site-specific DNA inversions observed within the adjacent, variable loci.
Collapse
Affiliation(s)
- Yael Ron
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
47
|
Pham H, Dery KJ, Sherratt DJ, Tolmasky ME. Osmoregulation of dimer resolution at the plasmid pJHCMW1 mwr locus by Escherichia coli XerCD recombination. J Bacteriol 2002; 184:1607-16. [PMID: 11872712 PMCID: PMC134880 DOI: 10.1128/jb.184.6.1607-1616.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xer-mediated dimer resolution at the mwr site of plasmid pJHCMW1 is osmoregulated in Escherichia coli. Whereas under low-salt conditions, the site-specific recombination reaction is efficient, under high-salt conditions, it proceeds inefficiently. Regulation of dimer resolution is independent of H-NS and is mediated by changes in osmolarity rather than ionic effects. The low level of recombination at high salt concentrations can be overcome by high levels of PepA or by mutating the ARG box to a sequence closer to the E. coli ARG box consensus. The central region of the mwr core recombination site plays a role in regulation of site-specific recombination by the osmotic pressure of the medium.
Collapse
Affiliation(s)
- Huong Pham
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
48
|
Aussel L, Barre FX, Aroyo M, Stasiak A, Stasiak AZ, Sherratt D. FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 2002; 108:195-205. [PMID: 11832210 DOI: 10.1016/s0092-8674(02)00624-4] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FtsK acts at the bacterial division septum to couple chromosome segregation with cell division. We demonstrate that a truncated FtsK derivative, FtsK(50C), uses ATP hydrolysis to translocate along duplex DNA as a multimer in vitro, consistent with FtsK having an in vivo role in pumping DNA through the closing division septum. FtsK(50C) also promotes a complete Xer recombination reaction between dif sites by switching the state of activity of the XerCD recombinases so that XerD makes the first pair of strand exchanges to form Holliday junctions that are then resolved by XerC. The reaction between directly repeated dif sites in circular DNA leads to the formation of uncatenated circles and is equivalent to the formation of chromosome monomers from dimers.
Collapse
Affiliation(s)
- Laurent Aussel
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Chatwin HM, Summers DK. Monomer-dimer control of the ColE1 P(cer) promoter. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3071-81. [PMID: 11700357 DOI: 10.1099/00221287-147-11-3071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
XerCD-mediated recombination at cer converts multimers of plasmid ColE1 to monomers, maximizing the number of independently segregating molecules and minimizing the frequency of plasmid loss. In addition to XerCD, recombination requires the accessory factors ArgR and PepA. The promoter P(cer), located centrally within cer, is also required for stable plasmid maintenance. P(cer) is active in plasmid multimers and directs transcription of a short RNA, Rcd, which appears to inhibit cell division. It has been proposed that Rcd is part of a checkpoint which ensures that multimer resolution is complete before the cell divides. This study has shown that ArgR does not act as a transcriptional repressor of P(cer) in plasmid monomers. P(cer) is unusual in that the -35 and -10 hexamers are separated by only 15 bp and this study has demonstrated that increasing this to a more conventional spacing results in elevated activity. An increase to 17 bp resulted in a 10- to 20-fold increase in activity, while smaller effects were seen when the spacer was increased to 16 bp or 18 bp. These observations are consistent with the hypothesis that P(cer) activation involves realignment of the -35 and -10 sequences within a recombinational synaptic complex. This predicts that a 17 bp spacer promoter derivative should be down-regulated by plasmid multimerization, and this is confirmed experimentally.
Collapse
Affiliation(s)
- H M Chatwin
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | | |
Collapse
|
50
|
Pérals K, Capiaux H, Vincourt JB, Louarn JM, Sherratt DJ, Cornet F. Interplay between recombination, cell division and chromosome structure during chromosome dimer resolution in Escherichia coli. Mol Microbiol 2001; 39:904-13. [PMID: 11251811 DOI: 10.1046/j.1365-2958.2001.02277.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromosome dimers form in bacteria by recombination between circular chromosomes. Resolution of dimers is a highly integrated process involving recombination between dif sites catalysed by the XerCD recombinase, cell division and the integrity of the division septum-associated FtsK protein and the presence of dif inside a restricted region of the chromosome terminus, the dif activity zone (DAZ). We analyse here how these phenomena collaborate. We show that (i) both inter- and intrachromosomal recombination between dif sites are activated by their presence inside the DAZ; (ii) the DAZ-specific activation only occurs in conditions supporting the formation of chromosome dimers; (iii) overexpression of FtsK leads to a general increase in dif recombination irrespective of dif location; (iv) overexpression of FtsK does not improve the ability of dif sites inserted outside the DAZ to resolve chromosome dimers. Our results suggest that the formation of an active XerCD-FtsK-dif complex is restricted to when a dimer is present, the features of chromosome organization that determine the DAZ playing a central role in this control.
Collapse
Affiliation(s)
- K Pérals
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|