1
|
Kim HJ, Ham S, Shin N, Hwang JH, Oh SJ, Choi TR, Joo JC, Bhatia SK, Yang YH. Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters. J Microbiol Biotechnol 2024; 34:969-977. [PMID: 38213292 PMCID: PMC11091664 DOI: 10.4014/jmb.2308.08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl β-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Graboski AL, Kowalewski ME, Simpson JB, Cao X, Ha M, Zhang J, Walton WG, Flaherty DP, Redinbo MR. Mechanism-based inhibition of gut microbial tryptophanases reduces serum indoxyl sulfate. Cell Chem Biol 2023; 30:1402-1413.e7. [PMID: 37633277 PMCID: PMC10702206 DOI: 10.1016/j.chembiol.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa. We leverage this homology through a medicinal chemistry campaign to create a potent pan-inhibitor, (3S) ALG-05, and validate its action as a transition-state analog. (3S) ALG-05 successfully reduces indole production in microbial culture and displays minimal toxicity against microbial and mammalian cells. Mice treated with (3S) ALG-05 show reduced cecal indole and serum indoxyl sulfate levels with minimal changes in other tryptophan-metabolizing pathways. These studies present a non-bactericidal pan-inhibitor of gut microbial tryptophanases with potential promise for reducing indoxyl sulfate in chronic kidney disease.
Collapse
Affiliation(s)
- Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Mary Ha
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianan Zhang
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Hajiagha MN, Kafil HS. Efflux pumps and microbial biofilm formation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105459. [PMID: 37271271 DOI: 10.1016/j.meegid.2023.105459] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Biofilm-related infections are resistant forms of pathogens that are regarded as a medical problem, particularly due to the spread of multiple drug resistance. One of the factors associated with biofilm drug resistance is the presence of various types of efflux pumps in bacteria. Efflux pumps also play a role in biofilm formation by influencing Physical-chemical interactions, mobility, gene regulation, quorum sensing (QS), extracellular polymeric substances (EPS), and toxic compound extrusion. According to the findings of studies based on efflux pump expression analysis, their role in the anatomical position within the biofilm will differ depending on the biofilm formation stage, encoding gene expression level, the type and concentration of substrate. In some cases, the function of the efflux pumps can overlap with each other, so it seems necessary to accurate identify the efflux pumps of biofilm-forming bacteria along with their function in this process. Such studies will help to choose treatment strategy, at least in combination with antibiotics. Furthermore, if the goal of treatment is an efflux pump manipulation, we should not limit it to inhibition.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajiagha
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Local and Universal Action: The Paradoxes of Indole Signalling in Bacteria. Trends Microbiol 2020; 28:566-577. [PMID: 32544443 DOI: 10.1016/j.tim.2020.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Indole is a signalling molecule produced by many bacterial species and involved in intraspecies, interspecies, and interkingdom signalling. Despite the increasing volume of research published in this area, many aspects of indole signalling remain enigmatic. There is disagreement over the mechanism of indole import and export and no clearly defined target through which its effects are exerted. Progress is hindered further by the confused and sometimes contradictory body of indole research literature. We explore the reasons behind this lack of consistency and speculate whether the discovery of a new, pulse mode of indole signalling, together with a move away from the idea of a conventional protein target, might help to overcome these problems and enable the field to move forward.
Collapse
|
5
|
Coulson TJD, Patten CL. The TyrR transcription factor regulates the divergent akr-ipdC operons of Enterobacter cloacae UW5. PLoS One 2015; 10:e0121241. [PMID: 25811953 PMCID: PMC4374768 DOI: 10.1371/journal.pone.0121241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/30/2015] [Indexed: 12/11/2022] Open
Abstract
The TyrR transcription factor regulates genes involved in the uptake and biosynthesis of aromatic amino acids in Enterobacteriaceae. Genes may be positively or negatively regulated depending on the presence or absence of each aromatic amino acid, all three of which function as cofactors for TyrR. In this report we detail the transcriptional control of two divergently transcribed genes, akr and ipdC, by TyrR, elucidated by promoter fusion expression assays and electrophoretic mobility shift assays to assess protein-DNA interactions. Expression of both genes was shown to be controlled by TyrR via interactions with two TyrR boxes located within the akr-ipdC intergenic region. Expression of ipdC required TyrR bound to the proximal strong box, and is strongly induced by phenylalanine, and to a lesser extent by tryptophan and tyrosine. Down-regulation of akr was reliant on interactions with the weak box, and may also require a second, as yet unidentified protein for further repression. Tyrosine enhanced repression of akr. Electrophoretic mobility shift assays demonstrated that TyrR interacts with both the strong and weak boxes, and that binding of the weak box in vitro requires an intact adjacent strong box. While the strong box shows a high degree of conservation with the TyrR binding site consensus sequence, the weak box has atypical spacing of the two half sites comprising the palindromic arms. Site-directed mutagenesis demonstrated sequence-specific interaction between TyrR and the weak box. This is the first report of TyrR-controlled expression of two divergent protein-coding genes, transcribed from independent promoters. Moreover, the identification of a predicted aldo-keto reductase as a member of the TyrR regulon further extends the function of the TyrR regulon.
Collapse
Affiliation(s)
| | - Cheryl L. Patten
- Department of Biology, University of New Brunswick, Fredericton, Canada
- * E-mail:
| |
Collapse
|
6
|
Wang J, Cheng LK, Wang J, Liu Q, Shen T, Chen N. Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Appl Microbiol Biotechnol 2013; 97:7587-96. [PMID: 23775271 DOI: 10.1007/s00253-013-5026-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/08/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Reducing the accumulation of acetate in Escherichia coli cultures can decrease carbon efflux as by-products and reduce acetate toxicity, and therefore enable high cell density cultivation. The concentration of intracellular amino acids can be decreased by genetic modifications of the corresponding amino acid transport systems. This can increase the levels of amino acids in the fermentation broth by decreasing the feedback inhibition on the corresponding biosynthetic pathways. Here, the effects of genetic manipulation of phosphate acetyltransferase (pta), high affinity tryptophan transporter (mtr) and aromatic amino acid exporter (yddG) on L-tryptophan production were investigated. The pta mutants accumulated less acetate and showed higher capacity for producing L-tryptophan as compared with the parental strain. The strains lacking mtr, or overexpressed yddG, or with the both mtr knockout and yddG overexpression, accumulated lower concentrations of intracellular tryptophan but higher production of extracellular L-tryptophan. In the L-tryptohan fed-batch fermentation of an E. coli derived from TRTH0709/pMEL03 having deletion of pta-mtr and overexpression of yddG in a 30-L fermentor, the maximum concentration of L-tryptophan (48.68 g/L) was obtained, which represented a 15.96 % increase as compared with the parental strain. Acetate accumulated to a concentration of 0.95 g/L. The intracellular concentration of L-tryptophan was low, and the glucose conversion rate reached a high level of 21.87 %, which was increased by 15.53 % as compared with the parent strain.
Collapse
Affiliation(s)
- Jian Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
7
|
Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Appl Microbiol Biotechnol 2013; 97:6677-83. [PMID: 23695779 DOI: 10.1007/s00253-013-4988-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Three permeases, Mtr, TnaB, and AroP, are involved in the uptake of L-tryptophan in Escherichia coli. These permeases possess individual function for cell transportation and metabolism, and affect extracellular L-tryptophan accumulation. In this study, by knocking out three tryptophan permeases separately and simultaneously in L-tryptophan-producing strain E. coli GPT1002, we analyzed the effect of permease knock out on L-tryptophan uptake, cell growth, and L-tryptophan production. We found that TnaB is the main transporter that is responsible for the uptake of L-tryptophan. Inactivation of tnaB improved the L-tryptophan production significantly, and inactivation of aroP has an additive effect on tnaB mutant. Quantitative real-time PCR analysis confirmed that knocking out permeases affects gene transcription and cell metabolism in many metabolic pathways. The tryptophan permease-deficient GPT1017 mutant exhibited the highest L-tryptophan production at 2.79 g l(-1), which is 51.6 % higher than that produced by the control strain. In 5-l bioreactor fermentation, the L-tryptophan production in GPT1017 reached 16.3 g l(-1).
Collapse
|
8
|
Liu Q, Cheng Y, Xie X, Xu Q, Chen N. Modification of tryptophan transport system and its impact on production of L-tryptophan in Escherichia coli. BIORESOURCE TECHNOLOGY 2012; 114:549-554. [PMID: 22456235 DOI: 10.1016/j.biortech.2012.02.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
The production of L-tryptophan through chemical synthesis, direct fermentation, bioconversion and enzymatic conversion has been reported. However, the role of transport system for aromatic amino acids in L-tryptophan producing strains has not been fully explored. In this study, the fact was revealed that L-tryptophan production and cell growth were affected by the modification of transport systems based on YddG functioning as aromatic amino acid excretion and AroP functioning as general aromatic amino acid permease. Through comparing glucose conversion rates of recombinant strains such as Escherichia coli TRTH ΔaroP, E. coli TRTH-Y, and E. coli TRTH ΔaroP-Y, the moderate modification of transport system resulted in the metabolic flux redistribution of L-tryptophan biosynthesis pathway. In the fed-batch fermentation by E. coli TRTH and E. coli TRTH-Y in 30-liter fermentor, the final production of L-tryptophan fermented by E. coli TRTH-Y was 36.3 g/L, which was 12.6% higher than fermentation by E. coli TRTH.
Collapse
Affiliation(s)
- Qian Liu
- College of Biotechnology, Tianjin University of Science and Technology, Key Laboratory of Industrial Microbiology of Education Ministry, Tianjin 300457, China
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Identification and characterization of γ-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum. Appl Environ Microbiol 2012; 78:2596-601. [PMID: 22307305 DOI: 10.1128/aem.07406-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Corynebacterium glutamicum is widely used for industrial production of various amino acids and vitamins, and there is growing interest in engineering this bacterium for more commercial bioproducts such as γ-aminobutyric acid (GABA). In this study, a C. glutamicum GABA-specific transporter (GabP(Cg)) encoded by ncgl0464 was identified and characterized. GabP(Cg) plays a major role in GABA uptake and is essential to C. glutamicum growing on GABA. GABA uptake by GabP(Cg) was weakly competed by l-Asn and l-Gln and stimulated by sodium ion (Na(+)). The K(m) and V(max) values were determined to be 41.1 ± 4.5 μM and 36.8 ± 2.6 nmol min(-1) (mg dry weight [DW])(-1), respectively, at pH 6.5 and 34.2 ± 1.1 μM and 67.3 ± 1.0 nmol min(-1) (mg DW)(-1), respectively, at pH 7.5. GabP(Cg) has 29% amino acid sequence identity to a previously and functionally identified aromatic amino acid transporter (TyrP) of Escherichia coli but low identities to the currently known GABA transporters (17% and 15% to E. coli GabP and Bacillus subtilis GabP, respectively). The mutant RES167 Δncgl0464/pGXKZ9 with the GabP(Cg) deletion showed 12.5% higher productivity of GABA than RES167/pGXKZ9. It is concluded that GabP(Cg) represents a new type of GABA transporter and is potentially important for engineering GABA-producing C. glutamicum strains.
Collapse
|
11
|
Tepper N, Shlomi T. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments. PLoS One 2011; 6:e16274. [PMID: 21283695 PMCID: PMC3025009 DOI: 10.1371/journal.pone.0016274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/13/2010] [Indexed: 12/18/2022] Open
Abstract
Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).
Collapse
Affiliation(s)
- Naama Tepper
- Department of Computer Science, Technion-IIT, Haifa, Israel
- * E-mail: (NT); (TS)
| | - Tomer Shlomi
- Department of Computer Science, Technion-IIT, Haifa, Israel
- * E-mail: (NT); (TS)
| |
Collapse
|
12
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
13
|
Chuang YC, Wang KC, Chen YT, Yang CH, Men SC, Fan CC, Chang LH, Yeh KS. Identification of the genetic determinants of Salmonella enterica serotype Typhimurium that may regulate the expression of the type 1 fimbriae in response to solid agar and static broth culture conditions. BMC Microbiol 2008; 8:126. [PMID: 18652702 PMCID: PMC2527010 DOI: 10.1186/1471-2180-8-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 07/25/2008] [Indexed: 12/29/2022] Open
Abstract
Background Type 1 fimbriae are the most commonly found fimbrial appendages on the outer membrane of Salmonella enterica serotype Typhimurium. Previous investigations indicate that static broth culture favours S. Typhimurium to produce type 1 fimbriae, while non-fimbriate bacteria are obtained by growth on solid agar media. The phenotypic expression of type 1 fimbriae in S. Typhimurium is the result of the interaction and cooperation of several genes in the fim gene cluster. Other gene products that may also participate in the regulation of type 1 fimbrial expression remain uncharacterized. Results In the present study, transposon insertion mutagenesis was performed on S. Typhimurium to generate a library to screen for those mutants that would exhibit different type 1 fimbrial phenotypes than the parental strain. Eight-two mutants were obtained from 7,239 clones screened using the yeast agglutination test. Forty-four mutants produced type 1 fimbriae on both solid agar and static broth media, while none of the other 38 mutants formed type 1 fimbriae in either culture condition. The flanking sequences of the transposons from 54 mutants were cloned and sequenced. These mutants can be classified according to the functions or putative functions of the open reading frames disrupted by the transposon. Our current results indicate that the genetic determinants such as those involved in the fimbrial biogenesis and regulation, global regulators, transporter proteins, prophage-derived proteins, and enzymes of different functions, to name a few, may play a role in the regulation of type 1 fimbrial expression in response to solid agar and static broth culture conditions. A complementation test revealed that transforming a recombinant plasmid possessing the coding sequence of a NAD(P)H-flavin reductase gene ubiB restored an ubiB mutant to exhibit the type 1 fimbrial phenotype as its parental strain. Conclusion Genetic determinants other than the fim genes may involve in the regulation of type 1 fimbrial expression in S. Typhimurium. How each gene product may influence type 1 fimbrial expression is an interesting research topic which warrants further investigation.
Collapse
Affiliation(s)
- Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, 901 Chung Hwa Road, Yong Kang City, Tainan 710, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF. The global gene expression response of Escherichia coli to l-phenylalanine. J Biotechnol 2005; 115:221-37. [PMID: 15639085 DOI: 10.1016/j.jbiotec.2004.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/29/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
We investigated the global gene expression changes of Escherichia coli due to the presence of different concentrations of phenylalanine or shikimate in the growth medium. The response to 0.5 g l(-1) phenylalanine primarily reflected a perturbed aromatic amino acid metabolism, in particular due to TyrR-mediated regulation. The addition of 5g l(-1) phenylalanine reduced the growth rate by half and elicited a great number of likely indirect effects on genes regulated in response to changed pH, nitrogen or carbon availability. Consistent with the observed gene expression changes, supplementation with shikimate, tyrosine and tryptophan relieved growth inhibition by phenylalanine. In contrast to the wild-type, a tyrR disruption strain showed increased expression of pckA and of tktB in the presence of phenylalanine, but its growth was not affected by phenylalanine at the concentrations tested. The absence of growth inhibition by phenylalanine suggested that at high phenylalanine concentrations TyrR-defective strains might perform better in phenylalanine production.
Collapse
Affiliation(s)
- T Polen
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
15
|
Koyanagi T, Katayama T, Suzuki H, Kumagai H. Identification of the LIV-I/LS system as the third phenylalanine transporter in Escherichia coli K-12. J Bacteriol 2004; 186:343-50. [PMID: 14702302 PMCID: PMC305776 DOI: 10.1128/jb.186.2.343-350.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the active transport of phenylalanine is considered to be performed by two different systems, AroP and PheP. However, a low level of accumulation of phenylalanine was observed in an aromatic amino acid transporter-deficient E. coli strain (DeltaaroP DeltapheP Deltamtr Deltatna DeltatyrP). The uptake of phenylalanine by this strain was significantly inhibited in the presence of branched-chain amino acids. Genetic analysis and transport studies revealed that the LIV-I/LS system, which is a branched-chain amino acid transporter consisting of two periplasmic binding proteins, the LIV-binding protein (LIV-I system) and LS-binding protein (LS system), and membrane components, LivHMGF, is involved in phenylalanine accumulation in E. coli cells. The K(m) values for phenylalanine in the LIV-I and LS systems were determined to be 19 and 30 micro M, respectively. Competitive inhibition of phenylalanine uptake by isoleucine, leucine, and valine was observed for the LIV-I system and, surprisingly, also for the LS system, which has been assumed to be leucine specific on the basis of the results of binding studies with the purified LS-binding protein. We found that the LS system is capable of transporting isoleucine and valine with affinity comparable to that for leucine and that the LIV-I system is able to transport tyrosine with affinity lower than that seen with other substrates. The physiological importance of the LIV-I/LS system for phenylalanine accumulation was revealed in the growth of phenylalanine-auxotrophic E. coli strains under various conditions.
Collapse
Affiliation(s)
- Takashi Koyanagi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
16
|
Katayama T, Suzuki H, Koyanagi T, Kumagai H. Functional analysis of the Erwinia herbicola tutB gene and its product. J Bacteriol 2002; 184:3135-41. [PMID: 12003958 PMCID: PMC135067 DOI: 10.1128/jb.184.11.3135-3141.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tutB gene, which lies just downstream of tpl, has been cloned from Erwinia herbicola, and its product was analyzed. Despite its high sequence similarity to tryptophan transporters, TutB was found to be a tyrosine-specific transporter. Tryptophan acted as a competitive inhibitor of tyrosine transport. Unlike the tryptophanase operon, the tpl and tutB genes do not constitute an operon.
Collapse
Affiliation(s)
- Takane Katayama
- Applied Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
17
|
Suenaga A, Yatsu C, Komeiji Y, Uebayasi M, Meguro T, Yamato I. Molecular dynamics simulation of trp-repressor/operator complex: analysis of hydrogen bond patterns of protein–DNA interaction. J Mol Struct 2000. [DOI: 10.1016/s0022-2860(00)00459-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Zhao S, Zhu Q, Somerville RL. The sigma(70) transcription factor TyrR has zinc-stimulated phosphatase activity that is inhibited by ATP and tyrosine. J Bacteriol 2000; 182:1053-61. [PMID: 10648532 PMCID: PMC94382 DOI: 10.1128/jb.182.4.1053-1061.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TyrR protein of Escherichia coli (513 amino acid residues) is the chief transcriptional regulator of a group of genes that are essential for aromatic amino acid biosynthesis and transport. The TyrR protein can function either as a repressor or as an activator. The central region of the TyrR protein (residues 207 to 425) is similar to corresponding polypeptide segments of the NtrC protein superfamily. Like the NtrC protein, TyrR has intrinsic ATPase activity. Here, we report that TyrR possesses phosphatase activity. This activity is subject to inhibition by L-tyrosine and its analogues and by ATP and ATP analogues. Zinc ion (2 mM) stimulated the phosphatase activity of the TyrR protein by a factor of 57. The phosphatase-active site of TyrR was localized to a 31-kDa domain (residues 191 to 467) of the protein. However, mutational alteration of distant amino acid residues at both the N terminus and the C terminus of TyrR altered the phosphatase activity. Haemophilus influenzae TyrR (318 amino acid residues), a protein with a high degree of sequence similarity to the C terminus of the E. coli TyrR protein, exhibited a phosphatase activity similar to that of E. coli TyrR.
Collapse
Affiliation(s)
- S Zhao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
19
|
Ogawa W, Kim YM, Mizushima T, Tsuchiya T. Cloning and expression of the gene for the Na+-coupled serine transporter from Escherichia coli and characteristics of the transporter. J Bacteriol 1998; 180:6749-52. [PMID: 9852024 PMCID: PMC107783 DOI: 10.1128/jb.180.24.6749-6752.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned a gene (sstT) for the Na+/serine symporter from the chromosome of Escherichia coli by using a low-copy-number vector and sequenced it. According to the deduced amino acid sequence, the transporter (SstT) consists of 414 amino acid residues. Hydropathy analysis suggested that the SstT protein possesses 9, instead of 12, hydrophobic domains.
Collapse
Affiliation(s)
- W Ogawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
20
|
Margeat E, Le Grimellec C, Royer CA. Visualization of trp repressor and its complexes with DNA by atomic force microscopy. Biophys J 1998; 75:2712-20. [PMID: 9826594 PMCID: PMC1299945 DOI: 10.1016/s0006-3495(98)77715-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We used tapping mode atomic force microscopy to visualize the protein/protein and the protein/DNA complexes involved in transcriptional regulation by the trp repressor (TR). Plasmid fragments bearing the natural operators trp EDCBA and trp R, as well as nonspecific fragments, were deposited onto mica in the presence of varying concentrations of TR and imaged. In the presence of L-tryptophan, both specific and nonspecific complexes of TR with DNA are apparent, as well as free TR assemblies directly deposited onto the mica surface. We observed the expected decrease in specificity of TR for its operators with increasing protein concentration (1-5 nM). This loss of DNA-binding specificity is accompanied by the formation of large protein assemblies of varying sizes on the mica surface, consistent with the known tendency of the repressor to oligomerize in solution. When the co-repressor is omitted, no repressor molecules are seen, either on the plasmid fragments or free on the mica surface, probably because of the formation of larger aggregates that are removed from the surface upon washing. All these findings support a role for protein/protein interactions as an additional mechanism of transcriptional regulation by the trp repressor.
Collapse
Affiliation(s)
- E Margeat
- Centre de Biochimie Structurale, INSERM U 414-CNRS UMR 9955-Université Montpellier I, Montpellier, France
| | | | | |
Collapse
|
21
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
22
|
Mackintosh SG, McDermott PF, Hurlburt BK. Mutational analysis of the NH2-terminal arms of the trp repressor indicates a multifunctional domain. Mol Microbiol 1998; 27:1119-27. [PMID: 9570398 DOI: 10.1046/j.1365-2958.1998.00721.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The NH2-terminal arms of the Escherichia coli trp repressor have been implicated in three functions: formation of repressor-operator complexes via association with non-operator DNA; stabilization of repressor oligomers bound to DNA; and oligomerization of the aporepressor in the absence of DNA. To begin to examine the structural aspects of the arms that are responsible for these varied activities, we generated an extensive set of deletion and substitution mutants and measured the activities of these mutants in vivo using reporter gene fusions. Deletion of any part of the arms resulted in a significant decrease in repressor activity at both the trp and the trpR operons. Positions 4, 5 and 6 were the most sensitive to missense changes. Most substitutions at these positions resulted in repressors with less than 5% of the activity of the wild-type trp repressor. A large percentage of the missense mutants were more active than the wild-type repressor in medium containing tryptophan and less active in medium without tryptophan. This phenotype can be explained in terms of altered oligomerization of both the repressor and the aporepressor. Also, nine super-repressor mutants, resulting from substitutions clustered at both ends of the arms, were found. Our results support the hypothesis that the NH2-terminal arm of the trp repressor is a multifunctional domain and reveal structural components likely to be involved in the various functions.
Collapse
Affiliation(s)
- S G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | |
Collapse
|
23
|
Haran TE. Statistical and structural analysis of trp binding sites: comparison of natural and in vitro selected sequences. J Biomol Struct Dyn 1998; 15:689-701. [PMID: 9514246 DOI: 10.1080/07391102.1998.10508985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two different modes can be used when the trp repressor binds to trp binding sites. In the "full-site mode" each repressor molecule is bound to a DNA target containing at least two conserved five base pair tracts separated by eight base pairs. The binding of the repressor to natural trp operators is of this kind. In the "half-site mode" two repressor molecules are sequence-specifically bound, with infinite cooperativity, to two abutting DNA pentamers. We present evidence suggesting that the sequences obtained by a recent in vitro selection assay (Czernik et al. J. Biol. Chem. 269, 27869-27875, 1994) were selected by the binding of two repressor molecules, and that the repressor is bound to most of these sequences using the half-site mode. Using the results of the selection assay, and the set of natural trp binding sites, we characterize the different sequence requirements of the "full-site" versus the "half-site" binding modes. A statistical analysis of the information content of these binding sites shows that functional information on protein binding modes can be extracted from a set of DNA binding sites by comparing the information content of two different DNA populations, or sub-populations. Furthermore, it shows that the binding of proteins to sequences selected by a functional in vitro assay do not necessarily mimic the binding of the protein to the natural targets, even if the information content is similar in the two DNA target populations, i.e., even if the stringency of the selection assay is adequate for locating natural-like sequences. In addition, we show that the structural requirements for protein-DNA interactions can be achieved by different conformations at the base-pair level. Differences in the structural characteristics of different base-pair steps can be used to determine the binding mode and differential binding affinity, which can be utilized in the regulation of several binding sites by a single specific protein.
Collapse
Affiliation(s)
- T E Haran
- Department of Biology, Technion, Technion City, Haifa, Israel.
| |
Collapse
|
24
|
Abstract
The ability of microorganisms to degrade L-tyrosine to phenol, pyruvate, and ammonia is catalyzed by the inducible enzyme L-tyrosine phenol lyase (EC 4.1.99.2). To investigate possible mechanisms for how the synthesis of this enzyme is regulated, a variety of biochemical and genetic procedures was used to analyze transcription from the tpl promoter of Citrobacter freundii ATCC 29063 (C. braakii). By computer analysis of the region upstream of the tpl structural gene, two segments of DNA bearing strong homology to the known operator targets of the TyrR protein of Escherichia coli were detected. A DNA fragment of 509 bp carrying these operator targets plus the presumptive tpl promoter was synthesized by PCR and used to construct a single-copy tpl-lacZ reporter system. The formation of beta-galactosidase in strains carrying this reporter system, which was measured in E. coli strains of various genotypes, was strongly dependent on the presence of a functional TyrR protein. In strains bearing deletions of the tyrR gene, the formation of beta-galactosidase was reduced by a factor of 10. Several mutationally altered forms of TyrR were deficient in their abilities to activate the tpl promoter. The pattern of loss of activation function was exactly parallel to the effects of the same tyrR mutations on the mtr promoter, which is known to be activated by the TyrR protein. When cells carrying the tpl-lacZ reporter system were grown on glycerol, the levels of beta-galactosidase were 10- to 20-fold higher than those observed in glucose-grown cells. The effect was the same whether or not TyrR-mediated stimulation of the tpl promoter was in effect. By deleting the cya gene, it was shown that the glycerol effect was attributable to stimulation of the tpl promoter by the cyclic AMP (cAMP)-cAMP reporter protein system. A presumptive binding site for this transcription factor was detected just upstream of the -35 recognition hexamer of the tpl promoter. The transcriptional start point of the tpl promoter was determined by chemical procedures. The precise locations of the TyrR binding sites, which were established by DNase I footprinting, agreed with the computer-predicted positions of these regulatory sites. The two TyrR operators, which were centered at coordinates -272.5 and -158.5 with respect to the transcriptional start point, were independently disabled by site-directed mutagenesis. When the upstream operator was altered, activation was completely abolished. When the downstream operator was altered, there was a fourfold reduction in reporter enzyme levels. The tpl system presents a number of intriguing features not previously encountered in TyrR-activated promoters. First among these is the question of how the TyrR protein, bound to widely separated operators, activates the tpl promoter which is also widely separated from the operators.
Collapse
Affiliation(s)
- H Q Smith
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
25
|
Bareket-Samish A, Cohen I, Haran TE. Repressor assembly at trp binding sites is dependent on the identity of the intervening dinucleotide between the binding half sites. J Mol Biol 1997; 267:103-17. [PMID: 9096210 DOI: 10.1006/jmbi.1996.0826] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The interaction of trp repressor with its DNA targets is unusual in that specific recognition in this system does not rely exclusively on direct hydrogen bonds to the DNA bases that are crucial for sequence-specific recognition. It has been suggested that trp operators are mainly recognized by water-mediated interactions and by structural recognition of DNA deformability. Here we study the effect of the central dinucleotide on the mode of interaction of the trp repressor with its binding sites. The study was carried out on two consensus sequences: (1) trpTA, the consensus of naturally occurring trp binding sites, containing a T-A step between the two hexameric half-site sequences, ACTAGT; (2) trpAC, a consensus sequence derived from a functional selection study, containing a central A-C step. We show that the identity of the central dinucleotide does not affect the interaction of the first trp repressor molecule with the primary DNA target site, however, it influences the assembly of additional repressor molecules at adjacent sites. Central A-C steps stabilize tandem binding, whereas T-A steps destabilize it. It has been previously suggested that in vivo regulation of trp operators is due to their differential ability to bind multiple repressor molecules. The observations presented here support this model. We ascribe this ability to two sequence-dependent factors which act together: the identity and number of half-site sequences, recognized by water-mediated hydrogen bonds, and the ability of the intervening dinucleotides to form direct bidentate hydrogen bonds to the repressor. Furthermore, we measured the intrinsic and the induced bending of trp operators by the repressor. We find that the operators are straight in their free form, bent by 23 degrees when bound by a single trp repressor molecule, and bent by 30 degrees when bound by two repressor molecules.
Collapse
|
26
|
Abstract
The wild-type trp repressor of E. coli bound 5-methoxytryptophan, a Trp analogue, less tightly than Trp. A mutant repressor (Val58-->Ala) that should bind 5-methoxytryptophan preferentially to Trp was computationally designed by free-energy calculations accompanied by free-energy decomposition. The designed mutant was demonstrated by experiments to bind 5-methoxytryptophan more tightly than Trp, consistent with the computational prediction. This success indicates the usefulness of free energy decomposition in protein design.
Collapse
Affiliation(s)
- N Honda
- Department of Biological Science and Technology, Science University of Tokyo, Chiba, Japan
| | | | | | | |
Collapse
|
27
|
Lee W, Revington M, Farrow NA, Nakamura A, Utsunomiya-Tate N, Miyake Y, Kainosho M, Arrowsmith CH. Rapid corepressor exchange from the trp-repressor/operator complex: an NMR study of [ul-13C/15N]-L-tryptophan. JOURNAL OF BIOMOLECULAR NMR 1995; 5:367-375. [PMID: 7647556 DOI: 10.1007/bf00182280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
[ul-13C/15N]-L-tryptophan was prepared biosynthetically and its dynamic properties and intermolecular interaction with a complex of Escherichia coli trp-repressor and a 20 base-pair operator DNA were studied by heteronuclear isotope-edited NMR experiments. The resonances of the free and bound corepressor (L-Trp) were unambiguously identified from gradient-enhanced 15N-1H HSQC, 13C-1H HSQC, 13C- and 15N-edited 2D NOESY spectra. The exchange off-rate of the corepressor between the bound and free states was determined to be 3.4 +/- 0.52 s-1 at 45 degrees C, almost three orders of magnitude faster than the dissociation of the protein-DNA complex. Examination of the experimental NOE buildup curves indicates that it may be desirable to use longer mixing times than would normally be used for a large molecule, in order to detect weak intermolecular NOEs in the presence of exchange. Intermolecular NOEs from bound corepressor to trp-repressor and DNA were analyzed with respect to the mechanism of ligand exchange. This analysis suggests that, in order for the ligand to diffuse out of the complex, there must be significant movement or 'breathing' of the protein and/or DNA.
Collapse
Affiliation(s)
- W Lee
- Division of Molecular and Structural Biology, Ontario Cancer Institute, University of Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sarsero JP, Pittard AJ. Membrane topology analysis of Escherichia coli K-12 Mtr permease by alkaline phosphatase and beta-galactosidase fusions. J Bacteriol 1995; 177:297-306. [PMID: 7814318 PMCID: PMC176591 DOI: 10.1128/jb.177.2.297-306.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mtr gene of Escherichia coli K-12 encodes an inner membrane protein which is responsible for the active transport of trypotophan into the cell. It has been proposed that the Mtr permease has a novel structure consisting of 11 hydrophobic transmembrane spans, with a cytoplasmically disposed amino terminus and a carboxyl terminus located in the periplasmic space (J.P. Sarsero, P. J. Wookey, P. Gollnick, C. Yanofsky, and A.J. Pittard, J. Bacteriol. 173:3231-3234, 1991). The validity of this model was examined by the construction of fusion proteins between the Mtr permease and alkaline phosphatase or beta-galactosidase. In addition to the conventional methods, in which the reporter enzyme replaces a carboxyl-terminal portion of the membrane protein, the recently developed alkaline phosphatase sandwich fusion technique was utilized, in which alkaline phosphatase is inserted into an otherwise intact membrane protein. A cluster of alkaline phosphatase fusions to the carboxyl-terminal end of the Mtr permease exhibited high levels of alkaline phosphatase activity, giving support to the proposition of a periplasmically located carboxyl terminus. The majority of fusion proteins produced enzymatic activities which were in agreement with the positions of the fusion sites on the proposed topological model of the permease. The synthesis of a small cluster of hybrid proteins, whose enzymatic activity did not agree with the location of their fusion sites within putative transmembrane span VIII or the preceding periplasmic loop, was not detected by immunological techniques and did not necessitate modification of the proposed model in this region. Slight alterations may need to be made in the positioning of the carboxyl-terminal end of transmembrane span X.
Collapse
Affiliation(s)
- J P Sarsero
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
29
|
Frommer WB, Kwart M, Hirner B, Fischer WN, Hummel S, Ninnemann O. Transporters for nitrogenous compounds in plants. PLANT MOLECULAR BIOLOGY 1994; 26:1651-1670. [PMID: 7858208 DOI: 10.1007/bf00016495] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
30
|
Czernik PJ, Shin DS, Hurlburt BK. Functional selection and characterization of DNA binding sites for trp repressor of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46867-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Arvidson DN, Arvidson CG, Lawson CL, Miner J, Adams C, Youderian P. The tryptophan repressor sequence is highly conserved among the Enterobacteriaceae. Nucleic Acids Res 1994; 22:1821-9. [PMID: 8208606 PMCID: PMC308080 DOI: 10.1093/nar/22.10.1821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tryptophan biosynthesis in Escherichia coli is regulated by the product of the trpR gene, the tryptophan (Trp) repressor. Trp aporepressor binds the corepressor, L-tryptophan, to form a holorepressor complex, which binds trp operator DNA tightly, and inhibits transcription of the tryptophan biosynthetic operon. The conservation of trp operator sequences among enteric Gram-negative bacteria suggests that trpR genes from other bacterial species can be cloned by complementation in E. coli. To clone trpR homologues, a deletion of the E. coli trpR gene, delta trpR504, was made on a plasmid by site-directed mutagenesis, then crossed onto the E. coli genome. Plasmid clones of the trpR genes of Enterobacter aerogenes and Enterobacter cloacae were isolated by complementation of the delta trpR504 allele, scored as the ability to repress beta-galactosidase synthesis from a prophage-borne trpE-lacZ gene fusion. The predicted amino acid sequences of four enteric TrpR proteins show differences, clustered on the backside of the folded repressor, opposite the DNA-binding helix-turn-helix substructures. These differences are predicted to have little effect on the interactions of the aporepressor with tryptophan, holorepressor with operator DNA, or tandemly bound holorepressor dimers with one another. Although there is some variation observed at the dimer interface, interactions predicted to stabilize the interface are conserved. The phylogenetic relationships revealed by the TrpR amino acid sequence alignment agree with the results of others.
Collapse
Affiliation(s)
- D N Arvidson
- California Institute of Biological Research, La Jolla 92037
| | | | | | | | | | | |
Collapse
|
32
|
Yamanaka K, Ogura T, Koonin EV, Niki H, Hiraga S. Multicopy suppressors, mssA and mssB, of an smbA mutation of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:9-16. [PMID: 8190075 DOI: 10.1007/bf00283870] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have isolated and characterized two multicopy suppressors, mssA and mssB, which suppress the cold-sensitive growth phenotype of the smbA2 mutant of Escherichia coli. The mssA gene is located immediately upstream of the rpsA gene (20.5 min). MssA protein was found to be related to nucleoside monophosphate kinases. The mssB gene was found to be identical to the deaD gene (69 min), which encodes a putative RNA helicase. The SmbA protein belongs to the aspartokinase family and probably represents a new, fourth aspartokinase species in E. coli. Expression of the smbA gene is essential for cell growth. The smbA2 mutant shows a pleiotropic phenotype characterized by cold-sensitive growth, hypersensitivity to the detergent sodium dodecyl sulfate, and formation of a translucent segment at midcell or at a pole of the cell when grown at 22 degrees C. In addition, some cellular proteins were either increased or decreased in amount in the smbA2 mutant. SmbA may be a regulatory factor in the expression of a battery of genes. MssA and MssB might also relate to the expression of some of these genes. Multiple copies mssA and mssB suppressed the various phenotypic features of the smbA2 mutant to various extents, suppressing the cold-sensitive growth completely.
Collapse
Affiliation(s)
- K Yamanaka
- Department of Molecular Cell Biology, Kumamoto University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
33
|
Argaet V, Wilson T, Davidson B. Purification of the Escherichia coli regulatory protein TyrR and analysis of its interactions with ATP, tyrosine, phenylalanine, and tryptophan. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37671-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
|
35
|
Skrypka I, Somerville RL. Nucleotide sequence of the Salmonella typhimurium trpR gene. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1994; 4:355-60. [PMID: 7841459 DOI: 10.3109/10425179409010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sequence of the Salmonella typhimurium trpR gene and flanking DNA was determined on both strands. The DNA sequence predicts a polypeptide product of 108 amino acids with a molecular weight of 12,274 daltons. The TrpR protein of S. typhimurium differs by three amino acid residues from that of E. coli. The promoter/operator region of trpR is completely conserved between E. coli and S. typhimurium. The nucleotide sequence of the trpR sector of the S. typhimurium genome was 87.4% identical to the corresponding region of the E. coli genome. Within the protein coding segments of the two organisms, 94.4% of the amino acid residues were identical. In S. typhimurium, as in E. coli, there is a Palindromic Unit element (PU) between the translation termination triplet of trpR and that of a divergently oriented unidentified reading frame (URF-143). However, the PU segment of S. typhimurium is 85 nucleotides shorter than its E. coli counterpart.
Collapse
Affiliation(s)
- I Skrypka
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153
| | | |
Collapse
|
36
|
Liu Y, Matthews K. Dependence of trp repressor-operator affinity, stoichiometry, and apparent cooperativity on DNA sequence and size. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49455-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
Hurlburt B, Yanofsky C. Analysis of heterodimer formation by the Escherichia coli trp repressor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82403-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Gish K, Yanofsky C. Inhibition of expression of the tryptophanase operon in Escherichia coli by extrachromosomal copies of the tna leader region. J Bacteriol 1993; 175:3380-7. [PMID: 8501042 PMCID: PMC204735 DOI: 10.1128/jb.175.11.3380-3387.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and transcription attenuation. Expression is induced by the presence of elevated levels of tryptophan in a growth medium devoid of a catabolite-repressing carbon source. Induction requires the translation of a 24-residue coding region, tnaC, located in the 319-nucleotide transcribed leader region preceding tnaA, the structural gene for tryptophanase. Multicopy plasmids carrying the tnaC leader region were found to inhibit induction of the chromosomal tna operon. Mutational studies established that this inhibition was not due to inhibited transcription initiation, translation initiation, tryptophan transport, or enzyme activity. Rather, multicopy tnaC plasmids inhibited induction by preventing tryptophan-induced transcription antitermination in the leader region of the tna operon. Translation of the single Trp codon in tnaC of the multicopy plasmids was shown to be essential for this inhibition. We hypothesize that translation of the Trp codon of the leader peptide titrates out a trans-acting factor that is essential for tryptophan-induced antitermination in the chromosomal tna operon. We postulate that this factor is an altered form of tRNATrp.
Collapse
Affiliation(s)
- K Gish
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
39
|
Characterization of the tryptophanase operon of Proteus vulgaris. Cloning, nucleotide sequence, amino acid homology, and in vitro synthesis of the leader peptide and regulatory analysis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88653-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Hurlburt B, Yanofsky C. trp repressor/trp operator interaction. Equilibrium and kinetic analysis of complex formation and stability. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41850-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Hurlburt BK, Yanofsky C. The NH2-terminal arms of trp repressor participate in repressor/operator association. Nucleic Acids Res 1992; 20:337-41. [PMID: 1741259 PMCID: PMC310375 DOI: 10.1093/nar/20.2.337] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The 3-dimensional structure of the trp repressor, aporepressor, and repressor/operator complex have been described. The NH2-terminal arms of the protein, comprising approximately 12-14 residues, were not well resolved in any of these structures. Previous studies by Carey showed that the arms are required for full in vitro repressor activity. To examine the roles of the arms more fully we have removed codons 2-5 and 2-8 of the trpR gene and analyzed the resulting truncated repressors in vivo and in vitro. The delta 2-5 trp repressor was found to be approximately 25% as active as the wild type repressor in vivo. In in vitro equilibrium binding experiments, the delta 2-5 trp repressor was shown to be five-fold less active in operator binding. The rate of dissociation of the complex formed between the delta 2-5 trp repressor and operator was essentially the same as the rate of dissociation of the wild type trp repressor/operator complex. However association of the delta 2-5 trp repressor with operator was clearly defective. Since the NH2-terminal arms of the trp repressor appear to affect association predominantly they may play a role in facilitating non-specific association of repressor with DNA as repressor seeks its cognate operators. The delta 2-8 trp repressor was unstable in vivo and in vitro, suggesting that some portion of the NH2-terminal arm is required for proper folding of the remainder of the molecule.
Collapse
Affiliation(s)
- B K Hurlburt
- Department of Biological Sciences, Stanford University, CA 95403-5020
| | | |
Collapse
|
42
|
Somerville R. The Trp repressor, a ligand-activated regulatory protein. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:1-38. [PMID: 1574585 DOI: 10.1016/s0079-6603(08)60572-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R Somerville
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
43
|
Heatwole VM, Somerville RL. Synergism between the Trp repressor and Tyr repressor in repression of the aroL promoter of Escherichia coli K-12. J Bacteriol 1992; 174:331-5. [PMID: 1530846 PMCID: PMC205715 DOI: 10.1128/jb.174.1.331-335.1992] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Computer analysis identified a potential Trp repressor operator 56 nucleotides downstream of the transcriptional start point of aroL, the gene that encodes shikimate kinase II. Tryptophan-dependent interaction of Trp repressor with this operator was demonstrated in vitro by means of a restriction endonuclease protection assay. Regulation of expression from the aroL promoter was evaluated with several genetically marked Escherichia coli strains by using a single-copy aroL-lacZ transcriptional-translational reporter system. The expression of aroL was repressed 6.9-fold by the Tyr repressor alone and 29-fold when both Tyr and Trp repressors were present. The Trp repressor had no effect on expression from the aroL promoter in the absence of the Tyr repressor. Possible mechanisms for Trp repressor-mediated repression, including cooperative interactions with the Tyr repressor, are discussed.
Collapse
Affiliation(s)
- V M Heatwole
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-6799
| | | |
Collapse
|
44
|
Affiliation(s)
- S A Haney
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109
| | | |
Collapse
|
45
|
Sarsero JP, Pittard AJ. Molecular analysis of the TyrR protein-mediated activation of mtr gene expression in Escherichia coli K-12. J Bacteriol 1991; 173:7701-4. [PMID: 1938967 PMCID: PMC212541 DOI: 10.1128/jb.173.23.7701-7704.1991] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Expression of the mtr gene, which encodes a tryptophan-specific transport system in Escherichia coli K-12, is activated by the TyrR protein. Two TyrR protein binding sites (TYR R boxes) are positioned upstream of the -35 promoter region. Mutational and DNase protection studies indicate that TyrR protein binds preferentially to the TYR R box closest to the promoter, and this is essential for activation of gene expression. In the presence of tyrosine and ATP, a second TyrR molecule is able to cooperatively bind to the second box and cause a further increase in the level of activation.
Collapse
Affiliation(s)
- J P Sarsero
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
46
|
Yanofsky C, Horn V, Gollnick P. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J Bacteriol 1991; 173:6009-17. [PMID: 1917834 PMCID: PMC208345 DOI: 10.1128/jb.173.19.6009-6017.1991] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli forms three permeases that can transport the amino acid tryptophan: Mtr, AroP, and TnaB. The structural genes for these permeases reside in separate operons that are subject to different mechanisms of regulation. We have exploited the fact that the tryptophanase (tna) operon is induced by tryptophan to infer how tryptophan transport is influenced by the growth medium and by mutations that inactivate each of the permease proteins. In an acid-hydrolyzed casein medium, high levels of tryptophan are ordinarily required to obtain maximum tna operon induction. High levels are necessary because much of the added tryptophan is degraded by tryptophanase. An alternate inducer that is poorly cleaved by tryptophanase, 1-methyltryptophan, induces efficiently at low concentrations in both tna+ strains and tna mutants. In an acid-hydrolyzed casein medium, the TnaB permease is most critical for tryptophan uptake; i.e., only mutations in tnaB reduce tryptophanase induction. However, when 1-methyltryptophan replaces tryptophan as the inducer in this medium, mutations in both mtr and tnaB are required to prevent maximum induction. In this medium, AroP does not contribute to tryptophan uptake. However, in a medium lacking phenylalanine and tyrosine the AroP permease is active in tryptophan transport; under these conditions it is necessary to inactivate the three permeases to eliminate tna operon induction. The Mtr permease is principally responsible for transporting indole, the degradation product of tryptophan produced by tryptophanase action. The TnaB permease is essential for growth on tryptophan as the sole carbon source. When cells with high levels of tryptophanase are transferred to tryptophan-free growth medium, the expression of the tryptophan (trp) operon is elevated. This observation suggests that the tryptophanase present in these cells degrades some of the synthesized tryptophan, thereby creating a mild tryptophan deficiency. Our studies assign roles to the three permeases in tryptophan transport under different physiological conditions.
Collapse
Affiliation(s)
- C Yanofsky
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | | | |
Collapse
|
47
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:4025-42. [PMID: 1862010 PMCID: PMC328534 DOI: 10.1093/nar/19.14.4025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
48
|
Sarsero JP, Wookey PJ, Pittard AJ. Regulation of expression of the Escherichia coli K-12 mtr gene by TyrR protein and Trp repressor. J Bacteriol 1991; 173:4133-43. [PMID: 2061290 PMCID: PMC208063 DOI: 10.1128/jb.173.13.4133-4143.1991] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Escherichia coli K-12 mtr gene, which encodes a tryptophan-specific permease, was cloned, and its nucleotide sequence was determined. The precise location of the mtr gene at 69 min on the E. coli chromosome was determined. The mtr gene product was identified as a 414-amino-acid residue protein with a calculated molecular weight of 44,332. The protein is very hydrophobic, consistent with its presumed location spanning the cytoplasmic membrane. The initiation sites of transcription and translation were identified. Construction of an mtr-lacZ transcriptional fusion facilitated investigation of the molecular basis of mtr regulation. The TyrR protein in association with phenylalanine or tyrosine is responsible for the activation of mtr expression, whereas the Trp repressor in conjunction with tryptophan serves to repress expression of this gene. Site-directed mutagenesis confirmed that sequences in the mtr regulatory region homologous to TyrR protein and to Trp repressor-binding sites were involved in the activation and repression of mtr expression, respectively. Sequences homologous to sigma 70- and sigma 54-dependent promoters were identified upstream of the transcription start point of mtr. It was determined that transcription of mtr occurs only via a sigma 70-dependent promoter.
Collapse
Affiliation(s)
- J P Sarsero
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
49
|
Abstract
The TyrR protein regulates the expression of eight transcriptional units that comprise the TyrR regulon. In all but one case, regulation is by repression, while in two cases activation of expression can occur. Notwithstanding the fact that the TyrR protein contains an ATP-binding domain and a helix-turn-helix DNA-binding domain which are structurally homologous to domains of similar functions in proteins such as NifA, NtrC, DctD and XylR, it differs from them in a number of respects. It is not a part of a two-protein component system and it lacks the amino-terminal domain that is present on NtrC and DctD. It activates transcription from 'E sigma 70, promoters but not from 'E sigma 54, promoters. ATP binding seems to be essential for tyrosine-mediated repression but not for activation. In addition, the activity of the TyrR protein is modulated by the binding of one or more of the aromatic amino acids. The consensus sequence for TyrR-binding sites in DNA, referred to as TyrR boxes, is TGTAAAN6TTTACA. Tyrosine-mediated repression occurs at operators containing a pair of adjacent boxes. These have unequal affinities for the TyrR protein. The box that overlaps the RNA polymerase binding site is only bound by TyrR in the presence of both ATP and tyrosine, and binding appears to involve co-operativity between two TyrR protein dimers. In contrast, activation of expression by TyrR appears to require phenylalanine but not ATP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A J Pittard
- Microbiology Department, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
50
|
Muday GK, Johnson DI, Somerville RL, Herrmann KM. The tyrosine repressor negatively regulates aroH expression in Escherichia coli. J Bacteriol 1991; 173:3930-2. [PMID: 1675635 PMCID: PMC208031 DOI: 10.1128/jb.173.12.3930-3932.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The levels of the tryptophan-sensitive isoenzyme of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Escherichia coli, encoded by the aroH gene, were elevated in tyrR and/or trpR mutants. The effect of tyrR and trpR lesions on aroH expression was confirmed by using a lacZ reporter system. The mutational elimination of either repressor led to a threefold increase in beta-galactosidase.
Collapse
Affiliation(s)
- G K Muday
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-6799
| | | | | | | |
Collapse
|