1
|
Xu Y, Lin Z, Hou J, Ye K, Han S, Liang Y, Liang H, Wu S, Tao Y, Gao H. A bacterial transcription activator dedicated to the expression of the enzyme catalyzing the first committed step in fatty acid biosynthesis. Nucleic Acids Res 2024; 52:12930-12944. [PMID: 39475184 PMCID: PMC11602165 DOI: 10.1093/nar/gkae960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed and rate-limiting step of de novo fatty acid synthesis (FAS). Although this step is tightly regulated, regulators that specifically control transcription of the ACCase genes remain elusive. In this study, we identified LysR-type transcriptional regulator AccR as a dedicated activator for the transcription of accS, a gene encoding a multiple-domain ACCase in Shewanella oneidensis. We showed that AccR interacts with the accS promoter in vivo in response to changes in acetyl-CoA levels and in vitro. Analysis of the crystal structure of the effector-binding domain (EBD) of AccR identified two potential ligand-binding pockets, one of which is likely to bind acetyl-CoA as a ligand based on results from molecular docking, direct binding assay and mutational analysis of the residues predicted to interact with acetyl-CoA. Despite this, the interaction between AccR and acetyl-CoA alone appears unstable, implying that an additional yet unknown ligand is required for activation of AccR. Furthermore, we showed that AccR is acetylated, but the modification may not be critical for sensing acetyl-CoA. Overall, our data substantiate the existence of a dedicated transcriptional regulator for ACCases, expanding our current understanding of the regulation of FAS.
Collapse
Affiliation(s)
- Yuanyou Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zihan Lin
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jiyuan Hou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kai Ye
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Sirui Han
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuxuan Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Huihui Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Shihua Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhi J Tao
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
2
|
Zhang J, Yang G, Liu J, Lin Z, Zhang J, Zhao J, Sun G, Lin H. Glucagon-like peptide-1 analog liraglutide reduces fat deposition in chicken adipocytes. Poult Sci 2024; 103:103766. [PMID: 38759567 PMCID: PMC11107459 DOI: 10.1016/j.psj.2024.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024] Open
Abstract
Previously, we reported that glucagon-like peptide-1 (GLP-1) and its analog liraglutide could inhibit fat de novo synthesis in the liver and reduce abdominal fat accumulation in broiler chickens. Nevertheless, the impact of GLP-1 on adipocyte fat deposition remains enigmatic. This study aimed to investigate the effects of GLP-1, via its analog liraglutide, on chicken chicken adipocytes in vitro. Chemical assays, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were employed to assess the proliferation, differentiation, and fat deposition of chicken adipocytes. Our findings indicated that liraglutide significantly suppressed cell proliferation and promoted preadipocyte differentiation in comparison to the control group. This was evidenced by elevated triglyceride (TG) content and upregulated mRNA expression of lipogenesis-related enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), as well as regulators including peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element binding protein-1 (SREBP1) and CCAAT/enhancer binding protein α (CEBPα). In mature adipocytes, liraglutide attenuated fat deposition by inhibiting fat de novo synthesis, evidenced by decreased mRNA expression of ACC, FAS, PPARγ, C/EBPα, and SREBP1, and concurrent upregulation of phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated ACC (p-ACC). This resulted in reduced accumulation of lipid droplets and TG content in mature adipocytes. Collectively, our findings indicate that liraglutide suppresses the proliferation of preadipocytes, enhances their differentiation, and concurrently inhibits de novo lipogenesis in mature adipocytes. This observation offers profound insights into the mechanisms that underlie liraglutide's anti-adipogenic effects, which could have significant implications for the treatment of obesity in broiler chickens.
Collapse
Affiliation(s)
- Jianmei Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Guangcheng Yang
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Jingbo Liu
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Zhenxian Lin
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Jie Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Jin Zhao
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Guozheng Sun
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Life Sciences and Enology, Tai'shan University, Tai'an, 271018, Shandong, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Tai'an, China.
| |
Collapse
|
3
|
Kairamkonda M, Saxena H, Gulati K, Poluri KM. Analyzing the impact of T7L variants overexpression on the metabolic profile of Escherichia coli. Metabolomics 2024; 20:68. [PMID: 38941046 DOI: 10.1007/s11306-024-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Exploring metabolic changes within host E. coli through an untargeted metabolomic study of T7L variants overexpression to optimize engineered endolysins for clinical/therapeutic use. AIM AND OBJECTIVE This study aims to assess the impact of overexpressing T7L variants on the metabolic profiles of E. coli. The two variants considered include T7L-H37A, which has enhanced lytic activity compared to its wild-type protein, and T7L-H48K, a dead mutant with no significant activity. METHODS 1H NMR-based metabolomics was employed to compare the metabolic profiles of E. coli cells overexpressing T7L wild-type protein and its variants. RESULTS Overexpression of the T7L wild-type (T7L-WT) protein and its variants (T7L-H48K and T7L-H37A) was compared to RNAP overexpression in E. coli cells using 1H NMR-based metabolomics, analyzing a total of 75 annotated metabolites, including organic acids, amino acids, sugars, and nucleic acids. The results showed distinct clustering patterns for the two T7L variant groups compared with the WT, in which the dead mutant (H48K) group showed clustering close to that of RNAP. Pathway impact analysis revealed different effects of T7L variants on E. coli metabolic profiles, with T7L-H48K showing minimal alterations in energy and amino acid pathways linked to osmotic stress compared to noticeable alterations in these pathways for both T7L-H37A and T7L-WT. CONCLUSIONS This study uncovered distinct metabolic fingerprints when comparing the overexpression of active and inactive mutants of T7L lytic enzymes in E. coli cells. These findings could contribute to the optimization and enhancement of suitable endolysins as potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
4
|
Xu X, de Sousa AS, Boram TJ, Jiang W, Lohman JR. Active E. coli heteromeric acetyl-CoA carboxylase forms polymorphic helical tubular filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596234. [PMID: 38854064 PMCID: PMC11160672 DOI: 10.1101/2024.05.28.596234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The Escherichia coli heteromeric acetyl-CoA carboxylase (ACC) has four subunits assumed to form an elusive catalytic complex and are involved in allosteric and transcriptional regulation. The E. coli ACC represents almost all ACCs from pathogenic bacteria making it a key antibiotic development target to fight growing antibiotic resistance. Furthermore, it is a model for cyanobacterial and plant plastid ACCs as biofuel engineering targets. Here we report the catalytic E. coli ACC complex surprisingly forms tubes rather than dispersed particles. The cryo-EM structure reveals key protein-protein interactions underpinning efficient catalysis and how transcriptional regulatory roles are masked during catalysis. Discovering the protein-protein interaction interfaces that facilitate catalysis, allosteric and transcriptional regulation provides new routes to engineering catalytic activity and new targets for drug discovery.
Collapse
Affiliation(s)
- Xueyong Xu
- Department of Biological Sciences, Purdue University; West Lafayette, IN 47907 USA
| | - Amanda Silva de Sousa
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824 USA
- Department of Biochemistry, Purdue University; West Lafayette, IN 47907 USA
| | - Trevor J. Boram
- Department of Biochemistry, Purdue University; West Lafayette, IN 47907 USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University; West Lafayette, IN 47907 USA
| | - Jeremy R. Lohman
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824 USA
- Department of Biochemistry, Purdue University; West Lafayette, IN 47907 USA
| |
Collapse
|
5
|
Moussaoui D, Robblee JP, Robert-Paganin J, Auguin D, Fisher F, Fagnant PM, Macfarlane JE, Schaletzky J, Wehri E, Mueller-Dieckmann C, Baum J, Trybus KM, Houdusse A. Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design. Nat Commun 2023; 14:3463. [PMID: 37308472 PMCID: PMC10261046 DOI: 10.1038/s41467-023-38976-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.
Collapse
Affiliation(s)
- Dihia Moussaoui
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France
- Structural Biology group, European Synchrotron Radiation Facility (ESRF), 71, Avenue des Martyrs, 38000, Grenoble, France
| | - James P Robblee
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France
| | - Daniel Auguin
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE, USC1328, Orléans, France
| | - Fabio Fisher
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Patricia M Fagnant
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Jill E Macfarlane
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, Drug Discovery Center, Berkeley, CA, USA
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, Drug Discovery Center, Berkeley, CA, USA
| | - Christoph Mueller-Dieckmann
- Structural Biology group, European Synchrotron Radiation Facility (ESRF), 71, Avenue des Martyrs, 38000, Grenoble, France
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
- School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Kathleen M Trybus
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA.
| | - Anne Houdusse
- Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248, Paris, France.
| |
Collapse
|
6
|
Petrovskaya LE, Lukashev EP, Lyukmanova EN, Shulepko MA, Kryukova EA, Ziganshin RH, Dolgikh DA, Maksimov EG, Rubin AB, Kirpichnikov MP, Lanyi JK, Balashov SP. Expression of Xanthorhodopsin in Escherichia coli. Protein J 2023:10.1007/s10930-023-10109-5. [DOI: 10.1007/s10930-023-10109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
|
7
|
Kairamkonda M, Sharma M, Gupta P, Poluri KM. Overexpression of bacteriophage T4 and T7 endolysins differentially regulate the metabolic fingerprint of host Escherichia coli. Int J Biol Macromol 2022; 221:212-223. [PMID: 36075302 DOI: 10.1016/j.ijbiomac.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/21/2022]
Abstract
Bioactive proteins are often overexpressed in different host systems for biotechnological/biomedical applications. Endolysins are natural bactericidal proteins that cleave the bacterial peptidoglycan membrane, and have the potential to be the next-generation enzybiotics. Therefore, the present study aims to elucidate the impact of two endolysins (T4L, T7L) overexpression on metabolic fingerprint of E. coli using NMR spectroscopy. The 1H NMR-based metabolomics analysis revealed global metabolite profiles of E. coli in response to endolysins. The study has identified nearly 75 metabolites, including organic acids, amino acids, sugars and nucleic acids. RNA Polymerase (RNAP) has been considered as reference protein for marking the specific alterations in metabolic pathways. The data suggested downregulation of central carbon metabolic pathway in both endolysins overexpression, but to a different extent. Also, the endolysin overexpression have highlighted the enhanced metabolic load and stress generation in the host cells, thus leading to the activation of osmoregulatory pathways. The overall changes in metabolic fingerprint of E. coli highlights the enhanced perturbations during the overexpression of T4L as compared to T7L. These untargeted metabolic studies shed light on the regulation of molecular pathways during the heterologous overexpression of these lytic enzymes that are lethal to the host.
Collapse
Affiliation(s)
- Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Meenakshi Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
8
|
The Classical, Yet Controversial, First Enzyme of Lipid Synthesis: Escherichia coli Acetyl-CoA Carboxylase. Microbiol Mol Biol Rev 2021; 85:e0003221. [PMID: 34132100 DOI: 10.1128/mmbr.00032-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, the building block of fatty acid synthesis, is the paradigm bacterial ACC. Many reports on the structures and stoichiometry of the four subunits comprising the active enzyme as well as on regulation of ACC activity and expression have appeared in the almost 20 years since this subject was last reviewed. This review seeks to update and expand on these reports.
Collapse
|
9
|
Diener C, Hoge ACH, Kearney SM, Kusebauch U, Patwardhan S, Moritz RL, Erdman SE, Gibbons SM. Non-responder phenotype reveals apparent microbiome-wide antibiotic tolerance in the murine gut. Commun Biol 2021; 4:316. [PMID: 33750910 PMCID: PMC7943787 DOI: 10.1038/s42003-021-01841-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Broad spectrum antibiotics cause both transient and lasting damage to the ecology of the gut microbiome. Antibiotic-induced loss of gut bacterial diversity has been linked to susceptibility to enteric infections. Prior work on subtherapeutic antibiotic treatment in humans and non-human animals has suggested that entire gut communities may exhibit tolerance phenotypes. In this study, we validate the existence of these community tolerance phenotypes in the murine gut and explore how antibiotic treatment duration or a diet enriched in antimicrobial phytochemicals might influence the frequency of this phenotype. Almost a third of mice exhibited whole-community tolerance to a high dose of the β-lactam antibiotic cefoperazone, independent of antibiotic treatment duration or dietary phytochemical amendment. We observed few compositional differences between non-responder microbiota during antibiotic treatment and the untreated control microbiota. However, gene expression was vastly different between non-responder microbiota and controls during treatment, with non-responder communities showing an upregulation of antimicrobial tolerance genes, like efflux transporters, and a down-regulation of central metabolism. Future work should focus on what specific host- or microbiome-associated factors are responsible for tipping communities between responder and non-responder phenotypes so that we might learn to harness this phenomenon to protect our microbiota from routine antibiotic treatment.
Collapse
Affiliation(s)
| | | | - Sean M Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
When the metabolism meets the cell cycle in bacteria. Curr Opin Microbiol 2021; 60:104-113. [PMID: 33677348 DOI: 10.1016/j.mib.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Nutrients availability is the sinews of the war for single microbial cells, driving growth and cell cycle progression. Therefore, coordinating cellular processes with nutrients availability is crucial, not only to survive upon famine or fluctuating conditions but also to rapidly thrive and colonize plentiful environments. While metabolism is traditionally seen as a set of chemical reactions taking place in cells to extract energy and produce building blocks from available nutrients, numerous connections between metabolic pathways and cell cycle phases have been documented. The few regulatory systems described at the molecular levels show that regulation is mediated either by a second messenger molecule or by a metabolite and/or a metabolic enzyme. In the latter case, a secondary moonlighting regulatory function evolved independently of the primary catalytic function of the enzyme. In this review, we summarize our current understanding of the complex cross-talks between metabolism and cell cycle in bacteria.
Collapse
|
11
|
Neville SL, Eijkelkamp BA, Lothian A, Paton JC, Roberts BR, Rosch JW, McDevitt CA. Cadmium stress dictates central carbon flux and alters membrane composition in Streptococcus pneumoniae. Commun Biol 2020; 3:694. [PMID: 33214631 PMCID: PMC7678824 DOI: 10.1038/s42003-020-01417-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Metal ion homeostasis is essential for all forms of life. However, the breadth of intracellular impacts that arise upon dysregulation of metal ion homeostasis remain to be elucidated. Here, we used cadmium, a non-physiological metal ion, to investigate how the bacterial pathogen, Streptococcus pneumoniae, resists metal ion stress and dyshomeostasis. By combining transcriptomics, metabolomics and metalloproteomics, we reveal that cadmium stress dysregulates numerous essential cellular pathways including central carbon metabolism, lipid membrane biogenesis and homeostasis, and capsule production at the transcriptional and/or functional level. Despite the breadth of cellular pathways susceptible to metal intoxication, we show that S. pneumoniae is able to maintain viability by utilizing cellular pathways that are predominately metal-independent, such as the pentose phosphate pathway to maintain energy production. Collectively, this work provides insight into the cellular processes impacted by cadmium and how resistance to metal ion toxicity is achieved in S. pneumoniae. Neville et al. investigate how Streptococcus pneumoniae mitigates metal ion stress. Despite cadmium induced dysregulation of central carbon metabolism and lipid membrane homeostasis, they find that S. pneumoniae can remain viable by selectively utilizing predominately metal-independent cellular pathways. This study provides insights into how bacteria overcome metal ion toxicity.
Collapse
Affiliation(s)
- Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Amber Lothian
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Blaine R Roberts
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Posttranslational Control of PlsB Is Sufficient To Coordinate Membrane Synthesis with Growth in Escherichia coli. mBio 2020; 11:mBio.02703-19. [PMID: 32817111 PMCID: PMC7439487 DOI: 10.1128/mbio.02703-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
How do bacterial cells grow without breaking their membranes? Although the biochemistry of fatty acid and membrane synthesis is well known, how membrane synthesis is balanced with growth and metabolism has remained unclear. This is partly due to the many control points that have been discovered within the membrane synthesis pathways. By precisely establishing the contributions of individual pathway enzymes, our results simplify the model of membrane biogenesis in the model bacterial species Escherichia coli. Specifically, we found that allosteric control of a single enzyme, PlsB, is sufficient to balance growth with membrane synthesis and to ensure that growing E. coli cells produce sufficient membrane. Identifying the signals that activate and deactivate PlsB will resolve the issue of how membrane synthesis is synchronized with growth. Every cell must produce enough membrane to contain itself. However, the mechanisms by which the rate of membrane synthesis is coupled with the rate of cell growth remain unresolved. By comparing substrate and enzyme concentrations of the fatty acid and phospholipid synthesis pathways of Escherichia coli across a 3-fold range of carbon-limited growth rates, we show that the rate of membrane phospholipid synthesis during steady-state growth is determined principally through allosteric control of a single enzyme, PlsB. Due to feedback regulation of the fatty acid pathway, PlsB activity also indirectly controls synthesis of lipopolysaccharide, a major component of the outer membrane synthesized from a fatty acid synthesis intermediate. Surprisingly, concentrations of the enzyme that catalyzes the committed step of lipopolysaccharide synthesis (LpxC) do not differ across steady-state growth conditions, suggesting that steady-state lipopolysaccharide synthesis is modulated primarily via indirect control by PlsB. In contrast to steady-state regulation, we found that responses to environmental perturbations are triggered directly via changes in acetyl coenzyme A (acetyl-CoA) concentrations, which enable rapid adaptation. Adaptations are further modulated by ppGpp, which regulates PlsB activity during slow growth and growth arrest. The strong reliance of the membrane synthesis pathway upon posttranslational regulation ensures both the reliability and the responsiveness of membrane synthesis.
Collapse
|
13
|
Dineshkumar K, Aparna V, Wu L, Wan J, Abdelaziz MH, Su Z, Wang S, Xu H. Bacterial bug-out bags: outer membrane vesicles and their proteins and functions. J Microbiol 2020; 58:531-542. [DOI: 10.1007/s12275-020-0026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
|
14
|
Peroxisome proliferator-activated receptor-coactivator 1-beta (PGC-1β) modulates the expression of genes involved in adipogenesis during preadipocyte differentiation in chicken. Gene 2020; 741:144516. [PMID: 32119914 DOI: 10.1016/j.gene.2020.144516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/21/2022]
Abstract
To study the influence of the PGC-1β gene on chicken adipocyte proliferation and differentiation, we constructed RNA interference (RNAi) vectors that target the PGC-1β gene and transfected these vectors into adipocytes. Oil Red O staining and a CCK-8 cell kit were used to determine cell triglyceride accumulation status and cell proliferation after transfection, respectively. The mRNA abundances of PGC-1β and adipocyte-differentiation-related genes (PPARγ, C/EBPα, SREBP-1c, FAS, and A-FABP) were detected by real-time PCR. The results showed that the mRNA and protein abundances of PGC-1β in PGC-1β-shRNA transfected adipocytes were significantly lower than those in the control. Interference decreased cell differentiation, but did not depress the cell proliferation. PGC-1β interference impeded the triglyceride accumulation, the mRNA expression levels of nuclear receptors PPARγ and SREBP-1c, and fatty acid synthetase (FAS), and both proteins PPARγ and SREBP-1c, and the fatty acids transporting protein A-FABP. Generally, PGC-1β modulated the cell differentiation and triglyceride accumulation in chicken adipocytes.
Collapse
|
15
|
Scheel RA, Fusi AD, Min BC, Thomas CM, Ramarao BV, Nomura CT. Increased Production of the Value-Added Biopolymers Poly( R-3-Hydroxyalkanoate) and Poly(γ-Glutamic Acid) From Hydrolyzed Paper Recycling Waste Fines. Front Bioeng Biotechnol 2019; 7:409. [PMID: 31921814 PMCID: PMC6930151 DOI: 10.3389/fbioe.2019.00409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022] Open
Abstract
Reject fines, a waste stream of short lignocellulosic fibers produced from paper linerboard recycling, are a cellulose-rich paper mill byproduct that can be hydrolyzed enzymatically into fermentable sugars. In this study, the use of hydrolyzed reject fines as a carbon source for bacterial biosynthesis of poly(R-3-hydroxyalkanoate) (PHA) and poly(γ-glutamic acid) (PGA) was investigated. Recombinant Escherichia coli harboring PHA biosynthesis genes were cultivated with purified sugars or crude hydrolysate to produce both poly(R-3-hydroxybutyrate) (PHB) homopolymer and medium chain length-containing copolymer (PHB-co-MCL). Wild-type Bacillus licheniformis WX-02 were cultivated with crude hydrolysate to produce PGA. Both PHB and short chain-length-co-medium chain-length (SCL-co-MCL) PHA yields from crude hydrolysate were a 2-fold improvement over purified sugars, and the MCL monomer fraction was decreased slightly in copolymers produced from crude hydrolysate. PGA yield from crude hydrolysate was similarly increased 2-fold. The results suggest that sugars from hydrolyzed reject fines are a viable carbon source for PHA and PGA biosynthesis. The use of crude hydrolysate is not only possible but beneficial for biopolymer production, eliminating the need for costly separation and purification techniques. This study demonstrates the potential to divert a lignocellulosic waste stream into valuable biomaterials, mitigating the environmental impacts of solid waste disposal.
Collapse
Affiliation(s)
- Ryan A Scheel
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Alexander D Fusi
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Byeong C Min
- Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Christopher M Thomas
- Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Bandaru V Ramarao
- Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Christopher T Nomura
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States.,Center for Applied Microbiology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| |
Collapse
|
16
|
A Novel Gene Contributing to the Initiation of Fatty Acid Biosynthesis in Escherichia coli. J Bacteriol 2019; 201:JB.00354-19. [PMID: 31331975 DOI: 10.1128/jb.00354-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022] Open
Abstract
Type II fatty acid biosynthesis in bacteria can be broadly classified into the initiation and elongation phases. The biochemical functions defining each step in the two phases have been studied in vitro Among the β-ketoacyl-acyl carrier protein (ACP) synthases, FabH catalyzes the initiation reaction, while FabB and FabF, which primarily catalyze the elongation reaction, can also drive initiation as side reactions. A role for FabB and FabF in the initiation of fatty acid biosynthesis would be supported by the viability of the ΔfabH mutant. In this study, we show that the ΔfabH and ΔyiiD mutations were synthetically lethal and that ΔfabH ΔrelA ΔspoT and ΔfabH ΔdksA synthetic lethality was rescued by the heterologous expression of yiiD In the ΔfabH mutant, the expression of yiiD was positively regulated by (p)ppGpp. The growth defect, reduced cell size, and altered fatty acid profile of the ΔfabH mutant and the growth defect of the ΔfabH ΔfabF fabB15(Ts) mutant in oleate- and palmitate-supplemented medium at 42°C were rescued by the expression of yiiD from a multicopy plasmid. Together, these results indicate that the yiiD-encoded function supported initiation of fatty acid biosynthesis in the absence of FabH. We have renamed yiiD as fabY IMPORTANCE Fatty acid biosynthesis is an essential process conserved across life forms. β-Ketoacyl-ACP synthases are essential for fatty acid biosynthesis. FabH is a β-ketoacyl-ACP synthase that contributes to the initiation of fatty acid biosynthesis in Escherichia coli In this study, we present genetic and biochemical evidence that the yiiD (renamed fabY)-encoded function contributes to the biosynthesis of fatty acid in the absence of FabH activity and that under these conditions, the expression of FabY was regulated by the stringent response factors (p)ppGpp and DksA. Combined inactivation of FabH and FabY resulted in growth arrest, possibly due to the loss of fatty acid biosynthesis. A molecule(s) that inhibits the two activities can be an effective microbicide.
Collapse
|
17
|
Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Biotin-mediated growth and gene expression in Staphylococcus aureus is highly responsive to environmental biotin. Appl Microbiol Biotechnol 2018; 102:3793-3803. [PMID: 29508030 DOI: 10.1007/s00253-018-8866-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
Biotin (Vitamin B7) is a critical enzyme co-factor in metabolic pathways important for bacterial survival. Biotin is obtained either from the environment or by de novo synthesis, with some bacteria capable of both. In certain species, the bifunctional protein BirA plays a key role in biotin homeostasis as it regulates expression of biotin biosynthetic enzymes in response to biotin demand and supply. Here, we compare the effect of biotin on the growth of two bacteria that possess a bifunctional BirA, namely Escherichia coli and Staphylococcus aureus. Unlike E. coli that could fulfill its biotin requirements through de novo synthesis, S. aureus showed improved growth rates in media supplemented with 10 nM biotin. S. aureus also accumulated more radiolabeled biotin from the media highlighting its ability to efficiently scavenge exogenous material. These data are consistent with S. aureus colonizing low biotin microhabitats. We also demonstrate that the S. aureus BirA protein is a transcriptional repressor of BioY, a subunit of the biotin transporter, and an operon containing yhfT and yhfS, the products of which have a putative role in fatty acid homeostasis. Increased expression of bioY is proposed to help cue S. aureus for efficient scavenging in low biotin environments.
Collapse
|
19
|
He C, Custer G, Wang J, Matysiak S, Beckett D. Superrepression through Altered Corepressor–Activated Protein:Protein Interactions. Biochemistry 2018; 57:1119-1129. [DOI: 10.1021/acs.biochem.7b01122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenlu He
- Department of Chemistry & Biochemistry and ‡Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregory Custer
- Department of Chemistry & Biochemistry and ‡Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jingheng Wang
- Department of Chemistry & Biochemistry and ‡Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Department of Chemistry & Biochemistry and ‡Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Dorothy Beckett
- Department of Chemistry & Biochemistry and ‡Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Shin KS, Lee SK. Introduction of an acetyl-CoA carboxylation bypass into Escherichia coli for enhanced free fatty acid production. BIORESOURCE TECHNOLOGY 2017; 245:1627-1633. [PMID: 28596074 DOI: 10.1016/j.biortech.2017.05.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effect of the methylmalonyl-CoA carboxyltransferase (MMC) of Propionibacterium freudenreichii on production of free fatty acid (FFA) in Escherichia coli. Overexpression of the MMC exhibited a 44% increase in FFA titer. Co-overexpression of MMC and phosphoenolpyruvate carboxylase (PPC), which supplies the MMC precursor, further improved the titer by 40%. Expression of malic enzyme (MaeB) led to a 23% increase in FFA titer in the acetyl-CoA carboxylase (ACC)-overexpressing cells, but no increase in the MMC-overexpressing cells. The highest FFA production in the MMC-overexpressing strain was achieved through the addition of aspartic acid, which can be converted into oxaloacetate (OAA), resulting in a 120% increased titer compared with that in the ACC-overexpressing strain. These findings demonstrate that MMC provides an alternative pathway for malonyl-CoA synthesis and increases fatty acid production.
Collapse
Affiliation(s)
- Kwang Soo Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
21
|
Bookwalter CS, Tay CL, McCrorie R, Previs MJ, Lu H, Krementsova EB, Fagnant PM, Baum J, Trybus KM. Reconstitution of the core of the malaria parasite glideosome with recombinant Plasmodium class XIV myosin A and Plasmodium actin. J Biol Chem 2017; 292:19290-19303. [PMID: 28978649 PMCID: PMC5702669 DOI: 10.1074/jbc.m117.813972] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Indexed: 11/08/2022] Open
Abstract
Motility of the apicomplexan malaria parasite Plasmodium falciparum is enabled by a multiprotein glideosome complex, whose core is the class XIV myosin motor, PfMyoA, and a divergent Plasmodium actin (PfAct1). Parasite motility is necessary for host-cell invasion and virulence, but studying its molecular basis has been hampered by unavailability of sufficient amounts of PfMyoA. Here, we expressed milligram quantities of functional full-length PfMyoA with the baculovirus/Sf9 cell expression system, which required a UCS (UNC-45/CRO1/She4p) family myosin chaperone from Plasmodium spp. In addition to the known light chain myosin tail interacting protein (MTIP), we identified an essential light chain (PfELC) that co-purified with PfMyoA isolated from parasite lysates. The speed at which PfMyoA moved actin was fastest with both light chains bound, consistent with the light chain–binding domain acting as a lever arm to amplify nucleotide-dependent motions in the motor domain. Surprisingly, PfELC binding to the heavy chain required that MTIP also be bound to the heavy chain, unlike MTIP that bound the heavy chain independently of PfELC. Neither the presence of calcium nor deletion of the MTIP N-terminal extension changed the speed of actin movement. Of note, PfMyoA moved filaments formed from Sf9 cell–expressed PfAct1 at the same speed as skeletal muscle actin. Duty ratio estimates suggested that as few as nine motors can power actin movement at maximal speed, a feature that may be necessitated by the dynamic nature of Plasmodium actin filaments in the parasite. In summary, we have reconstituted the essential core of the glideosome, enabling drug targeting of both of its core components to inhibit parasite invasion.
Collapse
Affiliation(s)
- Carol S Bookwalter
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Chwen L Tay
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Rama McCrorie
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Michael J Previs
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Hailong Lu
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Elena B Krementsova
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Patricia M Fagnant
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Jake Baum
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Kathleen M Trybus
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| |
Collapse
|
22
|
Impact of Membrane Phospholipid Alterations in Escherichia coli on Cellular Function and Bacterial Stress Adaptation. J Bacteriol 2017; 199:JB.00849-16. [PMID: 28439040 DOI: 10.1128/jb.00849-16] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/20/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria have evolved multiple strategies to sense and rapidly adapt to challenging and ever-changing environmental conditions. The ability to alter membrane lipid composition, a key component of the cellular envelope, is crucial for bacterial survival and adaptation in response to environmental stress. However, the precise roles played by membrane phospholipids in bacterial physiology and stress adaptation are not fully elucidated. The goal of this study was to define the role of membrane phospholipids in adaptation to stress and maintenance of bacterial cell fitness. By using genetically modified strains in which the membrane phospholipid composition can be systematically manipulated, we show that alterations in major Escherichia coli phospholipids transform these cells globally. We found that alterations in phospholipids impair the cellular envelope structure and function, the ability to form biofilms, and bacterial fitness and cause phospholipid-dependent susceptibility to environmental stresses. This study provides an unprecedented view of the structural, signaling, and metabolic pathways in which bacterial phospholipids participate, allowing the design of new approaches in the investigation of lipid-dependent processes involved in bacterial physiology and adaptation.IMPORTANCE In order to cope with and adapt to a wide range of environmental conditions, bacteria have to sense and quickly respond to fluctuating conditions. In this study, we investigated the effects of systematic and controlled alterations in bacterial phospholipids on cell shape, physiology, and stress adaptation. We provide new evidence that alterations of specific phospholipids in Escherichia coli have detrimental effects on cellular shape, envelope integrity, and cell physiology that impair biofilm formation, cellular envelope remodeling, and adaptability to environmental stresses. These findings hold promise for future antibacterial therapies that target bacterial lipid biosynthesis.
Collapse
|
23
|
Vadia S, Tse JL, Lucena R, Yang Z, Kellogg DR, Wang JD, Levin PA. Fatty Acid Availability Sets Cell Envelope Capacity and Dictates Microbial Cell Size. Curr Biol 2017; 27:1757-1767.e5. [PMID: 28602657 DOI: 10.1016/j.cub.2017.05.076] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 02/01/2023]
Abstract
Nutrients-and by extension biosynthetic capacity-positively impact cell size in organisms throughout the tree of life. In bacteria, cell size is reduced 3-fold in response to nutrient starvation or accumulation of the alarmone ppGpp, a global inhibitor of biosynthesis. However, whether biosynthetic capacity as a whole determines cell size or whether particular anabolic pathways are more important than others remains an open question. Here we identify fatty acid synthesis as the primary biosynthetic determinant of Escherichia coli size and present evidence supporting a similar role for fatty acids as a positive determinant of size in the Gram-positive bacterium Bacillus subtilis and the single-celled eukaryote Saccharomyces cerevisiae. Altering fatty acid synthesis recapitulated the impact of altering nutrients on cell size and morphology, whereas defects in other biosynthetic pathways had either a negligible or fatty-acid-dependent effect on size. Together, our findings support a novel "outside-in" model in which fatty acid availability sets cell envelope capacity, which in turn dictates cell size. In the absence of ppGpp, limiting fatty acid synthesis leads to cell lysis, supporting a role for ppGpp as a linchpin linking expansion of cytoplasmic volume to the growth of the cell envelope to preserve cellular integrity.
Collapse
Affiliation(s)
- Stephen Vadia
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jessica L Tse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rafael Lucena
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Zhizhou Yang
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Douglas R Kellogg
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
24
|
Wang J, Beckett D. A conserved regulatory mechanism in bifunctional biotin protein ligases. Protein Sci 2017; 26:1564-1573. [PMID: 28466579 DOI: 10.1002/pro.3182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 11/10/2022]
Abstract
Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
25
|
Jeschek M, Bahls MO, Schneider V, Marlière P, Ward TR, Panke S. Biotin-independent strains of Escherichia coli for enhanced streptavidin production. Metab Eng 2017; 40:33-40. [DOI: 10.1016/j.ymben.2016.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/13/2016] [Accepted: 12/26/2016] [Indexed: 11/16/2022]
|
26
|
Refined experimental annotation reveals conserved corrinoid autotrophy in chloroform-respiring Dehalobacter isolates. ISME JOURNAL 2016; 11:626-640. [PMID: 27898054 DOI: 10.1038/ismej.2016.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/25/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022]
Abstract
Two novel chlorinated alkane-respiring Dehalobacter restrictus strains CF and DCA were isolated from the same enrichment culture, ACT-3, and characterized. The closed genomes of these highly similar sister strains were previously assembled from metagenomic sequence data and annotated. The isolation of the strains enabled experimental verification of predicted annotations, particularly focusing on irregularities or predicted gaps in central metabolic pathways and cofactor biosynthesis. Similar to D. restrictus strain PER-K23, strains CF and DCA require arginine, histidine and threonine for growth, although the corresponding biosynthesis pathways are predicted to be functional. Using strain CF to experimentally verify annotations, we determined that the predicted defective serine biosynthesis pathway can be rescued with a promiscuous serine hydroxymethyltransferase. Strain CF grew without added thiamine although the thiamine biosynthesis pathway is predicted to be absent; intracellular thiamine diphosphate, the cofactor of carboxylases in central metabolism, was not detected in cell extracts. Thus, strain CF may use amino acids to replenish central metabolites, portending entangled metabolite exchanges in ACT-3. Consistent with annotation, strain CF possesses a functional corrinoid biosynthesis pathway, demonstrated by increasing corrinoid content during growth and guided cobalamin biosynthesis in corrinoid-free medium. Chloroform toxicity to corrinoid-producing methanogens and acetogens may drive the conservation of corrinoid autotrophy in Dehalobacter strains. Heme detection in strain CF cell extracts suggests the 'archaeal' heme biosynthesis pathway also functions in anaerobic Firmicutes. This study reinforces the importance of incorporating enzyme promiscuity and cofactor availability in genome-scale functional predictions and identifies essential nutrient interdependencies in anaerobic dechlorinating microbial communities.
Collapse
|
27
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate proteins.
Collapse
|
28
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
29
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate protein.
Collapse
|
30
|
Irzik K, van Ooyen J, Gätgens J, Krumbach K, Bott M, Eggeling L. Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum. J Biotechnol 2015; 192 Pt A:96-101. [PMID: 25449109 DOI: 10.1016/j.jbiotec.2014.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/02/2014] [Accepted: 10/23/2014] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum, like Mycobacterium tuberculosis, is a member of the Corynebacteriales, which have linear fatty acids and as branched fatty acids the mycolic acids. We identified accD1 and fasA as key genes of fatty acid synthesis, encoding the β-subunit of the acetyl-CoA carboxylase and a type-I fatty acid synthase, respectively, and observed their repression during growth on minimal medium with acetate. We also identified the transcriptional regulator FasR and its binding sites in the 5′ upstream regions of accD1 and fasA. In the present work we establish by co-isolation and gel-mobility shifts oleoyl-CoA and palmitoyl-CoA as effectors of FasR, and show by DNA microarray analysis that in presence of exogeneous fatty acids accD1 and fasA are repressed. These results are evidence that acyl-CoA derivatives derived from extracellular fatty acids interact with FasR to repress the genes of fatty acid synthesis. This model also explains the observed repression of accD1 and fasA during growth on acetate, where apparently the known high intracellular acetyl-CoA concentration during growth on this substrate requires reduced accD1 and fasA expression for fine control of de novo fatty acid synthesis. Consequently, this mechanism ensures that membrane lipid homeostasis is maintained when specific nutrients are available resulting in increased acetyl-CoA concentration, as is the case with acetate, or when fatty acids are directly available from the extracellular environment. However, the genes specific to mycolic acid synthesis, which are in part shared with linear fatty acid synthesis, are not controlled by FasR, which is in agreement with the fact that they can not be supplied from the extracellular environment but that their synthesis fully depends on a constant supply of linear fatty acid chains.
Collapse
|
31
|
The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism. mBio 2015; 6:e00591. [PMID: 26060274 PMCID: PMC4462617 DOI: 10.1128/mbio.00591-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. Our findings show that Francisella novicida has evolved two functional biotin protein ligases, BplA and BirA. BplA is a much more efficient enzyme than BirA, and its expression is significantly induced upon infection of macrophages. Only BplA is required for F. novicida pathogenicity, whereas BirA prevents wasteful biotin synthesis. These data demonstrate that the atypical occurrence of two biotin protein ligases in F. novicida is linked to distinct roles in virulence and biotin metabolism.
Collapse
|
32
|
Waldrop GL. The role of symmetry in the regulation of bacterial carboxyltransferase. Biomol Concepts 2015; 2:47-52. [PMID: 25962018 DOI: 10.1515/bmc.2011.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Carboxyltransferase is one component of the multifunctional enzyme acetyl-CoA carboxylase which catalyzes the first committed step in fatty acid biosynthesis. Carboxyltransferase is an α2β2 heterotetramer and possesses two distinct but integrated functions. One function catalyzes the transfer of carbon dioxide from biotin to acetyl-CoA, whereas the other involves binding to the mRNA encoding both subunits. When carboxyltransferase binds to the mRNA both enzymatic activity and translation of the mRNA are inhibited. However, the substrate acetyl-CoA competes with mRNA for binding. Thus, mRNA binding by carboxyltransferase provides an effective mechanism for regulating enzymatic activity and gene expression. This conceptual review takes the position that regulation of enzymatic activity and gene expression of carboxyltransferase by binding to its own mRNA is at its most fundamental level the result of the symmetry in the chemical reaction catalyzed by the enzyme. The chemical reaction is symmetrical in that both substrates generate enolate anions during the course of catalysis. The chemical symmetry led to a structural symmetry in the enzyme where both the α and β subunits contain oxyanion holes that stabilize the enolate anions. Then the region of the mRNA that codes for the oxyanion holes provided the binding sites for carboxyltransferase. Thus, the symmetry of the chemical reaction formed the foundation for the evolution of the mechanism for regulation of carboxyltransferase.
Collapse
|
33
|
Ewald J, Kötzing M, Bartl M, Kaleta C. Footprints of optimal protein assembly strategies in the operonic structure of prokaryotes. Metabolites 2015; 5:252-69. [PMID: 25927816 PMCID: PMC4495372 DOI: 10.3390/metabo5020252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/27/2015] [Accepted: 04/24/2015] [Indexed: 11/23/2022] Open
Abstract
In this work, we investigate optimality principles behind synthesis strategies for protein complexes using a dynamic optimization approach. We show that the cellular capacity of protein synthesis has a strong influence on optimal synthesis strategies reaching from a simultaneous to a sequential synthesis of the subunits of a protein complex. Sequential synthesis is preferred if protein synthesis is strongly limited, whereas a simultaneous synthesis is optimal in situations with a high protein synthesis capacity. We confirm the predictions of our optimization approach through the analysis of the operonic organization of protein complexes in several hundred prokaryotes. Thereby, we are able to show that cellular protein synthesis capacity is a driving force in the dissolution of operons comprising the subunits of a protein complex. Thus, we also provide a tested hypothesis explaining why the subunits of many prokaryotic protein complexes are distributed across several operons despite the presumably less precise co-regulation.
Collapse
Affiliation(s)
- Jan Ewald
- Research Group Theoretical Systems Biology, Friedrich-Schiller-Universität Jena, Leutragraben 1, 07743 Jena, Germany.
| | - Martin Kötzing
- Research Group Theoretical Systems Biology, Friedrich-Schiller-Universität Jena, Leutragraben 1, 07743 Jena, Germany.
| | - Martin Bartl
- Research Group Theoretical Systems Biology, Friedrich-Schiller-Universität Jena, Leutragraben 1, 07743 Jena, Germany.
| | - Christoph Kaleta
- Research Group Theoretical Systems Biology, Friedrich-Schiller-Universität Jena, Leutragraben 1, 07743 Jena, Germany.
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany.
| |
Collapse
|
34
|
Reassessment of the Genetic Regulation of Fatty Acid Synthesis in Escherichia coli: Global Positive Control by the Dual Functional Regulator FadR. J Bacteriol 2015; 197:1862-72. [PMID: 25802297 DOI: 10.1128/jb.00064-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/11/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED In Escherichia coli, the FadR transcriptional regulator represses the expression of fatty acid degradation (fad) genes. However, FadR is also an activator of the expression of fabA and fabB, two genes involved in unsaturated fatty acid synthesis. Therefore, FadR plays an important role in maintaining the balance between saturated and unsaturated fatty acids in the membrane. We recently showed that FadR also activates the promoter upstream of the fabH gene (L. My, B. Rekoske, J. J. Lemke, J. P. Viala, R. L. Gourse, and E. Bouveret, J Bacteriol 195:3784-3795, 2013, doi:10.1128/JB.00384-13). Furthermore, recent transcriptomic and proteomic data suggested that FadR activates the majority of fatty acid (FA) synthesis genes. In the present study, we tested the role of FadR in the expression of all genes involved in FA synthesis. We found that FadR activates the transcription of all tested FA synthesis genes, and we identified the FadR binding site for each of these genes. This necessitated the reassessment of the transcription start sites for accA and accB genes described previously, and we provide evidence for the presence of multiple promoters driving the expression of these genes. We showed further that regulation by FadR impacts the amount of FA synthesis enzymes in the cell. Our results show that FadR is a global regulator of FA metabolism in E. coli, acting both as a repressor of catabolism and an activator of anabolism, two directly opposing pathways. IMPORTANCE In most bacteria, a transcriptional regulator tunes the level of FA synthesis enzymes. Oddly, such a global regulator still was missing for E. coli, which nonetheless is one of the prominent model bacteria used for engineering biofuel production using the FA synthesis pathway. Our work identifies the FadR functional dual regulator as a global activator of almost all FA synthesis genes in E. coli. Because FadR also is the repressor of FA degradation, FadR acts both as a repressor and an activator of the two opposite pathways of FA degradation and synthesis. Our results show that there are still discoveries waiting to be made in the understanding of the genetic regulation of FA synthesis, even in the very well-known bacterium E. coli.
Collapse
|
35
|
Vadia S, Levin PA. Growth rate and cell size: a re-examination of the growth law. Curr Opin Microbiol 2015; 24:96-103. [PMID: 25662920 PMCID: PMC4380629 DOI: 10.1016/j.mib.2015.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/27/2014] [Accepted: 01/10/2015] [Indexed: 11/25/2022]
Abstract
Research into the mechanisms regulating bacterial cell size has its
origins in a single paper published over 50 years ago. In it Schaechter and
colleagues made the observation that the chemical composition and size of a
bacterial cell is a function of growth rate, independent of the medium used to
achieve that growth rate, a finding that is colloquially referred to as the
growth law. Recent findings hint at unforeseen complexity in the growth law, and
suggest that nutrients rather than growth rate are the primary arbiter of size.
The emerging picture suggests that size is a complex, multifactorial phenomenon
mediated through the varied impacts of central carbon metabolism on cell cycle
progression and biosynthetic capacity.
Collapse
Affiliation(s)
- Stephen Vadia
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO 63130, United States
| | - Petra Anne Levin
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO 63130, United States.
| |
Collapse
|
36
|
Silvers MA, Robertson GT, Taylor CM, Waldrop GL. Design, Synthesis, and Antibacterial Properties of Dual-Ligand Inhibitors of Acetyl-CoA Carboxylase. J Med Chem 2014; 57:8947-59. [DOI: 10.1021/jm501082n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Molly A. Silvers
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Gregory T. Robertson
- Department
of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Carol M. Taylor
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Grover L. Waldrop
- Division
of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
37
|
Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol. Metab Eng 2014; 25:82-91. [PMID: 25014174 DOI: 10.1016/j.ymben.2014.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 01/15/2023]
Abstract
Crude glycerol, generated as waste by-product in biodiesel production process, has been considered as an important carbon source for converting to value-added bioproducts recently. Free fatty acids (FFAs) can be used as precursors for the production of biofuels or biochemicals. Microbial biosynthesis of FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase into Escherichia coli. In this study, the effect of metabolic manipulation of FFAs synthesis cycle, host genetic background and cofactor engineering on FFAs production using glycerol as feed stocks was investigated. The highest concentration of FFAs produced by the engineered stain reached 4.82g/L with the yield of 29.55% (g FFAs/g glycerol), about 83% of the maximum theoretical pathway value by the type II fatty acid synthesis pathway. In addition, crude glycerol from biodiesel plant was also used as feedstock in this study. The FFA production was 3.53g/L with a yield of 24.13%. The yield dropped slightly when crude glycerol was used as a carbon source instead of pure glycerol, while it still can reach about 68% of the maximum theoretical pathway yield.
Collapse
|
38
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
39
|
Liu H, Cheng T, Xian M, Cao Y, Fang F, Zou H. Fatty acid from the renewable sources: A promising feedstock for the production of biofuels and biobased chemicals. Biotechnol Adv 2014; 32:382-9. [DOI: 10.1016/j.biotechadv.2013.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/18/2022]
|
40
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Korkhovoy VI, Blume YB. Biodiesel from microalgae: Ways for increasing the effectiveness of lipid accumulation by genetic engineering methods. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713060030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli. Appl Environ Microbiol 2013; 80:564-73. [PMID: 24212579 DOI: 10.1128/aem.02376-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently. Using this vector set, each of the central carbon metabolism genes was silenced individually, and the accumulation of metabolites was investigated. We were able to obtain accurate information on ways to increase the production of pyruvate, an industrially valuable compound, from the silencing results. Furthermore, the experimental results of pyruvate accumulation were compared to in silico predictions, and both sets of results were consistent. Compared to the gene disruption approach, the silencing approach has an advantage in that any E. coli strain can be used and multiple gene silencing is easily possible in any combination.
Collapse
|
43
|
Adikaram PR, Beckett D. Protein:protein interactions in control of a transcriptional switch. J Mol Biol 2013; 425:4584-94. [PMID: 23896299 DOI: 10.1016/j.jmb.2013.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 12/01/2022]
Abstract
Protein partner exchange plays a key role in regulating many biological switches. Although widespread, the mechanisms dictating protein partner identity and, therefore, the outcome of a switch have been determined for a limited number of systems. The Escherichia coli protein BirA undergoes a switch between posttranslational biotin attachment and transcription repression in response to cellular biotin demand. Moreover, the functional switch reflects formation of alternative mutually exclusive protein:protein interactions by BirA. Previous studies provided a set of alanine-substituted BirA variants with altered kinetic and equilibrium parameters of forming these interactions. In this work, DNase I footprinting measurements were employed to investigate the consequences of these altered properties for the outcome of the BirA functional switch. The results support a mechanism in which BirA availability for DNA binding and, therefore, transcription repression is controlled by the rate of the competing protein:protein interaction. However, occupancy of the transcriptional regulatory site on DNA by BirA is exquisitely tuned by the equilibrium constant governing its homodimerization.
Collapse
Affiliation(s)
- Poorni R Adikaram
- Department of Chemistry and Biochemistry, College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
44
|
Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. J Bacteriol 2013; 195:3784-95. [PMID: 23772072 DOI: 10.1128/jb.00384-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, FadR and FabR are transcriptional regulators that control the expression of fatty acid degradation and unsaturated fatty acid synthesis genes, depending on the availability of fatty acids. In this report, we focus on the dual transcriptional regulator FadR. In the absence of fatty acids, FadR represses the transcription of fad genes required for fatty acid degradation. However, FadR is also an activator, stimulating transcription of the products of the fabA and fabB genes responsible for unsaturated fatty acid synthesis. In this study, we show that FadR directly activates another fatty acid synthesis promoter, PfabH, which transcribes the fabHDG operon, indicating that FadR is a global regulator of both fatty acid degradation and fatty acid synthesis. We also demonstrate that ppGpp and its cofactor DksA, known primarily for their role in regulation of the synthesis of the translational machinery, directly inhibit transcription from the fabH promoter. ppGpp also inhibits the fadR promoter, thereby reducing transcription activation of fabH by FadR indirectly. Our study shows that both ppGpp and FadR have direct roles in the control of fatty acid promoters, linking expression in response to both translation activity and fatty acid availability.
Collapse
|
45
|
|
46
|
Lennen RM, Pfleger BF. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 2012; 30:659-67. [PMID: 23102412 PMCID: PMC3856887 DOI: 10.1016/j.tibtech.2012.09.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/15/2022]
Abstract
Fatty acid metabolism has received significant attention as a route for producing high-energy density, liquid transportation fuels and high-value oleochemicals from renewable feedstocks. If microbes can be engineered to produce these compounds at yields that approach the theoretical limits of 0.3-0.4 g/g glucose, then processes can be developed to replace current petrochemical technologies. Here, we review recent metabolic engineering efforts to maximize production of free fatty acids (FFA) in Escherichia coli, the first step towards production of downstream products. To date, metabolic engineers have succeeded in achieving higher yields of FFA than any downstream products. Regulation of fatty acid metabolism and the physiological effects of fatty acid production will also be reviewed from the perspective of identifying future engineering targets.
Collapse
Affiliation(s)
- Rebecca M Lennen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
47
|
Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc Natl Acad Sci U S A 2012; 109:E2561-8. [PMID: 22908292 DOI: 10.1073/pnas.1209742109] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cell size varies greatly among different types of cells, but the range in size that a specific cell type can reach is limited. A long-standing question in biology is how cells control their size. Escherichia coli adjusts size and growth rate according to the availability of nutrients so that it grows larger and faster in nutrient-rich media than in nutrient-poor media. Here, we describe how, using classical genetics, we have isolated a remarkably small E. coli mutant that has undergone a 70% reduction in cell volume with respect to wild type. This mutant lacks FabH, an enzyme involved in fatty acid biosynthesis that previously was thought to be essential for the viability of E. coli. We demonstrate that although FabH is not essential in wild-type E. coli, it is essential in cells that are defective in the production of the small-molecule and global regulator ppGpp. Furthermore, we have found that the loss of FabH causes a reduction in the rate of envelope growth and renders cells unable to regulate cell size properly in response to nutrient excess. Therefore we propose a model in which fatty acid biosynthesis plays a central role in regulating the size of E. coli cells in response to nutrient availability.
Collapse
|
48
|
Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M. Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Fact 2012; 11:41. [PMID: 22471973 PMCID: PMC3428649 DOI: 10.1186/1475-2859-11-41] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/03/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. RESULTS In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing 'TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn't strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-'tesA-ΔfadL) produced 4.8 g L⁻¹ extracellular fatty acid, with the specific productivity of 0.02 g h⁻¹ g⁻¹ dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-'tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain pACY-'tesA could also be chosen as the original strain for the next genetic manipulations. CONCLUSIONS The general strategy of metabolic engineering for the extracellular fatty acid production should be the cyclic optimization between cultivation performance and strain improvements. On the basis of our cultivation process optimization, strain improvements should be further carried out for the effective and cost-effective production process.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Chao Yu
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dexin Feng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Tao Cheng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xin Meng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wei Liu
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Huibin Zou
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
49
|
Adikaram PR, Beckett D. Functional versatility of a single protein surface in two protein:protein interactions. J Mol Biol 2012; 419:223-33. [PMID: 22446587 DOI: 10.1016/j.jmb.2012.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/18/2022]
Abstract
The ability of the Escherichia coli protein BirA to function as both a metabolic enzyme and a transcription repressor relies on the use of a single surface for two distinct protein:protein interactions. BirA forms a heterodimer with the biotin acceptor protein of acetyl-coenzyme A carboxylase and catalyzes posttranslational biotinylation. Alternatively, it forms a homodimer that binds sequence-specifically to DNA to repress transcription initiation at the biotin biosynthetic operon. Several surface loops on BirA, two of which exhibit sequence conservation in all biotin protein ligases and the remainder of which are highly variable, are located at the two interfaces. The function of these loops in both homodimerization and biotin transfer was investigated by characterizing alanine-substituted variants at 18 positions of one constant and three variable loops. Sedimentation equilibrium measurements reveal that 11 of the substitutions, which are distributed throughout conserved and variable loops, significantly alter homodimerization energetics. By contrast, steady-state and single-turnover kinetic measurements indicate that biotin transfer to biotin carboxyl carrier protein is impacted by seven substitutions, the majority of which are in the constant loop. Furthermore, constant loop residues that function in biotin transfer also support homodimerization. The results reveal clues about the evolution of a single protein surface for use in two distinct functions.
Collapse
Affiliation(s)
- Poorni R Adikaram
- Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
50
|
Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 2011; 194:686-701. [PMID: 22139505 DOI: 10.1128/jb.06112-11] [Citation(s) in RCA: 366] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not "poised" upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments.
Collapse
|