1
|
Tian R, Rehm FBH, Czernecki D, Gu Y, Zürcher JF, Liu KC, Chin JW. Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli. Science 2024; 383:421-426. [PMID: 38271510 DOI: 10.1126/science.adk1281] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024]
Abstract
The evolution of new function in living organisms is slow and fundamentally limited by their critical mutation rate. Here, we established a stable orthogonal replication system in Escherichia coli. The orthogonal replicon can carry diverse cargos of at least 16.5 kilobases and is not copied by host polymerases but is selectively copied by an orthogonal DNA polymerase (O-DNAP), which does not copy the genome. We designed mutant O-DNAPs that selectively increase the mutation rate of the orthogonal replicon by two to four orders of magnitude. We demonstrate the utility of our system for accelerated continuous evolution by evolving a 150-fold increase in resistance to tigecycline in 12 days. And, starting from a GFP variant, we evolved a 1000-fold increase in cellular fluorescence in 5 days.
Collapse
Affiliation(s)
- Rongzhen Tian
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fabian B H Rehm
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Dariusz Czernecki
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Yangqi Gu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jérôme F Zürcher
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kim C Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
2
|
Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1. Virology 2015; 482:225-33. [PMID: 25880114 DOI: 10.1016/j.virol.2015.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/30/2014] [Accepted: 03/22/2015] [Indexed: 11/24/2022]
Abstract
Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES.
Collapse
|
3
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
4
|
Abstract
Archaeal viruses display unusually high genetic and morphological diversity. Studies of these viruses proved to be instrumental for the expansion of knowledge on viral diversity and evolution. The Sulfolobus islandicus rod-shaped virus 2 (SIRV2) is a model to study virus-host interactions in Archaea. It is a lytic virus that exploits a unique egress mechanism based on the formation of remarkable pyramidal structures on the host cell envelope. Using whole-transcriptome sequencing, we present here a global map defining host and viral gene expression during the infection cycle of SIRV2 in its hyperthermophilic host S. islandicus LAL14/1. This information was used, in combination with a yeast two-hybrid analysis of SIRV2 protein interactions, to advance current understanding of viral gene functions. As a consequence of SIRV2 infection, transcription of more than one-third of S. islandicus genes was differentially regulated. While expression of genes involved in cell division decreased, those genes playing a role in antiviral defense were activated on a large scale. Expression of genes belonging to toxin-antitoxin and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems was specifically pronounced. The observed different degree of activation of various CRISPR-Cas systems highlights the specialized functions they perform. The information on individual gene expression and activation of antiviral defense systems is expected to aid future studies aimed at detailed understanding of the functions and interplay of these systems in vivo.
Collapse
|
5
|
Butcher SJ, Manole V, Karhu NJ. Lipid-containing viruses: bacteriophage PRD1 assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:365-77. [PMID: 22297522 DOI: 10.1007/978-1-4614-0980-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PRD1 is a tailless icosahedrally symmetric virus containing an internal lipid membrane beneath the protein capsid. Its linear dsDNA genome and covalently attached terminal proteins are delivered into the cell where replication occurs via a protein-primed mechanism. Extensive studies have been carried out to decipher the roles of the 37 viral proteins in PRD1 assembly, their association in virus particles and lately, especially the functioning of the unique packaging machinery that translocates the genome into the procapsid. These issues will be addressed in this chapter especially in the context of the structure of PRD1. We will also discuss the major challenges still to be addressed in PRD1 assembly.
Collapse
Affiliation(s)
- Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
6
|
Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. Appl Environ Microbiol 2008; 74:6792-6. [PMID: 18791014 DOI: 10.1128/aem.01124-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of a Bacillus anthracis-specific clear plaque mutant phage, AP50c, contains 31 open reading frames spanning 14,398 bp, has two mutations compared to wild-type AP50t, and has a colinear genome architecture highly similar to that of gram-positive Tectiviridae phages. Spontaneous AP50c-resistant B. anthracis mutants exhibit a mucoid colony phenotype.
Collapse
|
7
|
Perera A, Vallverdu M, Claria F, Soria JM, Caminal P. DNA binding site characterization by means of Rényi entropy measures on nucleotide transitions. IEEE Trans Nanobioscience 2008; 7:133-41. [PMID: 18556261 DOI: 10.1109/tnb.2008.2000744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measures such as Rényi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency-based Rényi measures. Results are reported in this work comparing transition frequencies (i.e., dinucleotides) and base frequencies for Shannon and parametric Rényi entropies for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that the information provided by both approaches is not redundant. Furthermore, under the presence of noise in the binding site matrix we observe overall improved robustness of nucleotide transition-based algorithms when compared with nucleotide frequency-based method.
Collapse
Affiliation(s)
- A Perera
- Centre for Biomedical Engineering Research, Technical University of Catalonia, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
8
|
Poranen MM, Ravantti JJ, Grahn AM, Gupta R, Auvinen P, Bamford DH. Global changes in cellular gene expression during bacteriophage PRD1 infection. J Virol 2006; 80:8081-8. [PMID: 16873264 PMCID: PMC1563795 DOI: 10.1128/jvi.00065-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virus-induced changes in cellular gene expression and host physiology have been studied extensively. Still, there are only a few analyses covering the entire viral replication cycle and whole-host gene pool expression at the resolution of a single gene. Here we report changes in Escherichia coli gene expression during bacteriophage PRD1 infection using microarray technology. Relative mRNA levels were systematically measured for over 99% of the host open reading frames throughout the infection cycle. Although drastic modifications could be detected in the expression of individual genes, global changes at the whole-genome level were moderate. Notably, the majority of virus-induced changes took place only after the synthesis of virion components, indicating that there is no major reprogramming of the host during early infection. The most highly induced genes encoded chaparones and other stress-inducible proteins.
Collapse
Affiliation(s)
- Minna M Poranen
- Institute of Biotechnology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 5), 00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
9
|
Bath C, Cukalac T, Porter K, Dyall-Smith ML. His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 2006; 350:228-39. [PMID: 16530800 DOI: 10.1016/j.virol.2006.02.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 11/16/2022]
Abstract
Spindle-shaped viruses are a dominant morphotype in hypersaline waters but their molecular characteristics and their relationship to other archaeal viruses have not been determined. Here, we describe the isolation, characteristics and genome sequence of His2, a spindle-shaped halovirus, and compare it to the previously reported halovirus His1. Their particle dimensions, host-ranges and buoyant densities were found to be similar but they differed in their stabilities to raised temperature, low salinity and chloroform. The genomes of both viruses were linear dsDNA, of similar size (His1, 14,464 bp; His2, 16,067 bp) and mol% G+C (approximately 40%), with long, inverted terminal repeat sequences. The genomic termini of both viruses are likely to possess bound proteins. They shared little nucleotide similarity and, except for their putative DNA polymerase ORFs, no significant similarity at the predicted protein level. A few of the 35 predicted ORFs of both viruses showed significant matches to sequences in GenBank, and these were always to proteins of haloarchaea. Their DNA polymerases showed 42% aa identity, and belonged to the type B group of replicases that use protein-priming. Purified His2 particles were composed of four main proteins (62, 36, 28 and 21 kDa) and the gene for the major capsid protein was identified. Hypothetical proteins similar to His2 VP1 are present in four haloarchaeal genomes but are not part of complete prophages. This, and other evidence, suggests a high frequency of recombination between haloviruses and their hosts. His1 and His2 are unlike fuselloviruses and have been placed in a new virus group, Salterprovirus.
Collapse
Affiliation(s)
- Carolyn Bath
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
10
|
Ravantti JJ, Gaidelyte A, Bamford DH, Bamford JKH. Comparative analysis of bacterial viruses Bam35, infecting a gram-positive host, and PRD1, infecting gram-negative hosts, demonstrates a viral lineage. Virology 2003; 313:401-14. [PMID: 12954208 DOI: 10.1016/s0042-6822(03)00295-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Extra- and intracellular viruses in the biosphere outnumber their cellular hosts by at least one order of magnitude. How is this enormous domain of viruses organized? Sampling of the virosphere has been scarce and focused on viruses infecting humans, cultivated plants, and animals as well as those infecting well-studied bacteria. It has been relatively easy to cluster closely related viruses based on their genome sequences. However, it has been impossible to establish long-range evolutionary relationships as sequence homology diminishes. Recent advances in the evaluation of virus architecture by high-resolution structural analysis and elucidation of viral functions have allowed new opportunities for establishment of possible long-range phylogenic relationships-virus lineages. Here, we use a genomic approach to investigate a proposed virus lineage formed by bacteriophage PRD1, infecting gram-negative bacteria, and human adenovirus. The new member of this proposed lineage, bacteriophage Bam35, is morphologically indistinguishable from PRD1. It infects gram-positive hosts that evolutionarily separated from gram-negative bacteria more than one billion years ago. For example, it can be inferred from structural analysis of the coat protein sequence that the fold is very similar to that of PRD1. This and other observations made here support the idea that a common early ancestor for Bam35, PRD1, and adenoviruses existed.
Collapse
Affiliation(s)
- Janne J Ravantti
- Department of Computer Science, P.O. Box 26, (Teollisuuskatu 23), 00014 University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
11
|
Rydman PS, Bamford DH. Identification and mutational analysis of bacteriophage PRD1 holin protein P35. J Bacteriol 2003; 185:3795-803. [PMID: 12813073 PMCID: PMC161566 DOI: 10.1128/jb.185.13.3795-3803.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 04/05/2003] [Indexed: 11/20/2022] Open
Abstract
Holin proteins are phage-induced integral membrane proteins which regulate the access of lytic enzymes to host cell peptidoglycan at the time of release of progeny viruses by host cell lysis. We describe the identification of the membrane-containing phage PRD1 holin gene (gene XXXV). The PRD1 holin protein (P35, 12.8 kDa) acts similarly to its functional counterpart from phage lambda (gene S), and the defect in PRD1 gene XXXV can be corrected by the presence of gene S of lambda. Several nonsense, missense, and insertion mutations in PRD1 gene XXXV were analyzed. These studies support the overall conclusion that the charged amino acids at the protein C terminus are involved in the timing of host cell lysis.
Collapse
Affiliation(s)
- Pia S Rydman
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | |
Collapse
|
12
|
Männistö RH, Grahn AM, Bamford DH, Bamford JKH. Transcription of bacteriophage PM2 involves phage-encoded regulators of heterologous origin. J Bacteriol 2003; 185:3278-87. [PMID: 12754225 PMCID: PMC155381 DOI: 10.1128/jb.185.11.3278-3287.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage PM2 is the only described member of the Corticoviridae family. It is an icosahedral dsDNA virus with a membrane residing underneath the protein coat. PM2 infects some gram-negative Pseudoalteromonas spp. In the present study, we mapped the viral promoters and showed that the PM2 genome consists of three operons. Four new virus genes were assigned based on their function in transcription. Proteins P15 and P16 are shown to repress early transcription, and proteins P13 and P14 are shown to activate late transcription events. The early regulatory region, containing genes for proteins P15 and P16, as well as the newly identified early promoter region in PM2, has significant sequence similarity with the Pseudoalteromonas pAS28 plasmid. P14, the transcription activator for the structural genes, has a zinc finger motif homologous to archaeal and eukaryotic TFIIS-type regulatory factors.
Collapse
Affiliation(s)
- Riina H Männistö
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, FIN-00014, University of Helsinki, Finland
| | | | | | | |
Collapse
|
13
|
Vilen H, Aalto JM, Kassinen A, Paulin L, Savilahti H. A direct transposon insertion tool for modification and functional analysis of viral genomes. J Virol 2003; 77:123-34. [PMID: 12477817 PMCID: PMC140628 DOI: 10.1128/jvi.77.1.123-134.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Advances in DNA transposition technology have recently generated efficient tools for various types of functional genetic analyses. We demonstrate here the power of the bacteriophage Mu-derived in vitro DNA transposition system for modification and functional characterization of a complete bacterial virus genome. The linear double-stranded DNA genome of Escherichia coli bacteriophage PRD1 was studied by insertion mutagenesis with reporter mini-Mu transposons that were integrated in vitro into isolated genomic DNA. After introduction into bacterial cells by electroporation, recombinant transposon-containing virus clones were identified by autoradiography or visual blue-white screening employing alpha-complementation of E. coli beta-galactosidase. Additionally, a modified transposon with engineered NotI sites at both ends was used to introduce novel restriction sites into the phage genome. Analysis of the transposon integration sites in the genomes of viable recombinant phage generated a functional map, collectively indicating genes and genomic regions essential and nonessential for virus propagation. Moreover, promoterless transposons defined the direction of transcription within several insert-tolerant genomic regions. These strategies for the analysis of viral genomes are of a general nature and therefore may be applied to functional genomics studies in all prokaryotic and eukaryotic cell viruses.
Collapse
Affiliation(s)
- Heikki Vilen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
14
|
Grahn AM, Daugelavicius R, Bamford DH. The small viral membrane-associated protein P32 is involved in bacteriophage PRD1 DNA entry. J Virol 2002; 76:4866-72. [PMID: 11967303 PMCID: PMC136160 DOI: 10.1128/jvi.76.10.4866-4872.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid-containing bacteriophage PRD1 infects a variety of gram-negative cells by injecting its linear double-stranded DNA genome into the host cell cytoplasm, while the protein capsid is left outside. The virus membrane and several structural proteins are involved in phage DNA entry. In this work we identified a new infectivity protein of PRD1. Disruption of gene XXXII resulted in a mutant phenotype defective in phage reproduction. The absence of the protein P32 did not compromise the particle assembly but led to a defect in phage DNA injection. In P32-deficient particles the phage membrane is unable to undergo a structural transformation from a spherical to a tubular form. Since P32(-) particles are able to increase the permeability of the host cell envelope to a degree comparable to that found with wild-type particles, we suggest that the tail-tube formation is needed to eject the DNA from the phage particle rather than to reach the host cell interior.
Collapse
Affiliation(s)
- A Marika Grahn
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
15
|
Rydman PS, Bamford DH. The lytic enzyme of bacteriophage PRD1 is associated with the viral membrane. J Bacteriol 2002; 184:104-10. [PMID: 11741849 PMCID: PMC134774 DOI: 10.1128/jb.184.1.104-110.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 09/26/2001] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage PRD1 encodes two proteins (P7 and P15) that are associated with a muralytic activity. Protein P15 is a soluble beta-1,4-N-acetylmuramidase that causes phage-induced host cell lysis. We demonstrate here that P15 is also a structural component of the PRD1 virion and that it is connected to the phage membrane. Small viral membrane proteins P20 and P22 modulate incorporation of P15 into the virion and may connect it to the phage membrane. The principal muralytic protein involved in PRD1 DNA entry seems to be the putative lytic transglycosylase protein P7, as the absence of protein P15 did not delay initiation of phage DNA replication in the virus-host system used. The incorporation of two different lytic enzymes into virions may reflect the broad host range of bacteriophage PRD1.
Collapse
Affiliation(s)
- Pia S Rydman
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014 University of Helsinki, Finland
| | | |
Collapse
|
16
|
Bamford JK, Bamford DH. A new mutant class, made by targeted mutagenesis, of phage PRD1 reveals that protein P5 connects the receptor binding protein to the vertex. J Virol 2000; 74:7781-6. [PMID: 10933684 PMCID: PMC112307 DOI: 10.1128/jvi.74.17.7781-7786.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage PRD1 and adenovirus share a number of structural and functional similarities, one of which is the vertex organization at the fivefold-symmetry positions. We developed an in vitro mutagenesis system for the linear PRD1 genome in order to make targeted mutations. The role of protein P5 in the vertex structure was examined by this method. Mutation in gene V revealed that protein P5 is essential. The absence of P5 did not compromise the particle assembly or DNA packaging but led to a deficient vertex structure where the receptor binding protein P2, in addition to protein P5, was missing. P5(-) particles also lost their DNA upon purification. Based on this and previously published information we propose a spatial model for the spike structure at the vertices. This resembles to the corresponding structure in adenovirus.
Collapse
Affiliation(s)
- J K Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | |
Collapse
|
17
|
Männistö RH, Kivelä HM, Paulin L, Bamford DH, Bamford JK. The complete genome sequence of PM2, the first lipid-containing bacterial virus To Be isolated. Virology 1999; 262:355-63. [PMID: 10502514 DOI: 10.1006/viro.1999.9837] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage PM2 was isolated from the Pacific Ocean off the coast of Chile in the late 1960s. It was a new virus type, later classified as Corticoviridae, and also the first bacterial virus for which it was demonstrated that lipids are part of the virion structure. Here we report the determination and analysis of the 10, 079-bp circular dsDNA genome sequence. Noteworthy discoveries are the replication initiation system, which is related to the rolling circle mechanism described for phages such as φX174 and P2, and a 1.2-kb sequence that is similar to the maintenance region of a plasmid found in a marine Pseudoalteromonas sp. strain A28.
Collapse
Affiliation(s)
- R H Männistö
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, Helsinki, FIN-00014, Finland
| | | | | | | | | |
Collapse
|
18
|
Caldentey J, Hänninen AL, Holopainen JM, Bamford JK, Kinnunen PK, Bamford DH. Purification and characterization of the assembly factor P17 of the lipid-containing bacteriophage PRD1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:549-58. [PMID: 10095794 DOI: 10.1046/j.1432-1327.1999.00202.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Assembly factors, proteins assisting the formation of viral structures, have been found in many viral systems. The gene encoding the assembly factor P17 of bacteriophage PRD1 has been cloned and expressed in Escherichia coli. P17 acts late in phage assembly, after capsid protein folding and multimerization, and sorting of membrane proteins has occurred. P17 has been purified to near homogeneity. It is a tetrameric protein displaying a rather high heat stability. The protein is largely in an alpha-helical conformation and possesses a putative leucine zipper which is not essential for protein function, as judged by in vitro mutagenesis and complementation analysis. Although heating does not cause structural changes in the conformation of the protein, the dissociation of the tetramer into smaller units is evident as diminished self-quenching of the fluorescently labeled P17. Similarly, dissociation of the tetramer is also obtained by dialysis of the protein against 6-M guanidine hydrochloride (GdnHCl) or 1% SDS. The reassembly of these smaller units upon cooling is evident from resonance energy transfer.
Collapse
Affiliation(s)
- J Caldentey
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
19
|
Robison K, McGuire AM, Church GM. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 1998; 284:241-54. [PMID: 9813115 DOI: 10.1006/jmbi.1998.2160] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major mode of gene regulation occurs via the binding of specific proteins to specific DNA sequences. The availability of complete bacterial genome sequences offers an unprecedented opportunity to describe networks of such interactions by correlating existing experimental data with computational predictions. Of the 240 candidate Escherichia coli DNA-binding proteins, about 55 have DNA-binding sites identified by DNA footprinting. We used these sites to construct recognition matrices, which we used to search for additional binding sites in the E. coli genomic sequence. Many of these matrices show a strong preference for non-coding DNA. Discrepancies are identified between matrices derived from natural sites and those derived from SELEX (Systematic Evolution of Ligands by Exponential enrichment) experiments. We have constructed a database of these proteins and binding sites, called DPInteract (available at http://arep.med.harvard.edu/dpinteract).
Collapse
Affiliation(s)
- K Robison
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
20
|
Ravel J, Schrempf H, Hill RT. Mercury resistance is encoded by transferable giant linear plasmids in two chesapeake bay Streptomyces strains. Appl Environ Microbiol 1998; 64:3383-8. [PMID: 9726886 PMCID: PMC106736 DOI: 10.1128/aem.64.9.3383-3388.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Streptomyces strains CHR3 and CHR28, isolated from the Baltimore Inner Harbor, contained two and one, respectively, giant linear plasmids which carry terminally bound proteins. The plasmids pRJ3L (322 kb), from CHR3, and pRJ28 (330 kb), from CHR28, carry genes homologous to the previously characterized chromosomal Streptomyces lividans 66 operon encoding resistance against mercuric compounds. Both plasmids are transmissible (without any detectable rearrangement) to the chloramphenicol-resistant S. lividans TK24 strain lacking plasmids and carrying a chromosomal deletion of the mer operon. S. lividans TK24 conjugants harboring pRJ3L or pRJ28 exhibited profiles of mercury resistance to mercuric compounds similar to those of Streptomyces strains CHR3 and CHR28.
Collapse
Affiliation(s)
- J Ravel
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | |
Collapse
|
21
|
Abstract
Bacteriophage genomes encode lysozymes whose role is to favour the release of virions by lysis of the host cells or to facilitate infection. In this review, the evolutionary relationships between the phage lysozymes are described. They are grouped into several classes: the V-, the G-, the lambda- and the CH-type lysozymes. The results of structure determinations and of enzymological studies indicate that the enzymes belonging to the first two classes, and possibly the third, share common structural elements with C-type lysozymes (eg. hen egg white lysozyme). The proteins of the fourth class, on the other hand, are structurally similar to the S. erythraeus lysozyme. Several phage lysozymes feature a modular construction: besides the catalytic domain, they contain additional domains or repeated motifs presumed to be important for binding to the bacterial walls and for efficient catalysis. The mechanism of action of these enzymes is described and the role of the important amino acid residues is discussed on the basis of sequence comparisons and of mutational studies. The effects of mutations affecting the structure and of multiple mutations are also discussed, particularly in the case of the T4 lysozyme: from these studies, proteins appear to be quite tolerant of potentially disturbing modifications.
Collapse
Affiliation(s)
- J Fastrez
- Laboratoire de Biochimie Physique et des Biopolymères, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
22
|
Bamford DH, Caldentey J, Bamford JK. Bacteriophage PRD1: a broad host range DSDNA tectivirus with an internal membrane. Adv Virus Res 1995; 45:281-319. [PMID: 7793328 DOI: 10.1016/s0065-3527(08)60064-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D H Bamford
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
23
|
Caldentey J, Hänninen AL, Bamford DH. Gene XV of bacteriophage PRD1 encodes a lytic enzyme with muramidase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:341-6. [PMID: 7925454 DOI: 10.1111/j.1432-1033.1994.00341.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacteriophage PRD1 is a lipid-containing virus that infects a variety of Gram-negative bacteria, including Escherichia coli. The phage lyses its host by virtue of a virally-encoded lytic enzyme, the synthesis of which has been assigned to gene XV on the basis of complementation analysis and experiments with mutant phages. We report here the cloning of gene XV into an expression plasmid and the purification of its product, protein P15, to near homogeneity. The purified protein P15, identified by N-terminal sequence analysis, showed a strong lytic activity against chloroform-treated Gram-negative cells. No activity against Gram-positive bacterial species could be detected. The pH optimum of the enzyme was between 7.0-8.0. Protein P15 was readily inactivated at temperatures above 4 degrees C, as well as by increasing the ionic strength of the buffers. The analysis of cell wall digests indicated that P15 is a glycosidase that cleaves the beta (1-4) linkage between N-acetylmuramic acid and N-acetylglucosamine, thus displaying muramidase activity.
Collapse
Affiliation(s)
- J Caldentey
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|