1
|
Van Nederveen V, Johnson YS, Ortega E, Soc A, Smith MA, Melton-Celsa AR. Role of aggregative adherence fimbriae from enteroaggregative Escherichia coli isolates in biofilm and colonization. Microb Pathog 2025; 203:107444. [PMID: 40032001 DOI: 10.1016/j.micpath.2025.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/10/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Enteroaggregative Escherichia coli (EAEC) are a diverse group of bacteria that cause diarrhea worldwide. EAEC significantly affect travelers to endemic regions, including military personnel, and children in developing countries where EAEC infection is associated with childhood failure-to-thrive. EAEC creates thick biofilms on the intestinal mucosa, a process that is thought to contribute to the development of both diarrhea and childhood failure-to-thrive. Typical EAEC strains encode and produce just one aggregative adherence fimbriae (AAF) out of the five different AAF types. The AAF are required for aggregative adherence to epithelial cells in vitro, but the degree of importance of each of the AAF types in both biofilm formation and pathogenesis is unknown. In this study, we investigated the role of the fimbriae in EAEC biofilms by deleting the major fimbrial subunit gene for the AAF from each of the five AAF categories and observing the impact on biofilm staining from recent EAEC clinical isolates. We found that biofilm was significantly reduced in all strains when the AAF gene was deleted, and that the defect could be overcome by complementation. In this work we also describe a modified murine EAEC model appropriate for colonization studies. In an antibiotic-treated mouse colonization model, some AAF mutant strains were attenuated for colonization, including AAF/II, AAF/IV, and AAF/V isolates. We did not observe complementation of the attenuated colonization phenotype in the mouse model. However, since we found a colonization defect for several EAEC mutant strains of different AAF types, a link between the fimbriae and colonization in the mice is supported. Taken together, our results show that the AAF are required for biofilm formation, and that some AAF contribute to colonization in a mouse model.
Collapse
Affiliation(s)
- Viktoria Van Nederveen
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Yuliya Seldina Johnson
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ennzo Ortega
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Anthony Soc
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | | | - Angela R Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
2
|
Van Nederveen V, Melton-Celsa A. Extracellular components in enteroaggregative Escherichia coli biofilm and impact of treatment with proteinase K, DNase or sodium metaperiodate. Front Cell Infect Microbiol 2024; 14:1379206. [PMID: 38938878 PMCID: PMC11209426 DOI: 10.3389/fcimb.2024.1379206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/29/2024] Open
Abstract
Enteroaggregative E. coli (EAEC) is a major cause of diarrhea worldwide. EAEC are highly adherent to cultured epithelial cells and make biofilms. Both adherence and biofilm formation rely on the presence of aggregative adherence fimbriae (AAF). We compared biofilm formation from two EAEC strains of each of the five AAF types. We found that AAF type did not correlate with the level of biofilm produced. Because the composition of the EAEC biofilm has not been fully described, we stained EAEC biofilms to determine if they contained protein, carbohydrate glycoproteins, and/or eDNA and found that EAEC biofilms contained all three extracellular components. Next, we assessed the changes to the growing or mature EAEC biofilm mediated by treatment with proteinase K, DNase, or a carbohydrate cleavage agent to target the different components of the matrix. Growing biofilms treated with proteinase K had decreased biofilm staining for more than half of the strains tested. In contrast, although sodium metaperiodate only altered the biofilm in a quantitative way for two strains, images of biofilms treated with sodium metaperiodate showed that the EAEC were more spread out. Overall, we found variability in the response of the EAEC strains to the treatments, with no one treatment producing a biofilm change for all strains. Finally, once formed, mature EAEC biofilms were more resistant to treatment than biofilms grown in the presence of those same treatments.
Collapse
Affiliation(s)
- Viktoria Van Nederveen
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Angela Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
3
|
Jønsson R, Björling A, Midtgaard SR, Jensen GV, Skar-Gislinge N, Arleth L, Matthews S, Krogfelt KA, Jenssen H. Aggregative adherence fimbriae form compact structures as seen by SAXS. Sci Rep 2023; 13:16516. [PMID: 37783694 PMCID: PMC10545799 DOI: 10.1038/s41598-023-42079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Bacterial colonization is mediated by fimbriae, which are thin hair-like appendages dispersed from the bacterial surface. The aggregative adherence fimbriae from enteroaggregative E. coli are secreted through the outer membrane and consist of polymerized minor and major pilin subunits. Currently, the understanding of the structural morphology and the role of the minor pilin subunit in the polymerized fimbriae are limited. In this study we use small-angle X-ray scattering to reveal the structural morphology of purified fimbriae in solution. We show that the aggregative fimbriae are compact arrangements of subunit proteins Agg5A + Agg3B which are assembled pairwise on a flexible string rather than extended in relatively straight filaments. Absence of the minor subunit leads to less compact fimbriae, but did not affect the length. The study provides novel insights into the structural morphology and assembly of the aggregative adherence fimbriae. Our study suggests that the minor subunit is not located at the tip of the fimbriae as previously speculated but has a higher importance for the assembled fimbriae by affecting the global structure.
Collapse
Affiliation(s)
- Rie Jønsson
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark.
| | | | | | | | | | - Lise Arleth
- Niels Bohr Institute, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Steve Matthews
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London, UK
| | | | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark.
| |
Collapse
|
4
|
Genetic and Antimicrobial Resistance Profiles of Mammary Pathogenic E. coli (MPEC) Isolates from Bovine Clinical Mastitis. Pathogens 2022; 11:pathogens11121435. [PMID: 36558768 PMCID: PMC9781227 DOI: 10.3390/pathogens11121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mammary pathogenic E. coli (MPEC) is one of the main pathogens of environmental origin responsible for causing clinical mastitis worldwide. Even though E. coli are strongly associated with transient or persistent mastitis and the economic impacts of this disease, the virulence factors involved in the pathogenesis of MPEC remain unknown. Our aim was to characterize 110 MPEC isolates obtained from the milk of cows with clinical mastitis, regarding the virulence factor-encoding genes present, adherence patterns on HeLa cells, and antimicrobial resistance profile. The MPEC isolates were classified mainly in phylogroups A (50.9%) and B1 (38.2%). None of the isolates harbored genes used for diarrheagenic E. coli classification, but 26 (23.6%) and 4 (3.6%) isolates produced the aggregative or diffuse adherence pattern, respectively. Among the 22 genes investigated, encoding virulence factors associated with extraintestinal pathogenic E. coli pathogenesis, fimH (93.6%) was the most frequent, followed by traT (77.3%) and ompT (68.2%). Pulsed-field gel electrophoresis analysis revealed six pulse-types with isolates obtained over time, thus indicating persistent intramammary infections. The genes encoding beta-lactamases detected were as follows: blaTEM (35/31.8%); blaCTX-M-2/blaCTX-M-8 (2/1.8%); blaCTX-M-15 and blaCMY-2 (1/0.9%); five isolates were classified as extended spectrum beta-lactamase (ESBL) producers. As far as we know, papA, shf, ireA, sat and blaCTX-M-8 were detected for the first time in MPEC. In summary, the genetic profile of the MPEC studied was highly heterogeneous, making it impossible to establish a common genetic profile useful for molecular MPEC classification. Moreover, the detection of ESBL-producing isolates is a serious public health concern.
Collapse
|
5
|
Freire CA, Rodrigues BO, Elias WP, Abe CM. Adhesin related genes as potential markers for the enteroaggregative Escherichia coli category. Front Cell Infect Microbiol 2022; 12:997208. [DOI: 10.3389/fcimb.2022.997208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important cause of diarrhea in children and adults worldwide. This pathotype is phenotypically characterized by the aggregative-adherence (AA) pattern in HEp-2 cells and genetically associated to the presence of the aatA gene. EAEC pathogenesis relies in different virulence factors. At least, three types of adhesins have been specifically associated with EAEC strains: the five variants of the aggregative adherence fimbriae (AAF), the aggregative forming pilus (AFP) and more recently, a fibrilar adhesin named CS22. Our study aimed to evaluate the presence of AAF, AFP and CS22-related genes among 110 EAEC strains collected from feces of children with diarrhea. The presence of aggR (EAEC virulence regulator) and genes related to AAFs (aggA, aafA, agg3A, agg4A, agg5A and agg3/4C), AFP (afpA1 and afpR) and CS22 (cseA) was detected by PCR, and the adherence patterns were evaluated on HeLa cells. aggR-positive strains comprised 83.6% of the collection; among them, 80.4% carried at least one AAF-related gene and presented the AA pattern. aggA was the most frequent AAF-related gene (28.4% of aggR+ strains). cseA was detected among aggR+ (16.3%) and aggR- strains (22.2%); non-adherent strains or strains presenting AA pattern were observed in both groups. afpR and afpA1 were exclusively detected among aggR- strains (77.8%), most of which (71.4%) also presented AA pattern. Our results indicate that AAF- and AFP-related genes may contribute to identify EAEC strains, while the presence of cseA and its importance as an EAEC virulence factor and genotypic marker needs to be further evaluated.
Collapse
|
6
|
Discovery of Bacterial Fimbria-Glycan Interactions Using Whole-Cell Recombinant Escherichia coli Expression. mBio 2021; 12:mBio.03664-20. [PMID: 33622724 PMCID: PMC8545135 DOI: 10.1128/mbio.03664-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli alone. Some E. coli CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other E. coli CU fimbria types remains poorly characterized. Here, we used a recombinant E. coli strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant E. coli expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease.
Collapse
|
7
|
Schiller P, Knödler M, Berger P, Greune L, Fruth A, Mellmann A, Dersch P, Berger M, Dobrindt U. The Superior Adherence Phenotype of E. coli O104:H4 is Directly Mediated by the Aggregative Adherence Fimbriae Type I. Virulence 2021; 12:346-359. [PMID: 33356871 PMCID: PMC7834096 DOI: 10.1080/21505594.2020.1868841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Whereas the O104:H4 enterohemorrhagic Escherichia coli (EHEC) outbreak strain from 2011 expresses aggregative adherence fimbriae of subtype I (AAF/I), its close relative, the O104:H4 enteroaggregative Escherichia coli (EAEC) strain 55989, encodes AAF of subtype III. Tight adherence mediated by AAF/I in combination with Shiga toxin 2 production has been suggested to result in the outbreak strain’s exceptional pathogenicity. Furthermore, the O104:H4 outbreak strain adheres significantly better to cultured epithelial cells than archetypal EAEC strains expressing different AAF subtypes. To test whether AAF/I expression is associated with the different virulence phenotypes of the outbreak strain, we heterologously expressed AAF subtypes I, III, IV, and V in an AAF-negative EAEC 55989 mutant and compared AAF-mediated phenotypes, incl. autoaggregation, biofilm formation, as well as bacterial adherence to HEp-2 cells. We observed that the expression of all four AAF subtypes promoted bacterial autoaggregation, though with different kinetics. Disturbance of AAF interaction on the bacterial surface via addition of α-AAF antibodies impeded autoaggregation. Biofilm formation was enhanced upon heterologous expression of AAF variants and inversely correlated with the autoaggregation phenotype. Co-cultivation of bacteria expressing different AAF subtypes resulted in mixed bacterial aggregates. Interestingly, bacteria expressing AAF/I formed the largest bacterial clusters on HEp-2 cells, indicating a stronger host cell adherence similar to the EHEC O104:H4 outbreak strain. Our findings show that, compared to the closely related O104:H4 EAEC strain 55989, not only the acquisition of the Shiga toxin phage, but also the acquisition of the AAF/I subtype might have contributed to the increased EHEC O104:H4 pathogenicity.
Collapse
Affiliation(s)
| | - Michael Knödler
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Lilo Greune
- Institute for Infectiology, University of Münster , Münster, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute , Wernigerode, Germany
| | | | - Petra Dersch
- Institute for Infectiology, University of Münster , Münster, Germany
| | - Michael Berger
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster , Münster, Germany
| |
Collapse
|
8
|
Yasir M, Icke C, Abdelwahab R, Haycocks JR, Godfrey RE, Sazinas P, Pallen MJ, Henderson IR, Busby SJW, Browning DF. Organization and architecture of AggR-dependent promoters from enteroaggregative Escherichia coli. Mol Microbiol 2018; 111:534-551. [PMID: 30485564 PMCID: PMC6392122 DOI: 10.1111/mmi.14172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 11/27/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC), is a diarrhoeagenic human pathogen commonly isolated from patients in both developing and industrialized countries. Pathogenic EAEC strains possess many virulence determinants, which are thought to be involved in causing disease, though, the exact mechanism by which EAEC causes diarrhoea is unclear. Typical EAEC strains possess the transcriptional regulator, AggR, which controls the expression of many virulence determinants, including the attachment adherence fimbriae (AAF) that are necessary for adherence to human gut epithelial cells. Here, using RNA‐sequencing, we have investigated the AggR regulon from EAEC strain 042 and show that AggR regulates the transcription of genes on both the bacterial chromosome and the large virulence plasmid, pAA2. Due to the importance of fimbriae, we focused on the two AAF/II fimbrial gene clusters in EAEC 042 (afaB‐aafCB and aafDA) and identified the promoter elements and AggR‐binding sites required for fimbrial expression. In addition, we examined the organization of the fimbrial operon promoters from other important EAEC strains to understand the rules of AggR‐dependent activation. Finally, we generated a series of semi‐synthetic promoters to define the minimal sequence required for AggR‐mediated activation and show that the correct positioning of a single AggR‐binding site is sufficient to confer AggR‐dependence.
Collapse
Affiliation(s)
- Muhammad Yasir
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Christopher Icke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Radwa Abdelwahab
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - James R Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
10
|
Jønsson R, Struve C, Boll EJ, Boisen N, Joensen KG, Sørensen CA, Jensen BH, Scheutz F, Jenssen H, Krogfelt KA. A Novel pAA Virulence Plasmid Encoding Toxins and Two Distinct Variants of the Fimbriae of Enteroaggregative Escherichia coli. Front Microbiol 2017; 8:263. [PMID: 28275371 PMCID: PMC5320562 DOI: 10.3389/fmicb.2017.00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an increasingly recognized pathogen associated with acute and persistent diarrhea worldwide. While EAEC strains are considered highly heterogeneous, aggregative adherence fimbriae (AAFs) are thought to play a pivotal role in pathogenicity by facilitating adherence to the intestinal mucosa. In this study, we optimized an existing multiplex PCR to target all known AAF variants, which are distinguished by differences in their pilin subunits. We applied the assay on a collection of 162 clinical Danish EAEC strains and interestingly found six, by SNP analysis phylogenetically distinct, strains harboring the major pilin subunits from both AAF/III and AAF/V. Whole-genome and plasmid sequencing revealed that in these six strains the agg3A and agg5A genes were located on a novel pAA plasmid variant. Moreover, the plasmid also encoded several other virulence genes including some not previously found on pAA plasmids. Thus, this plasmid endows the host strains with a remarkably high number of EAEC associated virulence genes hereby likely promoting strain pathogenicity.
Collapse
Affiliation(s)
- Rie Jønsson
- Department of Science and Environment, Roskilde UniversityRoskilde, Denmark; Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Erik J Boll
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Nadia Boisen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Katrine G Joensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Camilla A Sørensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Betina H Jensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Flemming Scheutz
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University Roskilde, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| |
Collapse
|
11
|
Gupta D, Sharma M, Sarkar S, Thapa BR, Chakraborti A. Virulence determinants in enteroaggregative Escherichia coli from North India and their interaction in in vitro organ culture system. FEMS Microbiol Lett 2016; 363:fnw189. [PMID: 27493010 DOI: 10.1093/femsle/fnw189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important diarrhoeal pathogen causing diseases in multiple epidemiological and clinical settings. In developing countries like India, diarrhoeal diseases are one of the major killers among paediatric population and oddly, few studies are available from Indian paediatric population on the variability of EAEC virulence genes. In this study, we examined the distribution of plasmid and chromosomal-encoded virulence determinants in EAEC isolates, and analysed cytokines response generated against EAEC with specific aggregative adherence fimbriae (AAF) type in duodenal biopsies using in vitro organ culture (IVOC) mimicking in vivo conditions. Different virulence marker combinations among strains were reflected as a function of specific adhesins signifying EAEC heterogeneity. fis gene emerged as an important genetic marker apart from aggA and aap Further, EAEC infection in IVOC showed upregulation of IL-8, IL-1β, IL-6, TNF-α and TLR-5 expression. EAEC with AAFII induced significant TLR-5 and IL-8 response, conceivably owing to more pathogenicity markers. This study sheds light on the pattern of EAEC pathotypes prevalent in North Indian paediatric population and highlights the presence of unique virulence combinations in pathogenic strains. Thus, evident diversity in EAEC virulence and multifaceted bacteria-host crosstalk can provide useful insights for the strategic management of diarrhoeal diseases in India, where diarrhoeal outbreaks are more frequent.
Collapse
Affiliation(s)
- Deepika Gupta
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Monica Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Subendu Sarkar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - B R Thapa
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
12
|
Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence. Microbiol Spectr 2016; 2. [PMID: 26104460 DOI: 10.1128/microbiolspec.ehec-0008-2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.
Collapse
|
13
|
Abstract
Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression.
Collapse
|
14
|
Effect of Temperature on Fimbrial Gene Expression and Adherence of Enteroaggregative Escherichia coli. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015. [PMID: 26213951 PMCID: PMC4555238 DOI: 10.3390/ijerph120808631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The influence of temperature on bacterial virulence has been studied worldwide from the viewpoint of climate change and global warming. The bacterium enteroaggregative Escherichia coli (EAEC) is the causative agent of watery diarrhea and shows an increasing incidence worldwide. Its pathogenicity is associated with the virulence factors aggregative adherence fimbria type I and II (AAFI and AAFII), encoded by aggA and aafA in EAEC strains 17-2 and 042, respectively. This study focused on the effect of temperature increases from 29 °C to 40 °C on fimbrial gene expression using real-time PCR, and on its virulence using an aggregative adherence assay and biofilm formation assay. Incubation at 32 °C caused an up-regulation in both EAEC strains 17-2 and strain 042 virulence gene expression. EAEC strain 042 cultured at temperature above 32 °C showed down-regulation of aafA expression except at 38 °C. Interestingly, EAEC cultured at a high temperature showed a reduced adherence to cells and an uneven biofilm formation. These results provide evidence that increases in temperature potentially affect the virulence of pathogenic EAEC, although the response varies in each strain.
Collapse
|
15
|
Ito K, Matsushita S, Yamazaki M, Moriya K, Kurazono T, Hiruta N, Narimatsu H, Ueno N, Isobe J, Yatsuyanagi J, Kumagai N, Hashimoto M, Ratchtrachenchai OA. Association between aggregative adherence fimbriae types including putative new variants and virulence-related genes and clump formation among aggR-positive Escherichia coli strains isolated in Thailand and Japan. Microbiol Immunol 2015; 58:467-73. [PMID: 24961603 DOI: 10.1111/1348-0421.12173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/29/2014] [Accepted: 06/17/2014] [Indexed: 12/23/2022]
Abstract
Enteroaggregative Escherichia coli (EAggEC) are an important cause of diarrhea. Four types of AAF have been identified; however, their prevalence and association with virulence properties remain unclear. E. coli strains carrying the aggR gene as EAggEC that were isolated in Japan and Thailand (n = 90) were examined for AAF subunit genes, two toxin genes (pet/astA), and clump formation. The most prevalent AAF gene was hdaA (28%), followed by aafA (20%), aggA (12%), and agg3A (4%), as well as a putative new AAF sequence (25.6%). Retention status of the toxin genes and intensities of clump formation appeared to vary according to the AAF type.
Collapse
Affiliation(s)
- Kenitiro Ito
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Novel aggregative adherence fimbria variant of enteroaggregative Escherichia coli. Infect Immun 2015; 83:1396-405. [PMID: 25624357 DOI: 10.1128/iai.02820-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) organisms belong to a diarrheagenic pathotype known to cause diarrhea and can be characterized by distinct aggregative adherence (AA) in a stacked-brick pattern to cultured epithelial cells. In this study, we investigated 118 EAEC strains isolated from the stools of Danish adults with traveler's diarrhea. We evaluated the presence of the aggregative adherence fimbriae (AAFs) by a multiplex PCR, targeting the four known major subunit variants as well as their usher-encoding genes. Almost one-half (49/118) of the clinical isolates did not possess any known AAF major fimbrial subunit, despite the presence of other AggR-related loci. Further investigation revealed the presence of an AAF-related gene encoding a yet-uncharacterized adhesin, termed agg5A. The sequence of the agg5DCBA gene cluster shared fimbrial accessory genes (usher, chaperone, and minor pilin subunit genes) with AAF/III, as well as the signal peptide present in the beginning of the agg3A gene. The complete agg5DCBA gene cluster from a clinical isolate, EAEC strain C338-14, with the typical stacked-brick binding pattern was cloned, and deletion of the cluster was performed. Transformation to a nonadherent E. coli HB101 and complementation of the nonadherent C338-14 mutant with the complete gene cluster restored the AA adhesion. Overall, we found the agg5A gene in 12% of the 118 strains isolated from Denmark, suggesting that this novel adhesin represents an important variant.
Collapse
|
17
|
Shiga toxin-producing Escherichia coli O104:H4: An emerging important pathogen in food safety. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA. Chaperone-usher fimbriae of Escherichia coli. PLoS One 2013; 8:e52835. [PMID: 23382825 PMCID: PMC3559732 DOI: 10.1371/journal.pone.0052835] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/22/2012] [Indexed: 11/29/2022] Open
Abstract
Chaperone-usher (CU) fimbriae are adhesive surface organelles common to many Gram-negative bacteria. Escherichia coli genomes contain a large variety of characterised and putative CU fimbrial operons, however, the classification and annotation of individual loci remains problematic. Here we describe a classification model based on usher phylogeny and genomic locus position to categorise the CU fimbrial types of E. coli. Using the BLASTp algorithm, an iterative usher protein search was performed to identify CU fimbrial operons from 35 E. coli (and one Escherichia fergusonnii) genomes representing different pathogenic and phylogenic lineages, as well as 132 Escherichia spp. plasmids. A total of 458 CU fimbrial operons were identified, which represent 38 distinct fimbrial types based on genomic locus position and usher phylogeny. The majority of fimbrial operon types occupied a specific locus position on the E. coli chromosome; exceptions were associated with mobile genetic elements. A group of core-associated E. coli CU fimbriae were defined and include the Type 1, Yad, Yeh, Yfc, Mat, F9 and Ybg fimbriae. These genes were present as intact or disrupted operons at the same genetic locus in almost all genomes examined. Evaluation of the distribution and prevalence of CU fimbrial types among different pathogenic and phylogenic groups provides an overview of group specific fimbrial profiles and insight into the ancestry and evolution of CU fimbriae in E. coli.
Collapse
Affiliation(s)
- Daniël J. Wurpel
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicola K. Petty
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Jin Y, Seung H, Oh Y, Jung J, Jeon S, Lee J, Kim C, Choi S, Chae Y. Epidemiological Relationship of EnterotoxigenicEscherichia coliand EnteroaggregativeE. coliIsolated from Patients with Diarrhea in Seoul. ACTA ACUST UNITED AC 2013. [DOI: 10.4167/jbv.2013.43.1.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Younghee Jin
- Division of Infectious Disease, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Korea
| | - Hyunjung Seung
- Division of Infectious Disease, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Korea
| | - Younghee Oh
- Division of Infectious Disease, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Korea
| | - Jihun Jung
- Division of Infectious Disease, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Korea
| | - Sujin Jeon
- Division of Infectious Disease, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Korea
| | - Jaekyoo Lee
- Division of Infectious Disease, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Korea
| | - ChangKyu Kim
- Division of Infectious Disease, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Korea
| | - Sungmin Choi
- Division of Infectious Disease, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Korea
| | - Youngzoo Chae
- Division of Infectious Disease, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Korea
| |
Collapse
|
20
|
Comparative Study of Commensal and Infectious Escherichia coli’s Virulence Factors at the National Center for Bone Marrow Transplantation in Tunis, Tunisia. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2012. [DOI: 10.1097/ipc.0b013e31824f8c4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Ali MMM, Mohamed ZK, Klena JD, Ahmed SF, Moussa TAA, Ghenghesh KS. Molecular characterization of diarrheagenic Escherichia coli from Libya. Am J Trop Med Hyg 2012; 86:866-71. [PMID: 22556089 DOI: 10.4269/ajtmh.2012.11-0330] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diarrheagenic Escherichia coli (DEC) are important enteric pathogens that cause a wide variety of gastrointestinal diseases, particularly in children. Escherichia coli isolates cultured from 243 diarrheal stool samples obtained from Libyan children and 50 water samples were screened by polymerase chain reaction (PCR) for genes characteristic of enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), and enteroinvasive E. coli (EIEC). The DEC were detected in 21 (8.6%) children with diarrhea; 10 (4.1%) cases were identified as EAEC, 3 (1.2%) as EPEC, and 8 (3.3%) were ETEC; EHEC, and EIEC were not detected. All DEC were grouped phylogenetically by PCR with the majority (> 70%) identified as phylogenetic groups A and B1. The EAEC isolates were also tested for eight genes associated with virulence using PCR. Multi-virulence (≥ 3 virulence factors) was found in 50% of EAEC isolates. Isolated EAEC possessed different virulence traits and belonged to different phylogenetic groups indicating their heterogeneity.
Collapse
|
22
|
Presence of enterohemorrhagic Escherichia coli ST678/O104:H4 in France prior to 2011. Appl Environ Microbiol 2011; 77:8784-6. [PMID: 22003010 DOI: 10.1128/aem.06524-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two isolates of enterohemorrhagic Escherichia coli (EHEC) O104:H4 were isolated in France in 2004 and 2009. Both were characterized and compared to the strain which caused the German outbreak in 2011 and to other O104:H4 strains. This suggests that different O104:H4 EHEC strains were present several years prior to the 2011 outbreak.
Collapse
|
23
|
Zav'yalov V, Zavialov A, Zav'yalova G, Korpela T. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 2009; 34:317-78. [PMID: 20070375 DOI: 10.1111/j.1574-6976.2009.00201.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review summarizes current knowledge on the structure, function, assembly and biomedical applications of the superfamily of adhesive fimbrial organelles exposed on the surface of Gram-negative pathogens with the classical chaperone/usher machinery. High-resolution three-dimensional (3D) structure studies of the minifibers assembling with the FGL (having a long F1-G1 loop) and FGS (having a short F1-G1 loop) chaperones show that they exploit the same principle of donor-strand complementation for polymerization of subunits. The 3D structure of adhesive subunits bound to host-cell receptors and the final architecture of adhesive fimbrial organelles reveal two functional families of the organelles, respectively, possessing polyadhesive and monoadhesive binding. The FGL and FGS chaperone-assembled polyadhesins are encoded exclusively by the gene clusters of the γ3- and κ-monophyletic groups, respectively, while gene clusters belonging to the γ1-, γ2-, γ4-, and π-fimbrial clades exclusively encode FGS chaperone-assembled monoadhesins. Novel approaches are suggested for a rational design of antimicrobials inhibiting the organelle assembly or inhibiting their binding to host-cell receptors. Vaccines are currently under development based on the recombinant subunits of adhesins.
Collapse
|
24
|
Oloomi M, Bouzari S, Emami S. A recombinant hybrid peptide composed of AAF adhesin of enteroaggregative Escherichia coli and Shiga toxin B subunit elicits protective immune response in mice. Eur J Clin Microbiol Infect Dis 2009; 28:1311-6. [PMID: 19655181 DOI: 10.1007/s10096-009-0781-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
Abstract
Shiga toxin producing Escherichia coli (STEC) are a group of diarrheagenic Escherichia coli (E. coli) whereby Shiga toxin is the main virulence factor. It is composed of an A subunit, which mediates toxicity, and a B subunit (StxB), which is a nontoxic homopentameric protein responsible for toxin binding and internalization into target cells by interacting with the glycolipid, globotriaosylceramide (Gb3). Enteroaggregative Escherichia coli (EAEC) are a group of E. coli with aggregative adherence to epithelial cells, which play an important role in its pathogenesis. EAEC are the cause of diarrhea in developing countries and in the developed world. Aggregative adherence fimbria (AAF) of EAEC represents the adhesin that confers the presence of aggregative adherence (AA) phenotype on EAEC strains. The gene encoding non-toxic B subunit of Shiga toxin (StxB) was coupled to aggregative adherence fimbriae (AAF) of the EAEC structural gene. The resulting polypeptides (B-AAF/I, B-AAF/II) were designed to elicit immune response in immunized mice with recombinant peptides. The antibody, hence obtained, inhibited the adherence of prototype EAEC strains to HeLa cells and, on the other hand, protected the immunized mice against a lethal dose of Shiga toxin. Therefore, this promising data could indicate that this kind of polypeptide strategy is a good candidate for any probable vaccine design against diarrheal infection.
Collapse
Affiliation(s)
- M Oloomi
- Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave., 13164, Tehran, Iran
| | | | | |
Collapse
|
25
|
Badri S, Filliol I, Carle I, Hassar M, Fassouane A, Cohen N. Prevalence of virulence genes in Escherichia coli isolated from food in Casablanca (Morocco). Food Control 2009. [DOI: 10.1016/j.foodcont.2008.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Abe CM, Salvador FA, Falsetti IN, Vieira MAM, Blanco J, Blanco JE, Blanco M, Machado AMO, Elias WP, Hernandes RT, Gomes TAT. Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. ACTA ACUST UNITED AC 2008; 52:397-406. [PMID: 18336383 DOI: 10.1111/j.1574-695x.2008.00388.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To analyze whether Escherichia coli strains that cause urinary tract infections (UPEC) share virulence characteristics with the diarrheagenic E. coli (DEC) pathotypes and to recognize their genetic diversity, 225 UPEC strains were examined for the presence of various properties of DEC and UPEC (type of interaction with HeLa cells, serogroups and presence of 30 virulence genes). No correlation between adherence patterns and serogroups was observed. Forty-five serogroups were found, but 64% of the strains belonged to one of the 12 serogroups (O1, O2, O4, O6, O7, O14, O15, O18, O21, O25, O75, and O175) and carried UPEC virulence genes (pap, hly, aer, sfa, cnf). The DEC genes found were: aap, aatA, aggC, agg3C, aggR, astA, eae, ehly, iha, irp2, lpfA(O113), pet, pic, pilS, and shf. Sixteen strains presented aggregative adherence and/or the aatA sequence, which are characteristics of enteroaggregative E. coli (EAEC), one of the DEC pathotypes. In summary, certain UPEC strains may carry DEC virulence properties, mostly associated to the EAEC pathotype. This finding raises the possibility that at least some faecal EAEC strains might represent potential uropathogens. Alternatively, certain UPEC strains may have acquired EAEC properties, becoming a potential cause of diarrhoea.
Collapse
Affiliation(s)
- Cecilia M Abe
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
New adhesin of enteroaggregative Escherichia coli related to the Afa/Dr/AAF family. Infect Immun 2008; 76:3281-92. [PMID: 18443096 DOI: 10.1128/iai.01646-07] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important cause of diarrhea worldwide. We analyzed 17 Danish EAEC strains, isolated in the course of a case control study, for phenotypic and genotypic properties. The strains belonged to at least 14 different serotypes. Using PCR to investigate the prevalence of various putative virulence genes, we found that all but two strains were typical EAEC, as they harbored all or part of the previously described AggR regulon. The majority of the strains harbored genes encoding aggregative adherence fimbriae (AAF). The most common was AAF/I, found in nine strains; eight strains carried no known AAF-related genes. We utilized TnphoA mutagenesis to localize the aggregative adherence (AA) adhesin from one typical EAEC strain, C1010-00, which lacked a known AAF. We identified a TnphoA insertion in a hypothetical Dr-related pilin deposited in GenBank as HdaA. Four additional Danish strains harbored HdaA, and all but one displayed AA to HEp-2 cells. By using PCR primers derived from the pilins and ushers from the three AAF and Hda, we found that 16 of 17 strains exhibited evidence of one of these factors; importantly, the one negative strain also lacked the aggR gene. Cloning of the complete Hda gene cluster and expression in E. coli DH5alpha resulted in AA and complementation of the C1010-00 nonadherent mutant. Four related adhesins have now been found to confer AA in typical EAEC strains; our data suggest that, together, these variants may account for AA in the large majority of strains.
Collapse
|
28
|
Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007; 71:551-75. [PMID: 18063717 PMCID: PMC2168650 DOI: 10.1128/mmbr.00014-07] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed alpha-, beta-, gamma-, kappa-, pi-, and sigma-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | |
Collapse
|
29
|
Zavialov A, Zav'yalova G, Korpela T, Zav'yalov V. FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol Rev 2007; 31:478-514. [PMID: 17576202 DOI: 10.1111/j.1574-6976.2007.00075.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This review summarizes the current knowledge on the structure, function, assembly, and biomedical applications of the family of adhesive fimbrial organelles assembled on the surface of Gram-negative pathogens via the FGL chaperone/usher pathway. Recent studies revealed the unique structural and functional properties of these organelles, distinguishing them from a related family, FGS chaperone-assembled adhesive pili. The FGL chaperone-assembled organelles consist of linear polymers of one or two types of protein subunits, each possessing one or two independent adhesive sites specific to different host cell receptors. This structural organization enables these fimbrial organelles to function as polyadhesins. Fimbrial polyadhesins may ensure polyvalent fastening of bacteria to the host cells, aggregating their receptors and triggering subversive signals that allow pathogens to evade immune defense. The FGL chaperone-assembled fimbrial polyadhesins are attractive targets for vaccine and drug design.
Collapse
Affiliation(s)
- Anton Zavialov
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
30
|
Girardeau JP, Dalmasso A, Bertin Y, Ducrot C, Bord S, Livrelli V, Vernozy-Rozand C, Martin C. Association of virulence genotype with phylogenetic background in comparison to different seropathotypes of Shiga toxin-producing Escherichia coli isolates. J Clin Microbiol 2005; 43:6098-107. [PMID: 16333104 PMCID: PMC1317181 DOI: 10.1128/jcm.43.12.6098-6107.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/01/2005] [Accepted: 09/07/2005] [Indexed: 01/06/2023] Open
Abstract
The distribution of virulent factors (VFs) in 287 Shiga toxin-producing Escherichia coli (STEC) strains that were classified according to Karmali et al. into five seropathotypes (M. A. Karmali, M. Mascarenhas, S. Shen, K. Ziebell, S. Johnson, R. Reid-Smith, J. Isaac-Renton, C. Clark, K. Rahn, and J. B. Kaper, J. Clin. Microbiol. 41:4930-4940, 2003) was investigated. The associations of VFs with phylogenetic background were assessed among the strains in comparison with the different seropathotypes. The phylogenetic analysis showed that STEC strains segregated mainly in phylogenetic group B1 (70%) and revealed the substantial prevalence (19%) of STEC belonging to phylogenetic group A (designated STEC-A). The presence of virulent clonal groups in seropathotypes that are associated with disease and their absence from seropathotypes that are not associated with disease support the concept of seropathotype classification. Although certain VFs (eae, stx(2-EDL933), stx(2-vha), and stx(2-vhb)) were concentrated in seropathotypes associated with disease, others (astA, HPI, stx(1c), and stx(2-NV206)) were concentrated in seropathotypes that are not associated with disease. Taken together with the observation that the STEC-A group was exclusively composed of strains lacking eae recovered from seropathotypes that are not associated with disease, the "atypical" virulence pattern suggests that STEC-A strains comprise a distinct category of STEC strains. A practical benefit of our phylogenetic analysis of STEC strains is that phylogenetic group A status appears to be highly predictive of "nonvirulent" seropathotypes.
Collapse
Affiliation(s)
- Jean Pierre Girardeau
- Institut National de Recherches Agronomiques, Laboratoire de Microbiologie, Centre de Recherche INRA de Clermont Ferrand Theix, 63122 Saint-Genès Champanelle, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Adhesins of Diffusely Adherent and Enteroaggregative Escherichia coli. EcoSal Plus 2005; 1. [PMID: 26443512 DOI: 10.1128/ecosalplus.8.3.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiological studies have implicated enteroaggregative Escherichia coli (EAEC) strains in acute and persistent diarrhea in children, in food-borne diarrhea outbreaks, and in traveler's diarrhea, and this group is recognized as an emerging pathotype of enteric disease. Diffusely adherent E. coli (DAEC) have been implicated as a cause of diarrhea, especially in children more than 2 years old, in both developing and developed countries. Although EAEC and DAEC strains appear to have different molecular equipment for attachment to host cell surfaces, identification and characterization of the gene clusters encoding adherence evidenced close relatedness between those determinants most frequently detected in isolates belonging to these two pathotypes of diarrheagenic E. coli. DAEC strains are a heterogeneous group of E. coli isolates, many of which express the related so-called Dr adhesins. The single designation is based on the identification of one similar cellular receptor for all these proteins. Although structurally different, they all recognize the Dr human blood group antigen on the decay-accelerating factor (DAF or CD55). These adhesins are encoded by a family of closely related operons, the first characterized and sequenced being the afa operon. Consequently, it has been suggested that this group of DAEC strains producing such adhesins be named the Afa/Dr DAEC family. Three distinct but closely related gene clusters coding for phenotypically and morphologically distinct aggregative adherence fimbriae (AAF) have been characterized. In each case, electron microscopy revealed that bacterial surfaces were surrounded by long, relatively flexible fimbrial structures.
Collapse
|
32
|
Torres AG, Zhou X, Kaper JB. Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect Immun 2005; 73:18-29. [PMID: 15618137 PMCID: PMC538947 DOI: 10.1128/iai.73.1.18-29.2005] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | | | | |
Collapse
|
33
|
Kahali S, Sarkar B, Rajendran K, Khanam J, Yamasaki S, Nandy RK, Bhattacharya SK, Ramamurthy T. Virulence characteristics and molecular epidemiology of enteroaggregative Escherichia coli isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 2004; 42:4111-20. [PMID: 15364997 PMCID: PMC516302 DOI: 10.1128/jcm.42.9.4111-4120.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important diarrheal enteropathogen defined by aggregative adherence to cultured epithelial cells. We have detected EAEC from 121 (6.6%) of 1,826 hospitalized patients admitted with diarrhea to the Infectious Diseases Hospital in Kolkata, India. Watery diarrhea was recorded significantly (P = 0.0142) more often in children. The majority of the EAEC isolates were not serotypeable (62%) and showed resistance to five or more antibiotics (76%). We studied different virulence genes and the molecular epidemiology of 121 EAEC isolates recovered from diarrheal patients. A PCR assay for detection of virulence genes, an assay for determination of clump formation in liquid culture, and a HeLa cell adherence assay were carried out to characterize the EAEC isolates. Investigations were also conducted to correlate the virulence gene profiles with diarrheal symptoms and molecular epidemiology by pulsed-field gel electrophoresis (PFGE). Two or more virulence genes were detected in 109 (90.1%) EAEC isolates. In the cluster analysis, some isolates with specific gene profiles and phenotypes formed a group or subcluster. This study highlights the comparative distributions of three fimbrial adhesins and other virulence genes among EAEC isolates. The diverse virulence gene and PFGE profiles, along with the existence of diverse serotypes and antibiograms, suggests that the EAEC isolates are genetically heterogeneous in Kolkata.
Collapse
Affiliation(s)
- Soumen Kahali
- National Institute of Cholera and Enteric Diseases, P-33, CIT Rd., Scheme XM, Beliaghata, Kolkata-700010, India
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zamboni A, Fabbricotti SH, Fagundes-Neto U, Scaletsky ICA. Enteroaggregative Escherichia coli virulence factors are found to be associated with infantile diarrhea in Brazil. J Clin Microbiol 2004; 42:1058-63. [PMID: 15004053 PMCID: PMC356835 DOI: 10.1128/jcm.42.3.1058-1063.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that enteroaggregative Escherichia coli (EAEC) is an important pathogen among Brazilian infants. Most EAEC strains harbor a plasmid (pAA) from which a DNA fragment has been used as a probe (EAEC probe). To better understand the characteristics of EAEC in Brazil, 109 strains carrying and lacking the EAEC probe sequence were tested for the presence of pAA plasmid-borne and chromosomal factors. Common virulence factors of probe-positive and probe-negative isolates included the presence of the Pet, EAST-1, Shf, Irp2, ShET1/Pic, and Hly virulence markers. The presence of AggR or one other virulence factor (AAF/I, AAF/II, AAF/III, or Aap) was predominantly identified only in probe-positive strains. In EAEC probe-positive strains, the virulence marker Aap was found significantly more frequently (P = 0.023) in isolates from children with diarrhea (22%) than in isolates from controls (3%). EAST-1 and Shf were the markers most frequently detected (61%) in EAEC probe-negative strains and were found to be significantly associated with diarrhea (P = 0.003 and P = 0.020, respectively). Furthermore, our data suggest that AggR can be used as an important genetic marker for EAEC probe-positive strains.
Collapse
Affiliation(s)
- Andresa Zamboni
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, 04023-062 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
35
|
Tsai CC, Chen SY, Tsen HY. Screening the enteroaggregative Escherichia coli activity and detection of the aggA, aafA, and astA genes with novel PCR primers for the Escherichia coli isolates from diarrhea cases in Taiwan. Diagn Microbiol Infect Dis 2003; 46:159-65. [PMID: 12867090 DOI: 10.1016/s0732-8893(03)00043-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Enteroaggregative Escherichia coli (EAggEC) are emerging enteropathogens associated with human diarrhea diseases and food poisoning cases. They show distinctive aggregative pattern of adherence to cultured human epithelial cells. However, EAggEC strains are diverse and not all of them have the aggregative adherence fimbria I (AAF/I), AAF/II and heat-stable enterotoxin 1 (EAST1) genes. We attempted to determine the incidence of EAggEC in E. coli isolates from diarrhea patients in Taiwan and to characterize these EAggEC strains. We used three activity assays including HeLa cell adhesion, human blood hemagglutination and bacterial clumping tests and polymerase chain reaction (PCR) primers designed from an aggregative adherence pattern associated plasmid (pCVD432) to screen the EAggEC strains in 403 E. coli isolates including 63 laboratory isolates and 340 clinical isolates obtained from diarrheal disease cases. All these 403 E. coli strains were also assayed with novel PCR primers designed from AAF/I (aggA), AAF/II (aafA) and EAST1 (astA) genes. Results showed that except for the three EAggEC reference strains, only three clinical isolates were identified as EAggEC strains. Including the reference strains, all the E. coli strains with EAggEC activity generated positive PCR results to the aggA gene based primers, but not to the aafA and astA gene targeted primers.
Collapse
Affiliation(s)
- Cheng-Chih Tsai
- Department of Food Science, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | | | | |
Collapse
|
36
|
Piva IC, Pereira AL, Ferraz LR, Silva RSN, Vieira AC, Blanco JE, Blanco M, Blanco J, Giugliano LG. Virulence markers of enteroaggregative Escherichia coli isolated from children and adults with diarrhea in Brasília, Brazil. J Clin Microbiol 2003; 41:1827-32. [PMID: 12734212 PMCID: PMC154701 DOI: 10.1128/jcm.41.5.1827-1832.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains isolated from sporadic cases of acute diarrhea in children and adults and from children without diarrhea were investigated for the presence of the pAA plasmid. Strains harboring the pAA plasmid were isolated at similar frequencies from children with (19.6%) and without (10.8%) diarrhea and from adults with diarrhea (11.8%). The genotypic and phenotypic virulence markers of these strains were further analyzed. Most of the strains were positive for EAST1 (73%), and this toxin was detected significantly more frequently in strains from children with diarrhea than in strains from adults with diarrhea (P < 0.05). Likewise, pic sequences were detected significantly more frequently in strains from children with diarrhea than in strains from adults with diarrhea (P < 0.005) and controls (P < 0.025). Furthermore, the association of pAA positivity (pAA(+)) and pic positivity (pic(+)) was more frequently found for strains from children with diarrhea than for strains from controls, indicating that pAA(+) pic(+) strains may represent a subset of pAA(+) strains associated with disease in children. Most of the strains (82.5%) adhered to cells presenting the typical aggregative pattern. The frequency of occurrence of enteropathogenic E. coli (EPEC) serogroups in the strains from children with diarrhea was very high (56%), while none of the strains from adults with diarrhea belonged to EPEC serogroups. Extraintestinal virulence markers were very commonly found in strains from adults with diarrhea. The frequencies of occurrence of the adhesins AFA and SFA were significantly higher in strains from adults with diarrhea than in strains from children with diarrhea. More than one extraintestinal virulence marker was found in 58% of the strains from adults with diarrhea but in only 7.7% of the strains from children with diarrhea. Our results show that pAA(+) strains isolated from children and adults with diarrhea present very different profiles when enteroaggregative E. coli virulence markers, serotypes, and extraintestinal virulence markers are considered.
Collapse
Affiliation(s)
- Iriane C Piva
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, 70910-900 Brasília DF, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Girardeau JP, Lalioui L, Said AMO, De Champs C, Le Bouguénec C. Extended virulence genotype of pathogenic Escherichia coli isolates carrying the afa-8 operon: evidence of similarities between isolates from humans and animals with extraintestinal infections. J Clin Microbiol 2003; 41:218-26. [PMID: 12517852 PMCID: PMC149575 DOI: 10.1128/jcm.41.1.218-226.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The afimbrial AfaE-VIII adhesin is common among Escherichia coli isolates from calves with intestinal and/or extraintestinal infections and from humans with sepsis or pyelonephritis. The virulence genotypes of 77 Escherichia coli afa-8 isolates from farm animals and humans were compared to determine whether any trait of commonality exists between isolates of the different host species. Over half of the extraintestinal afa-8 isolates were associated with pap and f17Ac adhesin genes and contained virulence genes (pap, hly, and cnf1) which are characteristic of human extraintestinal pathogenic E. coli (ExPEC). PapG, which occurs as three known variants (variants I to III), is encoded by the corresponding three alleles of papG. Among the pap-positive strains, new papG variants (papGrs) that differed from the isolates with genes for the three adhesin classes predominated over isolates with papG allele III, which in turn were more prevalent than those with allele II. The data showed the substantial prevalence of the enteroaggregative E. coli heat-stable enterotoxin gene (east1) among afa-8 isolates. Most of the afa-8 isolates harbored the high-pathogenicity island (HPI) present in pathogenic Yersinia; however, two-thirds of the HPI-positive strains shared a truncated HPI integrase gene. The presence of ExPEC-associated virulence factors (VFs) in extraintestinal isolates that carry genes typical of enteric strains and that express O antigens associated with intestinal E. coli is consistent with transfer of VFs and O-antigen determinants between ExPEC and enteric strains. The similarities between animal and human ExPEC strains support the hypothesis of overlapping populations, with members of certain clones or clonal groups including animal and human strains. The presence of multiple-antibiotic-resistant bovine afa-8 strains among such clones may represent a potential public health risk.
Collapse
Affiliation(s)
- Jean Pierre Girardeau
- Laboratoire de Microbiologie, Centre de Recherche, INRA de Clermont-Ferrand-Theix, 63122 St Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
38
|
Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguénec C, Gounon P, Phillips A, Nataro JP. A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest 2002; 110:1329-37. [PMID: 12417572 PMCID: PMC151617 DOI: 10.1172/jci16172] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Accepted: 08/27/2002] [Indexed: 11/17/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a diarrheal pathogen defined by its characteristic aggregative adherence (AA) to HEp-2 cells in culture. We have previously shown that EAEC strains secrete a 10-kDa protein that is immunogenic in a human EAEC challenge model. We report here that this protein is encoded by a gene (called aap) lying immediately upstream of that encoding the AggR transcriptional activator, and that aap is under AggR control. The product of aap has a typical signal sequence and is secreted to the extracellular milieu, where it remains noncovalently attached to the surface of the bacterium. EAEC aap mutants aggregate more intensely than the wild-type parent in a number of assays, forming larger aggregates and fewer individual bacteria. Infection of colonic biopsies with wild-type EAEC strain 042 and its aap mutant revealed more dramatic autoagglutination of the mutant compared with the wild-type parent. Our data suggest that the aap gene product participates in formation of a surface coat that acts to disperse the bacteria, thus partially counteracting aggregation mediated by aggregative adherence fimbriae. We have therefore named the aap gene product "dispersin," and we propose that it may be representative of a functional class of colonization factors. Since dispersin is expressed in vivo, is highly immunogenic, and is present in most EAEC strains, it holds considerable promise as an EAEC immunogen.
Collapse
Affiliation(s)
- Jalaluddin Sheikh
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mossoro C, Glaziou P, Yassibanda S, Lan NTP, Bekondi C, Minssart P, Bernier C, Le Bouguénec C, Germani Y. Chronic diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome associated with HEp-2 adherent Escherichia coli in adults infected with human immunodeficiency virus in Bangui, Central African Republic. J Clin Microbiol 2002; 40:3086-8. [PMID: 12149388 PMCID: PMC120615 DOI: 10.1128/jcm.40.8.3086-3088.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2002] [Revised: 03/21/2002] [Accepted: 05/07/2002] [Indexed: 11/20/2022] Open
Abstract
In human immunodeficiency virus (HIV)-infected adults from the Central African Republic, the occurrence of chronic diarrhea due to HEp-2 adherent Escherichia coli (EAEC) harboring virulence markers (eaeA, BFP, EAF, astA determinant of EAST/1, positive FAS test, enteropathogenic E. coli O serogroup) was shown to be associated with AIDS. We also show that EAEC that produce verotoxin (Stx2) but do not harbor the genetic markers for classical enterohemorrhagic E. coli are involved in hemorrhagic colitis and hemolytic-uremic syndrome in patients with HIV.
Collapse
Affiliation(s)
- Christian Mossoro
- Unité des Maladies Infectieuses Opportunistes, Institut Pasteur de Bangui, Central African Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zavialov AV, Kersley J, Korpela T, Zav'yalov VP, MacIntyre S, Knight SD. Donor strand complementation mechanism in the biogenesis of non-pilus systems. Mol Microbiol 2002; 45:983-95. [PMID: 12180918 DOI: 10.1046/j.1365-2958.2002.03066.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The F1 antigen of Yersinia pestis belongs to a class of non-pilus adhesins assembled via a classical chaperone-usher pathway. Such pathways consist of PapD-like chaperones that bind subunits and pilot them to the outer membrane usher, where they are assembled into surface structures. In a recombinant Escherichia coli model system, chaperone-subunit (Caf1M:Caf1n) complexes accumulate in the periplasm. Three independent methods showed that these complexes are rod- or coil-shaped linear arrays of Caf1 subunits capped at one end by a single copy of Caf1M chaperone. Deletion and point mutagenesis identified an N-terminal donor strand region of Caf1 that was essential for polymerization in vitro, in the periplasm and at the cell surface, but not for chaperone-subunit interaction. Partial protease digestion of periplasmic complexes revealed that this region becomes buried upon formation of Caf1:Caf1 contacts. These results show that, despite the capsule-like appearance of F1 antigen, the basic structure is assembled as a linear array of subunits held together by intersubunit donor strand complementation. This example shows that strikingly different architectures can be achieved by the same general principle of donor strand complementation and suggests that a similar basic polymer organization will be shared by all surface structures assembled by classical chaperone-usher pathways.
Collapse
Affiliation(s)
- A V Zavialov
- Department of Molecular Biology, Uppsala Biomedical Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Khan MA, Steiner TS. Mechanisms of Emerging Diarrheagenic Escherichia coli Infection. Curr Infect Dis Rep 2002; 4:112-117. [PMID: 11927041 DOI: 10.1007/s11908-002-0050-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Diarrheagenic Escherichia coli organisms are major causes of morbidity and mortality worldwide. Although most strains of E. coli are harmless commensals, a few types have emerged that are capable of disrupting the normal physiology of the human gut, producing illness ranging from watery diarrhea to fatal hemorrhagic colitis. Diarrheagenic E. coli cause infection by a variety of complex mechanisms, some of which are incompletely understood. These include adherence, elaboration of toxigenic mediators, invasion of the intestinal mucosa, and transportation of bacterial proteins into the host cells. Specific components of the host-microbial interaction that cause damage have been identified, increasing our understanding of the mechanisms of diarrhea. This article reviews some of the recent findings about the pathogenesis and infectious processes involved in three emerging pathotypes of this fascinating gram-negative bacterium.
Collapse
Affiliation(s)
- Mohammed A. Khan
- Room D458, Heather Pavilion, 2733 Heather Street, Vancouver, BC V5Z 3J5, Canada.
| | | |
Collapse
|
42
|
|
43
|
|
44
|
Abstract
Enteroaggregative Escherichia coli (EAEC) are an increasingly important cause of diarrhoea. E. coli belonging to this category cause watery diarrhoea, which is often persistent and can be inflammatory. EAEC have been implicated in sporadic diarrhoea in children and adults, in both developing and developed countries, and have been identified as the cause of several outbreaks worldwide. EAEC are defined by their ability to adhere to epithelial cells in a characteristic "stacked-brick" pattern but are otherwise highly heterogeneous. Genes that could contribute to the pathogenicity of EAEC encode adhesins, toxins, and other factors, all of which are only partially conserved. Practicable tools are needed to improve diagnosis and identify risk factors. EAEC-infected individuals can be treated with fluoroquinolones but there is a need to examine alternative treatment protocols.
Collapse
Affiliation(s)
- I N Okeke
- Department of Biomedical Sciences, University of Bradford, West Yorkshire, UK.
| | | |
Collapse
|
45
|
Sheikh J, Hicks S, Dall'Agnol M, Phillips AD, Nataro JP. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 2001; 41:983-97. [PMID: 11555281 DOI: 10.1046/j.1365-2958.2001.02512.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) forms thick biofilms on the intestinal mucosa. Here, we show that most EAEC strains form a biofilm on glass or plastic surfaces when grown in cell culture medium with high sugar and osmolarity. Biofilm-forming ability in two prototype EAEC strains required aggregative adherence fimbriae (AAF), although many other EAEC strains that do not express AAF also developed biofilms under these conditions. Ten thousand transposon mutants of EAEC strain 042 were isolated, and 100 were found to be deficient in biofilm formation. Of these, 93 were either deficient in in vitro growth or mapped to genes known to be required for AAF/II expression. Of the seven remaining insertions, five mapped to one of two unsuspected loci. Two insertions involved the E. coli chromosomal fis gene, a DNA-binding protein that is involved in growth phase-dependent regulation. Using reverse transcription-polymerase chain reaction (RT-PCR), we determined that the effect of fis was at the level of transcription of the AAF/II activator aggR. Biofilm formation also required the product of the yafK gene, which is predicted to encode a secreted 28 kDa protein. The yafK product is required for transcription of AAF/II-encoding genes. Our data do not suggest a role for type 1 fimbriae or motility in biofilm formation. EAEC appears to form a novel biofilm, which may be mediated solely by AAF and may reflect its interactions with the intestinal mucosa.
Collapse
Affiliation(s)
- J Sheikh
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
46
|
Suzart S, Guth BE, Pedroso MZ, Okafor UM, Gomes TA. Diversity of surface structures and virulence genetic markers among enteroaggregative Escherichia coli (EAEC) strains with and without the EAEC DNA probe sequence. FEMS Microbiol Lett 2001; 201:163-8. [PMID: 11470356 DOI: 10.1111/j.1574-6968.2001.tb10751.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The expression of surface structures and the presence of DNA sequences related to putative virulence factors were investigated in 22 enteroaggregative Escherichia coli strains (EAEC). Fimbria was the most frequent (72.7%) structure identified. Only strains hybridising with the EAEC DNA probe carried aggA, but one strain produced a similar but unrelated bundle-like structure. All probe-positive and 62.5% of the probe-negative strains carried the virulence genes tested; aspU and irp2 prevailed among the former strains. The EAEC probe-positive strains were more diverse, and some of these strains, which promoted cell detachment, also carried the hly and pap sequences, thus suggesting they might represent uropathogenic E. coli.
Collapse
Affiliation(s)
- S Suzart
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sãn Paulo, Escola Paulista de Medicina, Brazil
| | | | | | | | | |
Collapse
|
47
|
Nowicki B, Selvarangan R, Nowicki S. Family of Escherichia coli Dr adhesins: decay-accelerating factor receptor recognition and invasiveness. J Infect Dis 2001; 183 Suppl 1:S24-7. [PMID: 11171008 DOI: 10.1086/318846] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- B Nowicki
- Departments of Obstetrics and Gynecology, University of Texas, Medical Branch, 301 University Blvd., Rt. 1062, Galveston, TX 77555-1062, USA.
| | | | | |
Collapse
|
48
|
Lalioui L, Le Bouguénec C. afa-8 Gene cluster is carried by a pathogenicity island inserted into the tRNA(Phe) of human and bovine pathogenic Escherichia coli isolates. Infect Immun 2001; 69:937-48. [PMID: 11159989 PMCID: PMC97973 DOI: 10.1128/iai.69.2.937-948.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently described a new afimbrial adhesin, AfaE-VIII, produced by animal strains associated with diarrhea and septicemia and by human isolates associated with extraintestinal infections. Here, we report that the afa-8 operon, encoding AfaE-VIII adhesin, from the human blood isolate Escherichia coli AL862 is carried by a 61-kb genomic region with characteristics typical of a pathogenicity island (PAI), including a size larger than 10 kb, the presence of an integrase-encoding gene, the insertion into a tRNA locus (pheR), and the presence of a small direct repeat at each extremity. Moreover, the G+C content of the afa-8 operon (46.4%) is lower than that of the E. coli K-12/MG1655 chromosome (50.8%). Within this PAI, designated PAI I(AL862), we identified open reading frames able to code for products similar to proteins involved in sugar utilization. Four probes spanning these sequences hybridized with 74.3% of pathogenic afa-8-positive E. coli strains isolated from humans and animals, 25% of human pathogenic afa-8-negative E. coli strains, and only 8% of fecal strains (P = 0.05), indicating that these sequences are strongly associated with the afa-8 operon and that this genetic association may define a PAI widely distributed among human and animal afa-8-positive strains. One of the distinctive features of this study is that E. coli AL862 also carries another afa-8-containing PAI (PAI II(AL862)), which appeared to be similar in size and genetic organization to PAI I(AL862) and was inserted into the pheV gene. We investigated the insertion sites of afa-8-containing PAI in human and bovine pathogenic E. coli strains and found that this PAI preferentially inserted into the pheV gene.
Collapse
Affiliation(s)
- L Lalioui
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, 75724 Paris Cedex 15, France
| | | |
Collapse
|
49
|
Gioppo NM, Elias WP, Vidotto MC, Linhares RE, Saridakis HO, Gomes TA, Trabulsi LR, Pelayo JS. Prevalence of HEp-2 cell-adherent Escherichia coli and characterisation of enteroaggregative E. coli and chain-like adherent E. coli isolated from children with and without diarrhoea, in Londrina, Brazil. FEMS Microbiol Lett 2000; 190:293-8. [PMID: 11034294 DOI: 10.1111/j.1574-6968.2000.tb09301.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A total of 919 Escherichia coli isolates from 125 children with diarrhoea (cases) and 98 controls were assayed for adherence to HEp-2 cells. Localised adherence was found only in isolates from cases. Diffuse, aggregative (AA), chain-like adherence (CLA) and variants of the AA pattern were found in both cases and controls. The AA isolates were tested for gene sequences associated with enteroaggregative E. coli (EAEC). Only 25% of the isolates hybridised with the EAEC probe, and the aafA, astA and pet gene sequences were found in 7.9%, 44.7% and 7.9% of the isolates, respectively. The aggA gene was not found, although 7.9% were positive for aggC. The CLA isolates reacted with the EAEC probe (55.6%), and the aggC, astA and pet gene sequences were found in 66.7%, 33.3% and 11.1%, respectively. The aggR (55.6%), aspU (55.6%), shf (33.3%) and she (22.2%) genes were also found in CLA isolates.
Collapse
Affiliation(s)
- N M Gioppo
- Departamento de Microbiologia, Universidade Estadual de Londrina, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Garcia MI, Jouve M, Nataro JP, Gounon P, Le Bouguénec C. Characterization of the AfaD-like family of invasins encoded by pathogenic Escherichia coli associated with intestinal and extra-intestinal infections. FEBS Lett 2000; 479:111-7. [PMID: 10981717 DOI: 10.1016/s0014-5793(00)01898-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The afimbrial adhesive sheath, encoded by the afa-3 gene cluster, is composed of two proteins with different roles in bacterium-HeLa cell interactions. AfaE is required for adhesion and AfaD for internalization. In this study, we found that the AfaD invasin was structurally and functionally conserved among human afa-expressing strains, independently of AfaE subtype and clinical origin of the Escherichia coli isolate. The AggB protein from enteroaggregative E. coli was also found to be an AfaD-related invasin. These data suggest that AfaD is the prototype of a family of invasins encoded by adhesion-associated operons in pathogenic E. coli.
Collapse
Affiliation(s)
- M I Garcia
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|