1
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Xu Z, Wu G, Wang B, Zhao Y, Liu F. TrpR-Like Protein PXO_00831, Regulated by the Sigma Factor RpoD, Is Involved in Motility, Oxidative Stress Tolerance, and Virulence in Xanthomonas oryzae pv. oryzae. PHYTOPATHOLOGY 2023; 113:170-182. [PMID: 36095334 DOI: 10.1094/phyto-05-22-0165-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a Gram-negative bacterium that causes bacterial leaf blight in rice. In this study, we identified a putative TrpR-like protein, PXO_TrpR (PXO_00831), in Xoo. This protein contains a tryptophan (Trp) repressor domain and is highly conserved in Xanthomonas. Auxotrophic assays and RT-qPCR confirmed that PXO_TrpR acts as a Trp repressor, negatively regulating the expression of Trp biosynthesis genes. Pathogenicity tests showed that PXO_trpR knockout in Xoo significantly reduced lesion development and disease symptoms in the leaves of susceptible rice. RNA-seq analysis and phenotypic tests revealed that the PXO_trpR mutant exhibited impaired cell motility and was more sensitive to H2O2 oxidative stress than the wild-type strain. Furthermore, we found that the sigma 70 factor RpoD controlled the transcription of PXO_trpR by directly binding to its promoter region. This study demonstrates the biological function and transcriptional mechanism of PXO_TrpR as a Trp repressor in Xoo and evaluates its novel pathogenic roles by regulating flagellar motility and the oxidative stress response.
Collapse
Affiliation(s)
- Zhizhou Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| |
Collapse
|
3
|
Jacob C, Velásquez AC, Josh NA, Settles M, He SY, Melotto M. Dual transcriptomic analysis reveals metabolic changes associated with differential persistence of human pathogenic bacteria in leaves of Arabidopsis and lettuce. G3 (BETHESDA, MD.) 2021; 11:jkab331. [PMID: 34550367 PMCID: PMC8664426 DOI: 10.1093/g3journal/jkab331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/09/2021] [Indexed: 11/14/2022]
Abstract
Understanding the molecular determinants underlying the interaction between the leaf and human pathogenic bacteria is key to provide the foundation to develop science-based strategies to prevent or decrease the pathogen contamination of leafy greens. In this study, we conducted a dual RNA-sequencing analysis to simultaneously define changes in the transcriptomic profiles of the plant and the bacterium when they come in contact. We used an economically relevant vegetable crop, lettuce (Lactuca sativa L. cultivar Salinas), and a model plant, Arabidopsis thaliana Col-0, as well as two pathogenic bacterial strains that cause disease outbreaks associated with fresh produce, Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium 14028s (STm 14028s). We observed commonalities and specificities in the modulation of biological processes between Arabidopsis and lettuce and between O157:H7 and STm 14028s during early stages of the interaction. We detected a larger alteration of gene expression at the whole transcriptome level in lettuce and Arabidopsis at 24 h post inoculation with STm 14028s compared to that with O157:H7. In addition, bacterial transcriptomic adjustments were substantially larger in Arabidopsis than in lettuce. Bacterial transcriptome was affected at a larger extent in the first 4 h compared to the subsequent 20 h after inoculation. Overall, we gained valuable knowledge about the responses and counter-responses of both bacterial pathogen and plant host when these bacteria are residing in the leaf intercellular space. These findings and the public genomic resources generated in this study are valuable for additional data mining.
Collapse
Affiliation(s)
- Cristián Jacob
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, Horticulture and Agronomy Graduate Group, University of California, Davis, Davis, CA 95616, USA
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - André C Velásquez
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Nikhil A Josh
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Sheng Yang He
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
5
|
Melior H, Li S, Stötzel M, Maaß S, Schütz R, Azarderakhsh S, Shevkoplias A, Barth-Weber S, Baumgardt K, Ziebuhr J, Förstner KU, Chervontseva Z, Becher D, Evguenieva-Hackenberg E. Reprograming of sRNA target specificity by the leader peptide peTrpL in response to antibiotic exposure. Nucleic Acids Res 2021; 49:2894-2915. [PMID: 33619526 PMCID: PMC7968998 DOI: 10.1093/nar/gkab093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Trans-acting regulatory RNAs have the capacity to base pair with more mRNAs than generally detected under defined conditions, raising the possibility that sRNA target specificities vary depending on the specific metabolic or environmental conditions. In Sinorhizobium meliloti, the sRNA rnTrpL is derived from a tryptophan (Trp) transcription attenuator located upstream of the Trp biosynthesis gene trpE(G). The sRNA rnTrpL contains a small ORF, trpL, encoding the 14-aa leader peptide peTrpL. If Trp is available, efficient trpL translation causes transcription termination and liberation of rnTrpL, which subsequently acts to downregulate the trpDC operon, while peTrpL is known to have a Trp-independent role in posttranscriptional regulation of antibiotic resistance mechanisms. Here, we show that tetracycline (Tc) causes rnTrpL accumulation independently of Trp availability. In the presence of Tc, rnTrpL and peTrpL act collectively to destabilize rplUrpmA mRNA encoding ribosomal proteins L21 and L27. The three molecules, rnTrpL, peTrpL, and rplUrpmA mRNA, form an antibiotic-dependent ribonucleoprotein complex (ARNP). In vitro reconstitution of this ARNP in the presence of competing trpD and rplU transcripts revealed that peTrpL and Tc cause a shift of rnTrpL specificity towards rplU, suggesting that sRNA target prioritization may be readjusted in response to changing environmental conditions.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Rubina Schütz
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Aleksei Shevkoplias
- Faculty of Biology and Biotechnology, Higher School of Economics, 117312 Moscow, Russia.,Institute for Information Transmission Problems (the Kharkevich Institute, RAS), 127051 Moscow, Russia
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, University of Giessen, 35392 Giessen, Germany
| | - Konrad U Förstner
- Data Science and Services, ZB MED - Information Centre for Life Sciences, 50931 Cologne, Germany
| | - Zoe Chervontseva
- Institute for Information Transmission Problems (the Kharkevich Institute, RAS), 127051 Moscow, Russia
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | | |
Collapse
|
6
|
Li S, Edelmann D, Berghoff BA, Georg J, Evguenieva-Hackenberg E. Bioinformatic prediction reveals posttranscriptional regulation of the chromosomal replication initiator gene dnaA by the attenuator sRNA rnTrpL in Escherichia coli. RNA Biol 2020; 18:1324-1338. [PMID: 33164661 DOI: 10.1080/15476286.2020.1846388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DnaA is the initiator protein of chromosome replication, but the regulation of its homoeostasis in enterobacteria is not well understood. The DnaA level remains stable at different growth rates, suggesting a link between metabolism and dnaA expression. In a bioinformatic prediction, which we made to unravel targets of the sRNA rnTrpL in Enterobacteriaceae, the dnaA mRNA was the most conserved target candidate. The sRNA rnTrpL is derived from the transcription attenuator of the tryptophan biosynthesis operon. In Escherichia coli, its level is higher in minimal than in rich medium due to derepressed transcription without external tryptophan supply. Overexpression and deletion of the rnTrpL gene decreased and increased, respectively, the levels of dnaA mRNA. The decrease of the dnaA mRNA level upon rnTrpL overproduction was dependent on hfq and rne. Base pairing between rnTrpL and dnaA mRNA in vivo was validated. In minimal medium, the oriC level was increased in the ΔtrpL mutant, in line with the expected DnaA overproduction and increased initiation of chromosome replication. In line with this, chromosomal rnTrpL mutation abolishing the interaction with dnaA increased both the dnaA mRNA and the oriC level. Moreover, upon addition of tryptophan to minimal medium cultures, the oriC level in the wild type was increased. Thus, rnTrpL is a base-pairing sRNA that posttranscriptionally regulates dnaA in E. coli. Furthermore, our data suggest that rnTrpL contributes to the DnaA homoeostasis in dependence on the nutrient availability, which is represented by the tryptophan level in the cell.
Collapse
Affiliation(s)
- Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Daniel Edelmann
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Bork A Berghoff
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
7
|
Abstract
Elongation factor P (EF-P) binds to ribosomes requiring assistance with the formation of oligo-prolines. In order for EF-P to associate with paused ribosomes, certain tRNAs with specific d-arm residues must be present in the peptidyl site, e.g., tRNAPro. Once EF-P is accommodated into the ribosome and bound to Pro-tRNAPro, productive synthesis of the peptide bond occurs. The underlying mechanism by which EF-P facilitates this reaction seems to have entropic origins. Maximal activity of EF-P requires a posttranslational modification in Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Each of these modifications is distinct and ligated onto its respective EF-P through entirely convergent means. Here we review the facets of translation elongation that are controlled by EF-P, with a particular focus on the purpose behind the many different modifications of EF-P.
Collapse
Affiliation(s)
- Andrei Rajkovic
- Molecular, Cellular and Developmental Biology Program and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210;
| | - Michael Ibba
- Molecular, Cellular and Developmental Biology Program and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210; .,Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
8
|
Kuwahara H, Arold ST, Gao X. Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression. Integr Biol (Camb) 2015; 7:1622-32. [DOI: 10.1039/c5ib00107b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hiroyuki Kuwahara
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
9
|
Mackey MC, Santillán M, Tyran-Kamińska M, Zeron ES. The utility of simple mathematical models in understanding gene regulatory dynamics. In Silico Biol 2015; 12:23-53. [PMID: 25402755 PMCID: PMC4923710 DOI: 10.3233/isb-140463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 11/17/2022]
Abstract
In this review, we survey work that has been carried out in the attempts of biomathematicians to understand the dynamic behaviour of simple bacterial operons starting with the initial work of the 1960's. We concentrate on the simplest of situations, discussing both repressible and inducible systems and then turning to concrete examples related to the biology of the lactose and tryptophan operons. We conclude with a brief discussion of the role of both extrinsic noise and so-called intrinsic noise in the form of translational and/or transcriptional bursting.
Collapse
Affiliation(s)
- Michael C. Mackey
- Departments of Physiology, Physics & Mathematics, McGill University, Montreal, Quebec, Canada
| | - Moisés Santillán
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca NL, México
| | | | - Eduardo S. Zeron
- Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, México DF, México
| |
Collapse
|
10
|
Salazar-Cavazos E, Santillán M. Optimal performance of the tryptophan operon of E. coli: a stochastic, dynamical, mathematical-modeling approach. Bull Math Biol 2013; 76:314-34. [PMID: 24307084 DOI: 10.1007/s11538-013-9920-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/07/2013] [Indexed: 10/25/2022]
Abstract
In this work, we develop a detailed, stochastic, dynamical model for the tryptophan operon of E. coli, and estimate all of the model parameters from reported experimental data. We further employ the model to study the system performance, considering the amount of biochemical noise in the trp level, the system rise time after a nutritional shift, and the amount of repressor molecules necessary to maintain an adequate level of repression, as indicators of the system performance regime. We demonstrate that the level of cooperativity between repressor molecules bound to the first two operators in the trp promoter affects all of the above enlisted performance characteristics. Moreover, the cooperativity level found in the wild-type bacterial strain optimizes a cost-benefit function involving low biochemical noise in the tryptophan level, short rise time after a nutritional shift, and low number of regulatory molecules.
Collapse
|
11
|
Ay A, Arnosti DN. Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit Rev Biochem Mol Biol 2011; 46:137-51. [PMID: 21417596 DOI: 10.3109/10409238.2011.556597] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The detailed analysis of transcriptional networks holds a key for understanding central biological processes, and interest in this field has exploded due to new large-scale data acquisition techniques. Mathematical modeling can provide essential insights, but the diversity of modeling approaches can be a daunting prospect to investigators new to this area. For those interested in beginning a transcriptional mathematical modeling project, we provide here an overview of major types of models and their applications to transcriptional networks. In this discussion of recent literature on thermodynamic, Boolean, and differential equation models, we focus on considerations critical for choosing and validating a modeling approach that will be useful for quantitative understanding of biological systems.
Collapse
Affiliation(s)
- Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, USA
| | | |
Collapse
|
12
|
A bacterial mRNA leader that employs different mechanisms to sense disparate intracellular signals. Cell 2010; 142:737-48. [PMID: 20813261 DOI: 10.1016/j.cell.2010.07.046] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/24/2010] [Accepted: 07/14/2010] [Indexed: 11/20/2022]
Abstract
Bacterial mRNAs often contain leader sequences that respond to specific metabolites or ions by altering expression of the associated downstream protein-coding sequences. Here we report that the leader RNA of the Mg(2+) transporter gene mgtA of Salmonella enterica, which was previously known to function as a Mg(2+)-sensing riboswitch, harbors an 18 codon proline-rich open reading frame-termed mgtL-that permits intracellular proline to regulate mgtA expression. Interfering with mgtL translation by genetic, pharmacological, or environmental means was observed to increase the mRNA levels from the mgtA coding region. Substitution of the mgtL proline codons by other codons abolished the response to proline and to hyperosmotic stress but not to Mg(2+). Our findings show that mRNA leader sequences can consist of complex regulatory elements that utilize different mechanisms to sense separate signals and mediate an appropriate cellular response.
Collapse
|
13
|
Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB. Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comp Funct Genomics 2010; 4:376-91. [PMID: 18629082 PMCID: PMC2447367 DOI: 10.1002/cfg.302] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 04/23/2003] [Accepted: 05/22/2003] [Indexed: 12/14/2022] Open
Abstract
We sought to test the hypothesis that mutant bacterial strains could be discriminated from each other on the basis of the metabolites they secrete into the medium (their
‘metabolic footprint’), using two methods of ‘global’ metabolite analysis (FT–IR and
direct injection electrospray mass spectrometry). The biological system used was
based on a published study of Escherichia coli tryptophan mutants that had been
analysed and discriminated by Yanofsky and colleagues using transcriptome analysis.
Wild-type strains supplemented with tryptophan or analogues could be discriminated
from controls using FT–IR of 24 h broths, as could each of the mutant strains in both
minimal and supplemented media. Direct injection electrospray mass spectrometry
with unit mass resolution could also be used to discriminate the strains from each
other, and had the advantage that the discrimination required the use of just two
or three masses in each case. These were determined via a genetic algorithm. Both
methods are rapid, reagentless, reproducible and cheap, and might beneficially be
extended to the analysis of gene knockout libraries.
Collapse
Affiliation(s)
- Naheed N Kaderbhai
- Institute of Biological Sciences, University of Wales, Aberystwyth, Wales Ceredigion SY23 3DD, UK
| | | | | | | | | |
Collapse
|
14
|
Liu F, Jiang H, Ye S, Chen WP, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, Li C. The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res 2010; 20:539-52. [PMID: 20354503 DOI: 10.1038/cr.2010.36] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutant jasmonic acid-hypersensitive1-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea . Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of the jah1-1 mutant to B . cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. The jah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cycling expression and cooperative operator interaction in the trp operon of Escherichia coli. J Theor Biol 2009; 263:340-52. [PMID: 20004672 DOI: 10.1016/j.jtbi.2009.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 01/12/2023]
Abstract
Oscillatory behaviour in the tryptophan operon of an Escherichia coli mutant strain lacking the enzyme-inhibition regulatory mechanism has been observed by Bliss et al. but not confirmed by others. This behaviour could be important from the standpoint of synthetic biology, whose goals include the engineering of intracellular genetic oscillators. This work is devoted to investigating, from a mathematical modelling point of view, the possibility that the trp operon of the E. coli inhibition-free strain expresses cyclically. For that we extend a previously introduced model for the regulatory pathway of the tryptophan operon in Escherichia coli to account for the observed multiplicity and cooperativity of repressor binding sites. Thereafter we investigate the model dynamics using deterministic numeric solutions, stochastic simulations, and analytic studies. Our results suggest that a quasi-periodic behaviour could be observed in the trp operon expression level of single bacteria.
Collapse
|
16
|
Dougherty ER, Brun M, Trent JM, Bittner ML. Conditioning-based modeling of contextual genomic regulation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2009; 6:310-320. [PMID: 19407354 DOI: 10.1109/tcbb.2007.70247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A more complete understanding of the alterations in cellular regulatory and control mechanisms that occur in the various forms of cancer has been one of the central targets of the genomic and proteomic methods that allow surveys of the abundance and/or state of cellular macromolecules. This preference is driven both by the intractability of cancer to generic therapies, assumed to be due to the highly varied molecular etiologies observed in cancer, and by the opportunity to discern and dissect the regulatory and control interactions presented by the highly diverse assortment of perturbations of regulation and control that arise in cancer. Exploiting the opportunities for inference on the regulatory and control connections offered by these revealing system perturbations is fraught with the practical problems that arise from the way biological systems operate. Two classes of regulatory action in biological systems are particularly inimical to inference, convergent regulation, where a variety of regulatory actions result in a common set of control responses (crosstalk), and divergent regulation, where a single regulatory action produces entirely different sets of control responses, depending on cellular context (conditioning). We have constructed a coarse mathematical model of the propagation of regulatory influence in such distributed, context-sensitive regulatory networks that allows a quantitative estimation of the amount of crosstalk and conditioning associated with a candidate regulatory gene taken from a set of genes that have been profiled over a series of samples where the candidate's activity varies.
Collapse
Affiliation(s)
- Edward R Dougherty
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA
| | | | | | | |
Collapse
|
17
|
Nde CW, Jang HJ, Toghrol F, Bentley WE. Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol. BMC Genomics 2008; 9:473. [PMID: 18847467 PMCID: PMC2577666 DOI: 10.1186/1471-2164-9-473] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 10/10/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective utilization of this antimicrobial and possibly lead to the development of more effective disinfectant treatments. RESULTS Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P. aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the transcription of genes encoding ribosomal, virulence and membrane transport proteins after both treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated. Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS) of RNA polymerase were downregulated after both treatment times. CONCLUSION Results from this study indicate that after 20 minutes of exposure to OPP, genes that have been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving the upregulation of translation leading to the increased synthesis of membrane related proteins and virulence proteins is possibly induced after both treatment times. In addition, cell wall modification may occur due to the increased synthesis of lipopolysaccharide after 60 minutes exposure to OPP. This gene expression profile can now be utilized for a better understanding of the target cellular pathways of OPP in P. aeruginosa and how this organism develops resistance to OPP.
Collapse
Affiliation(s)
- Chantal W Nde
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | - Hyeung-Jin Jang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | - Freshteh Toghrol
- Microarray Research Laboratory, Biological and Economic Analysis Division, Office of Pesticide Programs, U. S. Environmental Protection Agency, Fort Meade, Maryland 20755, USA
| | - William E Bentley
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| |
Collapse
|
18
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
19
|
Tabaka M, Cybulski O, Hołyst R. Accurate Genetic Switch in Escherichia coli: Novel Mechanism of Regulation by Co-repressor. J Mol Biol 2008; 377:1002-14. [DOI: 10.1016/j.jmb.2008.01.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 12/27/2007] [Accepted: 01/15/2008] [Indexed: 11/24/2022]
|
20
|
Buchan JR, Stansfield I. Halting a cellular production line: responses to ribosomal pausing during translation. Biol Cell 2007; 99:475-87. [PMID: 17696878 DOI: 10.1042/bc20070037] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellular protein synthesis is a complex polymerization process carried out by multiple ribosomes translating individual mRNAs. The process must be responsive to rapidly changing conditions in the cell that could cause ribosomal pausing and queuing. In some circumstances, pausing of a bacterial ribosome can trigger translational abandonment via the process of trans-translation, mediated by tmRNA (transfer-messenger RNA) and endonucleases. Together, these factors release the ribosome from the mRNA and target the incomplete polypeptide for destruction. In eukaryotes, ribosomal pausing can initiate an analogous process carried out by the Dom34p and Hbs1p proteins, which trigger endonucleolytic attack of the mRNA, a process termed mRNA no-go decay. However, ribosomal pausing can also be employed for regulatory purposes, and controlled translational delays are used to help co-translational folding of the nascent polypeptide on the ribosome, as well as a tactic to delay translation of a protein while its encoding mRNA is being localized within the cell. However, other responses to pausing trigger ribosomal frameshift events. Recent discoveries are thus revealing a wide variety of mechanisms used to respond to translational pausing and thus regulate the flow of ribosomal traffic on the mRNA population.
Collapse
Affiliation(s)
- J Ross Buchan
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, UK
| | | |
Collapse
|
21
|
Santillán M, Zeron ES. Analytical study of the multiplicity of regulatory mechanisms in the tryptophan operon. Bull Math Biol 2006; 68:343-59. [PMID: 16794934 DOI: 10.1007/s11538-005-9025-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 09/28/2005] [Indexed: 11/29/2022]
Abstract
In this paper we study the stability of a previously introduced model for the tryptophan operon regulatory pathway. For this, we make use of the second Lyapunov's method. The results obtained for the wild-type and for a couple ofin-silico mutant bacterial strains allow a deeper understanding of the multiplicity of regulatory mechanisms in this operon. In particular, we confirm that enzyme inhibition and transcription attenuation strengthen the system stability, the effect of transcription attenuation being much shorter than that of enzyme inhibition. Furthermore, the analysis here presented provides some insights about how enzyme inhibition affects the system stability.
Collapse
Affiliation(s)
- Moisés Santillán
- Depto. de Física, Esc. Sup. de Física y Matemáticas, Instituto Politécnico Nacional, Edif. 9, U.P. Zacatenco, 07738, México, D.F, México.
| | | |
Collapse
|
22
|
Elf J, Ehrenberg M. What makes ribosome-mediated transcriptional attenuation sensitive to amino acid limitation? PLoS Comput Biol 2005; 1:e2. [PMID: 16103903 PMCID: PMC1183508 DOI: 10.1371/journal.pcbi.0010002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Accepted: 04/08/2005] [Indexed: 11/20/2022] Open
Abstract
Ribosome-mediated transcriptional attenuation mechanisms are commonly used to control amino acid biosynthetic operons in bacteria. The mRNA leader of such an operon contains an open reading frame with “regulatory” codons, cognate to the amino acid that is synthesized by the enzymes encoded by the operon. When the amino acid is in short supply, translation of the regulatory codons is slow, which allows transcription to continue into the structural genes of the operon. When amino acid supply is in excess, translation of regulatory codons is rapid, which leads to termination of transcription. We use a discrete master equation approach to formulate a probabilistic model for the positioning of the RNA polymerase and the ribosome in the attenuator leader sequence. The model describes how the current rate of amino acid supply compared to the demand in protein synthesis (signal) determines the expression of the amino acid biosynthetic operon (response). The focus of our analysis is on the sensitivity of operon expression to a change in the amino acid supply. We show that attenuation of transcription can be hyper-sensitive for two main reasons. The first is that its response depends on the outcome of a race between two multi-step mechanisms with synchronized starts: transcription of the leader of the operon, and translation of its regulatory codons. The relative change in the probability that transcription is aborted (attenuated) can therefore be much larger than the relative change in the time it takes for the ribosome to read a regulatory codon. The second is that the general usage frequencies of codons of the type used in attenuation control are small. A small percentage decrease in the rate of supply of the controlled amino acid can therefore lead to a much larger percentage decrease in the rate of reading a regulatory codon. We show that high sensitivity further requires a particular choice of regulatory codon among several synonymous codons for the same amino acid. We demonstrate the importance of a high fraction of regulatory codons in the control region. Finally, our integrated model explains how differences in leader sequence design of the trp and his operons of Escherichia coli and Salmonella typhimurium lead to high basal expression and low sensitivity in the former case, and to large dynamic range and high sensitivity in the latter. The model clarifies how mechanistic and systems biological aspects of the attenuation mechanism contribute to its overall sensitivity. It also explains structural differences between the leader sequences of the trp and his operons in terms of their different functions. When cells grow and divide, they must continually construct new proteins from the 20 amino acid building blocks according to the instructions of the genetic code. Proteins are made by large macromolecular complexes, ribosomes, where information encoded as base triplets (codons) in messenger RNA sequences, transcribed from the DNA sequences of the genes, is translated into amino acid sequences that determine the functions of all proteins. Rapid growth of cells requires that the supply of each free amino acid is balanced to the demand for it in protein synthesis. The present work mathematically models a common control mechanism in bacteria, which regulates synthesis of amino acids to eliminate deviations from balanced supply and demand. The mechanism “measures” the speed by which the ribosome translates the codons of a regulated amino acid. When supply is less than demand, translation of these “control” codons is slow, which is sensed by the mechanism and used to increase synthesis of the amino acid. This paper explains why the mechanism is “hyper-sensitive” to relative changes in supply and demand, and why it is differently designed for control of the enzymes that synthesize the amino acids histidine and tryptophan.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- E-mail: (JE); (ME)
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- E-mail: (JE); (ME)
| |
Collapse
|
23
|
Santillán M, Zeron ES. Dynamic influence of feedback enzyme inhibition and transcription attenuation on the tryptophan operon response to nutritional shifts. J Theor Biol 2004; 231:287-98. [PMID: 15380393 DOI: 10.1016/j.jtbi.2004.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 06/28/2004] [Accepted: 06/30/2004] [Indexed: 11/29/2022]
Abstract
A mathematical model of the tryptophan operon is developed. This model considers all of the system known regulatory mechanisms: repression, transcription attenuation, and feedback enzyme inhibition. Special attention is paid to the estimation of all the model parameters from reported experimental data. The model equations are numerically solved. An analysis of these solutions reveals that transcription attenuation helps to speed up the operon response to nutritional shifts, while enzyme inhibition increases the operon stability.
Collapse
Affiliation(s)
- Moisés Santillán
- Depto. de Física, Esc. Sup. de Física y Matemáticas, Instituto Politécnico Nacional, Edif. 9, U.P. Zacatenco, 07738 México D.F, México.
| | | |
Collapse
|
24
|
Elf J, Ehrenberg M. Near-critical behavior of aminoacyl-tRNA pools in E. coli at rate-limiting supply of amino acids. Biophys J 2004; 88:132-46. [PMID: 15501947 PMCID: PMC1304992 DOI: 10.1529/biophysj.104.051383] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rates of consumption of different amino acids in protein synthesis are in general stoichiometrically coupled with coefficients determined by codon usage frequencies on translating ribosomes. We show that when the rates of synthesis of two or more amino acids are limiting for protein synthesis and exactly matching their coupled rates of consumption on translating ribosomes, the pools of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP are hypersensitive to a variation in the rate of amino acid supply. This high sensitivity makes a macroscopic analysis inconclusive, because it is accompanied by almost free and anticorrelated diffusion in copy numbers of ternary complexes. This near-critical behavior is relevant for balanced growth of Escherichia coli cells in media that lack amino acids and for adaptation of E. coli cells after downshifts from amino-acid-containing to amino-acid-lacking growth media. The theoretical results are used to discuss transcriptional control of amino acid synthesis during multiple amino acid limitation, the recovery of E. coli cells after nutritional downshifts and to propose a robust mechanism for the regulation of RelA-dependent synthesis of the global effector molecule ppGpp.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell & Molecular Biology, BMC, Uppsala University, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
25
|
Mackey MC, Santillán M, Yildirim N. Modeling operon dynamics: the tryptophan and lactose operons as paradigms. C R Biol 2004; 327:211-24. [PMID: 15127892 DOI: 10.1016/j.crvi.2003.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the regulation of gene control networks and their ensuing dynamics will be a critical component in the understanding of the mountain of genomic data being currently collected. This paper reviews recent mathematical modeling work on the tryptophan and lactose operons which are, respectively, the classical paradigms for repressible and inducible operons.
Collapse
Affiliation(s)
- Michael C Mackey
- Department of Physiology, Centre for Nonlinear Dynamics, McGill University, 3655 Drummond Street, Montreal, Quebec, Canada H3G 1Y6.
| | | | | |
Collapse
|
26
|
Venkatesh KV, Bhartiya S, Ruhela A. Multiple feedback loops are key to a robust dynamic performance of tryptophan regulation in Escherichia coli. FEBS Lett 2004; 563:234-40. [PMID: 15063755 DOI: 10.1016/s0014-5793(04)00310-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 03/08/2004] [Accepted: 03/11/2004] [Indexed: 12/17/2022]
Abstract
Living systems must adapt quickly and stably to uncertain environments. A common theme in cellular regulation is the presence of multiple feedback loops in the network. An example of such a feedback structure is regulation of tryptophan concentration in Escherichia coli. Here, three distinct feedback mechanisms, namely genetic regulation, mRNA attenuation and enzyme inhibition, regulate tryptophan synthesis. A pertinent question is whether such multiple feedback loops are "a case of regulatory overkill, or do these different feedback regulators have distinct functions?" Another moot question is how robustness to uncertainties can be achieved structurally through biological interactions. Correlation between the feedback structure and robustness can be systematically studied by tools commonly employed in feedback theory. An analysis of feedback strategies in the tryptophan system in E. coli reveals that the network complexity arising due to the distributed feedback structure is responsible for the rapid and stable response observed even in the presence of system uncertainties.
Collapse
Affiliation(s)
- K V Venkatesh
- Department of Chemical Engineering and School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | | | |
Collapse
|
27
|
Wall ME, Hlavacek WS, Savageau MA. Design principles for regulator gene expression in a repressible gene circuit. J Mol Biol 2003; 332:861-76. [PMID: 12972257 DOI: 10.1016/s0022-2836(03)00948-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We consider the design of a type of repressible gene circuit that is common in bacteria. In this type of circuit, a regulator protein acts to coordinately repress the expression of effector genes when a signal molecule with which it interacts is present. The regulator protein can also independently influence the expression of its own gene, such that regulator gene expression is repressible (like effector genes), constitutive, or inducible. Thus, a signal-directed change in the activity of the regulator protein can result in one of three patterns of coupled regulator and effector gene expression: direct coupling, in which regulator and effector gene expression change in the same direction; uncoupling, in which regulator gene expression remains constant while effector gene expression changes; or inverse coupling, in which regulator and effector gene expression change in opposite directions. We have investigated the functional consequences of each form of coupling using a mathematical model to compare alternative circuits on the basis of engineering-inspired criteria for functional effectiveness. The results depend on whether the regulator protein acts as a repressor or activator of transcription at the promoters of effector genes. In the case of repressor control of effector gene expression, direct coupling is optimal among the three forms of coupling, whereas in the case of activator control, inverse coupling is optimal. Results also depend on the sensitivity of effector gene expression to changes in the level of a signal molecule; the optimal form of coupling can be physically realized only for circuits with sufficiently small sensitivity. These theoretical results provide a rationale for autoregulation of regulator genes in repressible gene circuits and lead to testable predictions, which we have compared with data available in the literature and electronic databases.
Collapse
Affiliation(s)
- Michael E Wall
- Computer and Computational Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
28
|
Bhartiya S, Rawool S, Venkatesh KV. Dynamic model of Escherichia coli tryptophan operon shows an optimal structural design. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2644-51. [PMID: 12787031 DOI: 10.1046/j.1432-1033.2003.03641.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mathematical model has been developed to study the effect of external tryptophan on the trp operon. The model accounts for the effect of feedback repression by tryptophan through the Hill equation. We demonstrate that the trp operon maintains an intracellular steady-state concentration in a fivefold range irrespective of extracellular conditions. Dynamic behavior of the trp operon corresponding to varying levels of extracellular tryptophan illustrates the adaptive nature of regulation. Depending on the external tryptophan level in the medium, the transient response ranges from a rapid and underdamped to a sluggish and highly overdamped response. To test model fidelity, simulation results are compared with experimental data available in the literature. We further demonstrate the significance of the biological structure of the operon on the overall performance. Our analysis suggests that the tryptophan operon has evolved to a truly optimal design.
Collapse
Affiliation(s)
- Sharad Bhartiya
- Department of Chemical Engineering and School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | | | | |
Collapse
|
29
|
Roessner U, Willmitzer L, Fernie AR. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. PLANT PHYSIOLOGY 2001; 127:749-764. [PMID: 11706160 DOI: 10.1104/pp.010316] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We conducted a comprehensive metabolic phenotyping of potato (Solanum tuberosum L. cv Desiree) tuber tissue that had been modified either by transgenesis or exposure to different environmental conditions using a recently developed gas chromatography-mass spectrometry profiling protocol. Applying this technique, we were able to identify and quantify the major constituent metabolites of the potato tuber within a single chromatographic run. The plant systems that we selected to profile were tuber discs incubated in varying concentrations of fructose, sucrose, and mannitol and transgenic plants impaired in their starch biosynthesis. The resultant profiles were then compared, first at the level of individual metabolites and then using the statistical tools hierarchical cluster analysis and principal component analysis. These tools allowed us to assign clusters to the individual plant systems and to determine relative distances between these clusters; furthermore, analyzing the loadings of these analyses enabled identification of the most important metabolites in the definition of these clusters. The metabolic profiles of the sugar-fed discs were dramatically different from the wild-type steady-state values. When these profiles were compared with one another and also with those we assessed in previous studies, however, we were able to evaluate potential phenocopies. These comparisons highlight the importance of such an approach in the functional and qualitative assessment of diverse systems to gain insights into important mediators of metabolism.
Collapse
Affiliation(s)
- U Roessner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|
30
|
Santillan M, Mackey MC. Dynamic behavior in mathematical models of the tryptophan operon. CHAOS (WOODBURY, N.Y.) 2001; 11:261-268. [PMID: 12779459 DOI: 10.1063/1.1336806] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper surveys the general theory of operon regulation as first formulated by Goodwin and Griffith, and then goes on to consider in detail models of regulation of tryptophan production by Bliss, Sinha, and Santillan and Mackey, and the interrelationships between them. We further give a linear stability analysis of the Santillan and Mackey model for wild type E. coli as well as three different mutant strains that have been previously studied in the literature. This stability analysis indicates that the tryptophan production systems should be stable, which is in accord with our numerical results. (c) 2001 American Institute of Physics.
Collapse
Affiliation(s)
- Moises Santillan
- Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, 07738, Mexico D.F., Mexico
| | | |
Collapse
|
31
|
Santillan M, Mackey MC. Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. Proc Natl Acad Sci U S A 2001; 98:1364-9. [PMID: 11171956 PMCID: PMC29262 DOI: 10.1073/pnas.98.4.1364] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mathematical model for regulation of the tryptophan operon is presented. This model takes into account repression, feedback enzyme inhibition, and transcriptional attenuation. Special attention is given to model parameter estimation based on experimental data. The model's system of delay differential equations is numerically solved, and the results are compared with experimental data on the temporal evolution of enzyme activity in cultures of Escherichia coli after a nutritional shift (minimal + tryptophan medium to minimal medium). Good agreement is obtained between the numeric simulations and the experimental results for wild-type E. coli, as well as for two different mutant strains.
Collapse
Affiliation(s)
- M Santillan
- Department of Physiology, McGill University, McIntyre Medical Sciences Building, 3655 Drummond Street, Montreal, QC, Canada H3G 1Y6
| | | |
Collapse
|
32
|
Gong F, Yanofsky C. Reproducing tna operon regulation in vitro in an S-30 system. Tryptophan induction inhibits cleavage of TnaC peptidyl-tRNA. J Biol Chem 2001; 276:1974-83. [PMID: 11050101 DOI: 10.1074/jbc.m008892200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. Catabolite repression regulates transcription initiation, whereas excess tryptophan induces antitermination at Rho factor-dependent termination sites in the leader region of the operon. Synthesis of the leader peptide, TnaC, is essential for antitermination. BoxA and rut sites in the immediate vicinity of the tnaC stop codon are required for termination. In this paper we use an in vitro S-30 cell-free system to analyze the features of tna operon regulation. We show that transcription initiation is cyclic AMP (cAMP)-dependent and is not influenced by tryptophan. Continuation of transcription beyond the leader region requires the presence of inducing levels of tryptophan and synthesis of the TnaC leader peptide. Using a tnaA'-'trpE fusion, we demonstrate that induction results in a 15-20-fold increase in synthesis of the tryptophan-free TnaA-TrpE fusion protein. Replacing Trp codon 12 of tnaC by an Arg codon, or changing the tnaC start codon to a stop codon, eliminates induction. Addition of bicyclomycin, a specific inhibitor of Rho factor action, substantially increases basal level expression. Analyses of tna mRNA synthesis in vitro demonstrate that, in the absence of inducer transcription is terminated and the terminated transcripts are degraded. In the presence of inducer, antitermination increases the synthesis of the read-through transcript. TnaC synthesis is observed in the cell-free system. However, in the presence of tryptophan, a peptidyl-tRNA also appears, TnaC-tRNA(Pro). Our findings suggest that inducer acts by preventing cleavage of TnaC peptidyl-tRNA. The ribosome associated with this newly synthesized peptidyl-tRNA presumably stalls at the tnaC stop codon, blocking Rho's access to the BoxA and rut sites, thereby preventing termination. 1-Methyltryptophan also is an effective inducer in vitro. This tryptophan analog is not incorporated into TnaC.
Collapse
Affiliation(s)
- F Gong
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
33
|
Altamirano MM, Blackburn JM, Aguayo C, Fersht AR. Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold. Nature 2000; 403:617-22. [PMID: 10688189 DOI: 10.1038/35001001] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In biological systems, enzymes catalyse the efficient synthesis of complex molecules under benign conditions, but widespread industrial use of these biocatalysts depends crucially on the development of new enzymes with useful catalytic functions. The evolution of enzymes in biological systems often involves the acquisition of new catalytic or binding properties by an existing protein scaffold. Here we mimic this strategy using the most common fold in enzymes, the alpha/beta-barrel, as the scaffold. By combining an existing binding site for structural elements of phosphoribosylanthranilate with a catalytic template required for isomerase activity, we are able to evolve phosphoribosylanthranilate isomerase activity from the scaffold of indole-3-glycerol-phosphate synthase. We find that targeting the catalytic template for in vitro mutagenesis and recombination, followed by in vivo selection, results in a new phosphoribosylanthranilate isomerase that has catalytic properties similar to those of the natural enzyme, with an even higher specificity constant. Our demonstration of divergent evolution and the widespread occurrence of the alpha/beta-barrel suggest that this scaffold may be a fold of choice for the directed evolution of new biocatalysts.
Collapse
Affiliation(s)
- M M Altamirano
- Cambridge Centre for Protein Engineering, and Cambridge University Chemical Laboratory, MRC Centre, UK
| | | | | | | |
Collapse
|
34
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
35
|
Epelbaum S, LaRossa RA, VanDyk TK, Elkayam T, Chipman DM, Barak Z. Branched-chain amino acid biosynthesis in Salmonella typhimurium: a quantitative analysis. J Bacteriol 1998; 180:4056-67. [PMID: 9696751 PMCID: PMC107399 DOI: 10.1128/jb.180.16.4056-4067.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 05/30/1998] [Indexed: 11/20/2022] Open
Abstract
We report here the first quantitative study of the branched-chain amino acid biosynthetic pathway in Salmonella typhimurium LT2. The intracellular levels of the enzymes of the pathway and of the 2-keto acid intermediates were determined under various physiological conditions and used for estimation of several of the fluxes in the cells. The results led to a revision of previous ideas concerning the way in which multiple acetohydroxy acid synthase (AHAS) isozymes contribute to the fitness of enterobacteria. In wild-type LT2, AHAS isozyme I provides most of the flux to valine, leucine, and pantothenate, while isozyme II provides most of the flux to isoleucine. With acetate as a carbon source, a strain expressing AHAS II only is limited in growth because of the low enzyme activity in the presence of elevated levels of the inhibitor glyoxylate. A strain with AHAS I only is limited during growth on glucose by the low tendency of this enzyme to utilize 2-ketobutyrate as a substrate; isoleucine limitation then leads to elevated threonine deaminase activity and an increased 2-ketobutyrate/2-ketoisovalerate ratio, which in turn interferes with the synthesis of coenzyme A and methionine. The regulation of threonine deaminase is also crucial in this regard. It is conceivable that, because of fundamental limitations on the specificity of enzymes, no single AHAS could possibly be adequate for the varied conditions that enterobacteria successfully encounter.
Collapse
Affiliation(s)
- S Epelbaum
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Xiu ZL, Zeng AP, Deckwer WD. Model analysis concerning the effects of growth rate and intracellular tryptophan level on the stability and dynamics of tryptophan biosynthesis in bacteria. J Biotechnol 1997. [DOI: 10.1016/s0168-1656(97)00143-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Hlavacek WS, Savageau MA. Completely uncoupled and perfectly coupled gene expression in repressible systems. J Mol Biol 1997; 266:538-58. [PMID: 9067609 DOI: 10.1006/jmbi.1996.0811] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two forms of extreme coupling have been documented for the regulation of gene expression in repressible systems governed by a regulator protein. The first form, complete uncoupling, is distinguished by a constant level of regulator protein. The second form, perfect coupling, is distinguished by a level of regulator protein that varies coordinately with the level of the regulated enzyme. To determine how these two forms of coupling influence the performance of a system, so that we might predict the conditions under which each evolves through natural selection, we have used a mathematical approach to compare systems with complete uncoupling and perfect coupling. Our comparisons, which are controlled so that alternative systems are free from irrelevant differences, are based on a priori criteria that are related to various aspects of a system's performance, such as temporal responsiveness. By examining the influence of physical constraints that are related to the subunit structure of regulatory proteins and that limit the cooperativity of regulatory interactions, we have extended an early theory of gene circuitry for repressible systems. We obtain new results and testable predictions that can be summarized as follows. For typical systems with a low gain, performance is better with perfect coupling than with complete uncoupling if the mode of regulation is negative and better with complete uncoupling than with perfect coupling if the mode of regulation is positive. For systems with a high gain, these preferred forms of coupling are prevented by the physical constraints on cooperativity, and other forms of coupling can be expected. Tests of our predictions are illustrated by using data available in the literature.
Collapse
Affiliation(s)
- W S Hlavacek
- Department of Chemical Engineering, The University of Michigan, Ann Arbor 48109-0620, USA
| | | |
Collapse
|