1
|
Upadhyay T, Karekar VV, Potteth US, Saraogi I. Investigating the functional role of a buried interchain aromatic cluster in Escherichia coli GrpE dimer. Proteins 2023; 91:108-120. [PMID: 35988048 DOI: 10.1002/prot.26414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Aromatic clusters in the core of proteins are often involved in imparting structural stability to proteins. However, their functional importance is not always clear. In this study, we investigate the thermosensing role of a phenylalanine cluster present in the GrpE homodimer. GrpE, which acts as a nucleotide exchange factor for the molecular chaperone DnaK, is well known for its thermosensing activity resulting from temperature-dependent structural changes that allow control of chaperone function. Using mutational analysis, we show that an interchain phenylalanine cluster in a four-helix bundle of the GrpE homodimer assists in the thermosensing ability of the co-chaperone. Substitution of aromatic residues with hydrophobic ones in the core of the four-helix bundle reduces the thermal stability of the bundle and that of a connected coiled-coil domain, which impacts thermosensing. Cell growth assays and SEM images of the mutants show filamentous growth of Escherichia coli cells at 42°C, which corroborates with the defect in thermosensing. Our work suggests that the interchain edge-to-face aromatic cluster is important for the propagation of the structural signal from the coiled-coil domain to the four-helical bundle of GrpE, thus facilitating GrpE-mediated thermosensing in bacteria.
Collapse
Affiliation(s)
- Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Vaibhav V Karekar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| |
Collapse
|
2
|
Initial purification of antimicrobial fermentation metabolites from Paecilomyces cicadae and its antimicrobial mechanism. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress. mBio 2021; 12:mBio.03443-20. [PMID: 33975942 PMCID: PMC8262869 DOI: 10.1128/mbio.03443-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous biochemical approaches showed that the oxidoreductase activity of the DnaJ protein facilitates the interaction of oxidized DksA with RNA polymerase. Investigations herein demonstrate that under biologically relevant conditions the DnaJ- and DksA-codependent activation of the stringent response in Salmonella undergoing oxidative stress involves the DnaK chaperone. Oxidation of DksA cysteine residues stimulates redox-based and holdase interactions with zinc-binding and C-terminal domains of DnaJ. Genetic and biochemical evidence indicates that His33 in the HPD motif in the J domain of DnaJ facilitates interactions of unfolded DksA with DnaK. A mutation in His33 in the J domain prevents the presentation of unfolded DksA to DnaK without limiting the oxidoreductase activity mapped to DnaJ's zinc-2 site. Thr199 in the ATPase catalytic site of DnaK is required for the formation of the DksA/RNA polymerase complex. The DnaK/DnaJ/DksA complex enables the formation of an enzymatically active RNA polymerase holoenzyme that stimulates transcription of branched-chain amino acid and histidine metabolic genes in Salmonella exposed to reactive oxygen species. The DnaK/DnaJ chaperone protects Salmonella against the cytotoxicity associated with reactive oxygen species generated by the phagocyte NADPH oxidase in the innate host response. The antioxidant defenses associated with DnaK/DnaJ can in part be ascribed to the elicitation of the DksA-dependent stringent response and the protection this chaperone system provides against protein carbonylation in Salmonella undergoing oxidative stress.IMPORTANCE DksA was discovered 30 years ago in a screen for suppressors that reversed the thermosensitivity of Escherichia coli mutant strains deficient in DnaK/DnaJ, raising the possibility that this chaperone system may control DksA function. Since its serendipitous discovery, DksA has emerged as a key activator of the transcriptional program called the stringent response in Gram-negative bacteria experiencing diverse adverse conditions, including nutritional starvation or oxidative stress. DksA activates the stringent response through the allosteric control this regulatory protein exerts on the kinetics of RNA polymerase promoter open complexes. Recent investigations have shown that DksA overexpression protects dnaKJ mutant bacteria against heat shock indirectly via the ancestral chaperone polyphosphate, casting doubt on a possible complexation of DnaK, DnaJ, and DksA. Nonetheless, research presented herein demonstrates that the cochaperones DnaK and DnaJ enable DksA/RNA polymerase complex formation in response to oxidative stress.
Collapse
|
4
|
Sadat A, Tiwari S, Verma K, Ray A, Ali M, Upadhyay V, Singh A, Chaphalkar A, Ghosh A, Chakraborty R, Chakraborty K, Mapa K. GROEL/ES Buffers Entropic Traps in Folding Pathway during Evolution of a Model Substrate. J Mol Biol 2020; 432:5649-5664. [PMID: 32835659 DOI: 10.1016/j.jmb.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
The folding landscape of proteins can change during evolution with the accumulation of mutations that may introduce entropic or enthalpic barriers in the protein folding pathway, making it a possible substrate of molecular chaperones in vivo. Can the nature of such physical barriers of folding dictate the feasibility of chaperone-assistance? To address this, we have simulated the evolutionary step to chaperone-dependence keeping GroEL/ES as the target chaperone and GFP as a model protein in an unbiased screen. We find that the mutation conferring GroEL/ES dependence in vivo and in vitro encode an entropic trap in the folding pathway rescued by the chaperonin. Additionally, GroEL/ES can edit the formation of non-native contacts similar to DnaK/J/E machinery. However, this capability is not utilized by the substrates in vivo. As a consequence, GroEL/ES caters to buffer mutations that predominantly cause entropic traps, despite possessing the capacity to edit both enthalpic and entropic traps in the folding pathway of the substrate protein.
Collapse
Affiliation(s)
- Anwar Sadat
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Satyam Tiwari
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Kanika Verma
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Arjun Ray
- Indraprastha Institute of Information Technology-Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH91, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Vaibhav Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anupam Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Aseem Chaphalkar
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Asmita Ghosh
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Rahul Chakraborty
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Kausik Chakraborty
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Koyeli Mapa
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH91, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
5
|
Tang T, Chen G, Guo A, Xu Y, Zhao L, Wang M, Lu C, Jiang Y, Zhang C. Comparative proteomic and genomic analyses of Brucella abortus biofilm and planktonic cells. Mol Med Rep 2019; 21:731-743. [PMID: 31974592 PMCID: PMC6947884 DOI: 10.3892/mmr.2019.10888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to explore the differences in protein and gene expression of Brucella abortus cultured under biofilm and planktonic conditions. The proteins unique to biofilms and planktonic B. abortus were separated by two-dimensional (2-D) electrophoresis and then identified by matrix-assisted laser desorption/ionization-tandem time of flight-mass spectrometry (MALDI-TOF/TOF-MS). High-throughput sequencing and bioinformatic analyses were performed to identify differentially expressed genes between B. abortus cultured under biofilm and planktonic conditions. The proteins and genes identified by proteomic and genomic analyses were further evaluated via western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses. 2-D electrophoresis identified 20 differentially expressed protein spots between biofilms and planktonic cells, which corresponded to 18 individual proteins (12 downregulated and 6 upregulated) after MALDI-TOF/TOF-MS analysis, including elongation factor Tu and enolase. RT-qPCR analysis revealed that all of the 18 genes were downregulated in biofilms compared with planktonic cells. Western blot analysis identified 9 downregulated and 3 upregulated proteins. High-throughput sequencing and bioinformatic analyses identified 14 function and pathway-associated genes (e.g., BAbS19_I14970). RT-qPCR analysis of the 14 genes showed that they were upregulated in biofilm compared with in planktonic state. In conclusion, these differentially expressed genes may play important roles in bacterial defense, colonization, invasion, and virulence.
Collapse
Affiliation(s)
- Taishan Tang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Guoqiang Chen
- Division of Animal and Plant Quarantine Supervision, Suzhou Entry Exit Inspection and Quarantine Bureau, Suzhou, Jiangsu 215021, P.R. China
| | - Aizhen Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ye Xu
- Animal, Plant and Food Inspection Center, Jiangsu Entry Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210001, P.R. China
| | - Linli Zhao
- The Inspection and Quarantine Technology Center, Inner Mongolia Entry Exit Inspection and Quarantine Bureau, Hohhot, Inner Mongolia 010020, P.R. China
| | - Mengrui Wang
- Animal, Plant and Food Inspection Center, Jiangsu Entry Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210001, P.R. China
| | - Chengping Lu
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yuan Jiang
- Animal, Plant and Food Inspection Center, Jiangsu Entry Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210001, P.R. China
| | - Changyin Zhang
- Animal, Plant and Food Inspection Center, Jiangsu Entry Exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
6
|
Kumaran N, Munavar MH. Suppression of Δlonphenotypes in Escherichia coliby N-terminal DnaK peptides. J Basic Microbiol 2019; 59:302-313. [DOI: 10.1002/jobm.201800469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Nagarajan Kumaran
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional and Organismal Genomics; Madurai Kamaraj University; Palkalai Nagar, Madurai Tamil Nadu India
| | - M. Hussain Munavar
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional and Organismal Genomics; Madurai Kamaraj University; Palkalai Nagar, Madurai Tamil Nadu India
| |
Collapse
|
7
|
Inactivation of the dnaK gene in Clostridium difficile 630 Δerm yields a temperature-sensitive phenotype and increases biofilm-forming ability. Sci Rep 2017; 7:17522. [PMID: 29235503 PMCID: PMC5727486 DOI: 10.1038/s41598-017-17583-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection is a growing problem in healthcare settings worldwide and results in a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibiotic resistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenging gut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37-41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis.
Collapse
|
8
|
Broadening the functionality of a J-protein/Hsp70 molecular chaperone system. PLoS Genet 2017; 13:e1007084. [PMID: 29084221 PMCID: PMC5679652 DOI: 10.1371/journal.pgen.1007084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/09/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
By binding to a multitude of polypeptide substrates, Hsp70-based molecular chaperone systems perform a range of cellular functions. All J-protein co-chaperones play the essential role, via action of their J-domains, of stimulating the ATPase activity of Hsp70, thereby stabilizing its interaction with substrate. In addition, J-proteins drive the functional diversity of Hsp70 chaperone systems through action of regions outside their J-domains. Targeting to specific locations within a cellular compartment and binding of specific substrates for delivery to Hsp70 have been identified as modes of J-protein specialization. To better understand J-protein specialization, we concentrated on Saccharomyces cerevisiae SIS1, which encodes an essential J-protein of the cytosol/nucleus. We selected suppressors that allowed cells lacking SIS1 to form colonies. Substitutions changing single residues in Ydj1, a J-protein, which, like Sis1, partners with Hsp70 Ssa1, were isolated. These gain-of-function substitutions were located at the end of the J-domain, suggesting that suppression was connected to interaction with its partner Hsp70, rather than substrate binding or subcellular localization. Reasoning that, if YDJ1 suppressors affect Ssa1 function, substitutions in Hsp70 itself might also be able to overcome the cellular requirement for Sis1, we carried out a selection for SSA1 suppressor mutations. Suppressing substitutions were isolated that altered sites in Ssa1 affecting the cycle of substrate interaction. Together, our results point to a third, additional means by which J-proteins can drive Hsp70's ability to function in a wide range of cellular processes-modulating the Hsp70-substrate interaction cycle.
Collapse
|
9
|
Du S, Lutkenhaus J. The N-succinyl-l,l-diaminopimelic acid desuccinylase DapE acts through ZapB to promote septum formation in Escherichia coli. Mol Microbiol 2017; 105:326-345. [PMID: 28470834 DOI: 10.1111/mmi.13703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Spatial regulation of cell division in Escherichia coli occurs at the stage of Z ring formation. It consists of negative (the Min and NO systems) and positive (Ter signal mediated by MatP/ZapA/ZapB) regulators. Here, we find that N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) facilitates functional Z ring formation by strengthening the Ter signal via ZapB. DapE depends on ZapB to localize to the Z ring and its overproduction suppresses the division defect caused by loss of both the Min and NO systems. DapE shows a strong interaction with ZapB and requires the presence of ZapB to exert its function in division. Consistent with the idea that DapE strengthens the Ter signal, overproduction of DapE supports cell division with reduced FtsZ levels and provides some resistance to the FtsZ inhibitors MinCD and SulA, while deletion of dapE, like deletion of zapB, exacerbates the phenotypes of cells impaired in Z ring formation such as ftsZ84 or a min mutant. Taken together, our results report DapE as a new component of the divisome that promotes the integrity of the Z ring by acting through ZapB and raises the possibility of the existence of additional divisome proteins that also function in other cellular processes.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
10
|
Rodea GE, Montiel-Infante FX, Cruz-Córdova A, Saldaña-Ahuactzi Z, Ochoa SA, Espinosa-Mazariego K, Hernández-Castro R, Xicohtencatl-Cortes J. Tracking Bioluminescent ETEC during In vivo BALB/c Mouse Colonization. Front Cell Infect Microbiol 2017; 7:187. [PMID: 28560186 PMCID: PMC5432549 DOI: 10.3389/fcimb.2017.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene, resulting in the pRMkluc vector. E. coli K-12 and ETEC FMU073332 strains were electroporated with pRMkluc. E. coli K-12 pRMkluc was bioluminescent; in contrast, the E. coli K-12 control strain did not emit bioluminescence. The highest light emission was measured at 1.9 OD600 (9 h) and quantified over time. The signal was detected starting at time 0 and up to 12 h. Streptomycin-treated BALB/c mice were orogastrically inoculated with either ETEC FMU073332 pRMkluc or E. coli K-12 pRMkluc (control), and bacterial colonization was determined by measuring bacterial shedding in the feces. ETEC FMU073332 pRMkluc shedding started and stopped after inoculation of the control strain, indicating that mouse intestinal colonization by ETEC FMU073332 pRMkluc lasted longer than colonization by the control. The bioluminescence signal of ETEC FMU073332 pRMkluc was captured starting at the time of inoculation until 12 h after inoculation. The bioluminescent signal emitted by ETEC FMU073332 pRMkluc in the proximal mouse ileum was located, and the control signal was identified in the cecum. The detection of maximal light emission and bioluminescence duration allowed us to follow ETEC during in vivo infection. ETEC showed an enhanced colonization and tropism in the mouse intestine compared with those in the control strain. Here, we report the first study of ETEC colonization in the mouse intestine accompanied by in vivo imaging.
Collapse
Affiliation(s)
- Gerardo E Rodea
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico.,Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Francisco X Montiel-Infante
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Zeus Saldaña-Ahuactzi
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Karina Espinosa-Mazariego
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González"Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| |
Collapse
|
11
|
Meinert C, Brandt U, Heine V, Beyert J, Schmidl S, Wübbeler JH, Voigt B, Riedel K, Steinbüchel A. Proteomic analysis of organic sulfur compound utilisation in Advenella mimigardefordensis strain DPN7T. PLoS One 2017; 12:e0174256. [PMID: 28358882 PMCID: PMC5373536 DOI: 10.1371/journal.pone.0174256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/06/2017] [Indexed: 01/07/2023] Open
Abstract
2-Mercaptosuccinate (MS) and 3,3´-ditiodipropionate (DTDP) were discussed as precursor substance for production of polythioesters (PTE). Therefore, degradation of MS and DTDP was investigated in Advenella mimigardefordensis strain DPN7T, applying differential proteomic analysis, gene deletion and enzyme assays. Protein extracts of cells cultivated with MS, DTDP or 3-sulfinopropionic acid (SP) were compared with those cultivated with propionate (P) and/or succinate (S). The chaperone DnaK (ratio DTDP/P 9.2, 3SP/P 4.0, MS/S 6.1, DTDP/S 6.2) and a Do-like serine protease (DegP) were increased during utilization of all organic sulfur compounds. Furthermore, a putative bacterioferritin (locus tag MIM_c12960) showed high abundance (ratio DTDP/P 5.3, 3SP/P 3.2, MS/S 4.8, DTDP/S 3.9) and is probably involved in a thiol-specific stress response. The deletion of two genes encoding transcriptional regulators (LysR (MIM_c31370) and Xre (MIM_c31360)) in the close proximity of the relevant genes of DTDP catabolism (acdA, mdo and the genes encoding the enzymes of the methylcitric acid cycle; prpC,acnD, prpF and prpB) showed that these two regulators are essential for growth of A. mimigardefordensis strain DPN7T with DTDP and that they most probably regulate transcription of genes mandatory for this catabolic pathway. Furthermore, proteome analysis revealed a high abundance (ratio MS/S 10.9) of a hypothetical cupin-2-domain containing protein (MIM_c37420). This protein shows an amino acid sequence similarity of 60% to a newly identified MS dioxygenase from Variovorax paradoxus strain B4. Deletion of the gene and the adjacently located transcriptional regulator LysR, as well as heterologous expression of MIM_c37420, the putative mercaptosuccinate dioxygenase (Msdo) from A. mimigardefordensis, showed that this protein is the key enzyme of MS degradation in A. mimigardefordensis strain DPN7T (KM 0.2 mM, specific activity 17.1 μmol mg-1 min-1) and is controlled by LysR (MIM_c37410).
Collapse
Affiliation(s)
- Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ulrike Brandt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Viktoria Heine
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jessica Beyert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sina Schmidl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
12
|
Barducci A, De Los Rios P. Non-equilibrium conformational dynamics in the function of molecular chaperones. Curr Opin Struct Biol 2015; 30:161-169. [PMID: 25771489 DOI: 10.1016/j.sbi.2015.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/23/2015] [Accepted: 02/13/2015] [Indexed: 01/18/2023]
Abstract
Why do chaperones need ATP hydrolysis to help proteins reach their native, functional states? In this review, we highlight the most recent experimental and theoretical evidences suggesting that ATP hydrolysis allows molecular chaperones to escape the bounds imposed by equilibrium thermodynamics. We argue here that energy consumption must be fully taken into account to understand the mechanism of these intrinsically non-equilibrium machines and we propose a novel perspective in the way the relation between function and ATP hydrolysis is viewed.
Collapse
Affiliation(s)
- Alessandro Barducci
- Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland.
| | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland.
| |
Collapse
|
13
|
Leu JIJ, Zhang P, Murphy ME, Marmorstein R, George DL. Structural basis for the inhibition of HSP70 and DnaK chaperones by small-molecule targeting of a C-terminal allosteric pocket. ACS Chem Biol 2014; 9:2508-16. [PMID: 25148104 PMCID: PMC4241170 DOI: 10.1021/cb500236y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The stress-inducible mammalian heat shock protein 70 (HSP70) and its bacterial orthologue DnaK are highly conserved nucleotide binding molecular chaperones. They represent critical regulators of cellular proteostasis, especially during conditions of enhanced stress. Cancer cells rely on HSP70 for survival, and this chaperone represents an attractive new therapeutic target. We have used a structure-activity approach and biophysical methods to characterize a class of inhibitors that bind to a unique allosteric site within the C-terminus of HSP70 and DnaK. Data from X-ray crystallography together with isothermal titration calorimetry, mutagenesis, and cell-based assays indicate that these inhibitors bind to a previously unappreciated allosteric pocket formed within the non-ATP-bound protein state. Moreover, binding of inhibitor alters the local protein conformation, resulting in reduced chaperone-client interactions and impairment of proteostasis. Our findings thereby provide a new chemical scaffold and target platform for both HSP70 and DnaK; these will be important tools with which to interrogate chaperone function and to aid ongoing efforts to optimize potency and efficacy in developing modulators of these chaperones for therapeutic use.
Collapse
Affiliation(s)
- Julia I-Ju Leu
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Pingfeng Zhang
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Maureen E. Murphy
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Ronen Marmorstein
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Donna L. George
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Characterization of Campylobacter jejuni RacRS reveals roles in the heat shock response, motility, and maintenance of cell length homogeneity. J Bacteriol 2012; 194:2342-54. [PMID: 22343300 DOI: 10.1128/jb.06041-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni commensally colonizes the cecum of birds. The RacR (reduced ability to colonize) response regulator was previously shown to be important in avian colonization. To explore the means by which RacR and its cognate sensor kinase RacS may modulate C. jejuni physiology and colonization, ΔracR and ΔracS mutations were constructed in the invasive, virulent strain 81-176, and extensive phenotypic analyses were undertaken. Both the ΔracR and ΔracS mutants exhibited a ~100-fold defect in chick colonization despite no (ΔracS) or minimal (ΔracR) growth defects at 42 °C, the avian body temperature. Each mutant was defective for colony formation at 44°C and in the presence of 0.8% NaCl, both of which are stresses associated with the heat shock response. Promoter-reporter and real-time quantitative PCR (RT-qPCR) analyses revealed that RacR activates racRS and represses dnaJ. Although disregulation of several other heat shock genes was not observed at 38°C, the ΔracR and ΔracS mutants exhibited diminished upregulation of these genes upon a rapid temperature upshift. Furthermore, the ΔracR and ΔracS mutants displayed increased length heterogeneity during exponential growth, with a high proportion of filamented bacteria. Filamented bacteria had reduced swimming speed and were defective for invasion of Caco-2 epithelial cells. Soft-agar studies also revealed that the loss of racR or racS resulted in whole-population motility defects in viscous medium. These findings reveal new roles for RacRS in C. jejuni physiology, each of which is likely important during colonization of the avian host.
Collapse
|
15
|
Burger A, Whiteley C, Boshoff A. Current perspectives of the Escherichia coli RNA degradosome. Biotechnol Lett 2011; 33:2337-50. [DOI: 10.1007/s10529-011-0713-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
|
16
|
Bernardini G, Laschi M, Serchi T, Arena S, D'Ambrosio C, Braconi D, Scaloni A, Santucci A. Mapping phosphoproteins in Neisseria meningitidis serogroup A. Proteomics 2011; 11:1351-8. [PMID: 21365747 DOI: 10.1002/pmic.201000406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/08/2010] [Accepted: 12/29/2010] [Indexed: 11/10/2022]
Abstract
To investigate the phosphorylation capability of serogroup A Neisseria meningitidis (MenA) and to implement our knowledge in meningococcal biology and in bacterial post-translational modifications, cell extracts were separated by 2-DE and 51 novel phosphoproteins were revealed by the use of the highly specific Ser/Thr/Tyr-phosphorylated proteins staining by Pro-Q Diamond and identified by MALDI-ToF/MS. Our results indicate that phosphorylation in MenA is comparable to that of other bacterial species. A first functional characterization of the identified modified proteins was also given, in order to understand their role in meningococcal physiopathology.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, via Fiorentina, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Leu JIJ, Pimkina J, Frank A, Murphy ME, George DL. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36:15-27. [PMID: 19818706 DOI: 10.1016/j.molcel.2009.09.023] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/20/2009] [Accepted: 08/13/2009] [Indexed: 12/20/2022]
Abstract
The multifunctional, stress-inducible molecular chaperone HSP70 has important roles in aiding protein folding and maintaining protein homeostasis. HSP70 expression is elevated in many cancers, contributing to tumor cell survival and resistance to therapy. We have determined that a small molecule called 2-phenylethynesulfonamide (PES) interacts selectively with HSP70 and leads to a disruption of the association between HSP70 and several of its cochaperones and substrate proteins. Treatment of cultured tumor cells with PES promotes cell death that is associated with protein aggregation, impaired autophagy, and inhibition of lysosomal function. Moreover, this small molecule is able to suppress tumor development and enhance survival in a mouse model of Myc-induced lymphomagenesis. The data demonstrate that PES disrupts actions of HSP70 in multiple cell signaling pathways, offering an opportunity to better understand the diverse functions of this molecular chaperone and also to aid in the development of new cancer therapies.
Collapse
Affiliation(s)
- J I-Ju Leu
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, USA
| | | | | | | | | |
Collapse
|
18
|
Samaluru H, SaiSree L, Reddy M. Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J Bacteriol 2007; 189:8044-52. [PMID: 17766410 PMCID: PMC2168700 DOI: 10.1128/jb.00773-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of SufI, a well-studied substrate of the TatABC translocase in Escherichia coli, is not known. It was earlier implicated in cell division, based on the finding that multiple copies of sufI suppressed the phenotypes of cells with mutations in ftsI (ftsI23), which encodes a divisomal transpeptidase. Recently, sufI was identified as both a multicopy suppressor gene and a synthetic lethal mutant of ftsEX, which codes for a division-specific putative ABC transporter. In this study, we show that sufI is essential for the viability of E. coli cells subjected to various forms of stress, including oxidative stress and DNA damage. The sufI mutant also exhibits sulA-independent filamentation, indicating a role in cell division. The phenotypes of the sufI mutant are suppressed by factors that stabilize FtsZ ring assembly, such as increased expression of cell division proteins FtsQAZ or FtsN or the presence of the gain-of-function ftsA* (FtsA R286W) mutation, suggesting that SufI is a divisomal protein required during stress conditions. In support of this, multicopy sufI suppressed the divisional defects of mutants carrying the ftsA12, ftsQ1, or ftsK44 allele but not those of mutants carrying ftsZ84. Most of the division-defective mutants, in particular those carrying a DeltaftsEX or ftsI23 allele, exhibited sensitivity to oxidative stress or DNA damage, and this sensitivity was also abolished by multiple copies of SufI. All of these data suggest that SufI is a division component involved in protecting or stabilizing the divisomal assembly under conditions of stress. Since sufI fulfils the requirements to be designated an fts gene, we propose that it be renamed ftsP.
Collapse
Affiliation(s)
- Harish Samaluru
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | | |
Collapse
|
19
|
Eymann C, Becher D, Bernhardt J, Gronau K, Klutzny A, Hecker M. Dynamics of protein phosphorylation on Ser/Thr/Tyr inBacillus subtilis. Proteomics 2007; 7:3509-26. [PMID: 17726680 DOI: 10.1002/pmic.200700232] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Ser/Thr/Tyr phosphoproteome of Bacillus subtilis was analyzed by a 2-D gel-based approach combining Pro-Q Diamond staining and [(33)P]-labeling. In exponentially growing B. subtilis cells 27 proteins could be identified after staining with Pro-Q Diamond and/or [(33)P]-labeling and one additional protein was labeled solely by [(33)P] resulting in a total of 28 potentially phosphorylated proteins. These proteins are mainly involved in enzymatic reactions of basic carbon metabolism and the regulation of the alternative sigma factor sigma(B). We also found significant changes of the phosphoproteome including increased phosphorylation and dephosphorylation rates of some proteins as well as the detection of four newly phosphorylated proteins in response to stress or starvation. For nine proteins, phosphorylation sites at serine or threonine residues were determined by MS. These include the known phosphorylation sites of Crh, PtsH, and RsbV. Additionally, we were able to identify novel phosphorylation sites of AroA, Pyk, and YbbT. Interestingly, the phosphorylation of RsbRA, B, C, and D, four proteins of a multicomponent protein complex involved in environmental stress signaling, was found during exponential growth. For RsbRA, B, and D, phosphorylation of one of the conserved threonine residues in their C-termini were verified by MS (T171, T186, T181, respectively).
Collapse
Affiliation(s)
- Christine Eymann
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Conditions that impair protein folding in the Gram-negative bacterial envelope cause stress. The destabilizing effects of stress in this compartment are recognized and countered by a number of signal transduction mechanisms. Data presented here reveal another facet of the complex bacterial stress response, release of outer membrane vesicles. Native vesicles are composed of outer membrane and periplasmic material, and they are released from the bacterial surface without loss of membrane integrity. Here we demonstrate that the quantity of vesicle release correlates directly with the level of protein accumulation in the cell envelope. Accumulation of material occurs under stress, and is exacerbated upon impairment of the normal housekeeping and stress-responsive mechanisms of the cell. Mutations that cause increased vesiculation enhance bacterial survival upon challenge with stressing agents or accumulation of toxic misfolded proteins. Preferential packaging of a misfolded protein mimic into vesicles for removal indicates that the vesiculation process can act to selectively eliminate unwanted material. Our results demonstrate that production of bacterial outer membrane vesicles is a fully independent, general envelope stress response. In addition to identifying a novel mechanism for alleviating stress, this work provides physiological relevance for vesicle production as a protective mechanism.
Collapse
Affiliation(s)
| | - Meta J Kuehn
- For correspondence. E-mail ; Tel. (+1) 919 684 2545; Fax (+1) 919 684 8885
| |
Collapse
|
21
|
Lévine A, Vannier F, Absalon C, Kuhn L, Jackson P, Scrivener E, Labas V, Vinh J, Courtney P, Garin J, Séror SJ. Analysis of the dynamicBacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 2006; 6:2157-73. [PMID: 16493705 DOI: 10.1002/pmic.200500352] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The physiological role of proteins phosphorylated on serine/threonine/tyrosine (Ser/Thr/Tyr) residues or the identity of the corresponding kinases and phosphatases is generally poorly understood in bacteria. As a first step in analysing the importance of such phosphorylation, we sought to establish the nature of the Ser/Thr/Tyr phosphoproteome in Bacillus subtilis, using in vivo labelling with [(32)P]-orthophosphate, one-unit pH 2-DE, combined with MS. Highly reproducible 2-D profiles of phosphoproteins were obtained with early stationary-phase cells. The 2-D profiles contained at least 80 clearly labelled spots in the pH range 4-7. Forty-six spots were analysed by MS (confirmed in most cases by LC-MS/MS), identifying a total of 29 different proteins, with 19 identified for the first time as bacterial phosphoproteins. These phosphoproteins are implicated in a wide variety of cellular processes, including carbon and energy metabolism, transport, stress and development. Significant changes to the profiles were obtained as a result of cold, heat or osmotic shock, demonstrating that, in stationary-phase cells, the phosphoproteome is dynamic. An initial comparative study indicated that at least 25 [(32)P]-labelled spots were also stained by Pro-Q Diamond, with apparently six additional phosphoproteins uniquely detected by Pro-Q.
Collapse
Affiliation(s)
- Alain Lévine
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Blanco-Rivero MC, Takabe T, Viale AM. Functional differences between cyanobacterial DnaK1 chaperones from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus expressed in Escherichia coli. Curr Microbiol 2005; 51:164-70. [PMID: 16059771 DOI: 10.1007/s00284-005-4533-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
DnaK chaperones participate in essential cellular processes including the assistance of the folding, structural maintenance, trafficking, and degradation of proteins, the control of stress responses, and so on. In contrast to the situation found in most other bacterial groups, the cyanobacteria contain multiple dnaK homolog genes whose cellular roles remain ambiguous. We compared in this work the in vivo chaperone capabilities of the DnaK1 members from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus. The corresponding dnaK1 genes were expressed in Escherichia coli, and the abilities of the encoded chaperones to provide for both general and specific functions conducted by E. coli DnaK were analyzed. Synechococcus DnaK1 was far more effective than A. halophytica DnaK1 in replacing E. coli DnaK in all activities tested in vivo, including changes in cell morphology and downregulation of the heat shock response, prevention of the aggregation of misfolded proteins, and restoration of thermotolerance to dnaK-deficient mutants. Thus, regardless of an extensive sequence similarity and comparable in vitro chaperone capabilities, the two cyanobacterial DnaK1 chaperones functionally differed under in vivo conditions. The overall results reinforce the notion that A. halophytica DnaK1 and Synechococcus DnaK1 evolved different substrate specificity since they separated from a common ancestor.
Collapse
Affiliation(s)
- María C Blanco-Rivero
- Instituto de Biología Molecular y Celular de Rosario (CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, S2002LRK, Argentina
| | | | | |
Collapse
|
23
|
Yoshimune K, Galkin A, Kulakova L, Yoshimura T, Esaki N. Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures. Extremophiles 2004; 9:145-50. [PMID: 15599780 DOI: 10.1007/s00792-004-0429-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 11/12/2004] [Indexed: 11/26/2022]
Abstract
Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0 degrees C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24 degrees C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43 degrees C nor lambda phage propagation at an even lower temperature, 30 degrees C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15 degrees C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.
Collapse
Affiliation(s)
- Kazuaki Yoshimune
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
24
|
Guisbert E, Herman C, Lu CZ, Gross CA. A chaperone network controls the heat shock response in E. coli. Genes Dev 2004; 18:2812-21. [PMID: 15545634 PMCID: PMC528900 DOI: 10.1101/gad.1219204] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heat shock response controls levels of chaperones and proteases to ensure a proper cellular environment for protein folding. In Escherichia coli, this response is mediated by the bacterial-specific transcription factor, sigma32. The DnaK chaperone machine regulates both the amount and activity of sigma32, thereby coupling sigma32 function to the cellular protein folding state. In this manuscript, we analyze the ability of other major chaperones in E. coli to regulate sigma32, and we demonstrate that the GroEL/S chaperonin is an additional regulator of sigma32. We show that increasing the level of GroEL/S leads to a decrease in sigma32 activity in vivo and this effect can be eliminated by co-overexpression of a GroEL/S-specific substrate. We also show that depletion of GroEL/S in vivo leads to up-regulation of sigma32 by increasing the level of sigma32. In addition, we show that changing the levels of GroEL/S during stress conditions leads to measurable changes in the heat shock response. Using purified proteins, we show that that GroEL binds to sigma32 and decreases sigma32-dependent transcription in vitro, suggesting that this regulation is direct. We discuss why using a chaperone network to regulate sigma32 results in a more sensitive and accurate detection of the protein folding environment.
Collapse
Affiliation(s)
- Eric Guisbert
- Department of Biochemistry and Biophysics, Microbiology and Immunology, and Stomatology, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
25
|
Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H, Osteryoung KW. ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. THE PLANT CELL 2003; 15:1918-33. [PMID: 12897262 PMCID: PMC167179 DOI: 10.1105/tpc.013292] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2003] [Accepted: 05/21/2003] [Indexed: 05/18/2023]
Abstract
Replication of chloroplasts is essential for achieving and maintaining optimal plastid numbers in plant cells. The plastid division machinery contains components of both endosymbiotic and host cell origin, but little is known about the regulation and molecular mechanisms that govern the division process. The Arabidopsis mutant arc6 is defective in plastid division, and its leaf mesophyll cells contain only one or two grossly enlarged chloroplasts. We show here that arc6 chloroplasts also exhibit abnormal localization of the key plastid division proteins FtsZ1 and FtsZ2. Whereas in wild-type plants, the FtsZ proteins assemble into a ring at the plastid division site, chloroplasts in the arc6 mutant contain numerous short, disorganized FtsZ filament fragments. We identified the mutation in arc6 and show that the ARC6 gene encodes a chloroplast-targeted DnaJ-like protein localized to the plastid envelope membrane. An ARC6-green fluorescent protein fusion protein was localized to a ring at the center of the chloroplasts and rescued the chloroplast division defect in the arc6 mutant. The ARC6 gene product is related closely to Ftn2, a prokaryotic cell division protein unique to cyanobacteria. Based on the FtsZ filament morphology observed in the arc6 mutant and in plants that overexpress ARC6, we hypothesize that ARC6 functions in the assembly and/or stabilization of the plastid-dividing FtsZ ring. We also analyzed FtsZ localization patterns in transgenic plants in which plastid division was blocked by altered expression of the division site-determining factor AtMinD. Our results indicate that MinD and ARC6 act in opposite directions: ARC6 promotes and MinD inhibits FtsZ filament formation in the chloroplast.
Collapse
Affiliation(s)
- Stanislav Vitha
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
26
|
Mayer MP, Brehmer D, Gässler CS, Bukau B. Hsp70 chaperone machines. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:1-44. [PMID: 11868269 DOI: 10.1016/s0065-3233(01)59001-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M P Mayer
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
27
|
Schüler H. ATPase activity and conformational changes in the regulation of actin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1549:137-47. [PMID: 11690650 DOI: 10.1016/s0167-4838(01)00255-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eukaryotic microfilament system is regulated in part through the nucleotide- and cation-dependent conformation of the actin molecule. In this review, recent literature on the crystal and solution structures of actin and other actin-superfamily proteins is summarized. Furthermore, the structure of the nucleotide binding cleft is discussed in terms of the mechanism of ATP hydrolysis and P(i) release. Two distinct domain movements are suggested to participate in the regulation of actin. (1) High-affinity binding of Mg(2+) to actin induces a rearrangement of side chains in the nucleotide binding site leading to an increased ATPase activity and polymerizability, as well as a rotation of subdomain 2 which is mediated by the hydroxyl of serine-14. (2) Hydrolysis of ATP and subsequent release of inorganic phosphate lead to a butterfly-like opening of the actin molecule brought about by a shearing in the interdomain helix 135-150. These domain rearrangements modulate the interaction of actin with a variety of different proteins, and conversely, protein binding to actin can restrict these conformational changes, with ultimate effects on the assembly state of the microfilament system.
Collapse
Affiliation(s)
- H Schüler
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
28
|
Barthel TK, Zhang J, Walker GC. ATPase-defective derivatives of Escherichia coli DnaK that behave differently with respect to ATP-induced conformational change and peptide release. J Bacteriol 2001; 183:5482-90. [PMID: 11544208 PMCID: PMC95437 DOI: 10.1128/jb.183.19.5482-5490.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized the effects of the T199S, T199A, and K70A mutations on the biochemical activity and in vivo functioning of Escherichia coli DnaK. Threonine-199 is the site of autophosphorylation of DnaK, and the lysine residue of bovine Hsc70 corresponding to K70 of DnaK has been shown to be essential for the hydrolysis of ATP. The dnaK alleles T199A and K70A are completely unable, and the T199S allele is only partially able, to complement the defects of a DeltadnaK mutant. The ATPase activities of the DnaK T199A and DnaK K70A proteins are nearly abolished, while the ATPase activity of the DnaK T199S protein has a steady-state rate similar to that of wild-type DnaK. The DnaK T199S protein also retains approximately 13% of the autophosphorylation activity of wild-type DnaK, while the autophosphorylation activities of the T199A and K70A derivatives are completely abolished. All four DnaK proteins bind a model peptide substrate, and the wild-type, T199A, and T199S DnaK proteins release the peptide with similar kinetics upon the addition of ATP. The DnaK K70A protein, in contrast, does not release the peptide upon the addition of ATP. ATP induces a conformational change in the wild-type, T199A, and T199S DnaK proteins but not in the DnaK K70A protein. The T199A and K70A mutations both disrupt the ATPase activity of DnaK but have profoundly different effects on the ATP-induced conformational change and peptide release activities of DnaK, implying that the two mutations affect different steps in the functional cycle of DnaK. The DnaK T199S protein represents a new class of DnaK mutant, one which has near-normal levels of ATPase activity and undergoes an ATP-induced conformational change that results in the release of peptide but which is not able to fully complement loss of DnaK function in the cell.
Collapse
Affiliation(s)
- T K Barthel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
29
|
Uehara T, Matsuzawa H, Nishimura A. HscA is involved in the dynamics of FtsZ-ring formation in Escherichia coli K12. Genes Cells 2001; 6:803-14. [PMID: 11554926 DOI: 10.1046/j.1365-2443.2001.00463.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND FtsZ, a homologue of eukaryotic tubulin, localizes throughout the cytoplasm in non-dividing Escherichia coli. However, it assembles in cytokinetic rings at the early stages of septation. Factors controlling the dynamics of FtsZ ring formation are unknown, and the molecular mechanism governing these dynamics is yet to be determined. RESULTS At 42 degrees C, JE10715 mutant bacteria formed multinucleated filaments with a highly reduced number of FtsZ-rings at potential division sites. The JE10715 phenotype resulted from a mis-sense mutation in the hscA gene which encodes a heat shock Hsp70 family protein, with a single alanine-to-valine substitution at position 192 within the ATPase domain. Both JE10715 and the hscA knockout strain of JE10715 were completely complemented by a plasmid-born, wild-type hscA gene, but not by a mutant-type hscA715 gene. An hscA conditional knockout of the wild-type strain under non-permissive conditions exhibited longer rod cells with an abnormal localization of FtsZ. The over-expression of dnaK partially complemented the JE10715 mutation. In vitro, the ATPase activity of the mutant protein HscA715 was reduced to 63% of wild-type HscA activity. HscA co-sedimented with FtsZ-polymers in the presence of GTP. CONCLUSION HscA is involved in FtsZ-ring formation, through a chaperon-like interaction with FtsZ. Defects in hscA, however, can partially be compensated for by redundant genes, including the wild-type dnaK.
Collapse
Affiliation(s)
- T Uehara
- National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | |
Collapse
|
30
|
Alba BM, Zhong HJ, Pelayo JC, Gross CA. degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide sigma (E) activity. Mol Microbiol 2001; 40:1323-33. [PMID: 11442831 DOI: 10.1046/j.1365-2958.2001.02475.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DegS (HhoB), a putative serine protease related to DegP/HtrA, regulates the basal and induced activity of the essential Escherichia coli sigma factor sigma (E), which is involved in the cellular response to extracytoplasmic stress. DegS promotes the destabilization of the sigma (E)-specific anti-sigma factor RseA, thereby releasing sigma (E) to direct gene expression. We demonstrate that degS is an essential E. coli gene and show that the essential function of DegS is to provide the cell with sigma (E) activity. We also show that the putative active site of DegS is periplasmic and that DegS requires its N-terminal transmembrane domain for its sigma (E)-related function.
Collapse
Affiliation(s)
- B M Alba
- Department of Biochemistry, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
31
|
Wolska KI, Bugajska E, Jurkiewicz D, Kuć M, Jóźwik A. Antibiotic susceptibility of Escherichia coli dnaK and dnaJ mutants. Microb Drug Resist 2001; 6:119-26. [PMID: 10990266 DOI: 10.1089/107662900419429] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of two chaperone proteins, DnaK and the cooperating factor DnaJ, in Escherichia coli antibiotic susceptibility to three antibiotics (a beta-lactam, chloramphenicol, tetracycline) has been studied. It was found that null dnaJ and dnaKdnaJ mutants are impaired in the functions leading to antibiotic susceptibility. The secretion of beta-lactamase to the periplasmic space is diminished in both mutants, and the additive effect of the two mutations was observed. The activity of chloramphenicol acetyltransferase is also impaired in an additive manner in both mutant strains. Tetracycline uptake is changed only in the double deletion mutant. These defects were observed only during incubation at high temperature (42 degrees C). Efficient complementation of some of these defects by the wild-type alleles introduced on low-copy number plasmid was achieved. Minimal inhibitory concentrations and the titer of the wild-type strains, delta dnaJ and delta dnaKdnaJ mutants treated with ampicillin, chloramphenicol, and tetracycline were also determined. Higher susceptibility of both mutants to chloramphenicol and tetracycline, as compared to their wild-type parent, was observed only after 1 h preincubation of cultures at 42 degrees C. On the contrary, both mutants were less susceptible to ampicillin than their parent strain.
Collapse
Affiliation(s)
- K I Wolska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Poland.
| | | | | | | | | |
Collapse
|
32
|
Barthel TK, Walker GC. Inferences concerning the ATPase properties of DnaK and other HSP70s are affected by the ADP kinase activity of copurifying nucleoside-diphosphate kinase. J Biol Chem 1999; 274:36670-8. [PMID: 10593971 DOI: 10.1074/jbc.274.51.36670] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preparations of Escherichia coli DnaK from our lab as well as preparations of DnaK and other HSP70 proteins from several major labs in the field produce a stoichiometric initial burst of [alpha-(32)P]ADP when incubated with [alpha-(32)P]ATP and contain an ADP kinase activity. We determined that the initial burst activity results from the transfer of gamma-phosphate from the radiolabeled substrate [alpha-(32)P]ATP to unlabeled ADP bound by the DnaK and is the same activity that results in ADP phosphorylation. The purification of DnaK from E. coli cells that carry a disrupted ndk gene, ndk::km, results in preparations with greatly reduced ADP kinase activities compared with preparations of DnaK purified from ndk(+) cells. The reduction in the amount of ADP kinase activity in preparations of DnaK purified from ndk::km cells shows that nucleoside-diphosphate kinase (NDP kinase) is responsible for most of the ADP kinase activity present in DnaK preparations isolated from ndk(+) cells. The remaining ADP kinase activity in preparations from ndk::km cells, which varies between preparations, is also a property of NDP kinase, which is most likely expressed because of a low frequency reversion of the disrupted ndk gene. A weak, but measurable physical interaction exists between DnaK and NDP kinase and may be at least partially responsible for the co-purification of NDP kinase with DnaK. The presence of contaminating NDP kinase can explain the range of k(cat) values reported for the ATPase activity of DnaK as well as recent reports of initial burst kinetics by DnaK (Banecki, B., and Zylicz, M. (1996) J. Biol. Chem. 271, 6137-6143) and an ADP-ATP exchange activity of DnaK (Hiromura, M., Yano, M., Mori, H., Inoue, M., and Kido, H. (1998) J. Biol. Chem. 273, 5435-5438).
Collapse
Affiliation(s)
- T K Barthel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
33
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
34
|
Koch B, Kilstrup M, Vogensen FK, Hammer K. Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. J Bacteriol 1998; 180:3873-81. [PMID: 9683484 PMCID: PMC107371 DOI: 10.1128/jb.180.15.3873-3881.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and proteases, including the DnaK-GrpE-DnaJ and the GroELS chaperone complexes. In order to investigate the importance of the DnaK chaperone complex for growth and heat shock response regulation in Lactococcus lactis, we have constructed two dnaK mutants with C-terminal deletions in dnaK. The minor deletion of 65 amino acids in the dnaKDelta2 mutant resulted in a slight temperature-sensitive phenotype. BK6, containing the larger deletion of 174 amino acids (dnaKDelta1), removing the major part of the inferred substrate binding site of the DnaK protein, exhibited a pronounced temperature-sensitive phenotype and showed altered regulation of the heat shock response. The expression of the heat shock proteins was increased at the normal growth temperature, measured as both protein synthesis rates and mRNA levels, indicating that DnaK could be involved in the regulation of the heat shock response in L. lactis. For Bacillus subtilis, it has been found (A. Mogk, G. Homuth, C. Scholz, L. Kim, F. X. Schmid, and W. Schumann, EMBO J. 16:4579-4590, 1997) that the activity of the heat shock repressor HrcA is dependent on the chaperone function of the GroELS complex and that a dnaK insertion mutant has no effect on the expression of the heat shock proteins. The present data from L. lactis suggest that the DnaK protein could be involved in the maturation of the homologous HrcA protein in this bacterium.
Collapse
Affiliation(s)
- B Koch
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
35
|
Zhang Y, Ohashi N, Rikihisa Y. Cloning of the heat shock protein 70 (HSP70) gene of Ehrlichia sennetsu and differential expression of HSP70 and HSP60 mRNA after temperature upshift. Infect Immun 1998; 66:3106-12. [PMID: 9632573 PMCID: PMC108320 DOI: 10.1128/iai.66.7.3106-3112.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/1998] [Accepted: 04/20/1998] [Indexed: 02/07/2023] Open
Abstract
Ehrlichia sennetsu is the causative agent of human Sennetsu ehrlichiosis. Heat shock protein 60 (HSP60) and HSP70 (DnaK) are two major bacterial HSPs, and their interaction modulates the stress response. Previously, we cloned and sequenced groE and expressed groEL of E. sennetsu. HSP60 (GroEL) was immunogenic and cross-reactive in Ehrlichia spp. The present study was designed to (i) characterize the HSP70 gene of this organism and (ii) determine whether the expression of these two HSPs is inducible upon exposure to heat stress. A gene encoding an HSP70 homolog was isolated and sequenced from a gene library. The ehrlichial HSP70 gene encoded a 637-amino-acid protein, which had an approximate molecular mass of 68,354 Da and which was homologous to DnaK of Escherichia coli. A DNA sequence resembling -35 and -10 promoter sequences of E. coli dnaK was observed upstream of the ehrlichial HSP70 gene. Alignment of the predicted amino acid sequence with that of E. coli DnaK and Brucella, Salmonella, Borrelia, Chlamydia, and Mycobacterium HSP70s showed 63, 67, 63, 62, 58, and 53% identity, respectively. By reverse transcription-PCR analysis, the mRNA levels of ehrlichial HSP70 and HSP60 were examined after temperature shifts from 28 to 37 degreesC and from 37 to 40 degreesC. HSP70 mRNA induction levels were greater than those of HSP60 mRNA after a 37-to-40 degreesC temperature shift, whereas the reverse was true after a 28-to-37 degreesC temperature shift. Our data suggest that HSP60 and HSP70 may play different roles during transfer from vector temperature to human body temperature and during a febrile condition characteristic of ehrlichial disease. This study also provides a useful model system for examining mRNA expression in obligatory intracellular bacteria.
Collapse
Affiliation(s)
- Y Zhang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
36
|
Zou Y, Crowley DJ, Van Houten B. Involvement of molecular chaperonins in nucleotide excision repair. Dnak leads to increased thermal stability of UvrA, catalytic UvrB loading, enhanced repair, and increased UV resistance. J Biol Chem 1998; 273:12887-92. [PMID: 9582319 DOI: 10.1074/jbc.273.21.12887] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UvrA is one of the key Escherichia coli proteins involved in removing DNA damage during the process of nucleotide excision repair. The relatively low concentrations (nanomolar) of the protein in the normal cells raise the potential questions about its stability in vivo under both normal and stress conditions. In vitro, UvrA at low concentrations is shown to be stabilized to heat inactivation by E. coli molecular chaperones DnaK or the combination of DnaK, DnaJ, and GrpE. These chaperone proteins allow sub-nanomolar concentrations of UvrA to load UvrB through >10 cycles of incision. Guanidine hydrochloride-denatured UvrA was reactivated by DnaK, DnaJ, and GrpE to as much as 50% of the native protein activity. Co-immunoprecipitation assays showed that DnaK bound denatured UvrA in the absence of ATP. UV survival studies of a DnaK-deficient strain indicated an 80-fold increased sensitivity to 100 J/m2 of ultraviolet light (254 nm) as compared with an isogenic wild-type strain. Global repair analysis indicated a reduction in the extent of pyrimidine dimer and 6-4 photoproduct removal in the DnaK-deficient cells. These results suggest that molecular chaperonins participate in nucleotide excision repair by maintaining repair proteins in their properly folded state.
Collapse
Affiliation(s)
- Y Zou
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1071, USA
| | | | | |
Collapse
|
37
|
Abstract
Bacteria usually divide by building a central septum across the middle of the cell. This review focuses on recent results indicating that the tubulin-like FtsZ protein plays a central role in cytokinesis as a major component of a contractile cytoskeleton. Assembly of this cytoskeletal element abutting the membrane is a key point for regulation. The characterization of FtsZ homologues in Mycoplasmas, Archaea, and chloroplasts implies that the constriction mechanism is conserved and that FtsZ can constrict in the absence of peptidoglycan synthesis. In most Eubacteria, the internal cytoskeleton must also regulate synthesis of septal peptidoglycan. The Escherichia coli septum-specific penicillin-binding protein 3 (PBP3) forms a complex with other enzymes involved in murein metabolism, suggesting a centrally located transmembrane complex capable of splicing multiple new strands of peptidoglycan into the cell wall. Important questions remain about the spatial and temporal control of bacterial division.
Collapse
Affiliation(s)
- D Bramhill
- Department of Enzymology, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA.
| |
Collapse
|
38
|
Checa SK, Viale AM. The 70-kDa heat-shock protein/DnaK chaperone system is required for the productive folding of ribulose-biphosphate carboxylase subunits in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:848-55. [PMID: 9342238 DOI: 10.1111/j.1432-1033.1997.00848.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have studied the in vivo requirements of the DnaK chaperone system for the folding of recombinant ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli. Expression of functional dimeric or hexadecameric ribulose-bisphosphate carboxylase from different bacterial sources (including purple bacteria and cyanobacteria) was severely impaired in E. coli dnaK, dnaJ, or grpE mutants. These enzymes were synthesized mostly in soluble, fully enzymatically active forms in wild-type E. coli cells cultured in the temperature range 20-42 degrees C, but aggregated extensively in dnaK null mutants. Co-expression of dnaK, but not groESL, markedly reduced the aggregation of ribulose-bisphosphate carboxylase subunits in dnaK null mutants and restored the enzyme activity to levels found in isogenic wild-type strains. Ribulose-bisphosphate carboxylase expression in wild-type E. coli cells growing at 30 degrees C promoted an enhanced synthesis of stress proteins, apparently by sequestering DnaK from its negative regulatory role in this response. The overall results indicate that the DnaK chaperone system assists in vivo the folding pathway of ribulose-bisphosphate carboxylase large subunits, most probably at its very early stages.
Collapse
Affiliation(s)
- S K Checa
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | |
Collapse
|
39
|
Ungewickell E, Ungewickell H, Holstein SE. Functional interaction of the auxilin J domain with the nucleotide- and substrate-binding modules of Hsc70. J Biol Chem 1997; 272:19594-600. [PMID: 9235966 DOI: 10.1074/jbc.272.31.19594] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The uncoating of clathrin-coated vesicles requires the DnaJ homologue auxilin for targeting Hsc70 to clathrin coats. This function involves a transient interaction of the auxilin J domain with Hsc70. We have now identified the structural elements of Hsc70 that are responsible for the uncoating activity, and we show that the hitherto accepted view, which implicates the 10-kDa carboxyl-terminal variable domain of Hsc70, is incorrect. A 60-kDa chymotryptic or analogous recombinant fragment of Hsc70, which contains the ATPase- and substrate-binding domains, is sufficient to liberate clathrin from coated vesicles. Consistent with this was the observation that Hsp70 uncoats coated vesicles with the same efficacy as Hsc70 and that DnaK possesses vestigial uncoating activity. Direct binding studies demonstrated that the auxilin J domain undergoes an ATP-dependent reaction only with fragments of Hsc70 that contain both the ATPase- and substrate-binding domains. The individual domains by themselves did not bind to the J domain nor did a recombinant protein that contained the substrate-binding domain attached to the 10-kDa variable domain.
Collapse
Affiliation(s)
- E Ungewickell
- Center for Immunology, Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
40
|
Parsons LM, Limberger RJ, Shayegani M. Alterations in levels of DnaK and GroEL result in diminished survival and adherence of stressed Haemophilus ducreyi. Infect Immun 1997; 65:2413-9. [PMID: 9169782 PMCID: PMC175334 DOI: 10.1128/iai.65.6.2413-2419.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Haemophilus ducreyi is a hemin-requiring bacterium causing the genital ulcer disease chancroid. Previously we demonstrated that the heat shock protein GroEL was immunogenic and possibly highly expressed in a mammalian host. The present study was initiated to (i) determine the relative amounts of GroEL expressed by H. ducreyi during in vitro exposure to stresses and (ii) evaluate whether a high level of GroEL is directly or indirectly required for survival and adherence of stressed H. ducreyi. Using scanning densitometry of sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles, we found that H. ducreyi expressed high basal levels of GroEL, averaging fivefold greater than in Escherichia coli. These high GroEL levels increased up to twofold upon exposure of the organism to heat shock or high levels of hydrogen peroxide and during adherence to two human genital cell lines. Furthermore, when the gene for DnaK was present on a multicopy plasmid in H. ducreyi, a 1.8-fold increase in DnaK and a 2.3-fold reduction in GroEL were seen. These results suggest that DnaK serves as a negative modulator of H. ducreyi GroEL. Subsequently we found that H. ducreyi with lower GroEL had diminished ability to survive when challenged by heat and oxidative stresses. In addition, the long, parallel chains characteristic of virulent strains of H. ducreyi were absent when GroEL was lowered, so that fewer bacterial cells adhered to the human cells. These results suggest that the unusually high basal levels of GroEL are involved, either directly or indirectly, in the survival, chaining, and adherence of H. ducreyi in the presence of the combined stresses of the host environment.
Collapse
Affiliation(s)
- L M Parsons
- David Axelrod Institute for Public Health, Wadsworth Center, New York State Department of Health, Albany 12201, USA.
| | | | | |
Collapse
|
41
|
Arnau J, Sørensen KI. The isolation of novel heat shock genes in Lactococcus lactis using RNA subtractive hybridization. Gene 1997; 188:229-34. [PMID: 9133596 DOI: 10.1016/s0378-1119(96)00812-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lactococcus lactis is subjected to heat shock (hs) during cheese manufacturing. A number of conserved hs genes have been cloned and studied in this organism, although no regulatory gene, e.g. alternative sigma factor, has been identified. RNA subtractive hybridization was used to identify genes expressed very early when L. lactis MG1363 was shifted from 30 to 43 degrees C. 32P-labeled cDNA synthesized from RNA isolated from hs cells at 43 degrees C was mixed with an excess vegetative RNA and the mixture was directly used as a probe after a short hybridization step. Northern analysis revealed a moderate induction for the probes used, and low expression was also detected in non-hs cells, demonstrating the applicability of this technique for the detection of differentially expressed genes. The probes were used to identify genomic library clones containing the corresponding genes. Among the five clones studied, a cell division operon including a putative ftsZ homolog (pJAK2) was identified. Additionally, a putative hsp86 homolog (pJAK3), three different transposase encoding genes (pJAK1 and pJAK3), a gene coding for a deoR-like transcriptional repressor (pJAK4) and a putative regulatory gene that showed homology to an alkaline shock protein (pJAK5) were characterized.
Collapse
Affiliation(s)
- J Arnau
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
| | | |
Collapse
|
42
|
Yigit H, Reznikoff WS. Examination of the Tn5 transposase overproduction phenotype in Escherichia coli and localization of a suppressor of transposase overproduction killing that is an allele of rpoH. J Bacteriol 1997; 179:1704-13. [PMID: 9045832 PMCID: PMC178885 DOI: 10.1128/jb.179.5.1704-1713.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. Tnp overproduction causes cell filamentation, abnormal chromosome segregation, and an increase in anucleated cell formation. There are two simple explanations for the observed phenotype: induction of the SOS response or of the heat shock response. The data presented here show that overproduction of Tnp neither induces an SOS response nor a strong heat shock response. However, our experiments do indicate that induction of some sigma32-programmed function(s) (either due to an rpoH mutation, a deletion of dnaK, or overproduction of sigma32) suppresses Tnp overproduction killing. This effect is not due to overproduction of DnaK, DnaJ, or GroELS. In addition, Tnp but not deltall Tnp (whose overproduction does not kill the host cells) associates with the inner cell membrane, suggesting a possible correlation between cell killing and Tnp membrane association. These observations will be discussed in the context of a model proposing that Tnp overproduction titrates an essential host factor(s) involved in an early cell division step and/or chromosome segregation.
Collapse
Affiliation(s)
- H Yigit
- Department of Biochemistry, University of Wisconsin--Madison, 53706, USA
| | | |
Collapse
|
43
|
Herman C, Thévenet D, D'Ari R, Bouloc P. The HflB protease of Escherichia coli degrades its inhibitor lambda cIII. J Bacteriol 1997; 179:358-63. [PMID: 8990286 PMCID: PMC178704 DOI: 10.1128/jb.179.2.358-363.1997] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cIII protein of bacteriophage lambda is known to protect two regulatory proteins from degradation by the essential Escherichia coli protease HflB (also known as FtsH), viz., the lambda cII protein and the host heat shock sigma factor sigma32. lambda cIII, itself an unstable protein, is partially stabilized when the HflB concentration is decreased, and its half-life is decreased when HflB is overproduced, strongly suggesting that it is degraded by HflB in vivo. The in vivo degradation of lambda cIII (unlike that of sigma32) does not require the molecular chaperone DnaK. Furthermore, the half-life of lambda cIII is not affected by depletion of the endogenous ATP pool, suggesting that lambda cIII degradation is ATP independent (unlike that of lambda cII and sigma32). The lambda cIII protein, which is predicted to contain a 22-amino-acid amphipathic helix, is associated with the membrane, and nonlethal overproduction of lambda cIII makes cells hypersensitive to the detergent sodium dodecyl sulfate. This could reflect a direct lambda cIII-membrane interaction or an indirect association via the membrane-bound HflB protein, which is known to be involved in the assembly of certain periplasmic and outer membrane proteins.
Collapse
Affiliation(s)
- C Herman
- Institut Jacques Monod, Université Paris 7, France
| | | | | | | |
Collapse
|
44
|
Ogata Y, Mizushima T, Kataoka K, Kita K, Miki T, Sekimizu K. DnaK heat shock protein of Escherichia coli maintains the negative supercoiling of DNA against thermal stress. J Biol Chem 1996; 271:29407-14. [PMID: 8910606 DOI: 10.1074/jbc.271.46.29407] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plasmid DNA in exponentially growing Escherichia coli immediately relaxes after heat shock, and the relaxed state of DNA rapidly reverts to the original state with exposure to conditions of heat shock. We have now obtained genetic and biochemical evidence indicating that DnaK heat shock protein of E. coli, a prokaryotic homologue of hsp70, is involved in this re-supercoiling of DNA. As re-supercoiling of DNA did not occur in an rpoH amber mutant, it seems likely that heat shock proteins are required for this reaction. Plasmid DNA in a dnaK deletion mutant relaxed excessively after temperature shift-up, and the re-supercoiling of DNA was not observed. DNAs incubated with a crude cell extract prepared from the dnaK mutant were more relaxed than seen with the extract from its isogenic wild-type strain, and the addition of purified DnaK protein to the mutant extract led to an increase in the negative supercoiling of DNA. Moreover, reaction products of purified DNA gyrase more negatively supercoiled in the presence of DnaK protein. Based on these results, we propose that DnaK protein plays a role in maintaining the negative supercoiling of DNA against thermal stress.
Collapse
Affiliation(s)
- Y Ogata
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-82, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Holstein SE, Ungewickell H, Ungewickell E. Mechanism of clathrin basket dissociation: separate functions of protein domains of the DnaJ homologue auxilin. J Cell Biol 1996; 135:925-37. [PMID: 8922377 PMCID: PMC2133390 DOI: 10.1083/jcb.135.4.925] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Auxilin was recently identified as cofactor for hsc70 in the uncoating of clathrin-coated vesicles (Ungewickell, E., H. Ungewickell, S.E. Holstein, R. Lindner, K. Prasad, W. Barouch, B. Martin, L.E. Greene, and E. Eisenberg. 1995. Nature (Lond.). 378: 632-635). By constructing different glutathione-S-transferase (GST)-auxilin fragments, we show here that cooperation of auxilin's J domain (segment 813-910) with an adjoining clathrin binding domain (segment 547-814) suffices to dissociate clathrin baskets in the presence of hsc70 and ATP. When the two domains are expressed as separate GST fusion proteins, the cofactor activity is lost, even though both retain their respective functions. The clathrin binding domain binds to triskelia like intact auxilin with a maximum stoichiometry of 3 and concomitantly promotes their assembly into regular baskets. A fragment containing auxilin's J domain associates in an ATP-dependent reaction with hsc70 to form a complex with a half-life of 8 min at 25 degrees C. When the clathrin binding domain and the J domain are recombined via dimerization of their GST moieties, cofactor activity is partially recovered. The interaction between auxilin's J domain and hsc70 causes rapid hydrolysis of bound ATP. Release of inorganic phosphate appears to be correlated with the disintegration of the complex between auxilin's J domain and hsc70. We infer that the metastable complex composed of auxilin, hsc70, ADP, and P(i) contains an activated form of hsc70, primed to engage clathrin that is brought into apposition with it by the DnaJ homologue auxilin.
Collapse
Affiliation(s)
- S E Holstein
- Center for Immunology, Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
46
|
Zhang J, Walker GC. Identification of Elements of the Peptide Binding Site of DnaK by Peptide Cross-linking. J Biol Chem 1996. [DOI: 10.1074/jbc.271.33.19668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Cluss RG, Goel AS, Rehm HL, Schoenecker JG, Boothby JT. Coordinate synthesis and turnover of heat shock proteins in Borrelia burgdorferi: degradation of DnaK during recovery from heat shock. Infect Immun 1996; 64:1736-43. [PMID: 8613385 PMCID: PMC173986 DOI: 10.1128/iai.64.5.1736-1743.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The synthesis and turnover of heat shock proteins (Hsps) by Borrelia burgdorferi, the Lyme disease spirochete, was investigated by radiolabeling of whole spirochetes and spheroplasts, comparison of one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and use of immunochemistry. The approximately 72-kDa DnaK homolog and three additional Hsps of 39, 27, and 21 kDa increased in amount by 3- to 15-fold between 2 and 6 h following temperature upshift from 28 to 39 degrees C. Temperature downshift experiments following the transfer of spirochetes from 40 to 28 degrees C showed that within 15 to 30 min, synthesis of most of the major Hsps returned to levels seen in spirochetes statically maintained at the lower temperature. Spheroplasts of B. burgdorferi produced by treatment with EDTA and lysozyme were radiolabeled, and specific Hsps were localized to either the cytoplasm or membrane fraction. Further analysis by two-dimensional electrophoresis demonstrated three constitutively expressed DnaK isoforms with pIs near 5.5. A pattern suggestive of DnaK degradation was observed following recovery from heat shock but not in spirochetes maintained entirely at a low temperature. Some of these putative degradation products were recognized by monoclonal antibodies directed against the B. burgdorferi DnaK protein. These data suggest that following a period of peak synthesis, DnaK is actively degraded as the spirochete reestablishes its metabolic thermometer. These findings provide a new interpretation of previous work suggesting that 10 to 15 B. burgdorferi polypeptides, including DnaK have a common epitope.
Collapse
Affiliation(s)
- R G Cluss
- Department of Chemistry and Biochemistry, Middlebury College, Vermont 05753, USA.
| | | | | | | | | |
Collapse
|
48
|
Seeger M, Osorio G, Jerez CA. Phosphorylation of GroEL, DnaK and other proteins from Thiobacillus ferrooxidans grown under different conditions. FEMS Microbiol Lett 1996; 138:129-34. [PMID: 9026439 DOI: 10.1111/j.1574-6968.1996.tb08145.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The levels of phosphorylation of the chaperones DnaK and GroEL and other proteins varied when cells of Thiobacillus ferrooxidans were subjected to phosphate starvation. The phosphorylated amino acid of GroEL was found to be threonine. Our results show that not only heat shock, but also a nutrient starvation stress leads to phosphorylation of chaperones and, in addition, support the possible role of phosphorylation of these proteins in the sensing and regulation of stress responses in bacteria.
Collapse
Affiliation(s)
- M Seeger
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
49
|
Cloeckaert A, Grépinet O, Salih-Alj Debbarh H, Zygmunt MS. Overproduction of the Brucella melitensis heat shock protein DnaK in Escherichia coli and its localization by use of specific monoclonal antibodies in B. melitensis cells and fractions. Res Microbiol 1996; 147:145-57. [PMID: 8761733 DOI: 10.1016/0923-2508(96)80214-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Brucella melitensis dnaK gene was amplified by the polymerase chain reaction using primers chosen according to the published sequence of B. ovis and cloned in multiple copy plasmids enabling expression under the control of the Plac promoter. Monoclonal antibodies (mAb) obtained by immunizing mice with B. melitensis B115 cell wall (CW) fraction or by infecting mice with virulent B. melitensis strain H38 and recognizing a 73-kDa band in immunoblotting of the B. melitensis CW fraction reacted with the cloned dnaK gene product and were thus shown to be specific for the heat shock protein DnaK. The anti-Dnak protein mAbs did not react with Escherichia coli control cells or cell lysates and could therefore be specific to Brucella DnaK protein epitopes. These mAbs were further used to study overproduction of the DnaK protein. B. melitensis DnaK overproduction in E. coli resulted in a defect in cell septation and formation of cell filaments. Immunogold labelling with the mAbs and electron microscopy localized the DnaK protein inside as well as outside the E. coli cells, probably resulting from lysis due to toxicity of the overproduced DnaK protein. These results indicated that overproduction of the B. melitensis DnaK protein in E. coli had similar physiological consequences as that of E. coli overproduced in E. coli. The DnaK protein localization in B. melitensis cells was essentially cytoplasmic, as shown by immunoelectron microscopy. Heat shock treatment of these cells resulted in increased binding of mAbs and labelling in the cytoplasm. However, in subcellular fractions the DnaK protein was predominantly found in the cell envelope fraction of B. melitensis, which could perhaps be due to interaction of the DnaK protein with membrane proteins.
Collapse
Affiliation(s)
- A Cloeckaert
- Laboratoire de Pathologie infectieuse et Immunologie, Institut National de la Recherche Agronomique, Nouzilly, France
| | | | | | | |
Collapse
|
50
|
Bass S, Gu Q, Christen A. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J Bacteriol 1996; 178:1154-61. [PMID: 8576052 PMCID: PMC177779 DOI: 10.1128/jb.178.4.1154-1161.1996] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have isolated three multicopy suppressors of the conditional lethal phenotype of a prc (tsp) null strain of Escherichia coli. One of these suppressors included two novel putative protease genes in tandem that map to 3400 kb or 72.5 centisomes on the chromosome. We propose the names hhoA and hhoB, for htrA homolog, to denote that these genes encode proteins that are 58 and 35% identical, respectively, to the HtrA (DegP) serine protease and 36% identical to each other. The HhoA and HhoB proteins are predicted to be 455 and 355 amino acids, respectively, in length. The mature HhoA protein is periplasmic in location, and amino-terminal sequencing shows that it arises following cleavage of a 27-amino-acid signal peptide. Searches of the protein and DNA databases reveal a rapidly growing family of homologous genes in a variety of other bacteria, including several which are required for virulence in their host. Deletion of the hhoAB genes shows that they are not required for viability at high temperatures like the homologous htrA but grow more slowly than wild-type strains. A second multicopy prc suppressor is the dksA (dnaK suppressor) gene, which is also a multicopy suppressor of defects in the heat shock genes dnaK, dnaJ, and grpE. The dksA gene was independently isolated as a multicopy suppressor of a mukB mutation, which is required for chromosomal partitioning. A third dosage-dependent prc suppressor includes a truncated rare lipoprotein A (rlpA) gene.
Collapse
Affiliation(s)
- S Bass
- Department of Molecular Biology, Genentech Inc, South San Francisco, California 94080-4990, USA
| | | | | |
Collapse
|