1
|
Lara-Moreno A, Merchán F, Morillo E, Zampolli J, Di Gennaro P, Villaverde J. Genome analysis for the identification of genes involved in phenanthrene biodegradation pathway in Stenotrophomonas indicatrix CPHE1. Phenanthrene mineralization in soils assisted by integrated approaches. Front Bioeng Biotechnol 2023; 11:1158177. [PMID: 37214282 PMCID: PMC10192627 DOI: 10.3389/fbioe.2023.1158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Phenanthrene (PHE) is a highly toxic compound, widely present in soils. For this reason, it is essential to remove PHE from the environment. Stenotrophomonas indicatrix CPHE1 was isolated from an industrial soil contaminated by polycyclic aromatic hydrocarbons (PAHs) and was sequenced to identify the PHE degrading genes. Dioxygenase, monooxygenase, and dehydrogenase gene products annotated in S. indicatrix CPHE1 genome were clustered into different trees with reference proteins. Moreover, S. indicatrix CPHE1 whole-genome sequences were compared to genes of PAHs-degrading bacteria retrieved from databases and literature. On these basis, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis pointed out that cysteine dioxygenase (cysDO), biphenyl-2,3-diol 1,2-dioxygenase (bphC), and aldolase hydratase (phdG) were expressed only in the presence of PHE. Therefore, different techniques have been designed to improve the PHE mineralization process in five PHE artificially contaminated soils (50 mg kg-1), including biostimulation, adding a nutrient solution (NS), bioaugmentation, inoculating S. indicatrix CPHE1 which was selected for its PHE-degrading genes, and the use of 2-hydroxypropyl-β-cyclodextrin (HPBCD) as a bioavailability enhancer. High percentages of PHE mineralization were achieved for the studied soils. Depending on the soil, different treatments resulted to be successful; in the case of a clay loam soil, the best strategy was the inoculation of S. indicatrix CPHE1 and NS (59.9% mineralized after 120 days). In sandy soils (CR and R soils) the highest percentage of mineralization was achieved in presence of HPBCD and NS (87.3% and 61.3%, respectively). However, the combination of CPHE1 strain, HPBCD, and NS showed to be the most efficient strategy for sandy and sandy loam soils (LL and ALC soils showed 35% and 74.6%, respectively). The results indicated a high degree of correlation between gene expression and the rates of mineralization.
Collapse
Affiliation(s)
- Alba Lara-Moreno
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Francisco Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Esmeralda Morillo
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Jaime Villaverde
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
2
|
The Isoenzymic Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453-An Episodic History and Still Mysterious after 60 Years. Microorganisms 2021; 9:microorganisms9122593. [PMID: 34946195 PMCID: PMC8706424 DOI: 10.3390/microorganisms9122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Researching the involvement of molecular oxygen in the degradation of the naturally occurring bicyclic terpene camphor has generated a six-decade history of fascinating monooxygenase biochemistry. While an extensive bibliography exists reporting the many varied studies on camphor 5-monooxygenase, the initiating enzyme of the relevant catabolic pathway in Pseudomonas putida ATCC 17453, the equivalent recorded history of the isoenzymic diketocamphane monooxygenases, the enzymes that facilitate the initial ring cleavage of the bicyclic terpene, is both less extensive and more enigmatic. First referred to as ‘ketolactonase—an enzyme for cyclic lactonization’—the enzyme now classified as 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) holds a special place in the history of oxygen-dependent biochemistry, being the first biocatalyst confirmed to undertake a biooxygenation reaction equivalent to the peracid-catalysed Baeyer–Villiger chemical oxidation first reported in the late 19th century. However, following that auspicious beginning, the biochemistry of EC 1.14.14.108, and its isoenzymic partner 3,6-diketocamphane 1,6-monooxygenase (EC 1.14.14.155) was dogged for many years by the mistaken belief that the enzymes were true flavoproteins that function with a tightly-bound flavin cofactor in the active site. This misconception led to a number of erroneous interpretations of relevant experimental data. It is only in the last decade, initially as the result of pure serendipity, that these enzymes have been confirmed to be members of a relatively recently discovered class of oxygen-dependent enzymes, the flavin-dependent two-component monooxygenases. This has promoted a renaissance of interest in the enzymes, resulting in programmes of research that have significantly expanded current knowledge of both their mode of action and regulation in camphor-grown P. putida ATCC 17453. However, some features of the biochemistry of the isoenzymic diketocamphane monooxygenases remain currently unexplained. It is the episodic history of these enzymes and some of what remains unresolved that are the principal subjects of this review.
Collapse
|
3
|
Ito K. Mechanisms of aerobic dechlorination of hexachlorobenzene and pentachlorophenol by Nocardioides sp. PD653. JOURNAL OF PESTICIDE SCIENCE 2021; 46:373-381. [PMID: 34908898 PMCID: PMC8640678 DOI: 10.1584/jpestics.j21-04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 06/14/2023]
Abstract
We sought to elucidate the mechanisms underlying the aerobic dechlorination of the persistent organic pollutants hexachlorobenzene (HCB) and pentachlorophenol (PCP). We performed genomic and heterologous expression analyses of dehalogenase genes in Nocardioides sp. PD653, the first bacterium found to be capable of mineralizing HCB via PCP under aerobic conditions. The hcbA1A2A3 and hcbB1B2B3 genes, which were involved in catalysing the aerobic dechlorination of HCB and PCP, respectively, were identified and characterized; they were classified as members of the two-component flavin-diffusible monooxygenase family. This was subsequently verified by biochemical analysis; aerobic dechlorination activity was successfully reconstituted in vitro in the presence of flavin, NADH, the flavin reductase HcbA3, and the HCB monooxygenase HcbA1. These findings will contribute to the implementation of in situ bioremediation of HCB- or PCP-contaminated sites, as well as to a better understanding of bacterial evolution apropos their ability to degrade heavily chlorinated anthropogenic compounds under aerobic conditions.
Collapse
Affiliation(s)
- Koji Ito
- National Agriculture and Food Research Organization, Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba-city, Ibaraki 305–8604, Japan
| |
Collapse
|
4
|
Ito K, Takagi K, Kataoka R, Kiyota H. Biochemical characterization of NADH:FMN oxidoreductase HcbA3 from Nocardioides sp. PD653 in catalyzing aerobic HCB dechlorination. JOURNAL OF PESTICIDE SCIENCE 2020; 45:125-131. [PMID: 32913414 PMCID: PMC7453296 DOI: 10.1584/jpestics.d20-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Nocardioides sp. PD653 genes hcbA1, hcbA2, and hcbA3 encode enzymes that catalyze the oxidative dehalogenation of hexachlorobenzene (HCB), which is one of the most recalcitrant persistent organic pollutants (POPs). In this study, HcbA1, HcbA2, and HcbA3 were heterologously expressed and characterized. Among the flavin species tested, HcbA3 showed the highest affinity for FMN with a K d value of 0.75±0.17 µM. Kinetic assays revealed that HcbA3 followed a ping-pong bi-bi mechanism for the reduction of flavins. The K m for NADH and FMN was 51.66±11.58 µM and 4.43±0.69 µM, respectively. For both NADH and FMN, the V max and k cat were 2.21±0.86 µM and 66.74±5.91 sec-1, respectively. We also successfully reconstituted the oxidative dehalogenase reaction in vitro, which consisted of HcbA1, HcbA3, FMN, and NADH, suggesting that HcbA3 may be the partner reductase component for HcbA1 in Nocardioides sp. PD653.
Collapse
Affiliation(s)
- Koji Ito
- Hazardous Chemical Division, Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organisation, Kannondai, Tsukuba-city, Ibaraki, Japan
| | - Kazuhiro Takagi
- Hazardous Chemical Division, Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organisation, Kannondai, Tsukuba-city, Ibaraki, Japan
| | - Ryota Kataoka
- Department of Environmental Sciences, University of Yamanashi, Kofu-city, Yamanashi, Japan
| | - Hiromasa Kiyota
- Graduate School of Environmental and Life Science, Okayama University, Tsushima, Okayama-city, Okayama, Japan
| |
Collapse
|
5
|
A Novel Aerobic Degradation Pathway for Thiobencarb Is Initiated by the TmoAB Two-Component Flavin Mononucleotide-Dependent Monooxygenase System in Acidovorax sp. Strain T1. Appl Environ Microbiol 2017; 83:AEM.01490-17. [PMID: 28939603 DOI: 10.1128/aem.01490-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C-S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi, and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C-S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7,129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD+ as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis.IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N-deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C-S bond, producing diethylcarbamothioic S-acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism.
Collapse
|
6
|
Thotsaporn K, Tinikul R, Maenpuen S, Phonbuppha J, Watthaisong P, Chenprakhon P, Chaiyen P. Enzymes in the p-hydroxyphenylacetate degradation pathway of Acinetobacter baumannii. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Parravicini F, Brocca S, Lotti M. Evaluation of the Conformational Stability of Recombinant Desulfurizing Enzymes from a Newly Isolated Rhodococcus sp. Mol Biotechnol 2015; 58:1-11. [PMID: 26515071 DOI: 10.1007/s12033-015-9897-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolic pathways of aerobic bacteria able to assimilate sulfur can provide biocatalysts for biodesulfurization of petroleum and of other sulfur-containing pollutants. Of major interest is the so-called "4S pathway," in that C-S bonds are specifically cleaved leaving the carbon skeleton of substrates intact. This pathway is carried out by four enzymes, named Dsz A, B, C, and D. In view of a possible application of recombinant Dsz enzymes in biodesulfurization treatments, we have investigated the structural features of enzymes cloned from a Rhodococcus strain isolated from polluted environmental samples and their resistance to temperature (20-95 °C) and to organic solvents (5, 10, and 20 % v/v methanol, acetonitrile, hexane, and toluene). Changes in protein structures were assessed by circular dichroism and intrinsic fluorescence spectroscopy. We found that all Dsz proteins are unfolded by temperatures in the range 45-60 °C and by all solvents tested, with the most dramatic effect being produced by toluene. These results suggest that stabilization of the biocatalysts by protein engineering will be necessary for developing biodesulfurization technologies based on Dsz enzymes.
Collapse
Affiliation(s)
- Federica Parravicini
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
8
|
Akhtar N, Ghauri MA, Anwar MA, Heaphy S. Phylogenetic characterization and novelty of organic sulphur metabolizing genes of Rhodococcus spp. (Eu-32). Biotechnol Lett 2014; 37:837-47. [DOI: 10.1007/s10529-014-1736-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/19/2014] [Indexed: 11/29/2022]
|
9
|
Liu S, Zhang C, Su T, Wei T, Zhu D, Wang K, Huang Y, Dong Y, Yin K, Xu S, Xu P, Gu L. Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Proteins 2014; 82:1708-20. [PMID: 24470304 DOI: 10.1002/prot.24525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/02/2014] [Accepted: 01/16/2014] [Indexed: 11/07/2022]
Abstract
The dibenzothiophene (DBT) monooxygenase DszC, which is the key initiating enzyme in "4S" metabolic pathway, catalyzes sequential sulphoxidation reaction of DBT to DBT sulfoxide (DBTO), then DBT sulfone (DBTO2). Here, we report the crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Intriguingly, two distinct conformations occur in the flexible lid loops adjacent to the active site (residue 280-295, between α9 and α10). They are named "open"' and "closed" state respectively, and might show the status of the free and ligand-bound DszC. The molecular docking results suggest that the reduced FMN reacts with an oxygen molecule at C4a position of the isoalloxazine ring, producing the C4a-(hydro)peroxyflavin intermediate which is stabilized by H391 and S163. H391 may contribute to the formation of the C4a-(hydro)peroxyflavin by acting as a proton donor to the proximal peroxy oxygen, and it might also be involved in the protonation process of the C4a-(hydro)xyflavin. Site-directed mutagenesis study shows that mutations in the residues involved either in catalysis or in flavin or substrate-binding result in a complete loss of enzyme activity, suggesting that the accurate positions of flavin and substrate are crucial for the enzyme activity.
Collapse
Affiliation(s)
- Shiheng Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kaparullina EN, Doronina NV, Trotsenko YA. Aerobic degradation of ethylenediaminetetraacetate (review). APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811050061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Zhang Y, Edwards TE, Begley DW, Abramov A, Thompkins KB, Ferrell M, Guo WJ, Phan I, Olsen C, Napuli A, Sankaran B, Stacy R, Van Voorhis WC, Stewart LJ, Myler PJ. Structure of nitrilotriacetate monooxygenase component B from Mycobacterium thermoresistibile. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1100-5. [PMID: 21904057 PMCID: PMC3169409 DOI: 10.1107/s1744309111012541] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/04/2011] [Indexed: 05/30/2023]
Abstract
Mycobacterium tuberculosis belongs to a large family of soil bacteria which can degrade a remarkably broad range of organic compounds and utilize them as carbon, nitrogen and energy sources. It has been proposed that a variety of mycobacteria can subsist on alternative carbon sources during latency within an infected human host, with the help of enzymes such as nitrilotriacetate monooxygenase (NTA-Mo). NTA-Mo is a member of a class of enzymes which consist of two components: A and B. While component A has monooxygenase activity and is responsible for the oxidation of the substrate, component B consumes cofactor to generate reduced flavin mononucleotide, which is required for component A activity. NTA-MoB from M. thermoresistibile, a rare but infectious close relative of M. tuberculosis which can thrive at elevated temperatures, has been expressed, purified and crystallized. The 1.6 Å resolution crystal structure of component B of NTA-Mo presented here is one of the first crystal structures determined from the organism M. thermoresistibile. The NTA-MoB crystal structure reveals a homodimer with the characteristic split-barrel motif typical of flavin reductases. Surprisingly, NTA-MoB from M. thermoresistibile contains a C-terminal tail that is highly conserved among mycobacterial orthologs and resides in the active site of the other protomer. Based on the structure, the C-terminal tail may modulate NTA-MoB activity in mycobacteria by blocking the binding of flavins and NADH.
Collapse
Affiliation(s)
- Y Zhang
- Seattle Structural Genomics Centre for Infectious Disease (SSGCID), USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pohle S, Appelt C, Roux M, Fiedler HP, Süssmuth RD. Biosynthetic gene cluster of the non-ribosomally synthesized cyclodepsipeptide skyllamycin: deciphering unprecedented ways of unusual hydroxylation reactions. J Am Chem Soc 2011; 133:6194-205. [PMID: 21456593 DOI: 10.1021/ja108971p] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclic depsipeptide skyllamycin A is a potent inhibitor of the platelet-derived growth factor (PDGF) signaling pathway by inhibiting binding of homodimeric PDGF BB to the PDGF β-receptor. Its structure contains a cinnamoyl side chain and shows a high amount of β-hydroxylated amino acids as well as an unusual α-hydroxyglycine moiety as a rare structural modification. The skyllamycin biosynthetic gene cluster was cloned and sequenced from Streptomyces sp. Acta 2897. Its analysis revealed the presence of open reading frames encoding proteins for fatty acid precursor biosynthesis, non-ribosomal peptide synthetases, regulators, and transporters along with other modifying enzymes. Specific in-frame mutagenesis of these tailoring enzymes resulted in the production of novel skyllamycin derivatives revealing that β-hydroxy groups in skyllamycin A are introduced by a promiscuous cytochrome P450 monooxygenase, whereas a two-component flavin-dependent monooxygenase is involved in α-hydroxylation.
Collapse
Affiliation(s)
- Stefan Pohle
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
13
|
Ellis HR. The FMN-dependent two-component monooxygenase systems. Arch Biochem Biophys 2010; 497:1-12. [PMID: 20193654 DOI: 10.1016/j.abb.2010.02.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
Abstract
The FMN-dependent two-component monooxygenase systems catalyze a diverse range of reactions. These two-component systems are composed of an FMN reductase enzyme and a monooxygenase enzyme that catalyze the oxidation of various substrates. The role of the reductase is to supply reduced flavin to the monooxygenase enzyme, while the monooxygenase enzyme utilizes the reduced flavin to activate molecular oxygen. Unlike flavoproteins with a tightly or covalently bound prosthetic group, these enzymes catalyze the reductive and oxidative half-reaction on two separate enzymes. An interesting feature of these enzymes is their ability to transfer reduced flavin from the reductase to the monooxygenase enzyme. This review covers the reported mechanistic and structural properties of these enzyme systems, and evaluates the mechanism of flavin transfer.
Collapse
Affiliation(s)
- Holly R Ellis
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
14
|
Li J, Feng J, Li Q, Ma C, Yu B, Gao C, Wu G, Xu P. Both FMNH2 and FADH2 can be utilized by the dibenzothiophene monooxygenase from a desulfurizing bacterium Mycobacterium goodii X7B. BIORESOURCE TECHNOLOGY 2009; 100:2594-2599. [PMID: 19144512 DOI: 10.1016/j.biortech.2008.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 05/27/2023]
Abstract
To investigate the flavin utilization by dibenzothiophene monooxygenase (DszC), DszC of a desulfurizing bacterium Mycobacterium goodii X7B was purified from the recombinant Escherichia coli. It was shown to be able to utilize either FMNH(2) or FADH(2) when coupled with a flavin reductase that reduces either FMN or FAD. Sequence analysis indicated that DszC was similar to the C(2) component of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii, which can use both FADH(2) and FMNH(2) as substrates. Both flavins at high concentrations could inhibit the activity of DszC due to autocatalytic oxidation of reduced flavins. The results suggest that DszC should be reclassified as an FMNH(2) and FADH(2) both-utilizing monooxygenase component and the flavins should be controlled at properly reduced levels to obtain optimal biodesulfurization results.
Collapse
Affiliation(s)
- Jingchen Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Schulz M, Löffler D, Wagner M, Ternes TA. Transformation of the X-ray contrast medium iopromide in soil and biological wastewater treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:7207-17. [PMID: 18939548 DOI: 10.1021/es800789r] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In water/soil systems, the iodinated contrast medium iopromide was quantitatively biotransformed into several transformation products (TPs). Twelve TPs were identified via HPLC-UV and LC tandem MS. The chemical structures of the TPs were elucidated via fragmentation in MS2 and MS3 of LC tandem MS with a linear ion trap and 1H and 13C NMR analyses. All TPs exhibited transformations at the side chains containing either carboxylic moieties and/or primary and secondary amide moieties, while the triiodoisophthalic acid structure remained unaltered. A transformation pathway was proposed based on the sequence of TP formation in aerobic batch experiments. Additionally, the occurrence of iopromide TPs was investigated in native water samples. All TPs identified were found in municipal WWTP effluents because of their formation during biological wastewater treatment with maximum concentrations of up to 3.7 +/- 0.9 microg/L (TP 819). Predominantly, those TPs were present at higher concentrations in WWTP effluents which were formed at the beginning of the transformation pathway. Furthermore, four TPs formed at the end of the transformation pathway (TP 759, 701A/B, and 643) were also found in bank filtrate up to 0.050 microg/L and in groundwater of an wastewater irrigation area up to 4.6 microg/L.
Collapse
Affiliation(s)
- Manoj Schulz
- Federal Institute of Hydrology (BFG), Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | | | | | | |
Collapse
|
16
|
Kim SH, Hisano T, Iwasaki W, Ebihara A, Miki K. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity. Proteins 2008; 70:718-30. [PMID: 17729270 DOI: 10.1002/prot.21534] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The two-component enzyme, 4-hydroxyphenylacetate 3-monooxygenase, catalyzes the conversion of 4-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. In the overall reaction, the oxygenase component (HpaB) introduces a hydroxyl group into the benzene ring of 4-hydroxyphenylacetate using molecular oxygen and reduced flavin, while the reductase component (HpaC) provides free reduced flavins for HpaB. The crystal structures of HpaC from Thermus thermophilus HB8 in the ligand-free form, the FAD-containing form, and the ternary complex with FAD and NAD(+) were determined. In the ligand-free form, two large grooves are present at the dimer interface, and are occupied by water molecules. A structural analysis of HpaC containing FAD revealed that FAD has a low occupancy, indicating that it is not tightly bound to HpaC. This was further confirmed in flavin dissociation experiments, showing that FAD can be released from HpaC. The structure of the ternary complex revealed that FAD and NAD(+) are bound in the groove in the extended and folded conformation, respectively. The nicotinamide ring of NAD(+) is sandwiched between the adenine ring of NAD(+) and the isoalloxazine ring of FAD. The distance between N5 of the isoalloxazine ring and C4 of the nicotinamide ring is about 3.3 A, sufficient to permit hydride transfer. The structures of these three states are essentially identical, however, the side chains of several residues show small conformational changes, indicating an induced fit upon binding of NADH. Inactivity with respect to NADPH can be explained as instability of the binding of NADPH with the negatively charged 2'-phosphate group buried inside the complex, as well as a possible repulsive effect by the dipole of helix alpha1. A comparison of the binding mode of FAD with that in PheA2 from Bacillus thermoglucosidasius A7, which contains FAD as a prosthetic group, reveals remarkable conformational differences in a less conserved loop region (Gly83-Gly94) involved in the binding of the AMP moiety of FAD. These data suggest that variations in the affinities for FAD in the reductases of the two-component flavin-diffusible monooxygenase family may be attributed to difference in the interaction between the AMP moiety of FAD and the less conserved loop region which possibly shows structural divergence.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- SPring-8 Center, RIKEN Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | | | | | | |
Collapse
|
17
|
Identification and characterization of the flavin:NADH reductase (PrnF) involved in a novel two-component arylamine oxygenase. J Bacteriol 2007; 189:8556-63. [PMID: 17921302 DOI: 10.1128/jb.01050-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component oxygenases catalyze a wide variety of important oxidation reactions. Recently we characterized a novel arylamine N-oxygenase (PrnD), a new member of the two-component oxygenase family (J. Lee et al., J. Biol. Chem. 280:36719-36728, 2005). Although arylamine N-oxygenases are widespread in nature, aminopyrrolnitrin N-oxygenase (PrnD) represents the only biochemically and mechanistically characterized arylamine N-oxygenase to date. Here we report the use of bioinformatic and biochemical tools to identify and characterize the reductase component (PrnF) involved in the PrnD-catalyzed unusual arylamine oxidation. The prnF gene was identified via sequence analysis of the whole genome of Pseudomonas fluorescens Pf-5 and subsequently cloned and overexpressed in Escherichia coli. The purified PrnF protein catalyzes reduction of flavin adenine dinucleotide (FAD) by NADH with a k(cat) of 65 s(-1) (K(m) = 3.2 muM for FAD and 43.1 muM for NADH) and supplies reduced FAD to the PrnD oxygenase component. Unlike other known reductases in two-component oxygenase systems, PrnF strictly requires NADH as an electron donor to reduce FAD and requires unusual protein-protein interaction with the PrnD component for the efficient transfer of reduced FAD. This PrnF enzyme represents the first cloned and characterized flavin reductase component in a novel two-component arylamine oxygenase system.
Collapse
|
18
|
van Berkel WJH, Kamerbeek NM, Fraaije MW. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 2006; 124:670-89. [PMID: 16712999 DOI: 10.1016/j.jbiotec.2006.03.044] [Citation(s) in RCA: 532] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 02/21/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
During the last decades a large number of flavin-dependent monooxygenases have been isolated and studied. This has revealed that flavoprotein monooxygenases are able to catalyze a remarkable wide variety of oxidative reactions such as regioselective hydroxylations and enantioselective sulfoxidations. These oxidation reactions are often difficult, if not impossible, to be achieved using chemical approaches. Analysis of the available genome sequences has indicated that many more flavoprotein monooxygenases exist and await biocatalytic exploration. Based on the known biochemical properties of a number of flavoprotein monooxygenases and sequence and structural analyses, flavoprotein monooxygenases can be classified into six distinct flavoprotein monooxygenase subclasses. This review provides an inventory of known flavoprotein monooxygenases belonging to these different enzyme subclasses. Furthermore, the biocatalytic potential of a selected number of flavoprotein monooxygenases is highlighted.
Collapse
Affiliation(s)
- W J H van Berkel
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
19
|
Weir KM, Sutherland TD, Horne I, Russell RJ, Oakeshott JG. A single monooxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. Appl Environ Microbiol 2006; 72:3524-30. [PMID: 16672499 PMCID: PMC1472381 DOI: 10.1128/aem.72.5.3524-3530.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this paper we describe isolation of a bacterium capable of degrading both isomers of the organochloride insecticide endosulfan and its toxic metabolite, endosulfate. The bacterium was isolated from a soil microbial population that was enriched with continuous pressure to use endosulfate as the sole source of sulfur. Analysis of the 16S rRNA sequence of the bacterium indicated that it was an Arthrobacter species. The organochloride-degrading activity was not observed in the presence of sodium sulfite as an alternative sulfur source, suggesting that the activity was part of the sulfur starvation response of the strain. A gene, ese, encoding an enzyme capable of degrading both isomers of endosulfan and endosulfate was isolated from this bacterium. The enzyme belongs to the two-component flavin-dependent monooxygenase family whose members require reduced flavin for activity. Nuclear magnetic resonance analyses identified the metabolite of endosulfan as endosulfan monoalcohol and the metabolite of endosulfate as endosulfan hemisulfate. The ese gene was located in a cluster of 10 open reading frames encoding proteins with low levels of sulfur-containing amino acids. These open reading frames were organized into two apparent divergently orientated operons and a gene encoding a putative LysR-type transcriptional regulator. The operon not containing ese did contain a homologue whose product exhibited 62% amino acid identity to the ese-encoded protein.
Collapse
Affiliation(s)
- Kahli M Weir
- CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
20
|
Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T. bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiology (Reading) 2005; 151:4139-4151. [PMID: 16339959 DOI: 10.1099/mic.0.28437-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillussp. JF8 is a thermophilic polychlorinated biphenyl (PCB) degrader, which utilizes biphenyl and naphthalene. A thermostable, Mn-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase, BphC_JF8, has been characterized previously. Upstream ofbphCare five ORFs exhibiting low homology with, and a different gene order from, previously characterizedbphgenes. From the 5′ to 3′ direction the genes are: a putative regulatory gene (bphR), a hydrolase (bphD), the large and small subunits of a ring-hydroxylating dioxygenase(bphA1A2), and acis-diol dehydrogenase (bphB). Hybridization studies indicate that the genes are located on a plasmid. Ring-hydroxylating activity of recombinant BphA1A2_JF8 towards biphenyl, PCB, naphthalene and benzene was observed inEscherichia colicells, with complementation of non-specific ferredoxin and ferredoxin reductase by host cell proteins. PCB degradation by recombinant BphA1A2_JF8 showed that the congener specificity of the recombinant enzyme was similar toBacillussp. JF8. BphD_JF8, with an optimum temperature of 85 °C, exhibited a narrow substrate preference for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. The Arrhenius plot of BphD_JF8 was biphasic, with two characteristic energies of activation and a break point at 47 °C.
Collapse
Affiliation(s)
- Gouri Mukerjee-Dhar
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Kokubunji, Tokyo 185-8540, Japan
| | - Minoru Shimura
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Kokubunji, Tokyo 185-8540, Japan
| | - Daisuke Miyazawa
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Kazuhide Kimbara
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Kokubunji, Tokyo 185-8540, Japan
| | - Takashi Hatta
- Research Institute of Technology, Okayama University of Science, Okayama 703-8232, Japan
| |
Collapse
|
21
|
Thotsaporn K, Sucharitakul J, Wongratana J, Suadee C, Chaiyen P. Cloning and expression of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii: evidence of the divergence of enzymes in the class of two-protein component aromatic hydroxylases. ACTA ACUST UNITED AC 2004; 1680:60-6. [PMID: 15451173 DOI: 10.1016/j.bbaexp.2004.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 12/20/2022]
Abstract
The genes encoding for the reductase and oxygenase components of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii were cloned and expressed in an E. coli system. The recombinant enzymes were purified and shown to have the same catalytic properties as the native enzyme. Sequence analysis and biochemical studies indicate that the enzyme represents a novel prototype of enzyme in the two-protein component class of aromatic hydroxylases. The C2 component shows little similarity to other oxygenases in the same class, correlating with its uniquely broad flavin specificity. Analysis of the C1 reductase sequence indicates that the binding sites of flavin and NADH mainly reside in the N-terminal half while the C-terminal half may be responsible for HPA-stimulation of NADH oxidation.
Collapse
Affiliation(s)
- Kittisak Thotsaporn
- Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | | | | | | | | |
Collapse
|
22
|
Horinouchi M, Hayashi T, Kudo T. The genes encoding the hydroxylase of 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione in steroid degradation in Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 2004; 92:143-54. [PMID: 15555908 DOI: 10.1016/j.jsbmb.2004.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Steroid degradation genes of Comamonas testosteroni TA441 are encoded in at least two gene clusters: one containing the meta-cleavage enzyme gene tesB; and another consisting of ORF18, 17, tesI, H, ORF11, 12, and tesDEFG. TesH and I are, respectively, the Delta(1)- and Delta(4)(5alpha)-dehydrogenase of the 3-ketosteroid, TesD is the hydrolase for the product of meta-cleavage reaction, and TesEFG degrade one of the product of TesD. In this report, we describe the identification of the function of ORF11 (tesA2) and 12 (tesA1). The TesA1- and TesA2-disrupted mutant accumulated two characteristic intermediate compounds, which were identified as 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione (3-HSA) and its hydroxylated derivative, 3,17-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione by MS and NMR analysis. A complementation experiment using a broad-host range plasmid showed that both TesA1 and A2 are necessary for hydroxylation of 3-HSA to 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione (3,4-DHSA).
Collapse
|
23
|
Kirimura K, Harada K, Iwasawa H, Tanaka T, Iwasaki Y, Furuya T, Ishii Y, Kino K. Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Appl Microbiol Biotechnol 2004; 65:703-13. [PMID: 15221222 DOI: 10.1007/s00253-004-1652-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 04/27/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
Thermophilic bacteria Bacillus subtilis WU-S2B and Mycobacterium phlei WU-F1 desulfurize dibenzothiophene (DBT) and alkylated DBTs through specific cleavage of the carbon-sulfur bonds over a temperature range up to 52 degrees C. In order to identify and functionally analyze the DBT-desulfurization genes, the gene cluster containing bdsA, bdsB, and bdsC was cloned from B. subtilis WU-S2B. The nucleotide and amino acid sequences of bdsABC show homologies to those of the other known DBT-desulfurization genes and enzymes; e.g. a nucleotide sequence homology of 61.0% to dszABC of the mesophilic bacterium Rhodococcus sp. IGTS8 and 57.8% to tdsABC of the thermophilic bacterium Paenibacillus sp. A11-2. Deletion and subcloning analysis of bdsABC revealed that the gene products of bdsC, bdsA and bdsB oxidized DBT to DBT sulfone (DBTO(2)), converted DBTO(2) to 2'-hydroxybiphenyl-2-sulfinate (HBPSi), and desulfurized HBPSi to 2-hydroxybiphenyl (2-HBP), respectively. Resting cells of a recombinant Escherichia coli JM109 harboring bdsABC converted DBT to 2-HBP over a temperature range of 30-52 degrees C, indicating that the gene products of bdsABC were functional in the recombinant. The activities of DBT degradation at 50 degrees C and DBT desulfurization (2-HBP production) at 40 degrees C in resting cells of the recombinant were approximately five times and twice, respectively, as high as those in B. subtilis WU-S2B. The recombinant E. coli cells also degraded alkylated DBTs, such as 2,8-dimethylDBT and 4,6-dimethylDBT. The nucleotide sequences of B. subtilis WU-S2B bdsABC and the corresponding genes from M. phlei WU-F1 were found to be completely identical to each other although the strains are genetically different.
Collapse
Affiliation(s)
- Kohtaro Kirimura
- Department of Applied Chemistry, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Russell TR, Demeler B, Tu SC. Kinetic mechanism and quaternary structure of Aminobacter aminovorans NADH:flavin oxidoreductase: an unusual flavin reductase with bound flavin. Biochemistry 2004; 43:1580-90. [PMID: 14769034 DOI: 10.1021/bi035578a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.
Collapse
Affiliation(s)
- Thomas R Russell
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | | | | |
Collapse
|
25
|
Sutherland TD, Horne I, Russell RJ, Oakeshott JG. Gene cloning and molecular characterization of a two-enzyme system catalyzing the oxidative detoxification of beta-endosulfan. Appl Environ Microbiol 2002; 68:6237-45. [PMID: 12450848 PMCID: PMC134410 DOI: 10.1128/aem.68.12.6237-6245.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Accepted: 08/29/2002] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Mycobacterium sp. strain ESD is able to use the cyclodiene insecticide endosulfan as a source of sulfur for growth. This activity is dependent on the absence of sulfite or sulfate in the growth medium. A cosmid library of strain ESD DNA was constructed in a Mycobacterium-Escherichia coli shuttle vector and screened for endosulfan-degrading activity in Mycobacterium smegmatis, a species that does not degrade endosulfan. Using this method, we identified a single cosmid that conferred sulfur-dependent endosulfan-degrading activity on the host strain. An open reading frame (esd) was identified within this cosmid that, when expressed behind a constitutive promoter in a mycobacterial expression vector, conferred sulfite- and sulfate-independent beta-endosulfan degradation activity on the recombinant strain. The translation product of this gene (Esd) had up to 50% sequence identity with an unusual family of monooxygenase enzymes that use reduced flavins, provided by a separate flavin reductase enzyme, as cosubstrates. An additional partial open reading frame was located upstream of the Esd gene that had sequence homology to the same monooxygenase family. A flavin reductase gene, identified in the M. smegmatis genome, was cloned, expressed, and used to provide reduced flavin mononucleotide for Esd in enzyme assays. Thin-layer chromatography and gas chromatography analyses of the enzyme assay mixtures revealed the disappearance of beta-endosulfan and the appearance of the endosulfan metabolites, endosulfan monoaldehyde and endosulfan hydroxyether. This suggests that Esd catalyzes the oxygenation of beta-endosulfan to endosulfan monoaldehyde and endosulfan hydroxyether. Esd did not degrade either alpha-endosulfan or the metabolite of endosulfan, endosulfan sulfate.
Collapse
|
26
|
Rigali S, Derouaux A, Giannotta F, Dusart J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 2002; 277:12507-15. [PMID: 11756427 DOI: 10.1074/jbc.m110968200] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haydon and Guest (Haydon, D. J, and Guest, J. R. (1991) FEMS Microbiol. Lett. 63, 291-295) first described the helix-turn-helix GntR family of bacterial regulators. They presented them as transcription factors sharing a similar N-terminal DNA-binding (d-b) domain, but they observed near-maximal divergence in the C-terminal effector-binding and oligomerization (E-b/O) domain. To elucidate this C-terminal heterogeneity, structural, phylogenetic, and functional analyses were performed on a family that now comprises about 270 members. Our comparative study first focused on the C-terminal E-b/O domains and next on DNA-binding domains and palindromic operator sequences, has classified the GntR members into four subfamilies that we called FadR, HutC, MocR, and YtrA. Among these subfamilies a degree of similarity of about 55% was observed throughout the entire sequence. Structure/function associations were highlighted although they were not absolutely stringent. The consensus sequences deduced for the DNA-binding domain were slightly different for each subfamily, suggesting that fusion between the D-b and E-b/O domains have occurred separately, with each subfamily having its own D-b domain ancestor. Moreover, the compilation of the known or predicted palindromic cis-acting elements has highlighted different operator sequences according to our subfamily subdivision. The observed C-terminal E-b/O domain heterogeneity was therefore reflected on the DNA-binding domain and on the cis-acting elements, suggesting the existence of a tight link between the three regions involved in the regulating process.
Collapse
Affiliation(s)
- Sébastien Rigali
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, Sart-Tilman, B-4000 Liège, Belgium.
| | | | | | | |
Collapse
|
27
|
Bohuslavek J, Payne JW, Liu Y, Bolton H, Xun L. Cloning, sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1. Appl Environ Microbiol 2001; 67:688-95. [PMID: 11157232 PMCID: PMC92636 DOI: 10.1128/aem.67.2.688-695.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Accepted: 11/17/2000] [Indexed: 11/20/2022] Open
Abstract
EDTA is a chelating agent, widely used in many industries. Because of its ability to mobilize heavy metals and radionuclides, it can be an environmental pollutant. The EDTA monooxygenases that initiate EDTA degradation have been purified and characterized in bacterial strains BNC1 and DSM 9103. However, the genes encoding the enzymes have not been reported. The EDTA monooxygenase gene was cloned by probing a genomic library of strain BNC1 with a probe generated from the N-terminal amino acid sequence of the monooxygenase. Sequencing of the cloned DNA fragment revealed a gene cluster containing eight genes. Two of the genes, emoA and emoB, were expressed in Escherichia coli, and the gene products, EmoA and EmoB, were purified and characterized. Both experimental data and sequence analysis showed that EmoA is a reduced flavin mononucleotide-utilizing monooxygenase and that EmoB is an NADH:flavin mononucleotide oxidoreductase. The two-enzyme system oxidized EDTA to ethylenediaminediacetate (EDDA) and nitrilotriacetate (NTA) to iminodiacetate (IDA) with the production of glyoxylate. The emoA and emoB genes were cotranscribed when BNC1 cells were grown on EDTA. Other genes in the cluster encoded a hypothetical transport system, a putative regulatory protein, and IDA oxidase that oxidizes IDA and EDDA. We concluded that this gene cluster is responsible for the initial steps of EDTA and NTA degradation.
Collapse
Affiliation(s)
- J Bohuslavek
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
28
|
Bucheli-Witschel M, Egli T. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 2001; 25:69-106. [PMID: 11152941 DOI: 10.1111/j.1574-6976.2001.tb00572.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aminopolycarboxylic acids (APCAs) have the ability to form stable, water-soluble complexes with di- and trivalent metal ions. For that reason, synthetic APCAs are used in a broad range of domestic products and industrial applications to control solubility and precipitation of metal ions. Because most of these applications are water-based, APCAs are disposed of in wastewater and reach thus sewage treatment plants and the environment, where they undergo abiotic and/or biotic degradation processes. Recently, also natural APCAs have been described which are produced by plants or micro-organisms and are involved in the metal uptake by these organisms. For the two most widely used APCAs, nitrilotriacetate (NTA) and ethylenediaminetetraacetate (EDTA), transformation and mineralisation processes have been studied rather well, while for other xenobiotic APCAs and for the naturally occurring APCAs little is known on their fate in the environment. Whereas NTA is mainly degraded by bacteria under both oxic and anoxic conditions, biodegradation is apparently of minor importance for the environmental fate of EDTA. Photodegradation of iron(III)-complexed EDTA is supposed to be mostly responsible for its elimination. Isolation of a number of NTA- and EDTA-utilising bacterial strains has been reported and the spectrum of APCAs utilised by the different isolates indicates that some of them are able to utilise a range of different APCAs whereas others seem to be restricted to one compound. The two best characterised obligately aerobic NTA-utilising genera (Chelatobacter and Chelatococcus) are members of the alpha-subgroup of Proteobacteria. There is good evidence that they are present in fairly high numbers in surface waters, soils and sewage treatment plants. The key enzymes involved in NTA degradation in Chelatobacter and Chelatococcus have been isolated and characterised. The two first catabolic steps are catalysed by a monooxygenase (NTA MO) and a membrane-bound iminodiacetate dehydrogenase. NTA MO has been cloned and sequenced and its regulation as a function of growth conditions has been studied. Under denitrifying conditions, NTA catabolism is catalysed by a NTA dehydrogenase. EDTA breakdown was found to be initiated by a MO also which shares many characteristics with NTA MO from strictly aerobic NTA-degrading bacteria. In contrast, degradation of [S,S]-ethylenediaminedisuccinate ([S,S]-EDDS), a structural isomer of EDTA, was shown to be catalysed by an EDDS lyase in both an EDTA degrader and in a NTA-utilising Chelatococcus strain. So far, transport of APCAs into cells has only been studied for EDTA and the results obtained give strong evidence for an energy-dependent carrier system and Ca(2+) seems to be co-transported with EDTA. Due to their metal-complexing capacities, APCAs occur in the environment mostly in the metal-complexed form. Hence, the influence of metal speciation on various degradation processes is of utmost importance to understand the environmental behaviour of these compounds. In case of biodegradation, the effect of metal speciation is rather difficult to assess at the whole cell level and therefore only limited good data are available. In contrast, the influence of metal speciation on the intracellular enzymatic breakdown of APCAs is rather well documented but no generalising pattern applicable to all enzymes was found.
Collapse
Affiliation(s)
- M Bucheli-Witschel
- Swiss Federal Institute for Environmental Science and Technology, Department of Microbiology, Uberlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | | |
Collapse
|
29
|
|
30
|
Agostinho M, Oliveira S, Broco M, Liu MY, LeGall J, Rodrigues-Pousada C. Molecular cloning of the gene encoding flavoredoxin, a flavoprotein from Desulfovibrio gigas. Biochem Biophys Res Commun 2000; 272:653-6. [PMID: 10860809 DOI: 10.1006/bbrc.2000.2834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfate-reducing bacteria are rich in unique redox proteins and electron carriers that participate in a variety of essential pathways. Several studies have been carried out to characterize these proteins, but the structure and function of many are poorly understood. Many Desulfovibrio species can grow using hydrogen as the sole energy source, indicating that the oxidation of hydrogen with sulfite as the terminal electron acceptor is an energy-conserving mechanism. Flavoredoxin is an FMN-binding protein isolated from the sulfate-reducing bacteria Desulfovibrio gigas that participates in the reduction of bisulfite from hydrogen. Here we report the cloning and sequencing of the flavoredoxin gene. The derived amino acid sequence exhibits similarity to several flavoproteins which are members of a new family of flavin reductases suggested to bind FMN in a novel mode.
Collapse
Affiliation(s)
- M Agostinho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
31
|
Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, Kertesz MA. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313. J Bacteriol 2000; 182:2869-78. [PMID: 10781557 PMCID: PMC101997 DOI: 10.1128/jb.182.10.2869-2878.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida S-313 can utilize a broad range of aromatic sulfonates as sulfur sources for growth in sulfate-free minimal medium. The sulfonates are cleaved monooxygenolytically to yield the corresponding phenols. miniTn5 mutants of strain S-313 which were no longer able to desulfurize arylsulfonates were isolated and were found to carry transposon insertions in the ssuEADCBF operon, which contained genes for an ATP-binding cassette-type transporter (ssuABC), a two-component reduced flavin mononucleotide-dependent monooxygenase (ssuED) closely related to the Escherichia coli alkanesulfonatase, and a protein related to clostridial molybdopterin-binding proteins (ssuF). These mutants were also deficient in growth with a variety of other organosulfur sources, including aromatic and aliphatic sulfate esters, methionine, and aliphatic sulfonates other than the natural sulfonates taurine and cysteate. This pleiotropic phenotype was complemented by the ssu operon, confirming its key role in organosulfur metabolism in this species. Further complementation analysis revealed that the ssuF gene product was required for growth with all of the tested substrates except methionine and that the oxygenase encoded by ssuD was required for growth with sulfonates or methionine. The flavin reductase SsuE was not required for growth with aliphatic sulfonates or methionine but was needed for growth with arylsulfonates, suggesting that an alternative isozyme exists for the former compounds that is not active in transformation of the latter substrates. Aryl sulfate ester utilization was catalyzed by an arylsulfotransferase, and not by an arylsulfatase as in the related species Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- A Kahnert
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Ishii Y, Konishi J, Okada H, Hirasawa K, Onaka T, Suzuki M. Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem Biophys Res Commun 2000; 270:81-8. [PMID: 10733908 DOI: 10.1006/bbrc.2000.2370] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Paenibacillus A11-2 can efficiently cleave two carbon&bond;sulfur bonds in dibenzothiophene (DBT) and alkyl DBTs, which are refractory by conventional petroleum hydrodesulfurization, to remove sulfur atom at high temperatures. An 8.7-kb DNA fragment containing the genes for the DBT desulfurizing enzymes of A11-2 was cloned in Escherichia coli and characterized. Heterologous expression analysis of the deletion mutants identified three open reading frames that were required for the desulfurization of DBT to 2-hydroxybiphenyl (2-HBP). The three genes were designated tdsA, tdsB, and tdsC (for thermophilic desulfurization). Both the nucleotide sequences and the deduced amino acid sequences show significant homology to dszABC genes of Rhodococcus sp. IGTS8, but there are several local differences between them. Subclone analysis revealed that the product of tdsC oxidizes DBT to DBT-5,5'-dioxide via DBT-5-oxide, the product of tdsA converts DBT-5,5'-dioxide to 2-(2-hydroxyphenyl) benzene sulfinate, and the product of tdsB converts 2-(2-hydroxyphenyl)benzene sulfinate to 2-HBP. Cell-free extracts of a recombinant E. coli harboring all the three desulfurization genes converted DBT to 2-HBP at both 37 and 50 degrees C. In vivo and in vitro exhibition of desulfurization activity of the recombinant genes derived from a Paenibacillus indicates that an E. coli oxidoreductase can be functionally coupled with the monooxygenases of a gram-positive thermophile.
Collapse
Affiliation(s)
- Y Ishii
- Bio-Refining Process Laboratory, Advanced Technology and Research Institute, Petroleum Energy Center, 1, 900 Sodeshi-Cho, Shimizu-Shi, Shizuoka, 424-0037, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Kertesz MA. Riding the sulfur cycle â metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 2000. [DOI: 10.1111/j.1574-6976.2000.tb00537.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Kertesz MA. Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 2000; 24:135-75. [PMID: 10717312 DOI: 10.1016/s0168-6445(99)00033-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfonates and sulfate esters are widespread in nature, and make up over 95% of the sulfur content of most aerobic soils. Many microorganisms can use sulfonates and sulfate esters as a source of sulfur for growth, even when they are unable to metabolize the carbon skeleton of the compounds. In these organisms, expression of sulfatases and sulfonatases is repressed in the presence of sulfate, in a process mediated by the LysR-type regulator protein CysB, and the corresponding genes therefore constitute an extension of the cys regulon. Additional regulator proteins required for sulfonate desulfonation have been identified in Escherichia coli (the Cbl protein) and Pseudomonas putida (the AsfR protein). Desulfonation of aromatic and aliphatic sulfonates as sulfur sources by aerobic bacteria is oxygen-dependent, carried out by the alpha-ketoglutarate-dependent taurine dioxygenase, or by one of several FMNH(2)-dependent monooxygenases. Desulfurization of condensed thiophenes is also FMNH(2)-dependent, both in the rhodococci and in two Gram-negative species. Bacterial utilization of aromatic sulfate esters is catalyzed by arylsulfatases, most of which are related to human lysosomal sulfatases and contain an active-site formylglycine group that is generated post-translationally. Sulfate-regulated alkylsulfatases, by contrast, are less well characterized. Our increasing knowledge of the sulfur-regulated metabolism of organosulfur compounds suggests applications in practical fields such as biodesulfurization, bioremediation, and optimization of crop sulfur nutrition.
Collapse
Affiliation(s)
- M A Kertesz
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092, Zürich, Switzerland.
| |
Collapse
|
35
|
Galán B, Díaz E, Prieto MA, García JL. Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new Flavin:NAD(P)H reductase subfamily. J Bacteriol 2000; 182:627-36. [PMID: 10633095 PMCID: PMC94324 DOI: 10.1128/jb.182.3.627-636.2000] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli W uses the aromatic compound 4-hydroxyphenylacetate (4-HPA) as a sole source of carbon and energy for growth. The monooxygenase which converts 4-HPA into 3,4-dihydroxyphenylacetate, the first intermediate of the pathway, consists of two components, HpaB (58.7 kDa) and HpaC (18.6 kDa), encoded by the hpaB and hpaC genes, respectively, that form a single transcription unit. Overproduction of the small HpaC component in E. coli K-12 cells has facilitated the purification of the protein, which was revealed to be a homodimer that catalyzes the reduction of free flavins by NADH in preference to NADPH. Subsequently, the reduced flavins diffuse to the large HpaB component or to other electron acceptors such as cytochrome c and ferric ion. Amino acid sequence comparisons revealed that the HpaC reductase could be considered the prototype of a new subfamily of flavin:NAD(P)H reductases. The construction of a fusion protein between the large HpaB oxygenase component and the choline-binding domain of the major autolysin of Streptococcus pneumoniae allowed us to develop a rapid method to efficiently purify this highly unstable enzyme as a chimeric CH-HpaB protein, which exhibited a 4-HPA hydroxylating activity only when it was supplemented with the HpaC reductase. These results suggest the 4-HPA 3-monooxygenase of E. coli W as a representative member of a novel two-component flavin-diffusible monooxygenase (TC-FDM) family. Relevant features on the evolution and structure-function relationships of these TC-FDM proteins are discussed.
Collapse
Affiliation(s)
- B Galán
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Ishii Y, Konishi J, Suzuki M, Maruhashi K. Cloning and expression of the gene encoding the thermophilic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. J Biosci Bioeng 2000. [DOI: 10.1016/s1389-1723(00)90002-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Ishii Y, Konishi J, Suzuki M, Maruhashi K. Cloning and Expression of the Gene Encoding the Thermophilic NAD(P)H-FMN Oxidoreductase Coupling with the Desulfurization Enzymes from Paenibacillus sp. A11-2. J Biosci Bioeng 2000; 90:591-9. [PMID: 16232917 DOI: 10.1263/jbb.90.591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2000] [Accepted: 08/14/2000] [Indexed: 11/17/2022]
Abstract
The gene encoding the NAD(P)H-flavin oxidoreductase (flavin reductase) which couples with the thermophilic dibenzothiophene (DBT)-desulfurizing monooxygenases of Paenibacillus sp. A11-2 was cloned in Escherichia coli and designated tdsD. Nucleotide sequence analysis suggested that the gene product consisted of 200 amino acids and showed about 30%, 27% and 26% amino acid sequence similarity to the major flavin reductase of Vibrio fischeri, the NADH dehydrogenase of Thermus thermophilus and several oxygen-insensitive NAD(P)H nitroreductases in the Enterobacteriaceae family, respectively. Both the growing and resting recombinant E. coli, in which tdsD was coexpressed with a set of desulfurizing genes, showed a rate of DBT removal about 5 times higher than the recombinants lacking tdsD. Maximal desulfurization was observed close to 45 degrees C and 55 degrees C in the resting cells and in the cell-free extraction reaction with the tdsD-coexpressing recombinants, respectively. In an organic/aqueous biphasic system, the coexpression of tdsD also markedly enhanced the rate of DBT removal.
Collapse
Affiliation(s)
- Y Ishii
- Bio-Refining Process Laboratory, Advanced Technology and Research Institute, Petroleum Energy Center, 1900 Sodeshi-cho, Shimizu-shi, Shizuoka 424-0037, Japan
| | | | | | | |
Collapse
|
38
|
Vadas A, Monbouquette HG, Johnson E, Schröder I. Identification and characterization of a novel ferric reductase from the hyperthermophilic Archaeon Archaeoglobus fulgidus. J Biol Chem 1999; 274:36715-21. [PMID: 10593977 DOI: 10.1074/jbc.274.51.36715] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Archaeoglobus fulgidus, a hyperthermophilic sulfate-reducing Archaeon, contains high Fe(3+)-EDTA reductase activity in its soluble protein fraction. The corresponding enzyme, which constitutes about 0.75% of the soluble protein, was purified 175-fold to homogeneity. Based on SDS-polyacrylamide gel electrophoresis, the ferric reductase consists of a single subunit with a M(r) of 18,000. The M(r) of the native enzyme was determined by size exclusion chromatography to be 40,000 suggesting that the native ferric reductase is a homodimer. The enzyme uses both NADH and NADPH as electron donors to reduce Fe(3+)-EDTA. Other Fe(3+) complexes and dichlorophenolindophenol serve as alternative electron acceptors, but uncomplexed Fe(3+) is not utilized. The purified enzyme strictly requires FMN or FAD as a catalytic intermediate for Fe(3+) reduction. Ferric reductase also reduces FMN and FAD, but not riboflavin, with NAD(P)H which classifies the enzyme as a NAD(P)H:flavin oxidoreductase. The enzyme exhibits a temperature optimum of 88 degrees C. When incubated at 85 degrees C, the enzyme activity half-life was 2 h. N-terminal sequence analysis of the purified ferric reductase resulted in the identification of the hypothetical gene, AF0830, of the A. fulgidus genomic sequence. The A. fulgidus ferric reductase shares amino acid sequence similarity with a family of NAD(P)H:FMN oxidoreductases but not with any ferric reductases suggesting that the A. fulgidus ferric reductase is a novel enzyme.
Collapse
Affiliation(s)
- A Vadas
- Department of Chemical Engineering, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
39
|
Kertesz MA, Schmidt-Larbig K, Wüest T. A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa. J Bacteriol 1999; 181:1464-73. [PMID: 10049377 PMCID: PMC93535 DOI: 10.1128/jb.181.5.1464-1473.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1998] [Accepted: 12/16/1998] [Indexed: 11/20/2022] Open
Abstract
When Pseudomonas aeruginosa is grown with organosulfur compounds as sulfur sources, it synthesizes a set of proteins whose synthesis is repressed in the presence of sulfate, cysteine, or thiocyanate (so-called sulfate starvation-induced proteins). The gene encoding one of these proteins, PA13, was isolated from a cosmid library of P. aeruginosa PAO1 and sequenced. It encoded a 381-amino-acid protein that was related to several reduced flavin mononucleotide (FMNH2)-dependent monooxygenases, and it was the second in an operon of three genes, which we have named msuEDC. The MsuD protein catalyzed the desulfonation of alkanesulfonates, requiring oxygen and FMNH2 for the reaction, and showed highest activity with methanesulfonate. MsuE was an NADH-dependent flavin mononucleotide (FMN) reductase, which provided reduced FMN for the MsuD enzyme. Expression of the msu operon was analyzed with a transcriptional msuD::xylE fusion and was found to be repressed in the presence of sulfate, sulfite, sulfide, or cysteine and derepressed during growth with methionine or alkanesulfonates. Growth with methanesulfonate required an intact cysB gene, and the msu operon is therefore part of the cys regulon, since sulfite utilization was found to be CysB independent in this species. Measurements of msuD::xylE expression in cysN and cysI genetic backgrounds showed that sulfate, sulfite, and sulfide or cysteine play independent roles in negatively regulating msu expression, and sulfonate utilization therefore appears to be tightly regulated.
Collapse
Affiliation(s)
- M A Kertesz
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zurich, Switzerland.
| | | | | |
Collapse
|
40
|
van der Ploeg JR, Cummings NJ, Leisinger T, Connerton IF. Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2555-2561. [PMID: 9782504 DOI: 10.1099/00221287-144-9-2555] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 5 kb region upstream of katA at 82 degrees on the Bacillus subtilis chromosome contains five ORFs organized in an operon-like structure. Based on sequence similarity, three of the ORFs are likely to encode an ABC transport system (ssuBAC) and another to encode a monooxygenase (ssuD). The deduced amino acid sequence of the last ORF (ygaN) shows no similarity to any known protein. B. subtilis can utilize a range of aliphatic sulfonates such as alkanesulfonates, taurine, isethionate and sulfoacetate as a source of sulfur, but not when ssuA and ssuC are disrupted by insertion of a neomycin-resistance gene. Utilization of aliphatic sulfonates was not affected in a strain lacking 3'-phosphoadenosine 5'-phosphosulfate (PAPS) sulfotransferase, indicating that sulfate is not an intermediate in the assimilation of sulfonate-sulfur. Sulfate or cysteine prevented expression of beta-galactosidase from a transcriptional ssuD::lacZ fusion. It is proposed that ssuBACD encode a system for ATP-dependent transport of alkanesulfonates and an oxygenase required for their desulfonation.
Collapse
Affiliation(s)
- Jan R van der Ploeg
- Mikrobiologisches Institut, Swiss Federal Institute of TechnologyETH-Zentrum, CH-8092 ZürichSwitzerland
| | - Nicola J Cummings
- Institute of Food Research, Department of Food Macromolecular Science, Reading LaboratoryEarley Gate, Whiteknights Road, Reading RG6 6BZUK
| | - Thomas Leisinger
- Mikrobiologisches Institut, Swiss Federal Institute of TechnologyETH-Zentrum, CH-8092 ZürichSwitzerland
| | - Ian F Connerton
- Institute of Food Research, Department of Food Macromolecular Science, Reading LaboratoryEarley Gate, Whiteknights Road, Reading RG6 6BZUK
| |
Collapse
|
41
|
Payne JW, Bolton H, Campbell JA, Xun L. Purification and characterization of EDTA monooxygenase from the EDTA-degrading bacterium BNC1. J Bacteriol 1998; 180:3823-7. [PMID: 9683478 PMCID: PMC107365 DOI: 10.1128/jb.180.15.3823-3827.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1997] [Accepted: 05/26/1998] [Indexed: 02/08/2023] Open
Abstract
The synthetic chelating agent EDTA can mobilize radionuclides and heavy metals in the environment. Biodegradation of EDTA should reduce this mobilization. Although several bacteria have been reported to mineralize EDTA, little is known about the biochemistry of EDTA degradation. Understanding the biochemistry will facilitate the removal of EDTA from the environment. EDTA-degrading activities were detected in cell extracts of bacterium BNC1 when flavin mononucleotide (FMN), NADH, and O2 were present. The degradative enzyme system was separated into two different enzymes, EDTA monooxygenase and an FMN reductase. EDTA monooxygenase oxidized EDTA to glyoxylate and ethylenediaminetriacetate (ED3A), with the coconsumption of FMNH2 and O2. The FMN reductase provided EDTA monooxygenase with FMNH2 by reducing FMN with NADH. The FMN reductase was successfully substituted in the assay mixture by other FMN reductases. EDTA monooxygenase was purified to greater than 95% homogeneity and had a single polypeptide with a molecular weight of 45,000. The enzyme oxidized both EDTA complexed with various metal ions and uncomplexed EDTA. The optimal conditions for activity were pH 7.8 and 35 degreesC. Kms were 34.1 microM for uncomplexed EDTA and 8.5 microM for MgEDTA2-; this difference in Km indicates that the enzyme has greater affinity for MgEDTA2-. The enzyme also catalyzed the release of glyoxylate from nitrilotriacetate and diethylenetriaminepentaacetate. EDTA monooxygenase belongs to a small group of FMNH2-utilizing monooxygenases that attack carbon-nitrogen, carbon-sulfur, and carbon-carbon double bonds.
Collapse
Affiliation(s)
- J W Payne
- Department of Microbiology, Washington State University, Pullman, Washington 99164-4233, USA
| | | | | | | |
Collapse
|
42
|
Ravatn R, Zehnder AJ, van der Meer JR. Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms. Appl Environ Microbiol 1998; 64:2126-32. [PMID: 9603824 PMCID: PMC106288 DOI: 10.1128/aem.64.6.2126-2132.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 04/08/1998] [Indexed: 02/07/2023] Open
Abstract
The possibilities for low-frequency horizontal transfer of the self-transmissible chlorocatechol degradative genes (clc) from Pseudomonas sp. strain B13 were investigated in activated-sludge microcosms. When the clc genes were transferred into an appropriate recipient bacterium such as Pseudomonas putida F1, a new metabolic pathway for chlorobenzene degradation was formed by complementation which could be selected for by the addition of mono- or 1, 4-dichlorobenzene (CB). Under optimized conditions with direct donor-recipient filter matings, very low transfer frequencies were observed (approximately 3.5 x 10(-8) per donor per 24 h). In contrast, in matings on agar plate surfaces, transconjugants started to appear after 8 to 10 days, and their numbers then increased during prolonged continuous incubation with CB. In activated-sludge microcosms, CB-degrading (CB+) transconjugants of strain F1 which had acquired the clc genes were detected but only when strain B13 cell densities of more than 10(5) CFU/ml could be maintained by the addition of its specific growth substrate, 3-chlorobenzoate (3CBA). The CB+ transconjugants reached final cell densities of between 10(2) and 10(3) CFU/ml. When strain B13 was inoculated separately (without the designated recipient strain F1) into an activated-sludge microcosm, CB+ transconjugants could not be detected. However, in this case a new 3CBA-degrading strain appeared which had acquired the clc genes from strain B13. The effects of selective substrates on the survival and growth of and gene transfer between bacteria degrading aromatic pollutants in a wastewater ecosystem are discussed.
Collapse
MESH Headings
- Base Sequence
- Biodegradation, Environmental
- Catechols/metabolism
- Chlorobenzenes/metabolism
- Conjugation, Genetic
- DNA Primers/genetics
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Ecosystem
- Gene Transfer, Horizontal
- Genes, Bacterial
- Pseudomonas/genetics
- Pseudomonas/metabolism
- Pseudomonas putida/genetics
- Pseudomonas putida/metabolism
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sewage
- Water Pollutants, Chemical/metabolism
Collapse
Affiliation(s)
- R Ravatn
- Swiss Federal Institute for Environmental Science and Technology (EAWAG) and Swiss Federal Institute for Technology (ETH), CH-8600 Dübendorf, Switzerland
| | | | | |
Collapse
|
43
|
Velasco A, Alonso S, García JL, Perera J, Díaz E. Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 1998; 180:1063-71. [PMID: 9495743 PMCID: PMC106992 DOI: 10.1128/jb.180.5.1063-1071.1998] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1997] [Accepted: 12/06/1997] [Indexed: 02/06/2023] Open
Abstract
The chromosomal region of Pseudomonas sp. strain Y2 involved in the conversion of styrene to phenylacetate (upper catabolic pathway) has been cloned and sequenced. Four catabolic genes, styABCD, and two regulatory genes, stySR, were identified. This gene cluster when transferred to Escherichia coli W confers to this phenylacetate-degrading host the ability to grow on styrene as the sole carbon and energy source. Genes styABCD are homologous to those encoding the styrene upper catabolic pathway in Pseudomonas fluorescens ST. Northern blot analyses have confirmed that genes styABCD constitute a transcription unit. The transcription start site of the sty operon was mapped 33 nucleotides upstream of the styA translational start codon. The styS and styR genes, which form an independent transcriptional unit, are located upstream of the styABCD operon, and their gene products show high similarity to members of the superfamily of two-component signal transduction systems. The styS gene product is homologous to histidine kinase proteins, whereas the styR gene product exhibits similarity at its N-terminal domain with cluster 1 of receiver modules and at its C terminus with the LuxR/FixJ family 3 of DNA-binding domains. Expression of the catabolic operon decreased significantly in the absence of the stySR genes and was restored when the stySR genes were provided in trans in the presence of styrene, suggesting that the stySR system behaves as a styrene-inducible positive regulator of the styABCD operon. Finally, a gene encoding a phenylacetyl-coenzyme A ligase that catalyzes the first step in the phenylacetate catabolism (styrene lower catabolic pathway) has been identified upstream of the styS gene. This activity was found to be induced in Pseudomonas sp. strain Y2 cells grown on styrene but not present in cells grown on glycerol. These results strongly suggest that the genes responsible for the complete mineralization of styrene are clustered in the chromosome of Pseudomonas sp. strain Y2.
Collapse
Affiliation(s)
- A Velasco
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Witschel M, Nagel S, Egli T. Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. J Bacteriol 1997; 179:6937-43. [PMID: 9371437 PMCID: PMC179631 DOI: 10.1128/jb.179.22.6937-6943.1997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In a gram-negative isolate (DSM 9103) able to grow with EDTA as the sole source of carbon, nitrogen, and energy, the first two steps of the catabolic pathway for EDTA were elucidated. They consisted of the sequential oxidative removal of two acetyl groups, resulting in the formation of glyoxylate. An enzyme complex that catalyzes the removal of two acetyl groups was purified and characterized. In the reaction, ethylenediaminetriacetate (ED3A) was formed as an intermediate and N,N'-ethylenediaminediacetate was the end product. The enzyme complex consisted of two components: component A' (cA'), most likely a monooxygenase, which catalyzes the cleavage of EDTA and ED3A while consuming oxygen and reduced flavin mononucleotide (FMN)-H2, and component B' (cB'), an NADH2:FMN oxidoreductase that provides FMNH2 for cA'. cB' could be replaced by other NADH2:FMN oxidoreductases such as component B of the nitrilotriacetate monooxygenase or the NADH2:FMN oxidoreductase from Photobacterium fischeri. The EDTA-oxidizing enzyme complex accepted EDTA as a substrate only when it was complexed with Mg2+, Zn2+, Mn2+, Co2+, or Cu2+. Moreover, the enzyme complex catalyzed the removal of acetyl groups from several other aminopolycarboxylic acids that possess three or more acetyl groups.
Collapse
Affiliation(s)
- M Witschel
- Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | | | | |
Collapse
|
45
|
Becker D, Schräder T, Andreesen JR. Two-component flavin-dependent pyrrole-2-carboxylate monooxygenase from Rhodococcus sp. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:739-47. [PMID: 9395321 DOI: 10.1111/j.1432-1033.1997.t01-1-00739.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pyrrole-2-carboxylate can serve as the sole source of carbon, nitrogen, and energy for a strain tentatively identified to belong to the genus Rhodococcus. An NADH-dependent oxygenase activity was detected in cell extracts that initiated the degradation of the substrate. During purification of the enzyme, this activity was separated into two protein components which were both purified to apparent homogeneity. A small monomeric 18.7-kDa protein designated as reductase, catalyzed in vitro the NADH and FAD-dependent reduction of cytochrome c and had an NADH-oxidase activity. The second component, a 54-kDa protein with a trimeric native structure had no enzymatic activity by itself, but exhibited a pyrrole-2-carboxylate-dependent oxygen consumption when it was complemented with the reductase component, FAD, and NADH. This indicated that the large protein referred to as oxygenase was responsible for the oxygen-dependent hydroxylation of the substrate. The rate of an uncoupled NADH oxidation without hydroxylation of the substrate was found to be strongly dependent on the molar ratio of both components. The uncoupling was nearly completely suppressed by a 5-7-fold molar excess of the oxygenase component. The small protein was N-terminally blocked. It was thus proteolytically digested and four of the resulting peptides were sequenced comprising 47 amino acids. The sequences of these fragments were similar to the sequences reported for the small component of different two-component flavin monooxygenases. Furthermore, the N-terminus of the oxygenase component showed high sequence similarity to the second, usually large subunit of these enzymes and to two single-component flavin monooxygenases. Thus, the enzyme from Rhodococcus sp. designated as pyrrole-2-carboxylate monooxygenase belongs to the recently discovered new class of two-component flavin aromatic monooxygenases. Some of the basic properties of both components were determined and their interaction during catalysis was investigated.
Collapse
Affiliation(s)
- D Becker
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Germany
| | | | | |
Collapse
|
46
|
Parry RJ, Li W. An NADPH:FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens. Cloning, analysis, and overexpression. J Biol Chem 1997; 272:23303-11. [PMID: 9287340 DOI: 10.1074/jbc.272.37.23303] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The valanimycin producer Streptomyces viridifaciens contains a two-component enzyme system that catalyzes the oxidation of isobutylamine to isobutylhydroxylamine. One component of this enzyme system is isobutylamine hydroxylase, and the other component is a flavin reductase. The gene (vlmR) encoding the flavin reductase required by isobutylamine hydroxylase has been cloned from S. viridifaciens by chromosome walking. The gene codes for a protein of 194 amino acids with a calculated mass of 21,265 Da and a calculated pI of 10.2. Overexpression of the vlmR gene in Escherichia coli as an N-terminal His-tag derivative yielded a soluble protein that was purified to homogeneity. Removal of the N-terminal His-tag from the overexpressed protein by thrombin cleavage also produced a soluble protein. Both forms of the protein exhibited a high degree of flavin reductase activity, and the thrombin-cleaved form functioned in combination with isobutylamine hydroxylase to catalyze the conversion of isobutylamine to isobutylhydroxylamine. Kinetic data indicate that the overexpressed protein utilizes FAD and NADPH in preference to FMN, riboflavin, and NADH. The deduced amino acid sequence of the VlmR protein exhibited similarity to several other flavin reductases that may constitute a new family of flavin reductases.
Collapse
Affiliation(s)
- R J Parry
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
| | | |
Collapse
|
47
|
Xu Y, Mortimer MW, Fisher TS, Kahn ML, Brockman FJ, Xun L. Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase. J Bacteriol 1997; 179:1112-6. [PMID: 9023192 PMCID: PMC178806 DOI: 10.1128/jb.179.4.1112-1116.1997] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nitrilotriacetate (NTA) is an important chelating agent in detergents and has also been used extensively in processing radionuclides. In Chelatobacter heintzii ATCC 29600, biodegradation of NTA is initiated by NTA monooxygenase that oxidizes NTA to iminodiacetate and glyoxylate. The NTA monooxygenase activity requires two component proteins, component A and component B, but the function of each component is unclear. We have cloned and sequenced a gene cluster encoding components A and B (nmoA and nmoB) and two additional open reading frames, nmoR and nmoT, downstream of nmoA. Based on sequence similarities, nmoR and nmoT probably encode a regulatory protein and a transposase, respectively. The NmoA sequence was similar to a monooxygenase that uses reduced flavin mononucleotide (FMNH2) as reductant; NmoB was similar to an NADH:flavin mononucleotide (FMN) oxidoreductase. On the basis of this information, we tested the function of each component. Purified component B was shown to be an NADH:FMN oxidoreductase, and its activity could be separated from that of component A. When the Photobacterium fischeri NADH:FMN oxidoreductase was substituted for component B in the complete reaction, NTA was oxidized, showing that the substrate specificity of the reaction resides in component A. Component A is therefore an NTA monooxygenase that uses FMNH2 and O2 to oxidize NTA, and component B is an NADH:FMN oxidoreductase that provides FMNH2 for NTA oxidation.
Collapse
Affiliation(s)
- Y Xu
- Department of Microbiology, Washington State University Tri-Cities, Richland 99352, USA
| | | | | | | | | | | |
Collapse
|