1
|
Wang H, Chen B, Xiao P, Han D, Gao B, Yan Y, Zhao R, Pan T, Zhang J, Zhou M, Lv L, Gao H. Yersiniabactin produced by Escherichia coli promotes intestinal inflammation through lipid peroxidation and ferroptosis. Front Microbiol 2025; 16:1542801. [PMID: 40034497 PMCID: PMC11872927 DOI: 10.3389/fmicb.2025.1542801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Escherichia coli (E. coli), a major foodborne pathogen, poses significant risks to public health by causing gastrointestinal diseases. Among its virulence factors, Yersiniabactin (Ybt), a siderophore, plays a crucial role in iron acquisition and enhancing intestinal colonization. Despite previous studies highlighting E. coli-Ybt's involvement in inflammation, its exact mechanisms remain unclear. This study investigates how Ybt contributes to intestinal inflammation through ferroptosis, using both in vitro and in vivo models. Our findings demonstrate that Ybt promotes oxidative stress, lipid peroxidation, inflammation, and iron accumulation in intestinal epithelial cells, leading to ferroptosis. Mechanistically, Ybt suppresses the Keap1/Nrf2 pathway, amplifying reactive oxygen species (ROS) and activating the TNF/NF-κB pathway, which drives inflammation. Moreover, Ybt induces lipid peroxidation via the arachidonic acid pathway, producing 6-trans-leukotriene B4 (6-transLTB4), which exacerbates inflammation and ferroptosis. Exogenous 6-transLTB4 further intensifies this cascade. Additionally, Ybt disrupts iron efflux by suppressing FPN1 expression, causing excessive intracellular iron accumulation. Using tree shrews as an in vivo model, we confirm that Ybt-induced ferroptosis significantly aggravates intestinal inflammation. These findings underscore the pathogenic role of Ybt in E. coli-induced intestinal injury and highlight ferroptosis as a novel mechanism contributing to gut health disruption. This study provides new insights into the molecular pathways of E. coli infection, with implications for therapeutic strategies targeting ferroptosis in intestinal diseases.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bingxun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Dongmei Han
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Bin Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yulin Yan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Ru Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Tianling Pan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jingsong Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Meng Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Longbao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
3
|
Chakkour M, Hammoud Z, Farhat S, El Roz A, Ezzeddine Z, Ghssein G. Overview of Proteus mirabilis pathogenicity and virulence. Insights into the role of metals. Front Microbiol 2024; 15:1383618. [PMID: 38646633 PMCID: PMC11026637 DOI: 10.3389/fmicb.2024.1383618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium with exclusive molecular and biological features. It is a versatile pathogen acclaimed for its distinct urease production, swarming behavior, and rapid multicellular activity. Clinically, P. mirabilis is a frequent pathogen of the human urinary system where it causes urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). This review explores the epidemiology, risk factors, clinical manifestations, and treatment of P. mirabilis infections, emphasizing its association with UTIs. The bacterium's genome analysis revealed the presence of resistance genes against commonly used antibiotics, an antibiotic-resistant phenotype that poses a serious clinical challenge. Particularly, the emergence of extended-spectrum β-lactamases (ESBLs) and carbapenemases resistant P. mirabilis strains. On a molecular level, P. mirabilis possesses a wide array of virulence factors including the production of fimbriae, urease, hemolysins, metallophores, and biofilm formation. This review thoroughly tackles a substantial gap in understanding the role of metallophores in shaping the virulence factors of P. mirabilis virulence. Siderophores, iron metal chelating and transporting metallophores, particularly contribute to the complex pathogenic strategies, displaying a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Zeinab Hammoud
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Solay Farhat
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Ali El Roz
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| |
Collapse
|
4
|
Carter MQ, Quiñones B, Laniohan N, Carychao D, Pham A, He X, Cooley M. Pathogenicity assessment of Shiga toxin-producing Escherichia coli strains isolated from wild birds in a major agricultural region in California. Front Microbiol 2023; 14:1214081. [PMID: 37822735 PMCID: PMC10562709 DOI: 10.3389/fmicb.2023.1214081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) consists of diverse strains differing in genetic make-up and virulence potential. To better understand the pathogenicity potential of STEC carried by the wildlife, three STEC and one E. coli strains isolated from wild birds near a major agricultural region in California were selected for comparative pathogenomic analyses. Three American crow (Corvus brachyrhynchos) strains, RM9088, RM9513, and RM10410, belonging to phylogroup A with serotypes O109:H48, O9:H30, and O113:H4, respectively, and a red-winged blackbird (Agelaius phoeniceus) strain RM14516 in phylogroup D with serotype O17:H18, were examined. Shiga toxin genes were identified in RM9088 (stx1a), RM10410 (stx1a + stx2d), and RM14516 (stx2a). Unlike STEC O157:H7 strain EDL933, none of the avian STEC strains harbored the pathogenicity islands OI-122, OI-57, and the locus of enterocyte effacement, therefore the type III secretion system biogenesis genes and related effector genes were absent in the three avian STEC genomes. Interestingly, all avian STEC strains exhibited greater (RM9088 and RM14516) or comparable (RM10410) cytotoxicity levels compared with EDL933. Comparative pathogenomic analyses revealed that RM9088 harbored numerous genes encoding toxins, toxins delivery systems, and adherence factors, including heat-labile enterotoxin, serine protease autotransporter toxin Pic, type VI secretion systems, protein adhesin Paa, fimbrial adhesin K88, and colonization factor antigen I. RM9088 also harbored a 36-Kb high pathogenicity island, which is related to iron acquisition and pathogenicity in Yersinia spp. Strain RM14516 carried an acid fitness island like the one in EDL933, containing a nine gene cluster involved in iron acquisition. Genes encoding extracellular serine protease EspP, subtilase cytotoxin, F1C fimbriae, and inverse autotransporter adhesin IatC were only detected in RM14516, and genes encoding serine protease autotransporter EspI and P fimbriae were only identified in RM10410. Although all curli genes were present in avian STEC strains, production of curli fimbriae was only detected for RM9088 and RM14516. Consistently, strong, moderate, and little biofilms were observed for RM9088, RM14516, and RM10410, respectively. Our study revealed novel combinations of virulence factors in two avian strains, which exhibited high level of cytotoxicity and strong biofilm formation. Comparative pathogenomics is powerful in assessing pathogenicity and health risk of STEC strains.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Nicole Laniohan
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Antares Pham
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xiaohua He
- Foodborne Toxin Detection and Prevention Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Michael Cooley
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
5
|
Bonczarowska JH, Susat J, Krause-Kyora B, Dangvard Pedersen D, Boldsen J, Larsen LA, Seeberg L, Nebel A, Unterweger D. Ancient Yersinia pestis genomes lack the virulence-associated Ypf Φ prophage present in modern pandemic strains. Proc Biol Sci 2023; 290:20230622. [PMID: 37464758 PMCID: PMC10354491 DOI: 10.1098/rspb.2023.0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Yersinia pestis is the causative agent of at least three major plague pandemics (Justinianic, Medieval and Modern). Previous studies on ancient Y. pestis genomes revealed that several genomic alterations had occurred approximately 5000-3000 years ago and contributed to the remarkable virulence of this pathogen. How a subset of strains evolved to cause the Modern pandemic is less well-understood. Here, we examined the virulence-associated prophage (YpfΦ), which had been postulated to be exclusively present in the genomes of strains associated with the Modern pandemic. The analysis of two new Y. pestis genomes from medieval/early modern Denmark confirmed that the phage is absent from the genome of strains dating to this time period. An extended comparative genome analysis of over 300 strains spanning more than 5000 years showed that the prophage is found in the genomes of modern strains only and suggests an integration into the genome during recent Y. pestis evolution. The phage-encoded Zot protein showed structural homology to a virulence factor of Vibrio cholerae. Similar to modern Y. pestis, we observed phages with a common origin to YpfΦ in individual strains of other bacterial species. Our findings present an updated view on the prevalence of YpfΦ, which might contribute to our understanding of the host spectrum, geographical spread and virulence of Y. pestis responsible for the Modern pandemic.
Collapse
Affiliation(s)
- Joanna H. Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, Kiel 24105, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, Kiel 24105, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, Kiel 24105, Germany
| | - Dorthe Dangvard Pedersen
- Unit of Anthropology, Department of Forensic Medicine, University of Southern Denmark, Odense M, 5230, Denmark
| | - Jesper Boldsen
- Unit of Anthropology, Department of Forensic Medicine, University of Southern Denmark, Odense M, 5230, Denmark
| | | | - Lone Seeberg
- Museum Horsens Arkæologisk Afdeling, Fussingsvej 8, Horsens 8700, Denmark
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, Kiel 24105, Germany
| | - Daniel Unterweger
- Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, Kiel 24105, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön 24306, Germany
| |
Collapse
|
6
|
Wang H, Shan CL, Gao B, Xiao JL, Shen J, Zhao JG, Han DM, Chen BX, Wang S, Liu G, Xin AG, Lv LB, Xiao P, Gao H. Yersiniabactin-Producing E. coli Induces the Pyroptosis of Intestinal Epithelial Cells via the NLRP3 Pathway and Promotes Gut Inflammation. Int J Mol Sci 2023; 24:11451. [PMID: 37511208 PMCID: PMC10380849 DOI: 10.3390/ijms241411451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The high-pathogenicity island (HPI) was initially identified in Yersinia and can be horizontally transferred to Escherichia coli to produce yersiniabactin (Ybt), which enhances the pathogenicity of E. coli by competing with the host for Fe3+. Pyroptosis is gasdermin-induced necrotic cell death. It involves the permeabilization of the cell membrane and is accompanied by an inflammatory response. It is still unclear whether Ybt HPI can cause intestinal epithelial cells to undergo pyroptosis and contribute to gut inflammation during E. coli infection. In this study, we infected intestinal epithelial cells of mice with E. coli ZB-1 and the Ybt-deficient strain ZB-1Δirp2. Our findings demonstrate that Ybt-producing E. coli is more toxic and exacerbates gut inflammation during systemic infection. Mechanistically, our results suggest the involvement of the NLRP3/caspase-1/GSDMD pathway in E. coli infection. Ybt promotes the assembly and activation of the NLRP3 inflammasome, leading to GSDMD cleavage into GSDMD-N and promoting the pyroptosis of intestinal epithelial cells, ultimately aggravating gut inflammation. Notably, NLRP3 knockdown alleviated these phenomena, and the binding of free Ybt to NLRP3 may be the trigger. Overall, our results show that Ybt HPI enhances the pathogenicity of E. coli and induces pyroptosis via the NLRP3 pathway, which is a new mechanism through which E. coli promotes gut inflammation. Furthermore, we screened drugs targeting NLRP3 from an existing drug library, providing a list of potential drug candidates for the treatment of gut injury caused by E. coli.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (H.W.); (B.G.)
| | - Chun-Lang Shan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.-L.S.); (J.-G.Z.)
| | - Bin Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (H.W.); (B.G.)
| | - Jin-Long Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (J.-L.X.); (J.S.); (D.-M.H.); (B.-X.C.); (S.W.); (G.L.)
| | - Jue Shen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (J.-L.X.); (J.S.); (D.-M.H.); (B.-X.C.); (S.W.); (G.L.)
| | - Jin-Gang Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.-L.S.); (J.-G.Z.)
| | - Dong-Mei Han
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (J.-L.X.); (J.S.); (D.-M.H.); (B.-X.C.); (S.W.); (G.L.)
| | - Bin-Xun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (J.-L.X.); (J.S.); (D.-M.H.); (B.-X.C.); (S.W.); (G.L.)
| | - Shuai Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (J.-L.X.); (J.S.); (D.-M.H.); (B.-X.C.); (S.W.); (G.L.)
| | - Gen Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (J.-L.X.); (J.S.); (D.-M.H.); (B.-X.C.); (S.W.); (G.L.)
| | - Ai-Guo Xin
- National Foot-and-Mouth Disease Para-Reference Laboratory (Kunming), Yunnan Animal Science and Veterinary Institute, Kunming 650224, China;
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China;
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (J.-L.X.); (J.S.); (D.-M.H.); (B.-X.C.); (S.W.); (G.L.)
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (J.-L.X.); (J.S.); (D.-M.H.); (B.-X.C.); (S.W.); (G.L.)
| |
Collapse
|
7
|
Jaworska K, Konarska J, Gomza P, Rożen P, Nieckarz M, Krawczyk-Balska A, Brzostek K, Raczkowska A. Interplay between the RNA Chaperone Hfq, Small RNAs and Transcriptional Regulator OmpR Modulates Iron Homeostasis in the Enteropathogen Yersinia enterocolitica. Int J Mol Sci 2023; 24:11157. [PMID: 37446335 DOI: 10.3390/ijms241311157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Iron is both essential for and potentially toxic to bacteria, so the precise maintenance of iron homeostasis is necessary for their survival. Our previous study indicated that in the human enteropathogen Yersinia enterocolitica, the regulator OmpR directly controls the transcription of the fur, fecA and fepA genes, encoding the ferric uptake repressor and two transporters of ferric siderophores, respectively. This study was undertaken to determine the significance of the RNA chaperone Hfq and the small RNAs OmrA and RyhB1 in the post-transcriptional control of the expression of these OmpR targets. We show that Hfq silences fur, fecA and fepA expression post-transcriptionally and negatively affects the production of FLAG-tagged Fur, FecA and FepA proteins. In addition, we found that the fur gene is under the negative control of the sRNA RyhB1, while fecA and fepA are negatively regulated by the sRNA OmrA. Finally, our data revealed that the role of OmrA results from a complex interplay of transcriptional and post-transcriptional effects in the feedback circuit between the regulator OmpR and the sRNA OmrA. Thus, the expression of fur, fecA and fepA is subject to complex transcriptional and post-transcriptional regulation in order to maintain iron homeostasis in Y. enterocolitica.
Collapse
Affiliation(s)
- Karolina Jaworska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Julia Konarska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Patrycja Gomza
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Paula Rożen
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Marta Nieckarz
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agata Krawczyk-Balska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
8
|
Santos ACM, Santos-Neto JF, Trovão LO, Romano RFT, Silva RM, Gomes TAT. Characterization of unconventional pathogenic Escherichia coli isolated from bloodstream infection: virulence beyond the opportunism. Braz J Microbiol 2023; 54:15-28. [PMID: 36480121 PMCID: PMC9943985 DOI: 10.1007/s42770-022-00884-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of urinary tract infection worldwide and a critical bloodstream infection agent. There are more than 50 virulence factors (VFs) related to ExPEC pathogenesis; however, many strains isolated from extraintestinal infections are devoid of these factors. Since opportunistic infections may occur in immunocompromised patients, E. coli strains that lack recognized VFs are considered opportunist, and their virulence potential is neglected. We assessed eleven E. coli strains isolated from bloodstream infections and devoid of the most common ExPEC VFs to understand their pathogenic potential. The strains were evaluated according to their capacity to interact in vitro with human eukaryotic cell lineages (Caco-2, T24, HEK293T, and A549 cells), produce type 1 fimbriae and biofilm in diverse media, resist to human sera, and be lethal to Galleria mellonella. One strain displaying all phenotypic traits was sequenced and evaluated. Ten strains adhered to Caco-2 (colon), eight to T24 (bladder), five to HEK-293 T (kidney), and four to A549 (lung) cells. Eight strains produced type 1 fimbriae, ten adhered to abiotic surfaces, nine were serum resistant, and seven were virulent in the G. mellonella model. Six of the eleven E. coli strains displayed traits compatible with pathogens, five of which were isolated from an immune-competent host. The genome of the EC175 strain, isolated from a patient with urosepsis, reveals that the strain belonged to ST504-A, and serotype O11:H11; harbors thirteen VFs genes, including genes encoding UpaG and yersiniabactin as the only ExPEC VFs identified. Together, our results suggest that the ExPEC pathotype includes pathogens from phylogroups A and B1, which harbor VFs that remain to be uncovered.
Collapse
Affiliation(s)
- Ana Carolina M Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias, Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, Edifício Prof. Dr. Antônio C. Mattos Paiva, 3º Andar. Vila Clementino, São Paulo, SP, 04023-062, Brazil.
| | - José F Santos-Neto
- Laboratório Experimental de Patogenicidade de Enterobactérias, Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, Edifício Prof. Dr. Antônio C. Mattos Paiva, 3º Andar. Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Liana O Trovão
- Laboratório Experimental de Patogenicidade de Enterobactérias, Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, Edifício Prof. Dr. Antônio C. Mattos Paiva, 3º Andar. Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Ricardo F T Romano
- Laboratório de Patogênese de Enterobacterales, Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Departamento de Diagnóstico Por Imagem, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Silva
- Laboratório de Patogênese de Enterobacterales, Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tânia A T Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, Edifício Prof. Dr. Antônio C. Mattos Paiva, 3º Andar. Vila Clementino, São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
9
|
Sanchez-Alonso P, Cobos-Justo E, Avalos-Rangel MA, López-Reyes L, Paniagua-Contreras GL, Vaca-Paniagua F, Anastacio-Marcelino E, López-Ochoa AJ, Pérez Marquez VM, Negrete-Abascal E, Vázquez-Cruz C. A Maverick-like cluster in the genome of a pathogenic, moderately virulent strain of Gallibacterium anatis, ESV200, a transient biofilm producer. Front Microbiol 2023; 14:1084766. [PMID: 36778889 PMCID: PMC9909271 DOI: 10.3389/fmicb.2023.1084766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Gallibacterium anatis causes gallibacteriosis in birds. These bacteria produce biofilms and secrete several fimbrial appendages as tools to cause disease in animals. G. anatis strains contain up to three types of fimbriae. Complete genome sequencing is the strategy currently used to determine variations in the gene content of G. anatis, although today only the completely circularized genome of G. anatis UMN179 is available. Methods The appearance of growth of various strains of G. anatis in liquid culture medium was studied. Biofilm production and how the amount of biofilm was affected by DNase, Proteinase K, and Pronase E enzymes were analyzed. Fimbrial gene expression was performed by protein analysis and qRT-PCR. In an avian model, the pathogenesis generated by the strains G. anatis ESV200 and 12656-12 was investigated. Using bioinformatic tools, the complete genome of G. anatis ESV200 was comparatively studied to search for virulence factors that would help explain the pathogenic behavior of this strain. Results and Discussion G. anatis ESV200 strain differs from the 12656-12 strain because it produces a biofilm at 20%. G. anatis ESV200 strain express fimbrial genes and produces biofilm but with a different structure than that observed for strain 12656-12. ESV200 and 12656-12 strains are pathogenic for chickens, although the latter is the most virulent. Here, we show that the complete genome of the ESV200 strain is similar to that of the UNM179 strain. However, these strains have evolved with many structural rearrangements; the most striking chromosomal arrangement is a Maverick-like element present in the ESV200 strain.
Collapse
Affiliation(s)
- Patricia Sanchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico,*Correspondence: Patricia Sanchez-Alonso,
| | - Elena Cobos-Justo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel Angel Avalos-Rangel
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lucía López-Reyes
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Gloria Luz Paniagua-Contreras
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala, UNAM, Los Reyes Iztacala, Estado de, México, Mexico
| | - Felipe Vaca-Paniagua
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala, UNAM, Los Reyes Iztacala, Estado de, México, Mexico,Subdirección de Investigación Basica, Instituto Nacional de Cancerología, CDMX, México
| | - Estela Anastacio-Marcelino
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ana Jaqueline López-Ochoa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Victor M. Pérez Marquez
- Diagnóstico y Patobiología Aviar, Biotecnología Veterinaria S.A.-Biovetsa, BIOVETSA, Tehuacán, Mexico
| | - Erasmo Negrete-Abascal
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala, UNAM, Los Reyes Iztacala, Estado de, México, Mexico
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico,Candelario Vázquez-Cruz,
| |
Collapse
|
10
|
Fonseca EL, Morgado SM, Caldart RV, Vicente AC. Global Genomic Epidemiology of Escherichia coli (ExPEC) ST38 Lineage Revealed a Virulome Associated with Human Infections. Microorganisms 2022; 10:microorganisms10122482. [PMID: 36557735 PMCID: PMC9787326 DOI: 10.3390/microorganisms10122482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Most of the extraintestinal human infections worldwide are caused by specific extraintestinal pathogenic Escherichia coli (ExPEC) lineages, which also present a zoonotic character. One of these lineages belongs to ST38, a high-risk globally disseminated ExPEC. To get insights on the aspects of the global ST38 epidemiology and evolution as a multidrug-resistant and pathogenic lineage concerning the three axes of the One Health concept (humans, animals, and natural environments), this study performed a global phylogenomic analysis on ST38 genomes. METHODS A phylogenetic reconstruction based on 376 ST38 genomes recovered from environments, humans, livestock, and wild and domestic animals in all continents throughout three decades was performed. The global information concerning the ST38 resistome and virulome was also approached by in silico analyses. RESULTS In general, the phylogenomic analyses corroborated the zoonotic character of the ExPEC ST38, since clonal strains were recovered from both animal and human sources distributed worldwide. Moreover, our findings revealed that, independent of host sources and geographic origin, the genomes were distributed in two major clades (Clades 1 and 2). However, the ST38 accessory genome was not strictly associated with clades and sub-clades, as found for the type 2 T3SS ETT2 that was evenly distributed throughout Clades 1 and 2. Of note was the presence of the Yersinia pestis-like high-pathogenicity island (HPI) exclusively in the major Clade 2, in which prevails most of the genomes from human origin recovered worldwide (2000 to 2020). CONCLUSIONS This evidence corroborates the HPI association with successful E. coli ST38 establishment in human infections.
Collapse
Affiliation(s)
- Erica L. Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
- Correspondence: ; Tel.: +55-21-3865-8176
| | - Sergio M. Morgado
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
| | - Raquel V. Caldart
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Boa Vista 69300-000, RR, Brazil
| | - Ana Carolina Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
11
|
Cai H, Yu J, Qiao Y, Ma Y, Zheng J, Lin M, Yan Q, Huang L. Effect of the Type VI Secretion System Secreted Protein Hcp on the Virulence of Aeromonas salmonicida. Microorganisms 2022; 10:microorganisms10122307. [PMID: 36557560 PMCID: PMC9784854 DOI: 10.3390/microorganisms10122307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Aeromonas salmonicida, a psychrophilic bacterial pathogen, is widely distributed in marine freshwater, causing serious economic losses to major salmon farming areas in the world. At present, it is still one of the most important pathogens threatening salmon farming. Hcp (haemolysin-coregulated protein) is an effector protein in the type-VI secretion system (T6SS), which is secreted by T6SS and functions as its structural component. The results of our previous genomic sequencing showed that hcp existed in the mesophilic A. salmonicida SRW-OG1 isolated from naturally infected Epinephelus coioides. To further explore the role of Hcp in A. salmonicida SRW-OG1, we constructed an hcp-RNAi strain and verified its effect on the virulence of A. salmonicida. The results showed that compared with the wild strain, the hcp-RNAi strain suffered from different degrees of decreased adhesion, growth, biofilm formation, extracellular product secretion, and virulence. It was suggested that hcp may be an important virulence gene of A. salmonicida SRW-OG1.
Collapse
Affiliation(s)
- Hongyan Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Jiaying Yu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Ying Qiao
- Fourth Institute of Oceanography, Ministry of Natural Resources, No. 26, New Century Avenue, Beihai 536000, China
| | - Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
- Correspondence: (Q.Y.); (L.H.)
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
- Correspondence: (Q.Y.); (L.H.)
| |
Collapse
|
12
|
Gnann AD, Xia Y, Soule J, Barthélemy C, Mawani JS, Musoke SN, Castellano BM, Brignole EJ, Frueh DP, Dowling DP. High-resolution structures of a siderophore-producing cyclization domain from Yersinia pestis offer a refined proposal of substrate binding. J Biol Chem 2022; 298:102454. [PMID: 36063993 PMCID: PMC9547227 DOI: 10.1016/j.jbc.2022.102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/01/2023] Open
Abstract
Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.
Collapse
Affiliation(s)
- Andrew D. Gnann
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Yuan Xia
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jess Soule
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Clara Barthélemy
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jayata S. Mawani
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Sarah Nzikoba Musoke
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Brian M. Castellano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Edward J. Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA,For correspondence: Daniel P. Dowling
| |
Collapse
|
13
|
Antibiotic resistance, virulence, and phylogenetic analysis of Escherichia coli strains isolated from free-living birds in human habitats. PLoS One 2022; 17:e0262236. [PMID: 35020771 PMCID: PMC8754294 DOI: 10.1371/journal.pone.0262236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Wild birds can be colonized by bacteria, which are often resistant to antibiotics and have various virulence profiles. The aim of this study was to analyze antibiotic resistance mechanisms and virulence profiles in relation to the phylogenetic group of E. coli strains that were isolated from the GI tract of wildfowl. Out of 241 faecal samples, presence of E. coli resistant to a cephalosporin (ESBL/AmpC) was estimated for 33 isolates (13,7%). Based on the analysis of the coexistence of 4 genes encoding ESBLs/AmpC (blaCTX-M, blaTEM,blaSHV, blaAmpC) and class 1 and 2 integrons genes (intI1, intI2) a subset of two resistance profiles was observed among the investigated E. coli isolates carrying blaAmpC, blaSHV, and blaCTX-M, blaTEM, class 1 and 2 integrons, respectively. The E. coli isolates were categorized into 4 phylogenetic groups A (39.4%), B2 (24.25%), D (24.25%) and B1 (12.1%). The pathogenic B2 and D groups were mainly typical for the Laridae family. Among the 28 virulence factors (Vfs) detected in pathogenic phylogenetic groups B2 and D, 7 were exclusively found in those groups (sfa, vat, tosA, tosB, hly, usp, cnf), while 4 VFs (fecA, fyuA, irp2, kspMTII) showed a statistically significant association (P≤0.05) with phylogroups A and B1. Our results indicated that strains belonging to commensal phylogroups A/B1 possess extensive iron acquisition systems (93,9%) and autotransporters (60,6%), typical for pathogens, hence we suggest that these strains evolve towards higher levels of virulence. This study, which is a point assessment of the virulence and drug resistance potential of wild birds, confirms the importance of taking wild birds as a reservoir of strains that pose a growing threat to humans. The E. coli analyzed in our study derive from different phylogenetic groups and possess an arsenal of antibiotic resistance genes and virulence factors that contribute to their ability to cause diseases.
Collapse
|
14
|
Das S, Saqib M, Meng RC, Chittur SV, Guan Z, Wan F, Sun W. Hemochromatosis drives acute lethal intestinal responses to hyperyersiniabactin-producing Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 2022; 119:e2110166119. [PMID: 34969677 PMCID: PMC8764673 DOI: 10.1073/pnas.2110166119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Hemachromatosis (iron-overload) increases host susceptibility to siderophilic bacterial infections that cause serious complications, but the underlying mechanisms remain elusive. The present study demonstrates that oral infection with hyperyersiniabactin (Ybt) producing Yersinia pseudotuberculosis Δfur mutant (termed Δfur) results in severe systemic infection and acute mortality to hemochromatotic mice due to rapid disruption of the intestinal barrier. Transcriptome analysis of Δfur-infected intestine revealed up-regulation in cytokine-cytokine receptor interactions, the complement and coagulation cascade, the NF-κB signaling pathway, and chemokine signaling pathways, and down-regulation in cell-adhesion molecules and Toll-like receptor signaling pathways. Further studies indicate that dysregulated interleukin (IL)-1β signaling triggered in hemachromatotic mice infected with Δfur damages the intestinal barrier by activation of myosin light-chain kinases (MLCK) and excessive neutrophilia. Inhibiting MLCK activity or depleting neutrophil infiltration reduces barrier disruption, largely ameliorates immunopathology, and substantially rescues hemochromatotic mice from lethal Δfur infection. Moreover, early intervention of IL-1β overproduction can completely rescue hemochromatotic mice from the lethal infection.
Collapse
Affiliation(s)
- Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Ryan C Meng
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
15
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
16
|
Rivas L, Strydom H, Paine S, Wang J, Wright J. Yersiniosis in New Zealand. Pathogens 2021; 10:191. [PMID: 33578727 PMCID: PMC7916520 DOI: 10.3390/pathogens10020191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/19/2022] Open
Abstract
The rate of yersiniosis in New Zealand (NZ) is high compared with other developed countries, and rates have been increasing over recent years. Typically, >99% of human cases in NZ are attributed to Yersinia enterocolitica (YE), although in 2014, a large outbreak of 220 cases was caused by Yersinia pseudotuberculosis. Up until 2012, the most common NZ strain was YE biotype 4. The emergent strain since this time is YE biotype 2/3 serotype O:9. The pathogenic potential of some YE biotypes remains unclear. Most human cases of yersiniosis are considered sporadic without an identifiable source. Key restrictions in previous investigations included insufficient sensitivity for the isolation of Yersinia spp. from foods, although foodborne transmission is the most likely route of infection. In NZ, YE has been isolated from a variety of sick and healthy domestic and farm animals but the pathways from zoonotic reservoir to human remain unproven. Whole-genome sequencing provides unprecedented discriminatory power for typing Yersinia and is now being applied to NZ epidemiological investigations. A "One-Health" approach is necessary to elucidate the routes of transmission of Yersinia and consequently inform targeted interventions for the prevention and management of yersiniosis in NZ.
Collapse
Affiliation(s)
- Lucia Rivas
- Christchurch Science Centre, Institute of Environmental Science and Research Limited, Ilam, Christchurch 8041, New Zealand;
| | - Hugo Strydom
- National Centre for Biosecurity and Infectious Disease, Institute of Environmental Science and Research Limited, Upper Hutt, Wellington 5018, New Zealand;
| | - Shevaun Paine
- Kenepuru Science Centre, Institute of Environmental Science and Research Limited, Porirua, Wellington 5022, New Zealand; (S.P.); (J.W.)
| | - Jing Wang
- Kenepuru Science Centre, Institute of Environmental Science and Research Limited, Porirua, Wellington 5022, New Zealand; (S.P.); (J.W.)
| | - Jackie Wright
- National Centre for Biosecurity and Infectious Disease, Institute of Environmental Science and Research Limited, Upper Hutt, Wellington 5018, New Zealand;
| |
Collapse
|
17
|
Jaworska K, Ludwiczak M, Murawska E, Raczkowska A, Brzostek K. The Regulator OmpR in Yersinia enterocolitica Participates in Iron Homeostasis by Modulating Fur Level and Affecting the Expression of Genes Involved in Iron Uptake. Int J Mol Sci 2021; 22:ijms22031475. [PMID: 33540627 PMCID: PMC7867234 DOI: 10.3390/ijms22031475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.
Collapse
|
18
|
Gaston JR, Johnson AO, Bair KL, White AN, Armbruster CE. Polymicrobial interactions in the urinary tract: is the enemy of my enemy my friend? Infect Immun 2021; 89:IAI.00652-20. [PMID: 33431702 DOI: 10.1128/iai.00652-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vast majority of research pertaining to urinary tract infection has focused on a single pathogen in isolation, and predominantly Escherichia coli. However, polymicrobial urine colonization and infection are prevalent in several patient populations, including individuals with urinary catheters. The progression from asymptomatic colonization to symptomatic infection and severe disease is likely shaped by interactions between traditional pathogens as well as constituents of the normal urinary microbiota. Recent studies have begun to experimentally dissect the contribution of polymicrobial interactions to disease outcomes in the urinary tract, including their role in development of antimicrobial-resistant biofilm communities, modulating the innate immune response, tissue damage, and sepsis. This review aims to summarize the epidemiology of polymicrobial urine colonization, provide an overview of common urinary tract pathogens, and present key microbe-microbe and host-microbe interactions that influence infection progression, persistence, and severity.
Collapse
Affiliation(s)
- Jordan R Gaston
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Alexandra O Johnson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Kirsten L Bair
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Ashley N White
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| |
Collapse
|
19
|
Springer K, Sänger PA, Moritz C, Felsl A, Rattei T, Fuchs TM. Insecticidal Toxicity of Yersinia frederiksenii Involves the Novel Enterotoxin YacT. Front Cell Infect Microbiol 2018; 8:392. [PMID: 30488025 PMCID: PMC6246891 DOI: 10.3389/fcimb.2018.00392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
The genus Yersinia comprises 19 species of which three are known as human and animal pathogens. Some species display toxicity toward invertebrates using the so-called toxin complex (TC) and/or determinants that are not yet known. Recent studies showed a remarkable variability of insecticidal activities when representatives of different Yersinia species (spp.) were subcutaneously injected into the greater wax moth, Galleria mellonella. Here, we demonstrate that Y. intermedia and Y. frederiksenii are highly toxic to this insect. A member of Y. Enterocolitica phylogroup 1B killed G. mellonella larvae with injection doses of approximately 38 cells only, thus resembling the insecticidal activity of Photorhabdus luminescens. The pathogenicity Yersinia spp. displays toward the larvae was higher at 15°C than at 30°C and independent of the TC. However, upon subtraction of all genes of the low-pathogenic Y. enterocolitica strain W22703 from the genomes of Y. intermedia and Y. frederiksenii, we identified a set of genes that may be responsible for the toxicity of these two species. Indeed, a mutant of Y. frederiksenii lacking yacT, a gene that encodes a protein similar to the heat-stable cytotonic enterotoxin (Ast) of Aeromonas hydrophila, exhibited a reduced pathogenicity toward G. mellonella larvae and altered the morphology of hemocytes. The data suggests that the repertoire of virulence determinants present in environmental Yersinia species remains to be elucidated.
Collapse
Affiliation(s)
- Katharina Springer
- Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | | | - Christian Moritz
- Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Thomas Rattei
- Department of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany.,Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
| |
Collapse
|
20
|
Yersinia pseudotuberculosis Prevalence and Diversity in Wild Boars in Northeast Germany. Appl Environ Microbiol 2018; 84:AEM.00675-18. [PMID: 29980552 DOI: 10.1128/aem.00675-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, the prevalence of Yersinia pseudotuberculosis in wild boars in northeast Germany was determined. For that purpose, the tonsils of 503 wild boars were sampled. The presence of Y. pseudotuberculosis was studied by diagnostic PCR. Positive samples were analyzed by cultural detection using a modified cold enrichment protocol. Ten Y. pseudotuberculosis isolates were obtained, which were characterized by biotyping, molecular serotyping, and multilocus sequence typing (MLST). In addition, whole-genome sequences and the antimicrobial susceptibility of the isolates were analyzed. Yersinia pseudotuberculosis was isolated from male and female animals, most of which were younger than 1 year. A prevalence of 2% (10/503) was determined by cultural detection, while 6.4% (32/503) of the animals were positive by PCR. The isolates belonged to the biotypes 1 and 2 and serotypes O:1a (n = 7), O:1b (n = 2), and O:4a (n = 1). MLST analysis revealed three sequence types, ST9, ST23, and ST42. Except one isolate, all isolates revealed a strong resistance to colistin. The relationship of the isolates was studied by whole-genome sequencing demonstrating that they belonged to four clades, exhibiting five different pulsed-field gel electrophoresis (PFGE) restriction patterns and a diverse composition of virulence genes. Six isolates harbored the virulence plasmid pYV. Besides two isolates, all isolates contained ail and inv genes and a complete or incomplete high-pathogenicity island (HPI). None of them possessed a gene for the superantigen YPM. The study shows that various Y. pseudotuberculosis strains exist in wild boars in northeast Germany, which may pose a risk to humans.IMPORTANCEYersinia pseudotuberculosis is a foodborne pathogen whose occurrence is poorly understood. One reason for this situation is the difficulty in isolating the species. The methods developed for the isolation of Yersinia enterocolitica are not well suited for Y. pseudotuberculosis We therefore designed a protocol which enabled the isolation of Y. pseudotuberculosis from a relatively high proportion of PCR-positive wild boar tonsils. The study indicates that wild boars in northeast Germany may carry a variety of Y. pseudotuberculosis strains, which differ in terms of their pathogenic potential and other properties. Since wild boars are widely distributed in German forests and even populate cities such as Berlin, they may transmit yersiniae to other animals and crop plants and may thus cause human infections through the consumption of contaminated food. Therefore, the prevalence of Y. pseudotuberculosis should be determined also in other animals and regions to learn more about the natural reservoir of this species.
Collapse
|
21
|
Martinez-Gil M, Goh KGK, Rackaityte E, Sakamoto C, Audrain B, Moriel DG, Totsika M, Ghigo JM, Schembri MA, Beloin C. YeeJ is an inverse autotransporter from Escherichia coli that binds to peptidoglycan and promotes biofilm formation. Sci Rep 2017; 7:11326. [PMID: 28900103 PMCID: PMC5595812 DOI: 10.1038/s41598-017-10902-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Abstract
Escherichia coli is a commensal or pathogenic bacterium that can survive in diverse environments. Adhesion to surfaces is essential for E. coli colonization, and thus it is important to understand the molecular mechanisms that promote this process in different niches. Autotransporter proteins are a class of cell-surface factor used by E. coli for adherence. Here we characterized the regulation and function of YeeJ, a poorly studied but widespread representative from an emerging class of autotransporter proteins, the inverse autotransporters (IAT). We showed that the yeeJ gene is present in ~40% of 96 completely sequenced E. coli genomes and that YeeJ exists as two length variants, albeit with no detectable functional differences. We demonstrated that YeeJ promotes biofilm formation in different settings through exposition at the cell-surface. We also showed that YeeJ contains a LysM domain that interacts with peptidoglycan and thus assists its localization into the outer membrane. Additionally, we identified the Polynucleotide Phosphorylase PNPase as a repressor of yeeJ transcription. Overall, our work provides new insight into YeeJ as a member of the recently defined IAT class, and contributes to our understanding of how commensal and pathogenic E. coli colonise their environments.
Collapse
Affiliation(s)
- Marta Martinez-Gil
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias. Universidad de Málaga, Málaga, Spain
| | - Kelvin G K Goh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elze Rackaityte
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
- University of California San Francisco, Department of Medicine, San Francisco, CA, USA
| | - Chizuko Sakamoto
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Bianca Audrain
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- GSK Vaccines Institute for Global Health S.r.l., 53100, Siena, Italy
| | - Makrina Totsika
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France.
| |
Collapse
|
22
|
Strain-specific impact of the high-pathogenicity island on virulence in extra-intestinal pathogenic Escherichia coli. Int J Med Microbiol 2016; 307:44-56. [PMID: 27923724 DOI: 10.1016/j.ijmm.2016.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 02/04/2023] Open
Abstract
In order to clarify the role of the high-pathogenicity island (HPI) in the experimental virulence of Escherichia coli, we constructed different deletion mutants of the entire HPI and of three individual genes (irp2, fyuA and ybtA), encoding for three main functions within the HPI. Those mutants were constructed for three phylogroup B2 strains (536-STc127, CFT073-STc73, and NU14-STc95), representative of the main B2 subgroups causing extra-intestinal infections. Transcriptional profiles obtained for the selected HPI genes irp2, fyuA and ybtA revealed similar patterns for all strains, both under selective iron-deplete conditions and in intracellular bacterial communities in vitro, with a high expression of irp2. Deletion of irp2 and ybtA abrogated yersiniabactin production, whereas the fyuA knockout was only slightly impaired for siderophore synthesis. The experimental virulence of the strains was then tested in amoeba Dictyostelium discoideum and mouse septicaemia models. No effect of any HPI mutant was observed for the two more virulent strains 536 and CFT073. In contrast, the virulence of the less virulent NU14 strain was dramatically diminished by the complete deletion of the HPI and irp2 gene whereas a lesser reduction in virulence was observed for the fyuA and ybtA deletion mutants. The two experimental virulence models gave similar results. It appears that the role of the HPI in experimental virulence is depending on the genetic background of the strains despite similar inter-strain transcriptional patterns of HPI genes, as well as of the functional class of the studied gene. Altogether, these data indicate that the intrinsic extra-intestinal virulence in the E. coli species is multigenic, with epistatic interactions between the genes.
Collapse
|
23
|
McNally A, Thomson NR, Reuter S, Wren BW. 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016; 14:177-90. [PMID: 26876035 DOI: 10.1038/nrmicro.2015.29] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pathogenic species in the Yersinia genus have historically been targets for research aimed at understanding how bacteria evolve into mammalian pathogens. The advent of large-scale population genomic studies has greatly accelerated the progress in this field, and Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica have once again acted as model organisms to help shape our understanding of the evolutionary processes involved in pathogenesis. In this Review, we highlight the gene gain, gene loss and genome rearrangement events that have been identified by genomic studies in pathogenic Yersinia species, and we discuss how these findings are changing our understanding of pathogen evolution. Finally, as these traits are also found in the genomes of other species in the Enterobacteriaceae, we suggest that they provide a blueprint for the evolution of enteropathogenic bacteria.
Collapse
Affiliation(s)
- Alan McNally
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
24
|
Yang R, Ryan U, Gardner G, Carmichael I, Campbell AJD, Jacobson C. Prevalence, faecal shedding and genetic characterisation ofYersiniaspp. in sheep across four states of Australia. Aust Vet J 2016; 94:129-37. [DOI: 10.1111/avj.12428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 07/01/2015] [Accepted: 08/16/2015] [Indexed: 11/30/2022]
Affiliation(s)
- R Yang
- School of Veterinary and Life Sciences; Murdoch University; Murdoch, Western Australia 6150 Australia
| | - U Ryan
- School of Veterinary and Life Sciences; Murdoch University; Murdoch, Western Australia 6150 Australia
| | - G Gardner
- School of Veterinary and Life Sciences; Murdoch University; Murdoch, Western Australia 6150 Australia
| | - I Carmichael
- South Australian Research and Development Institute; Glenside SA Australia
| | - AJD Campbell
- Mackinnon Project, Faculty of Veterinary Science; University of Melbourne; Werribee VIC Australia
| | - C Jacobson
- School of Veterinary and Life Sciences; Murdoch University; Murdoch, Western Australia 6150 Australia
| |
Collapse
|
25
|
Amphlett A. Far East Scarlet-Like Fever: A Review of the Epidemiology, Symptomatology, and Role of Superantigenic Toxin: Yersinia pseudotuberculosis-Derived Mitogen A. Open Forum Infect Dis 2015; 3:ofv202. [PMID: 26819960 PMCID: PMC4728291 DOI: 10.1093/ofid/ofv202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/15/2015] [Indexed: 02/02/2023] Open
Abstract
Far East scarlet-like fever (FESLF) is a severe inflammatory disease that occurs sporadically and in outbreaks in Russia and Japan. Far East scarlet-like fever is caused by Yersinia pseudotubuclosis infection, an organism that typically causes self-limiting gastroenteritis in Europe. Studies suggest the ability of Far Eastern strains to produce superantigen toxin Y pseudotuberculosis-derived mitogen A is integral to FESLF pathogenesis. In Europe, human Y pseudotuberculosis infection typically occurs sporadically, in the form of a self-limiting gastroenteritis. In Russia and Japan, outbreaks of Y pseudotuberculosis infection cause severe systemic inflammatory symptoms. This disease variant is called FESLF. Geographical heterogeneity exists between virulence factors produced by European and Far Eastern Y pseudotuberculosis strains, implicating superantigen Y pseudotuberculosis-derived mitogen A (YPMa) in the pathogenesis of FESLF. This article describes the epidemiology and clinical features of FESLF, and it presents the evidence for the role of YPMa in FESLF pathogenesis.
Collapse
Affiliation(s)
- A Amphlett
- Department of Microbiology , Derriford Hospital , Plymouth , United Kingdom
| |
Collapse
|
26
|
Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome. J Bacteriol 2015; 198:766-76. [PMID: 26668266 DOI: 10.1128/jb.00704-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. IMPORTANCE Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two nonhomologous VPIs and demonstrated the dual functionality of RDF proteins: (i) inducing PAI excision and (ii) acting as transcriptional regulators. Findings from this study may be implicated in determining the mobilome contribution of other bacteria with multiple MIGEs.
Collapse
|
27
|
Zhang WH, Ren SQ, Gu XX, Li W, Yang L, Zeng ZL, Liu YH, Jiang HX. High frequency of virulence genes among Escherichia coli with the bla CTX-M genotype from diarrheic piglets in China. Vet Microbiol 2015; 180:260-7. [DOI: 10.1016/j.vetmic.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/12/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
|
28
|
Jaakkola K, Somervuo P, Korkeala H. Comparative Genomic Hybridization Analysis of Yersinia enterocolitica and Yersinia pseudotuberculosis Identifies Genetic Traits to Elucidate Their Different Ecologies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:760494. [PMID: 26605338 PMCID: PMC4641178 DOI: 10.1155/2015/760494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
Enteropathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis are both etiological agents for intestinal infection known as yersiniosis, but their epidemiology and ecology bear many differences. Swine are the only known reservoir for Y. enterocolitica 4/O:3 strains, which are the most common cause of human disease, while Y. pseudotuberculosis has been isolated from a variety of sources, including vegetables and wild animals. Infections caused by Y. enterocolitica mainly originate from swine, but fresh produce has been the source for widespread Y. pseudotuberculosis outbreaks within recent decades. A comparative genomic hybridization analysis with a DNA microarray based on three Yersinia enterocolitica and four Yersinia pseudotuberculosis genomes was conducted to shed light on the genomic differences between enteropathogenic Yersinia. The hybridization results identified Y. pseudotuberculosis strains to carry operons linked with the uptake and utilization of substances not found in living animal tissues but present in soil, plants, and rotting flesh. Y. pseudotuberculosis also harbors a selection of type VI secretion systems targeting other bacteria and eukaryotic cells. These genetic traits are not found in Y. enterocolitica, and it appears that while Y. pseudotuberculosis has many tools beneficial for survival in varied environments, the Y. enterocolitica genome is more streamlined and adapted to their preferred animal reservoir.
Collapse
Affiliation(s)
- Kaisa Jaakkola
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Panu Somervuo
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
29
|
A Transmissible Plasmid-Borne Pathogenicity Island Confers Piscibactin Biosynthesis in the Fish Pathogen Photobacterium damselae subsp. piscicida. Appl Environ Microbiol 2015; 81:5867-79. [PMID: 26092457 DOI: 10.1128/aem.01580-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
The fish pathogen Photobacterium damselae subsp. piscicida produces the siderophore piscibactin. A gene cluster that resembles the Yersinia high-pathogenicity island (HPI) encodes piscibactin biosynthesis. Here, we report that this HPI-like cluster is part of a hitherto-uncharacterized 68-kb plasmid dubbed pPHDP70. This plasmid lacks homologs of genes that mediate conjugation, but we found that it could be transferred at low frequencies from P. damselae subsp. piscicida to a mollusk pathogenic Vibrio alginolyticus strain and to other Gram-negative bacteria, likely dependent on the conjugative functions of the coresident plasmid pPHDP60. Following its conjugative transfer, pPHDP70 restored the capacity of a vibrioferrin mutant of V. alginolyticus to grow under low-iron conditions, and piscibactin became detectable in its supernatant. Thus, pPHDP70 appears to harbor all the genes required for piscibactin biosynthesis and transport. P. damselae subsp. piscicida strains cured of pPHDP70 no longer produced piscibactin, had impaired growth under iron-limited conditions, and exhibited markedly decreased virulence in fish. Collectively, our findings highlight the importance of pPHDP70, with its capacity for piscibactin-mediated iron acquisition, in the virulence of P. damselae subsp. piscicida. Horizontal transmission of this plasmid-borne piscibactin synthesis gene cluster in the marine environment may facilitate the emergence of new pathogens.
Collapse
|
30
|
Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival. Infect Immun 2015; 83:2672-85. [PMID: 25895974 DOI: 10.1128/iai.02922-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/10/2015] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26 °C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37 °C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.
Collapse
|
31
|
Mendes-Soares H, Krishnan V, Settles ML, Ravel J, Brown CJ, Forney LJ. Fine-scale analysis of 16S rRNA sequences reveals a high level of taxonomic diversity among vaginal Atopobium spp. Pathog Dis 2015; 73:ftv020. [PMID: 25778779 DOI: 10.1093/femspd/ftv020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 01/29/2023] Open
Abstract
Although vaginal microbial communities of some healthy women have high proportions of Atopobium vaginae, the genus Atopobium is more commonly associated with bacterial vaginosis, a syndrome associated with an increased risk of adverse pregnancy outcomes and the transmission of sexually transmitted diseases. Genetic differences within Atopobium species may explain why single species can be associated with both health and disease. We used 16S rRNA gene sequences from previously published studies to explore the taxonomic diversity of the genus Atopobium in vaginal microbial communities of healthy women. Although A. vaginae was the species most commonly found, we also observed three other Atopobium species in the vaginal microbiota, one of which, A. parvulum, was not previously known to reside in the human vagina. Furthermore, we found several potential novel species of the genus Atopobium and multiple phylogenetic clades of A. vaginae. The diversity of Atopobium found in our study, which focused only on samples from healthy women, is greater than previously recognized, suggesting that analysis of samples from women with BV would yield even more diversity. Classification of microbes only to the genus level may thus obfuscate differences that might be important to better understand health or disease.
Collapse
Affiliation(s)
- Helena Mendes-Soares
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Vandhana Krishnan
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Matthew L Settles
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Celeste J Brown
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Larry J Forney
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| |
Collapse
|
32
|
Wang J, Tang P, Tan D, Wang L, Zhang S, Qiu Y, Dong R, Liu W, Huang J, Chen T, Ren J, Li C, Liu HJ. The Pathogenicity of Chicken Pathogenic <i>Escherichia coli</i> Is Associated with the Numbers and Combination Patterns of Virulence-Associated Genes. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojvm.2015.512033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Gao L, Jiang X, Fu S, Gong H. In silico identification of potential virulence genes in 1,3-propanediol producer Klebsiella pneumonia. J Biotechnol 2014; 189:9-14. [DOI: 10.1016/j.jbiotec.2014.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022]
|
34
|
Valentin-Weigand P, Heesemann J, Dersch P. Unique virulence properties of Yersinia enterocolitica O:3 – An emerging zoonotic pathogen using pigs as preferred reservoir host. Int J Med Microbiol 2014; 304:824-34. [DOI: 10.1016/j.ijmm.2014.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Abstract
The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.
Collapse
|
36
|
The ssbL gene harbored by the ColV plasmid of an Escherichia coli neonatal meningitis strain is an auxiliary virulence factor boosting the production of siderophores through the shikimate pathway. J Bacteriol 2014; 196:1343-9. [PMID: 24443535 DOI: 10.1128/jb.01153-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to capture iron is a challenge for most bacteria. The neonatal meningitis Escherichia coli strain S88 possesses several iron uptake systems, notably including siderophores. Transcriptional analysis of the ColV plasmid pS88 has shown strong induction of a previously undescribed gene with low identity to three E. coli chromosomal genes encoding phospho-2-dehydro-3-deoxyheptonate aldolases involved in aromatic amino acid and catecholate/phenolate siderophore biosynthesis through the shikimate pathway. Here, we investigated the role of this gene, ssbLp (ssbL carried on the plasmid), in siderophore biosynthesis and, consequently, in S88 virulence. We constructed an S88 mutant designated S88 ΔssbLp, which exhibited reduced growth under low-iron conditions compared to the wild-type strain. Liquid chromatography-mass spectroscopy analysis of culture supernatants showed that the mutant secreted significantly smaller amounts of enterobactin, salmochelin SX, and yersiniabactin than the wild-type strain. The mutant was also less virulent in a neonatal rat sepsis model, with significantly lower bacteremia and mortality. Supplementation with chorismate, the final product of the shikimate pathway, restored the wild-type phenotype in vitro. In a collection of human extraintestinal E. coli isolates, we found that ssbL was present only in strains harboring the iro locus, encoding salmochelins, and was located either on the chromosome or on plasmids. Acquisition of the iro locus has been accompanied by acquisition of the auxiliary gene ssbL, which boosts the metabolic pathway essential for catecholate/phenolate siderophore biosynthesis and could represent potential therapeutic targets.
Collapse
|
37
|
Yersinia enterocoliticainfections associated with improperly pasteurized milk products: southwest Pennsylvania, March–August, 2011. Epidemiol Infect 2013; 142:1640-50. [DOI: 10.1017/s0950268813002616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYIn July 2011, a cluster ofYersinia enterocoliticainfections was detected in southwestern Pennsylvania, USA. We investigated the outbreak's source and scope in order to prevent further transmission. Twenty-two persons were diagnosed with yersiniosis; 16 of whom reported consuming pasteurized dairy products from dairy A. Pasteurized milk and food samples were collected from this dairy.Y. enterocoliticawas isolated from two products. Isolates from both food samples and available clinical isolates from nine dairy A consumers were indistinguishable by pulsed-field gel electrophoresis. Environmental and microbiological investigations were performed at dairy A and pasteurization deficiencies were noted. Because consumption of pasteurized milk is common and outbreaks have the potential to become large, public health interventions such as consumer advisories or closure of the dairy must be implemented quickly to prevent additional cases if epidemiological or laboratory evidence implicates pasteurized milk as the outbreak source.
Collapse
|
38
|
Babujee L, Balakrishnan V, Kiley PJ, Glasner JD, Perna NT. Transcriptome changes associated with anaerobic growth in Yersinia intermedia (ATCC29909). PLoS One 2013; 8:e76567. [PMID: 24116118 PMCID: PMC3792023 DOI: 10.1371/journal.pone.0076567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/26/2013] [Indexed: 12/04/2022] Open
Abstract
Background The yersiniae (Enterobacteriaceae) occupy a variety of niches, including some in human and flea hosts. Metabolic adaptations of the yersiniae, which contribute to their success in these specialized environments, remain largely unknown. We report results of an investigation of the transcriptome under aerobic and anaerobic conditions for Y. intermedia, a non-pathogenic member of the genus that has been used as a research surrogate for Y. pestis. Y. intermedia shares characteristics of pathogenic yersiniae, but is not known to cause disease in humans. Oxygen restriction is an important environmental stimulus experienced by many bacteria during their life-cycles and greatly influences their survival in specific environments. How oxygen availability affects physiology in the yersiniae is of importance in their life cycles but has not been extensively characterized. Methodology/Principal Findings Tiled oligonucleotide arrays based on a draft genome sequence of Y. intermedia were used in transcript profiling experiments to identify genes that change expression in response to oxygen availability during growth in minimal media with glucose. The expression of more than 400 genes, constituting about 10% of the genome, was significantly altered due to oxygen-limitation in early log phase under these conditions. Broad functional categorization indicated that, in addition to genes involved in central metabolism, genes involved in adaptation to stress and genes likely involved with host interactions were affected by oxygen-availability. Notable among these, were genes encoding functions for motility, chemotaxis and biosynthesis of cobalamin, which were up-regulated and those for iron/heme utilization, methionine metabolism and urease, which were down-regulated. Conclusions/Significance This is the first transcriptome analysis of a non-pathogenic Yersiniaspp. and one of few elucidating the global response to oxygen limitation for any of the yersiniae. Thus this study lays the foundation for further experimental characterization of oxygen-responsive genes and pathways in this ecologically diverse genus.
Collapse
Affiliation(s)
- Lavanya Babujee
- Biotechnology Center, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Venkatesh Balakrishnan
- Biotechnology Center, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Jeremy D. Glasner
- Biotechnology Center, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Nicole T. Perna
- Biotechnology Center, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- Department of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
39
|
Kumar P, Virdi JS. Identification and distribution of putative virulence genes in clinical strains of Yersinia enterocolitica biovar 1A by suppression subtractive hybridization. J Appl Microbiol 2012; 113:1263-72. [PMID: 22897337 DOI: 10.1111/j.1365-2672.2012.05427.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/29/2012] [Accepted: 08/02/2012] [Indexed: 01/13/2023]
Abstract
AIMS To detect putative virulence genes in clinical strains of Yersinia enterocolitica biovar 1A by suppression subtractive hybridization between two closely related strains of clinical and nonclinical origin having the same serotype (O:6,30-6,31). METHODS AND RESULTS Suppression Subtractive Hybridization (SSH) was used to identify genomic differences between clinical (serotype O:6,30-6,31, from diarrhoeic human stools) and nonclinical (serotype O:6,30-6,31, from wastewater) strains of Y. enterocolitica biovar 1A. Following genomic subtraction and DNA sequencing, nine DNA sequences that were present only in clinical biovar 1A strains were identified. The sequences identified using SSH showed similarity to conserved hypothetical proteins, proteins related to iron acquisition and haemin storage, type 1 secretion proteins, flagellar hook proteins, exported protein and ABC transport system. All these sequences showed high similarity with Y. enterocolitica 8081 (biovar 1B). The distribution of these genes was further analysed using PCR in 26 clinical strains of Y. enterocolitica biovar 1A. The results revealed that the distribution of these genes was not uniform. CONCLUSIONS Genes related to iron acquisition and storage, and flagellar proteins might be responsible for virulence of some of the clinical strains of Y. enterocolitica biovar 1A. SIGNIFICANCE AND IMPACT OF THE STUDY Genes identified in this study might be useful in understanding the pathogenic potential of clinical strains of Y. enterocolitica biovar 1A.
Collapse
Affiliation(s)
- P Kumar
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
40
|
Xu Q, Göhler AK, Kosfeld A, Carlton D, Chiu HJ, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Jahreis K, Wilson IA. The structure of Mlc titration factor A (MtfA/YeeI) reveals a prototypical zinc metallopeptidase related to anthrax lethal factor. J Bacteriol 2012; 194:2987-99. [PMID: 22467785 PMCID: PMC3370624 DOI: 10.1128/jb.00038-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/23/2012] [Indexed: 12/25/2022] Open
Abstract
MtfA of Escherichia coli (formerly YeeI) was previously identified as a regulator of the phosphoenolpyruvate (PEP)-dependent:glucose phosphotransferase system. MtfA homolog proteins are highly conserved, especially among beta- and gammaproteobacteria. We determined the crystal structures of the full-length MtfA apoenzyme from Klebsiella pneumoniae and its complex with zinc (holoenzyme) at 2.2 and 1.95 Å, respectively. MtfA contains a conserved H(149)E(150)XXH(153)+E(212)+Y(205) metallopeptidase motif. The presence of zinc in the active site induces significant conformational changes in the region around Tyr205 compared to the conformation of the apoenzyme. Additionally, the zinc-bound MtfA structure is in a self-inhibitory conformation where a region that was disordered in the unliganded structure is now observed in the active site and a nonproductive state of the enzyme is formed. MtfA is related to the catalytic domain of the anthrax lethal factor and the Mop protein involved in the virulence of Vibrio cholerae, with conservation in both overall structure and in the residues around the active site. These results clearly provide support for MtfA as a prototypical zinc metallopeptidase (gluzincin clan).
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | | | - Anne Kosfeld
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Dennis Carlton
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Mitchell D. Miller
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Adam Godzik
- Joint Center for Structural Genomics
- Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Knut Jahreis
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Ian A. Wilson
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
41
|
Lesic B, Zouine M, Ducos-Galand M, Huon C, Rosso ML, Prévost MC, Mazel D, Carniel E. A natural system of chromosome transfer in Yersinia pseudotuberculosis. PLoS Genet 2012; 8:e1002529. [PMID: 22412380 PMCID: PMC3297565 DOI: 10.1371/journal.pgen.1002529] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/23/2011] [Indexed: 01/21/2023] Open
Abstract
The High Pathogenicity Island of Yersinia pseudotuberculosis IP32637 was previously shown to be horizontally transferable as part of a large chromosomal segment. We demonstrate here that at low temperature other chromosomal loci, as well as a non-mobilizable plasmid (pUC4K), are also transferable. This transfer, designated GDT4 (Generalized DNA Transfer at 4°C), required the presence of an IP32637 endogenous plasmid (pGDT4) that carries several mobile genetic elements and a conjugation machinery. We established that cure of this plasmid or inactivation of its sex pilus fully abrogates this process. Analysis of the mobilized pUC4K recovered from transconjugants revealed the insertion of one of the pGDT4-borne ISs, designated ISYps1, at different sites on the transferred plasmid molecules. This IS belongs to the IS6 family, which moves by replicative transposition, and thus could drive the formation of cointegrates between pGDT4 and the host chromosome and could mediate the transfer of chromosomal regions in an Hfr-like manner. In support of this model, we show that a suicide plasmid carrying ISYps1 is able to integrate itself, flanked by ISYps1 copies, at multiple locations into the Escherichia coli chromosome. Furthermore, we demonstrate the formation of RecA-independent cointegrates between the ISYps1-harboring plasmid and an ISYps1-free replicon, leading to the passive transfer of the non-conjugative plasmid. We thus demonstrate here a natural mechanism of horizontal gene exchange, which is less constrained and more powerful than the classical Hfr mechanism, as it only requires the presence of an IS6-type element on a conjugative replicon to drive the horizontal transfer of any large block of plasmid or chromosomal DNA. This natural mechanism of chromosome transfer, which occurs under conditions mimicking those found in the environment, may thus play a significant role in bacterial evolution, pathogenesis, and adaptation to new ecological niches.
Collapse
Affiliation(s)
- Biliana Lesic
- Yersinia Research Unit, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Drummond N, Murphy BP, Ringwood T, Prentice MB, Buckley JF, Fanning S. Yersinia Enterocolitica:A Brief Review of the Issues Relating to the Zoonotic Pathogen, Public Health Challenges, and the Pork Production Chain. Foodborne Pathog Dis 2012; 9:179-89. [DOI: 10.1089/fpd.2011.0938] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Niall Drummond
- UCD Centre for Food Safety, UCD School of Public Health, Physiotherapy & Population Science, UCD Veterinary Sciences Centre, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - Brenda P. Murphy
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, County Cork, Ireland
| | - Tamara Ringwood
- Department of Microbiology, National University of Ireland, Cork, Ireland
| | | | - James F. Buckley
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, County Cork, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, UCD School of Public Health, Physiotherapy & Population Science, UCD Veterinary Sciences Centre, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
43
|
Fàbrega A, Vila J. Yersinia enterocolitica: Pathogenesis, virulence and antimicrobial resistance. Enferm Infecc Microbiol Clin 2012; 30:24-32. [DOI: 10.1016/j.eimc.2011.07.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
|
44
|
Galindo CL, Rosenzweig JA, Kirtley ML, Chopra AK. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in Human Yersiniosis. J Pathog 2011; 2011:182051. [PMID: 22567322 PMCID: PMC3335670 DOI: 10.4061/2011/182051] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/27/2011] [Accepted: 07/01/2011] [Indexed: 12/15/2022] Open
Abstract
Yersiniosis is a food-borne illness that has become more prevalent in recent years due to human transmission via the fecal-oral route and prevalence in farm animals. Yersiniosis is primarily caused by Yersinia enterocolitica and less frequently by Yersinia pseudotuberculosis. Infection is usually characterized by a self-limiting acute infection beginning in the intestine and spreading to the mesenteric lymph nodes. However, more serious infections and chronic conditions can also occur, particularly in immunocompromised individuals. Y. enterocolitica and Y. pseudotuberculosis are both heterogeneous organisms that vary considerably in their degrees of pathogenicity, although some generalizations can be ascribed to pathogenic variants. Adhesion molecules and a type III secretion system are critical for the establishment and progression of infection. Additionally, host innate and adaptive immune responses are both required for yersiniae clearance. Despite the ubiquity of enteric Yersinia species and their association as important causes of food poisoning world-wide, few national enteric pathogen surveillance programs include the yersiniae as notifiable pathogens. Moreover, no standard exists whereby identification and reporting systems can be effectively compared and global trends developed. This review discusses yersinial virulence factors, mechanisms of infection, and host responses in addition to the current state of surveillance, detection, and prevention of yersiniosis.
Collapse
Affiliation(s)
- Cristi L Galindo
- Department of Microbiology & Immunology, Sealy Center for Vaccine Development, Institute of Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
45
|
Batzilla J, Antonenka U, Höper D, Heesemann J, Rakin A. Yersinia enterocolitica palearctica serobiotype O:3/4--a successful group of emerging zoonotic pathogens. BMC Genomics 2011; 12:348. [PMID: 21733159 PMCID: PMC3161016 DOI: 10.1186/1471-2164-12-348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 07/06/2011] [Indexed: 02/04/2023] Open
Abstract
Background High-pathogenic Y. enterocolitica ssp. enterocolitica caused several human outbreaks in Northern America. In contrast, low pathogenic Y. enterocolitica ssp. palearctica serobiotype O:3/4 is responsible for sporadic cases worldwide with asymptomatic pigs being the main source of infection. Genomes of three Y. enterocolitica ssp. palearctica serobiotype O:3/4 human isolates (including the completely sequenced Y11 German DSMZ type strain) were compared to the high-pathogenic Y. enterocolitica ssp. enterocolitica 8081 O:8/1B to address the peculiarities of the O:3/4 group. Results Most high-pathogenicity-associated determinants of Y. enterocolitica ssp. enterocolitica (like the High-Pathogenicity Island, yts1 type 2 and ysa type 3 secretion systems) are absent in Y. enterocolitica ssp. palearctica serobiotype O:3/4 genomes. On the other hand they possess alternative putative virulence and fitness factors, such as a different ysp type 3 secretion system, an RtxA-like and insecticidal toxins, and a N-acetyl-galactosamine (GalNAc) PTS system (aga-operon). Horizontal acquisition of two prophages and a tRNA-Asn-associated GIYep-01 genomic island might also influence the Y. enterocolitica ssp. palearctica serobiotype O:3/4 pathoadaptation. We demonstrated recombination activity of the PhiYep-3 prophage and the GIYep-01 island and the ability of the aga-operon to support the growth of the Y. enterocolitica ssp. enterocolitica O:8/1B on GalNAc. Conclusions Y. enterocolitica ssp. palearctica serobiotype O:3/4 experienced a shift to an alternative patchwork of virulence and fitness determinants that might play a significant role in its host pathoadaptation and successful worldwide dissemination.
Collapse
|
46
|
Fuchs TM, Brandt K, Starke M, Rattei T. Shotgun sequencing of Yersinia enterocolitica strain W22703 (biotype 2, serotype O:9): genomic evidence for oscillation between invertebrates and mammals. BMC Genomics 2011; 12:168. [PMID: 21453472 PMCID: PMC3079665 DOI: 10.1186/1471-2164-12-168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/31/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Yersinia enterocolitica strains responsible for mild gastroenteritis in humans are very diverse with respect to their metabolic and virulence properties. Strain W22703 (biotype 2, serotype O:9) was recently identified to possess nematocidal and insecticidal activity. To better understand the relationship between pathogenicity towards insects and humans, we compared the W22703 genome with that of the highly pathogenic strain 8081 (biotype1B; serotype O:8), the only Y. enterocolitica strain sequenced so far. RESULTS We used whole-genome shotgun data to assemble, annotate and analyse the sequence of strain W22703. Numerous factors assumed to contribute to enteric survival and pathogenesis, among them osmoregulated periplasmic glucan, hydrogenases, cobalamin-dependent pathways, iron uptake systems and the Yersinia genome island 1 (YGI-1) involved in tight adherence were identified to be common to the 8081 and W22703 genomes. However, sets of ~550 genes revealed to be specific for each of them in comparison to the other strain. The plasticity zone (PZ) of 142 kb in the W22703 genome carries an ancient flagellar cluster Flg-2 of ~40 kb, but it lacks the pathogenicity island YAPI(Ye), the secretion system ysa and yts1, and other virulence determinants of the 8081 PZ. Its composition underlines the prominent variability of this genome region and demonstrates its contribution to the higher pathogenicity of biotype 1B strains with respect to W22703. A novel type three secretion system of mosaic structure was found in the genome of W22703 that is absent in the sequenced strains of the human pathogenic Yersinia species, but conserved in the genomes of the apathogenic species. We identified several regions of differences in W22703 that mainly code for transporters, regulators, metabolic pathways, and defence factors. CONCLUSION The W22703 sequence analysis revealed a genome composition distinct from other pathogenic Yersinia enterocolitica strains, thus contributing novel data to the Y. enterocolitica pan-genome. This study also sheds further light on the strategies of this pathogen to cope with its environments.
Collapse
Affiliation(s)
- Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Katharina Brandt
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Mandy Starke
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Thomas Rattei
- University of Vienna, Department of Computational Systems Biology, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
47
|
Himpsl SD, Pearson MM, Arewång CJ, Nusca TD, Sherman DH, Mobley HLT. Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol Microbiol 2011; 78:138-57. [PMID: 20923418 DOI: 10.1111/j.1365-2958.2010.07317.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteus mirabilis causes complicated urinary tract infections (UTIs). While the urinary tract is an iron-limiting environment, iron acquisition remains poorly characterized for this uropathogen. Microarray analysis of P. mirabilis HI4320 cultured under iron limitation identified 45 significantly upregulated genes (P ≤ 0.05) that represent 21 putative iron-regulated systems. Two gene clusters, PMI0229-0239 and PMI2596-2605, encode putative siderophore systems. PMI0229-0239 encodes a non-ribosomal peptide synthetase-independent siderophore system for producing a novel siderophore, proteobactin. PMI2596-2605 are contained within the high-pathogenicity island, originally described in Yersinia pestis, and encodes proteins with apparent homology and organization to those involved in yersiniabactin production and uptake. Cross-feeding and biochemical analysis shows that P. mirabilis is unable to utilize or produce yersiniabactin, suggesting that this yersiniabactin-related locus is functionally distinct. Only disruption of both systems resulted in an in vitro iron-chelating defect; demonstrating production and iron-chelating activity for both siderophores. These findings clearly show that proteobactin and the yersiniabactin-related siderophore function as iron acquisition systems. Despite the activity of both siderophores, only mutants lacking the yersiniabactin-related siderophore have reduced fitness in vivo. The fitness requirement for the yersiniabactin-related siderophore during UTI shows, for the first time, the importance of siderophore production in vivo for P. mirabilis.
Collapse
Affiliation(s)
- Stephanie D Himpsl
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
48
|
Evaluation of Psn, HmuR and a modified LcrV protein delivered to mice by live attenuated Salmonella as a vaccine against bubonic and pneumonic Yersinia pestis challenge. Vaccine 2010; 29:274-82. [PMID: 20979987 DOI: 10.1016/j.vaccine.2010.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/13/2010] [Indexed: 01/09/2023]
Abstract
We evaluated the ability of Yersinia pestis antigens HmuR, Psn and modified forms of LcrV delivered by live attenuated Salmonella strains to stimulate a protective immune response against subcutaneous or intranasal challenge with Y. pestis CO92. LcrV196 is a previously described truncated protein that includes aa 131-326 of LcrV and LcrV5214 has been modified to replace five key amino acids required for interaction with the TLR2 receptor. Psn is the outer membrane receptor for the siderophore, yersiniabactin, and the bacteriocin, pesticin. Mice immunized with Salmonella synthesizing Psn, LcrV196 or LcrV5214 developed serum IgG responses to the respective Yersinia antigen and were protected against pneumonic challenge with Y. pestis. Immunization with Salmonella synthesizing Psn or LcrV196 was sufficient to afford nearly full protection against bubonic challenge, while immunization with the strain synthesizing LcrV5214 was not protective. Immunization with Salmonella synthesizing HmuR, an outer membrane protein involved in heme acquisition in Y. pestis, was poorly immunogenic and did not elicit a protective response against either challenge route. These findings indicate that both Psn and LcrV196 delivered by Salmonella provide protection against both bubonic and pneumonic plague.
Collapse
|
49
|
Tourret J, Diard M, Garry L, Matic I, Denamur E. Effects of single and multiple pathogenicity island deletions on uropathogenic Escherichia coli strain 536 intrinsic extra-intestinal virulence. Int J Med Microbiol 2010; 300:435-9. [PMID: 20510652 DOI: 10.1016/j.ijmm.2010.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/08/2010] [Accepted: 04/05/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Escherichia coli strain 536 is a uropathogenic strain harboring 7 pathogenicity islands (PAIs). Whether or not these PAIs additively contribute to extra-intestinal virulence is unknown. METHODS We tested 7 single and several multiple-PAI deletion mutants in a mouse septicemia model by monitoring mouse survival. RESULTS E. coli 536 mutants in which PAIs II or III were deleted showed a significant decrease in virulence compared to the wild type (WT). All other single-PAI deletion mutants were as lethal to mice as was the WT. The mutant in which all seven PAIs were deleted showed milder virulence than the mutants in which PAI III or PAIs III and IV were deleted. The mutant in which PAIs II, III, IV, V, and VII were deleted tended to be less virulent than the mutant with deletion of PAI III only. All together, these results indicate a rough additive effect of PAIs in extra-intestinal virulence. CONCLUSION All PAIs of E. coli 536 do not play the same role in extra-intestinal virulence estimated in a mouse septicemia model and PAIs cooperate in an additive manner to achieve extra-intestinal virulence.
Collapse
Affiliation(s)
- Jérôme Tourret
- INSERM U722, Université Paris 7 Denis Diderot, Site Xavier Bichat, 16, rue Henri Huchard, 75018 Paris, France.
| | | | | | | | | |
Collapse
|
50
|
Interaction of Yersinia with the gut: mechanisms of pathogenesis and immune evasion. Curr Top Microbiol Immunol 2010; 337:61-91. [PMID: 19812980 DOI: 10.1007/978-3-642-01846-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Yersinia entercolitica and Yersinia pseudotuberculosis are human foodborne pathogens that interact extensively with tissues of the gut and the host's immune system to cause disease. As part of their pathogenic strategies, the Yersinia have evolved numerous ways to invade host tissues, gain essential nutrients, and evade host immunity. Technological advances over the last 10 years have revolutionized our understanding of host-pathogen interactions. The application of these new technologies has also shown that even well-understood pathogens such as the Yersinia have many surprises waiting to be revealed. The complex interaction with the host has made Yersinia a paradigm for understanding bacterial pathogenesis and the host response to invasive bacterial infections. This review examines the mechanisms of immune evasion employed by the Yersinia and highlights recent advances in understanding the host-pathogen interaction.
Collapse
|