1
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Aromatic compounds are ubiquitous in nature; they are the building blocks of abundant lignin, and constitute a substantial proportion of synthetic chemicals and organic pollutants. Uptake and degradation of aromatic compounds by bacteria have relevance in bioremediation, bio-based plastic recycling, and microbial conversion of lignocellulosic biomass into high-value commodity chemicals. While remarkable progress has been achieved in understanding aromatic metabolism in biodegraders, the membrane transporter systems responsible for uptake and efflux of aromatic compounds and their degradation products are still poorly understood. Membrane transporters are responsible for the initial recognition, uptake, and efflux of aromatic compounds; thus, in addition to controlling influx and efflux, the transporter system also forms part of stress tolerance mechanisms through excreting toxic metabolites. This review discusses significant advancements in our understanding of the nature and identity of the bacterial membrane transporter systems for aromatics, the molecular and structural basis of substrate recognition, mechanisms of translocation, functional regulation, and biotechnological applications. Most of these developments were enabled through the availability of crystal structures, advancements in computational biophysics, genome sequencing, omics studies, bioinformatics, and synthetic biology. We provide a comprehensive overview of recently reported knowledge on aromatic transporter systems in bacteria, point gaps in our understanding of the underlying translocation mechanisms, highlight existing limitations in harnessing transporter systems in synthetic biology applications, and suggest future research directions.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Liu XX, Liu L, Song X, Wang GQ, Xiong ZQ, Xia YJ, Ai LZ. Determination of the regulatory network and function of the lysR-type transcriptional regulator of Lactiplantibacillus plantarum, LpLttR. Microb Cell Fact 2022; 21:65. [PMID: 35443683 PMCID: PMC9019972 DOI: 10.1186/s12934-022-01774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/12/2022] [Indexed: 11/26/2022] Open
Abstract
Background Lactiplantibacillus plantarum has various healthcare functions including the regulation of immunity and inflammation, reduction of serum cholesterol levels, anti-tumor activity, and maintenance of the balance of intestinal flora. However, the underlying metabolic and regulatory mechanisms of these processes remain unclear. Our previous studies have shown that the LysR type transcriptional regulator of L. plantarum (LpLttR) regulates the biotransformation of conjugated linoleic acids (CLAs) through the transcriptional activation of cla-dh (coding gene for CLA short-chain dehydrogenase) and cla-dc (coding gene for CLA acetoacetate decarboxylase). However, the regulatory network and function of LpLttR have not yet been characterized in L. plantarum. Results In this study, the regulatory role of LpLttR in various cellular processes was assessed using transcriptome analysis. The deletion of LpLttR had no evident influence on the bacterial growth. The transcriptome data showed that the expression of nine genes were positively regulated by LpLttR, and the expression of only two genes were negatively regulated. Through binding motif analysis and molecular interaction, we demonstrated that the regulatory region of the directly regulated genes contained a highly conserved sequence, consisting of a 15-base long box and rich in AT. Conclusion This study revealed that LpLttR of L. plantarum did not play a global regulatory role similar to that of the other transcriptional regulators in this family. This study broadens our knowledge of LpLttR and provides a theoretical basis for the utilization of L. plantarum.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lei Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guang-Qiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhi-Qiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yong-Jun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lian-Zhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
3
|
Suvorova IA, Gelfand MS. Comparative Genomic Analysis of the Regulation of Aromatic Metabolism in Betaproteobacteria. Front Microbiol 2019; 10:642. [PMID: 30984152 PMCID: PMC6449761 DOI: 10.3389/fmicb.2019.00642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/14/2019] [Indexed: 01/23/2023] Open
Abstract
Aromatic compounds are a common carbon and energy source for many microorganisms, some of which can even degrade toxic chloroaromatic xenobiotics. This comparative study of aromatic metabolism in 32 Betaproteobacteria species describes the links between several transcription factors (TFs) that control benzoate (BenR, BenM, BoxR, BzdR), catechol (CatR, CatM, BenM), chlorocatechol (ClcR), methylcatechol (MmlR), 2,4-dichlorophenoxyacetate (TfdR, TfdS), phenol (AphS, AphR, AphT), biphenyl (BphS), and toluene (TbuT) metabolism. We characterize the complexity and variability in the organization of aromatic metabolism operons and the structure of regulatory networks that may differ even between closely related species. Generally, the upper parts of pathways, rare pathway variants, and degradative pathways of exotic and complex, in particular, xenobiotic compounds are often controlled by a single TF, while the regulation of more common and/or central parts of the aromatic metabolism may vary widely and often involves several TFs with shared and/or dual, or cascade regulation. The most frequent and at the same time variable connections exist between AphS, AphR, AphT, and BenR. We have identified a novel LysR-family TF that regulates the metabolism of catechol (or some catechol derivative) and either substitutes CatR(M)/BenM, or shares functions with it. We have also predicted several new members of aromatic metabolism regulons, in particular, some COGs regulated by several different TFs.
Collapse
Affiliation(s)
- Inna A Suvorova
- Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia.,Faculty of Computer Science, Higher School of Economics, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
4
|
Nguyen TPO, Hansen MA, Hansen LH, Horemans B, Sørensen SJ, De Mot R, Springael D. Intra- and inter-field diversity of 2,4-dichlorophenoxyacetic acid-degradative plasmids and their tfd catabolic genes in rice fields of the Mekong delta in Vietnam. FEMS Microbiol Ecol 2019; 95:5149497. [PMID: 30380047 DOI: 10.1093/femsec/fiy214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
The tfd genes mediating degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) differ in composition and organization in bacterial isolates from different geographical origin and are carried by different types of mobile genetic elements (MGE). It is not known whether such global diversity of 2,4-D-catabolic MGE and their tfd gene cargo is reflected in the diversity at field scale. The genomic context of the 2,4-D catabolic genes of 2,4-D-degrading isolates from two rice fields with a 2,4-D application history, located in two distant provinces of the Vietnam Mekong delta, was compared. All isolates were β-proteobacteria, were unique for each rice field and carried the catabolic genes on MGE and especially plasmids. Most plasmids were IncP-1β plasmids and carried tfd clusters highly similar to those of the IncP-1β plasmid pJP4, typified by two chlorophenol catabolic gene modules (tfd-I and tfd-II). IncP-1β plasmids from the same field showed small deletions and/or insertions in accessory metabolic genes. One plasmid belonged to an unclassified plasmid group and carries a copy of both tfdA and tfd-II identical to those in the IncP-1β plasmids. Our results indicate intra-field evolution and inter-field exchange of 2,4-D-catabolic IncP-1β plasmids as well as the exchange of tfd genes between different plasmids within a confined local environment.
Collapse
Affiliation(s)
- Thi Phi Oanh Nguyen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium.,Department of Biology, College of Natural Sciences, Can Tho University, Campus II, 3/2 street, Ninh Kieu district, Can Tho City, Vietnam
| | - Martin Asser Hansen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Lars Hestbjerg Hansen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark.,Department of Environmental Science - Environmental Microbiology & Biotechnology, Aarhus University, Frederiksborgvej 399, Building 7411 B2.12, Roskilde DK-4000, Denmark
| | - Benjamin Horemans
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| | - Søren Johannes Sørensen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| |
Collapse
|
5
|
Svenningsen NB, Damgaard M, Rasmussen M, Pérez-Pantoja D, Nybroe O, Nicolaisen MH. Cupriavidus pinatubonensis AEO106 deals with copper-induced oxidative stress before engaging in biodegradation of the herbicide 4-chloro-2-methylphenoxyacetic acid. BMC Microbiol 2017; 17:211. [PMID: 29084513 PMCID: PMC5663122 DOI: 10.1186/s12866-017-1119-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/19/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Microbial degradation of phenoxy acid (PA) herbicides in agricultural soils is important to minimize herbicide leaching to groundwater reservoirs. Degradation may, however, be hampered by exposure of the degrader bacteria to toxic metals as copper (Cu) in the soil environment. Exposure to Cu leads to accumulation of intracellular reactive oxygen species (ROS) in some bacteria, but it is not known how Cu-derived ROS and an ensuing oxidative stress affect the degradation of PA herbicides. Based on the previously proposed paradigm that bacteria deal with environmental stress before they engage in biodegradation, we studied how the degradation of the PA herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) by the model PA degrader Cupriavidus pinatubonensis AEO106 was affected by Cu exposure. RESULTS Exposure of C. pinatubonensis in batch culture to sublethal concentrations of Cu increased accumulation of ROS measured by the oxidant sensing probe 2,7-dichlorodihydrofluorescein diacetate and flow cytometry, and resulted in upregulation of a gene encoding a protein belong to the Ohr/OsmC protein family. The ohr/osmC gene was also highly induced by H2O2 exposure suggesting that it is involved in the oxidative stress response in C. pinatubonensis. The increased ROS accumulation and increased expression of the oxidative stress defense coincided with a delay in the catabolic performance, since both expression of the catabolic tfdA gene and MCPA mineralization were delayed compared to unexposed control cells. CONCLUSIONS The current study suggests that Cu-induced ROS accumulation in C. pinatubonensis activates a stress response involving the product of the ohr/osmC gene. Further, the stress response is launched before induction of the catabolic tfdA gene and mineralization occurs.
Collapse
Affiliation(s)
- Nanna Bygvraa Svenningsen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Mette Damgaard
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Maria Rasmussen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Mette Haubjerg Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark.
| |
Collapse
|
6
|
Paszko T, Muszyński P, Materska M, Bojanowska M, Kostecka M, Jackowska I. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:271-86. [PMID: 26292078 DOI: 10.1002/etc.3212] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 08/14/2015] [Indexed: 05/23/2023]
Abstract
The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible.
Collapse
Affiliation(s)
- Tadeusz Paszko
- Department of Chemistry, University of Life Sciences, Lublin, Poland
| | - Paweł Muszyński
- Department of Chemistry, University of Life Sciences, Lublin, Poland
| | | | - Monika Bojanowska
- Department of Chemistry, University of Life Sciences, Lublin, Poland
| | | | | |
Collapse
|
7
|
Nešvera J, Rucká L, Pátek M. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:107-60. [PMID: 26505690 DOI: 10.1016/bs.aambs.2015.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.
Collapse
Affiliation(s)
- Jan Nešvera
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Lenka Rucká
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
8
|
Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 2014; 42:194-208. [DOI: 10.3109/1040841x.2014.917068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Transcriptional cross-regulation between Gram-negative and gram-positive bacteria, demonstrated using ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum. J Bacteriol 2012; 194:5657-66. [PMID: 22904281 DOI: 10.1128/jb.00947-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein-gene pairs ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum are orthologous, with the first member of each pair being a LysR-type transcriptional regulator and the second its target gene encoding a basic amino acid exporter. Whereas LysE is an exporter of arginine (Arg) and lysine (Lys) whose expression is induced by Arg, Lys, or histidine (His), ArgO exports Arg alone, and its expression is activated by Arg but not Lys or His. We have now reconstituted in E. coli the activation of lysE by LysG in the presence of its coeffectors and have shown that neither ArgP nor LysG can regulate expression of the noncognate orthologous target. Of several ArgP-dominant (ArgP(d)) variants that confer elevated Arg-independent argO expression, some (ArgP(d)-P274S, -S94L, and, to a lesser extent, -P108S) activated lysE expression in E. coli. However, the individual activating effects of LysG and ArgP(d) on lysE were mutually extinguished when both proteins were coexpressed in Arg- or His-supplemented cultures. In comparison with native ArgP, the active ArgP(d) variants exhibited higher affinity of binding to the lysE regulatory region and less DNA bending at both argO and lysE. We conclude that the transcription factor LysG from a Gram-positive bacterium, C. glutamicum, is able to engage appropriately with the RNA polymerase from a Gram-negative bacterium, E. coli, for activation of its cognate target lysE in vivo and that single-amino-acid-substitution variants of ArgP can also activate the distantly orthologous target lysE, but by a subtly different mechanism that renders them noninterchangeable with LysG.
Collapse
|
10
|
Horinouchi M, Hayashi T, Kudo T. Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 2012; 129:4-14. [PMID: 21056662 DOI: 10.1016/j.jsbmb.2010.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/22/2010] [Accepted: 10/30/2010] [Indexed: 11/22/2022]
Abstract
Steroid degradation by Comamonas testosteroni and Nocardia restrictus have been intensively studied for the purpose of obtaining materials for steroid drug synthesis. C. testosteroni degrades side chains and converts single/double bonds of certain steroid compounds to produce androsta-1,4-diene 3,17-dione or the derivative. Following 9α-hydroxylation leads to aromatization of the A-ring accompanied by cleavage of the B-ring, and aromatized A-ring is hydroxylated at C-4 position, cleaved at Δ4 by meta-cleavage, and divided into 2-hydroxyhexa-2,4-dienoic acid (A-ring) and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (B,C,D-ring) by hydrolysis. Reactions and the genes involved in the cleavage and the following degradation of the A-ring are similar to those for bacterial biphenyl degradation, and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid degradation is suggested to be mainly β-oxidation. Genes involved in A-ring aromatization and degradation form a gene cluster, and the genes involved in β-oxidation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid also comprise a large cluster of more than 10 genes. The DNA region between these two main steroid degradation gene clusters contain 3α-hydroxysteroid dehydrogenase gene, Δ5,3-ketosteroid isomerase gene, genes for inversion of an α-oriented-hydroxyl group to a β-oriented-hydroxyl group at C-12 position of cholic acid, and genes possibly involved in the degradation of a side chain at C-17 position of cholic acid, indicating this DNA region of more than 100kb to be a steroid degradation gene hot spot of C. testosteroni. Article from a special issue on steroids and microorganisms.
Collapse
|
11
|
Insertion sequence elements in Cupriavidus metallidurans CH34: Distribution and role in adaptation. Plasmid 2011; 65:193-203. [DOI: 10.1016/j.plasmid.2010.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/20/2010] [Indexed: 11/20/2022]
|
12
|
Lang GH, Ogawa N. Mutational analysis of the inducer recognition sites of the LysR-type transcriptional regulator TfdT of Burkholderia sp. NK8. Appl Microbiol Biotechnol 2009; 83:1085-94. [PMID: 19319522 DOI: 10.1007/s00253-009-1960-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
TfdT is a LysR-type transcriptional regulator that activates the transcription of the chlorocatechol degradative gene operon tfdCDEF of the chlorobenzoate-degrading bacterium Burkholderia sp. NK8. To identify the amino acids involved in the effector recognition by TfdT, a polymerase-chain-reaction-based random mutagenesis protocol was applied to introduce mutations into the tfdT gene. Nine types of TfdT mutant bearing a single-amino-acid substitution at positions, Lys-129, Arg-199, Val-226, Val-246, and Pro-267 were obtained on the basis of their altered effector profiles and enhanced responses particularly to 2-chlorobenzoate, 2-aminobenzoate, and 2,6-dichlorobenzoate. All the TfdT mutants showed enhanced response to the effectors with a chloro-group in C-2 of benzoic acid. A homology model of wild-type TfdT was built on the basis of the crystal structure of CbnR with SwissModel. In this model, residues corresponding to the mutation sites of isolated TfdT mutants were located at the interface between the domains RD-I and RD-II. The findings that these TfdT mutants expressed altered effector specificities and enhanced responses to specific effectors suggest that these five residues are involved in effector binding by TfdT.
Collapse
Affiliation(s)
- Gang-hua Lang
- National Institute for Agro-Environmental Sciences, Kan-nondai, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
13
|
Vedler E. Megaplasmids and the Degradation of Aromatic Compounds by Soil Bacteria. MICROBIAL MEGAPLASMIDS 2009. [DOI: 10.1007/978-3-540-85467-8_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacteriumCupriavidus necatorJMP134. FEMS Microbiol Rev 2008; 32:736-94. [DOI: 10.1111/j.1574-6976.2008.00122.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Baelum J, Henriksen T, Hansen HCB, Jacobsen CS. Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene. Appl Environ Microbiol 2006; 72:1476-86. [PMID: 16461702 PMCID: PMC1392919 DOI: 10.1128/aem.72.2.1476-1486.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tfdA gene is known to be involved in the first step of the degradation of the phenoxy acid herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in several soil bacteria, but bacteria containing other tfdA-like genes have been isolated as well. A quantitative real-time PCR method was used to monitor the increase in the concentration of tfdA genes during degradation of MCPA in sandy topsoil and subsoil over a period of 115 days. Quantitative PCR revealed growth in the tfdA-containing bacterial community, from 500 genes g(-1) soil to approximately 3 x 10(4) genes g(-1) soil and to 7 x 10(5) genes g(-1) soil for topsoil initially added to 2.3 mg MCPA kg(-1) (dry weight) soil and 20 mg MCPA kg(-1) (dry weight) soil, respectively. We analyzed the diversity of the tfdA gene during the degradation experiment. Analyses of melting curves of real-time PCR amplification products showed that a shift in the dominant tfdA population structure occurred during the degradation period. Further denaturing gradient gel electrophoresis and sequence analysis revealed that the tfdA genes responsible for the degradation of MCPA belonged to the class III tfdA genes, while the tfdA genes present in the soil before the occurrence of degradation belonged to the class I tfdA genes. The implications of these results is that the initial assessment of functional genes in soils does not necessarily reflect the organisms or genes that would carry out the degradation of the compounds in question.
Collapse
Affiliation(s)
- Jacob Baelum
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
16
|
Leveau JHJ, Lindow SE. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 2005; 71:2365-71. [PMID: 15870323 PMCID: PMC1087548 DOI: 10.1128/aem.71.5.2365-2371.2005] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated from plant surfaces several bacteria with the ability to catabolize indole-3-acetic acid (IAA). One of them, isolate 1290, was able to utilize IAA as a sole source of carbon, nitrogen, and energy. The strain was identified by its 16S rRNA sequence as Pseudomonas putida. Activity of the enzyme catechol 1,2-dioxygenase was induced during growth on IAA, suggesting that catechol is an intermediate of the IAA catabolic pathway. This was in agreement with the observation that the oxygen uptake by IAA-grown P. putida 1290 cells was elevated in response to the addition of catechol. The inability of a catR mutant of P. putida 1290 to grow at the expense of IAA also suggests a central role for catechol as an intermediate in IAA metabolism. Besides being able to destroy IAA, strain 1290 was also capable of producing IAA in media supplemented with tryptophan. In root elongation assays, P. putida strain 1290 completely abolished the inhibitory effect of exogenous IAA on the elongation of radish roots. In fact, coinoculation of roots with P. putida 1290 and 1 mM concentration of IAA had a positive effect on root development. In coinoculation experiments on radish roots, strain 1290 was only partially able to alleviate the inhibitory effect of bacteria that in culture overproduce IAA. Our findings imply a biological role for strain 1290 as a sink or recycler of IAA in its association with plants and plant-associated bacteria.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Centre for Terrestrial Ecology, Boterhoeksestraat 48, 6666 GA Heteren, The Netherlands.
| | | |
Collapse
|
17
|
Endo R, Kamakura M, Miyauchi K, Fukuda M, Ohtsubo Y, Tsuda M, Nagata Y. Identification and characterization of genes involved in the downstream degradation pathway of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis UT26. J Bacteriol 2005; 187:847-53. [PMID: 15659662 PMCID: PMC545726 DOI: 10.1128/jb.187.3.847-853.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 11/02/2004] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH) as a sole source of carbon and energy. In our previous study, we cloned and characterized genes that are involved in the conversion of gamma-HCH to maleylacetate (MA) via chlorohydroquinone (CHQ) in UT26. In this study, we identified and characterized an MA reductase gene, designated linF, that is essential for the utilization of gamma-HCH in UT26. A gene named linEb, whose deduced product showed significant identity to LinE (53%), was located close to linF. LinE is a novel type of ring cleavage dioxygenase that catalyzes the conversion of CHQ to MA. LinEb expressed in Escherichia coli transformed CHQ and 2,6-dichlorohydroquinone to MA and 2-chloromaleylacetate, respectively. Our previous and present results indicate that UT26 (i) has two gene clusters for degradation of chlorinated aromatic compounds via hydroquinone-type intermediates and (ii) uses at least parts of both clusters for gamma-HCH utilization.
Collapse
Affiliation(s)
- Ryo Endo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Müller TA, Byrde SM, Werlen C, van der Meer JR, Kohler HPE. Genetic analysis of phenoxyalkanoic acid degradation in Sphingomonas herbicidovorans MH. Appl Environ Microbiol 2004; 70:6066-75. [PMID: 15466552 PMCID: PMC522092 DOI: 10.1128/aem.70.10.6066-6075.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenoxyalkanoic acid degradation is well studied in Beta- and Gammaproteobacteria, but the genetic background has not been elucidated so far in Alphaproteobacteria. We report the isolation of several genes involved in dichlor- and mecoprop degradation from the alphaproteobacterium Sphingomonas herbicidovorans MH and propose that the degradation proceeds analogously to that previously reported for 2,4-dichlorophenoxyacetic acid (2,4-D). Two genes for alpha-ketoglutarate-dependent dioxygenases, sdpA(MH) and rdpA(MH), were found, both of which were adjacent to sequences with potential insertion elements. Furthermore, a gene for a dichlorophenol hydroxylase (tfdB), a putative regulatory gene (cadR), two genes for dichlorocatechol 1,2-dioxygenases (dccA(I/II)), two for dienelactone hydrolases (dccD(I/II)), part of a gene for maleylacetate reductase (dccE), and one gene for a potential phenoxyalkanoic acid permease were isolated. In contrast to other 2,4-D degraders, the sdp, rdp, and dcc genes were scattered over the genome and their expression was not tightly regulated. No coherent pattern was derived on the possible origin of the sdp, rdp, and dcc pathway genes. rdpA(MH) was 99% identical to rdpA(MC1), an (R)-dichlorprop/alpha-ketoglutarate dioxygenase from Delftia acidovorans MC1, which is evidence for a recent gene exchange between Alpha- and Betaproteobacteria. Conversely, DccA(I) and DccA(II) did not group within the known chlorocatechol 1,2-dioxygenases, but formed a separate branch in clustering analysis. This suggests a different reservoir and reduced transfer for the genes of the modified ortho-cleavage pathway in Alphaproteobacteria compared with the ones in Beta- and Gammaproteobacteria.
Collapse
Affiliation(s)
- Tina A Müller
- Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Vedler E, Vahter M, Heinaru A. The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 2004; 186:7161-74. [PMID: 15489427 PMCID: PMC523222 DOI: 10.1128/jb.186.21.7161-7174.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002 contains plasmid pEST4011. This plasmid ensures its host a stable 2,4-D(+) phenotype. We determined the complete 76,958-bp nucleotide sequence of pEST4011. This plasmid is a deletion and duplication derivative of pD2M4, the 95-kb highly unstable laboratory ancestor of pEST4011, and was self-generated during different laboratory manipulations performed to increase the stability of the 2,4-D(+) phenotype of the original strain, strain D2M4(pD2M4). The 47,935-bp catabolic region of pEST4011 forms a transposon-like structure with identical copies of the hybrid insertion element IS1071::IS1471 at the two ends. The catabolic regions of pEST4011 and pJP4, the best-studied 2,4-D-degradative plasmid, both contain homologous, tfd-like genes for complete 2,4-D degradation, but they have little sequence similarity other than that. The backbone genes of pEST4011 are most similar to the corresponding genes of broad-host-range self-transmissible IncP1 plasmids. The backbones of the other three IncP1 catabolic plasmids that have been sequenced (the 2,4-D-degradative plasmid pJP4, the haloacetate-catabolic plasmid pUO1, and the atrazine-catabolic plasmid pADP-1) are nearly identical to the backbone of R751, the archetype plasmid of the IncP1 beta subgroup. We show that despite the overall similarity in plasmid organization, the pEST4011 backbone is sufficiently different (51 to 86% amino acid sequence identity between individual backbone genes) from the backbones of members of the three IncP1 subgroups (the alpha, beta, and gamma subgroups) that it belongs to a new IncP1subgroup, the delta subgroup. This conclusion was also supported by a phylogenetic analysis of the trfA2, korA, and traG gene products of different IncP1 plasmids.
Collapse
Affiliation(s)
- Eve Vedler
- Department of Genetics, Institute of Molecular and Cell Biology, 23 Riia Street, Tartu 51010, Estonia.
| | | | | |
Collapse
|
20
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
21
|
Shaw LJ, Burns RG. Enhanced mineralization of [U-(14)C]2,4-dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pratense. Appl Environ Microbiol 2004; 70:4766-74. [PMID: 15294813 PMCID: PMC492430 DOI: 10.1128/aem.70.8.4766-4774.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhanced biodegradation in the rhizosphere has been reported for many organic xenobiotic compounds, although the mechanisms are not fully understood. The purpose of this study was to discover whether rhizosphere-enhanced biodegradation is due to selective enrichment of degraders through growth on compounds produced by rhizodeposition. We monitored the mineralization of [U-(14)C]2,4-dichlorophenoxyacetic acid (2,4-D) in rhizosphere soil with no history of herbicide application collected over a period of 0 to 116 days after sowing of Lolium perenne and Trifolium pratense. The relationships between the mineralization kinetics, the number of 2,4-D degraders, and the diversity of genes encoding 2,4-D/alpha-ketoglutarate dioxygenase (tfdA) were investigated. The rhizosphere effect on [(14)C]2,4-D mineralization (50 microg g(-1)) was shown to be plant species and plant age specific. In comparison with nonplanted soil, there were significant (P < 0.05) reductions in the lag phase and enhancements of the maximum mineralization rate for 25- and 60-day T. pratense soil but not for 116-day T. pratense rhizosphere soil or for L. perenne rhizosphere soil of any age. Numbers of 2,4-D degraders in planted and nonplanted soil were low (most probable number, <100 g(-1)) and were not related to plant species or age. Single-strand conformational polymorphism analysis showed that plant species had no impact on the diversity of alpha-Proteobacteria tfdA-like genes, although an impact of 2,4-D application was recorded. Our results indicate that enhanced mineralization in T. pratense rhizosphere soil is not due to enrichment of 2,4-D-degrading microorganisms by rhizodeposits. We suggest an alternative mechanism in which one or more components of the rhizodeposits induce the 2,4-D pathway.
Collapse
Affiliation(s)
- Liz J Shaw
- Research School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | |
Collapse
|
22
|
Park W, Madsen EL. Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil. Appl Microbiol Biotechnol 2004; 66:209-16. [PMID: 15278309 DOI: 10.1007/s00253-004-1630-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/24/2004] [Accepted: 04/04/2004] [Indexed: 10/26/2022]
Abstract
Sequencing, RFLP analyses and experiments utilizing a lacZ transcriptional reporter fused to the promoter regions of nahR and nahG in Pseudomonas putida Cg1 confirmed that regulation of naphthalene degradation in both P. putida Cg1 and the type strain, P. putida NCIB 9816-4, is consistent with that of NAH7 from P. putida G7. Two nahR knockout strains (RK1 and Cg1-NAHR from P. putida NCIB 9816-4 and Cg1, respectively) showed a growth defect in the presence of naphthalene as sole carbon and energy source. We hypothesized that nahR influences ecological fitness of bacteria in naphthalene-contaminated soil and tested this hypothesis using both parent and nahR-knockout strains introduced to soil microcosms with and without added naphthalene. After 21 days, loss of cell viability was pronounced in the presence of added naphthalene crystals for nahR mutants of both test bacteria, relative to the wild types. Diminished viable counts were attributed to toxicity. Thus, our data indicated that NahR in P. putida Cg1 is virtually identical to its homologues in other pseudomonads and that nahR is required for resistance to naphthalene toxicity, hence the persistence of bacterial cells in soil with high concentrations of naphthalene.
Collapse
Affiliation(s)
- W Park
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
23
|
Shingler V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 2004; 5:1226-41. [PMID: 14641570 DOI: 10.1111/j.1462-2920.2003.00472.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the complex interconnecting bacterial responses to the presence of aromatic compounds is required to gain an integrated understanding of how aromatic catabolic processes function in relation to their genome and environmental context. In addition to the properties of the catabolic enzymes themselves, regulatory responses on at least three different levels are important. At a primary level, aromatic compounds control the activity of specific members of many families of transcriptional regulators to direct the expression of the specialized enzymes for their own catabolism. At a second level, dominant global regulation in response to environmental and physiological cues is incorporated to subvert and couple transcription levels to the energy status of the bacteria. Mediators of these global regulatory responses include the alarmone (p)ppGpp, the DNA-bending protein IHF and less well-defined systems that probably sense the energy status through the activity of the electron transport chain. At a third level, aromatic compounds can also impact on catabolic performance by provoking behavioural responses that allow the bacteria to seek out aromatic growth substrates in their environment.
Collapse
Affiliation(s)
- Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
24
|
Kleinsteuber S, Hoffmann D, Müller RH, Babel W. Detection of chlorocatechol 1,2-dioxygenase genes in proteobacteria by PCR and gene probes. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/abio.370180306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Hoffmann D, Kleinsteuber S, Müller RH, Babel W. A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2545-2556. [PMID: 12949179 DOI: 10.1099/mic.0.26260-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterial strain Delftia acidovorans P4a, isolated from an extreme environment (heavily contaminated with organochlorines, highly alkaline conditions in an aqueous environment), was found to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid under alkaline conditions. Screening a genomic DNA library of the alkalitolerant strain for 2,4-D genes revealed the presence of the two 2,4-D gene clusters tfdCDEF and tfdC(II)E(II)BKA, tfdR genes being located in the vicinity of each tfd gene cluster. The results showed that the putative genes of the complete 2,4-D degradation pathway are organized in a single genomic unit. Sequence similarities to homologous gene clusters indicate that the individual tfd elements of strain P4a do not share a common origin, but were brought together by recombination events. The entire region is flanked by insertion elements of the IS1071 and IS1380 families, forming a transposon-like structure of about 30 kb, of which 28.4 kb were analysed. This element was shown to be located on the bacterial chromosome. The present study provides the first reported case of a chromosomally located catabolic transposon which carries the genes for the complete 2,4-D degradation pathway.
Collapse
Affiliation(s)
- Doreen Hoffmann
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabine Kleinsteuber
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roland H Müller
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wolfgang Babel
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
26
|
Pérez-Pantoja D, Ledger T, Pieper DH, González B. Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. J Bacteriol 2003; 185:1534-42. [PMID: 12591870 PMCID: PMC148064 DOI: 10.1128/jb.185.5.1534-1542.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia eutropha JMP134(pJP4) degrades 3-chlorobenzoate (3-CB) by using two not completely isofunctional, pJP4-encoded chlorocatechol degradation gene clusters, tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II). Introduction of several copies of each gene cluster into R. eutropha JMP222, which lacks pJP4 and thus accumulates chlorocatechols from 3-CB, allows the derivatives to grow in this substrate. However, JMP222 derivatives containing one chromosomal copy of each cluster did not grow in 3-CB. The failure to grow in 3-CB was the result of accumulation of chlorocatechols due to the limiting activity of chlorocatechol 1,2-dioxygenase (TfdC), the first enzyme in the chlorocatechol degradation pathway. Micromolar concentrations of 3- and 4-chlorocatechol inhibited the growth of strains JMP134 and JMP222 in benzoate, and cells of strain JMP222 exposed to 3 mM 3-CB exhibited a 2-order-of-magnitude decrease in viability. This toxicity effect was not observed with strain JMP222 harboring multiple copies of the tfdC(I) gene, and the derivative of strain JMP222 containing tfdC(I)D(I)E(I)F(I) plus multiple copies of the tfdC(I) gene could efficiently grow in 3-CB. In addition, tfdC(I) and tfdC(II) gene mutants of strain JMP134 exhibited no growth and impaired growth in 3-CB, respectively. The introduction into strain JMP134 of the xylS-xylXYZL genes, encoding a broad-substrate-range benzoate 1,2-dioxygenase system and thus increasing the transformation of 3-CB into chlorocatechols, resulted in derivatives that exhibited a sharp decrease in the ability to grow in 3-CB. These observations indicate that the dosage of chlorocatechol-transforming genes is critical for growth in 3-CB. This effect depends on a delicate balance between chlorocatechol-producing and chlorocatechol-consuming reactions.
Collapse
Affiliation(s)
- D Pérez-Pantoja
- Laboratorio de Microbiología, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
27
|
Johnson GR, Jain RK, Spain JC. Origins of the 2,4-dinitrotoluene pathway. J Bacteriol 2002; 184:4219-32. [PMID: 12107140 PMCID: PMC135200 DOI: 10.1128/jb.184.15.4219-4232.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 05/06/2002] [Indexed: 11/20/2022] Open
Abstract
The degradation of synthetic compounds requires bacteria to recruit and adapt enzymes from pathways for naturally occurring compounds. Previous work defined the steps in 2,4-dinitrotoluene (2,4-DNT) metabolism through the ring fission reaction. The results presented here characterize subsequent steps in the pathway that yield the central metabolic intermediates pyruvate and propionyl coenzyme A (CoA). The genes encoding the degradative pathway were identified within a 27-kb region of DNA cloned from Burkholderia cepacia R34, a strain that grows using 2,4-DNT as a sole carbon, energy, and nitrogen source. Genes for the lower pathway in 2,4-DNT degradation were found downstream from dntD, the gene encoding the extradiol ring fission enzyme of the pathway. The region includes genes encoding a CoA-dependent methylmalonate semialdehyde dehydrogenase (dntE), a putative NADH-dependent dehydrogenase (ORF13), and a bifunctional isomerase/hydrolase (dntG). Results from analysis of the gene sequence, reverse transcriptase PCR, and enzyme assays indicated that dntD dntE ORF13 dntG composes an operon that encodes the lower pathway. Additional genes that were uncovered encode the 2,4-DNT dioxygenase (dntAaAbAcAd), methylnitrocatechol monooxygenase (dntB), a putative LysR-type transcriptional (ORF12) regulator, an intradiol ring cleavage enzyme (ORF3), a maleylacetate reductase (ORF10), a complete ABC transport complex (ORF5 to ORF8), a putative methyl-accepting chemoreceptor protein (ORF11), and remnants from two transposable elements. Some of the additional gene products might play as-yet-undefined roles in 2,4-DNT degradation; others appear to remain from recruitment of the neighboring genes. The presence of the transposon remnants and vestigial genes suggests that the pathway for 2,4-DNT degradation evolved relatively recently because the extraneous elements have not been eliminated from the region.
Collapse
Affiliation(s)
- Glenn R Johnson
- Air Force Research Laboratory, U.S. Air Force, Tyndall Air Force Base, Florida 32403, USA
| | | | | |
Collapse
|
28
|
Plumeier I, Pérez-Pantoja D, Heim S, González B, Pieper DH. Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. J Bacteriol 2002; 184:4054-64. [PMID: 12107121 PMCID: PMC135226 DOI: 10.1128/jb.184.15.4054-4064.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tfdC(I)D(I)E(I)F(I,) and tfdD(II)C(II)E(II)F(II) gene modules of plasmid pJP4 of Ralstonia eutropha JMP134 encode complete sets of functional enzymes for the transformation of chlorocatechols into 3-oxoadipate, which are all expressed during growth on 2,4-dichlorophenoxyacetate (2,4-D). However, activity of tfd(I)-encoded enzymes was usually higher than that of tfd(II)-encoded enzymes, both in the wild-type strain grown on 2,4-D and in 3-chlorobenzoate-grown derivatives harboring only one tfd gene module. The tfdD(II)-encoded chloromuconate cycloisomerase exhibited special kinetic properties, with high activity against 3-chloromuconate and poor activity against 2-chloromuconate and unsubstituted muconate, thus explaining the different phenotypic behaviors of R. eutropha strains containing different tfd gene modules. The enzyme catalyzes the formation of an equilibrium between 2-chloromuconate and 5-chloro- and 2-chloromuconolactone and very inefficiently catalyzes dehalogenation to form trans-dienelactone as the major product, thus differing from all (chloro)muconate cycloisomerases described thus far.
Collapse
Affiliation(s)
- Iris Plumeier
- Department of Environmental Biotechnology, GBF-German Research Center for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
29
|
Müller RH, Kleinsteuber S, Babel W. Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides. Microbiol Res 2002; 156:121-31. [PMID: 11572451 DOI: 10.1078/0944-5013-00089] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two strains, Rhodoferax sp. P230 and Delftia (Comamonas) acidovorans MCI, have previously been shown to carry activities for the degradation of the two enantiomers of (RS)-2-(2,4-dichlorophenoxy-)propionate (dichlorprop) and (RS)-2-(4-chloro-2-methylphenoxy-)propionate (mecoprop) and, in addition, are capable of degrading phenoxyacetate derivatives 2.4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA). Metabolism of the herbicides is initiated by alpha-ketoglutarate-dependent dioxygenases for both enantiomers of the phenoxypropionate herbicides and for 2,4-D. These activities were constitutively expressed for both enantiomers of dichlorprop in strain MC1 and for the Renantiomer in strain P230. Enzyme activities for the complete degradation of phenoxyacetate and phenoxypropionate herbicides were induced during incubation on either of these herbicides. Strain MC1 has about threefold higher activities for the degradation of dichlorprop and for growth on this substrate (mumax = 0.15 h(-1)) than strain P230; the maximum growth rate on 2,4-D amounts to 0.045 h(-1) with strain MC1. Dichlorprop is utilized faster than mecoprop and the R-enantiomers are cleaved with higher rates than the S-enantiomers. The degradation of the chlorophenolic intermediates seems to proceed via the modified ortho cleavage pathway as indicated by activities of the respective enzymes. The enzymatic results were supported by genetic investigations by which the presence of the genes tfdB (encoding a dichlorophenol hydroxylase), tfdC (encoding a chlorocatechol 1,2-dioxygenase) and tfdD (encoding a chloromuconate cycloisomerase) could be demonstrated in both strains by PCR after application of respective primers. The presence of the tfdA gene (encoding a 2,4-D/alpha-ketoglutarate dioxygenase) was only shown for strain P230 but was lacking in strain MC1. Sequence analysis of the tfd gene fragments revealed high homology to the degradative genes of other proteobacterial strains degrading chloroaromatic compounds. Strain MC1 carries a plasmid of about 120 kb which apparently harbors herbicide degradative genes as concluded from deletion mutants which have lost 2,4-D[phenoxalkanoate]/alpha-ketoglutarate dioxygenase activities for cleavage of the R- and S-enantiomer, and of 2,4-D. For strain P230, no plasmid could be demonstrated; the activity was stably conserved in this strain during growth under nonselective conditions.
Collapse
Affiliation(s)
- R H Müller
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Germany.
| | | | | |
Collapse
|
30
|
Hoffmann D, Kleinsteuber S, Müller R, Babel W. Development and Application of PCR Primers for the Detection of thetfd Genes inDelftia acidovorans P4a Involved in the Degradation of 2,4-D. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1521-3846(200111)21:4<321::aid-abio321>3.0.co;2-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Clément P, Pieper DH, González B. Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2141-2148. [PMID: 11495991 DOI: 10.1099/00221287-147-8-2141] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ralstonia eutropha JMP134(pJP4) is able to grow on minimal media containing the pollutants 3-chlorobenzoate (3-CB) or 2,4-dichlorophenoxyacetate (2,4-D). tfd genes from the 88 kb plasmid pJP4 encode enzymes involved in the degradation of these compounds. During growth of strain JMP134 in liquid medium containing 3-CB, a derivative strain harbouring a approximately 95 kb plasmid was isolated. This derivative, designated JMP134(pJP4-F3), had an improved ability to grow on 3-CB, but had lost the ability to grow on 2,4-D. Sequence analysis of pJP4-F3 indicated that the plasmid had undergone a deletion of approximately 16 kb, which included the tfdA-tfdS intergenic region, spanning the tfdA gene to a previously unreported IS1071 element. The loss of the tfdA gene explains the failure of the derivative to grow on 2,4-D. A approximately 23 kb duplication of the region spanning tfdR-tfdD(II)C(II)E(II)F(II)-tfdB(II)-tfdK-ISJP4-tfdT-tfdC(I)D(I)E(I)F(I)-tfdB(I), giving rise to a 51-kb-long inverted repeat, was also observed. The increase in gene copy number for the tfdCD(DC)EF gene cluster may provide an explanation for the derivative strain's improved growth on 3-CB. These observations are additional examples of the metabolic plasticity of R. eutropha JMP134, one of the more versatile pollutant-degrading bacteria.
Collapse
Affiliation(s)
- Pascale Clément
- Laboratorio de Microbiologı́a, Departamento de Genética Molecular y Microbiologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Casilla 114-D, Santiago, Chile1
| | - Dietmar H Pieper
- Division of Microbiology, National Research Centre for Biotechnology - GBF, Braunschweig, Germany2
| | - Bernardo González
- Laboratorio de Microbiologı́a, Departamento de Genética Molecular y Microbiologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Casilla 114-D, Santiago, Chile1
| |
Collapse
|
32
|
Liu S, Ogawa N, Miyashita K. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Gene 2001; 268:207-14. [PMID: 11368916 DOI: 10.1016/s0378-1119(01)00435-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The modified-ortho pathway genes responsible for the degradation of chlorocatechols produced from 3- and 4-chlorobenzoate in Burkholderia sp. NK8 were cloned and analyzed. The five genes predicted to encode a LysR-type transcriptional regulator, chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, dienelactone hydrolase, and maleylacetate reductase were designated tfdT, tfdC, tfdD, tfdE, and tfdF, respectively since they show the highest similarity to the corresponding genes of the chlorocatechol degradation gene cluster (tfdT-CDEF) of 2,4-dichlorophenoxyacetic acid degrading plasmid pJP4 from Ralstonia eutropha JMP134 (79-88% amino acid identity). TfdC of NK8 showed the highest activity against 3,5-dichlorocatechol in all kinds of chlorocatechols tested, which is a characteristic of TfdC of pJP4. By reporter gene (lacZ) analysis, tfdT of NK8 was shown to activate the transcription from the tfdC promoter. Unlike the regulators of other chlorocatechol degradation genes so far reported, 2-chlorobenzoate, 3-chlorobenzoate, 3-chlorocatechol and 4-chlorocatechol, were shown to act as effectors of TfdT.
Collapse
Affiliation(s)
- S Liu
- National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, 305-8604, Ibaraki, Japan
| | | | | |
Collapse
|
33
|
Potrawfke T, Armengaud J, Wittich RM. Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. J Bacteriol 2001; 183:997-1011. [PMID: 11208799 PMCID: PMC94968 DOI: 10.1128/jb.183.3.997-1011.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence of a 10,528-bp region comprising the chlorocatechol pathway gene cluster tetRtetCDEF of the 1,2,3,4-tetrachlorobenzene via the tetrachlorocatechol-mineralizing bacterium Pseudomonas chlororaphis RW71 (T. Potrawfke, K. N. Timmis, and R.-M. Wittich, Appl. Environ. Microbiol. 64:3798-3806, 1998) was analyzed. The chlorocatechol 1,2-dioxygenase gene tetC was cloned and overexpressed in Escherichia coli. The recombinant gene product was purified, and the alpha,alpha-homodimeric TetC was characterized. Electron paramagnetic resonance measurements confirmed the presence of a high-spin-state Fe(III) atom per monomer in the holoprotein. The productive transformation by purified TetC of chlorocatechols bearing chlorine atoms in positions 4 and 5 provided strong evidence for a significantly broadened substrate spectrum of this dioxygenase compared with other chlorocatechol dioxygenases. The conversion of 4,5-dichloro- or tetrachlorocatechol, in the presence of catechol, displayed strong competitive inhibition of catechol turnover. 3-Chlorocatechol, however, was simultaneously transformed, with a rate similar to that of the 4,5-halogenated catechols, indicating similar specificity constants. These novel characteristics of TetC thus differ significantly from results obtained from hitherto analyzed catechol 1,2-dioxygenases and chlorocatechol 1,2-dioxygenases.
Collapse
Affiliation(s)
- T Potrawfke
- Division of Microbiology, GBF-German Research Centre for Biotechnology, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
34
|
Cases I, de Lorenzo V. The black cat/white cat principle of signal integration in bacterial promoters. EMBO J 2001; 20:1-11. [PMID: 11226149 PMCID: PMC140184 DOI: 10.1093/emboj/20.1.1] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 10/30/2000] [Accepted: 11/08/2000] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Víctor de Lorenzo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
Corresponding author e-mail:
| |
Collapse
|
35
|
Hay AG, Rice JF, Applegate BM, Bright NG, Sayler GS. A bioluminescent whole-cell reporter for detection of 2, 4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil. Appl Environ Microbiol 2000; 66:4589-94. [PMID: 11010925 PMCID: PMC92351 DOI: 10.1128/aem.66.10.4589-4594.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A bioreporter was made containing a tfdRP(DII)-luxCDABE fusion in a modified mini-Tn5 construct. When it was introduced into the chromosome of Ralstonia eutropha JMP134, the resulting strain, JMP134-32, produced a sensitive bioluminescent response to 2, 4-dichlorophenoxyacetic acid (2,4-D) at concentrations of 2.0 microM to 5.0 mM. This response was linear (R(2) = 0.9825) in the range of 2.0 microM to 1.1 x 10(2) microM. Saturation occurred at higher concentrations, with maximal bioluminescence occurring in the presence of approximately 1.2 mM 2,4-D. A sensitive response was also recorded in the presence of 2,4-dichlorophenol at concentrations below 1.1 x 10(2) microM; however, only a limited bioluminescent response was recorded in the presence of 3-chlorobenzoic acid at concentrations below 1.0 mM. A significant bioluminescent response was also recorded when strain JMP134-32 was incubated with soils containing aged 2,4-D residues.
Collapse
Affiliation(s)
- A G Hay
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, Tennessee 37996-1605, USA
| | | | | | | | | |
Collapse
|
36
|
Vedler E, Kõiv V, Heinaru A. Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene 2000; 255:281-8. [PMID: 11024288 DOI: 10.1016/s0378-1119(00)00329-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002, isolated in Estonia more than 10years ago, was found to contain the 70kb plasmid pEST4011 that is responsible for the bacterium having had obtained a stable 2,4-D(+) phenotype. The tfd-like genes for 2, 4-D degradation of the strain EST4002 were located on a 10.5kb region of pEST4011, but without functional genes coding for chloromuconate cycloisomerase and chlorodienelactone hydrolase. The latter two genes are probably encoded by homologous, tcb-like genes, located elsewhere on pEST4011. We also present evidence of two copies of insertion element IS1071-like sequences on pEST4011. IS1071 is a class II (Tn3 family) insertion element, associated with different catabolic genes and operons and globally distributed in the recent past. We speculate that this insertion element might have had a role in the formation of plasmid pEST4011. The 28kb plasmid pEST4012 is generated by deletion from pEST4011 when cells of A. xylosoxidans EST4002 are grown in the absence of 2,4-D in growth medium. We propose that this is the result of homologous recombination between the two putative copies of IS1071-like sequences on pEST4011.
Collapse
Affiliation(s)
- E Vedler
- Institute of Molecular and Cell Biology, Tartu University, 23 Riia Street, 51010, Tartu, Estonia.
| | | | | |
Collapse
|
37
|
Laemmli CM, Leveau JH, Zehnder AJ, van der Meer JR. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). J Bacteriol 2000; 182:4165-72. [PMID: 10894723 PMCID: PMC101896 DOI: 10.1128/jb.182.15.4165-4172.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the 5.9-kb DNA region between the tfdR and tfdK genes on the 2,4-dichlorophenoxyacetic acid (2,4-D) catabolic plasmid pJP4 from Ralstonia eutropha JMP134, we identified five open reading frames (ORFs) with significant homology to the genes for chlorocatechol and chlorophenol metabolism (tfdCDEF and tfdB) already present elsewhere on pJP4. The five ORFs were organized and assigned as follows: tfdD(II)C(II)E(II)F(II) and tfdB(II) (in short, the tfd(II) cluster), by analogy to tfdCDEF and tfdB (the tfd(I) cluster). Primer extension analysis of mRNA isolated from 2,4-D-grown R. eutropha JMP134 identified a single transcription start site in front of the first gene of the cluster, tfdD(II), suggesting an operon-like organization for the tfd(II) genes. By expressing each ORF in Escherichia coli, we confirmed that tfdD(II) coded for a chloromuconate cycloisomerase, tfdC(II) coded for a chlorocatechol 1, 2-dioxygenase, tfdE(II) coded for a dienelactone hydrolase, tfdF(II) coded for a maleylacetate reductase, and tfdB(II) coded for a chlorophenol hydroxylase. Dot blot hybridizations of mRNA isolated from R. eutropha JMP134 showed that both tfd(I) and tfd(II) genes are transcribed upon induction with 2,4-D. Thus, the functions encoded by the tfd(II) genes seem to be redundant with respect to those of the tfd(I) cluster. One reason why the tfd(II) genes do not disappear from plasmid pJP4 might be the necessity for keeping the regulatory genes for the 2,4-D pathway expression tfdR and tfdS.
Collapse
Affiliation(s)
- C M Laemmli
- Swiss Federal Institute for Environmental Science and Technology and Swiss Federal Institute for Technology, CH-8600 Dübendorf, Switzerland
| | | | | | | |
Collapse
|
38
|
Pérez-Pantoja D, Guzmán L, Manzano M, Pieper DH, González B. Role of tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II) gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Appl Environ Microbiol 2000; 66:1602-8. [PMID: 10742248 PMCID: PMC92029 DOI: 10.1128/aem.66.4.1602-1608.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzymes chlorocatechol-1,2-dioxygenase, chloromuconate cycloisomerase, dienelactone hydrolase, and maleylacetate reductase allow Ralstonia eutropha JMP134(pJP4) to degrade chlorocatechols formed during growth in 2,4-dichlorophenoxyacetate or 3-chlorobenzoate (3-CB). There are two gene modules located in plasmid pJP4, tfdC(I)D(I)E(I)F(I) (module I) and tfdD(II)C(II)E(II)F(II) (module II), putatively encoding these enzymes. To assess the role of both tfd modules in the degradation of chloroaromatics, each module was cloned into the medium-copy-number plasmid vector pBBR1MCS-2 under the control of the tfdR regulatory gene. These constructs were introduced into R. eutropha JMP222 (a JMP134 derivative lacking pJP4) and Pseudomonas putida KT2442, two strains able to transform 3-CB into chlorocatechols. Specific activities in cell extracts of chlorocatechol-1,2-dioxygenase (tfdC), chloromuconate cycloisomerase (tfdD), and dienelactone hydrolase (tfdE) were 2 to 50 times higher for microorganisms containing module I compared to those containing module II. In contrast, a significantly (50-fold) higher activity of maleylacetate reductase (tfdF) was observed in cell extracts of microorganisms containing module II compared to module I. The R. eutropha JMP222 derivative containing tfdR-tfdC(I)D(I)E(I)F(I) grew four times faster in liquid cultures with 3-CB as a sole carbon and energy source than in cultures containing tfdR-tfdD(II)C(II)E(II)F(II). In the case of P. putida KT2442, only the derivative containing module I was able to grow in liquid cultures of 3-CB. These results indicate that efficient degradation of 3-CB by R. eutropha JMP134(pJP4) requires the two tfd modules such that TfdCDE is likely supplied primarily by module I, while TfdF is likely supplied by module II.
Collapse
Affiliation(s)
- D Pérez-Pantoja
- Laboratorio de Microbiología, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
39
|
Vedler E, Kõiv V, Heinaru A. TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2, 4-dichlorophenoxyacetic acid degradative plasmid pEST4011. Gene 2000; 245:161-8. [PMID: 10713456 DOI: 10.1016/s0378-1119(00)00017-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Pseudomonas putida EST4021, the tfdCB operon of plasmid pEST4011 encodes enzymes involved in 2,4-dichlorophenoxyacetic acid degradation. We have identified a gene, tfdR, important for the regulation of the tfdCB operon. Sequence analysis of the tfdR gene revealed an open reading frame with amino acid sequence similar to the LysR family of transcriptional activators. The tfdR gene is located upstream and transcribed divergently from the tfdCB operon. Utilizing primer extension analysis, the transcription initiation sites of the gene tfdR and the tfdCB operon were localized 85 (84)bp and 292bp upstream from the coding sequences of these genes, respectively. Multiple sequence analysis revealed that the genes tfdR, tfdC and tfdB of plasmid pEST4011 are most similar to the regulatory gene tfdR and the module 2 genes tfdC(II) and tfdB(II) of pJP4, respectively. The promoter-operator sequences of tfdR and its target tfdCB operon of pEST4011 have regions with highly conserved nucleotides characteristic for the catechol-subgroup LysR-type transcriptional activators. We showed that the pEST4011 tfdR gene product activates the expression of the tfdCB operon and the effector molecule for TfdR is 2,4-dichloro-cis,cis-muconate. Our data indicate that the structure and the mode of regulation of tfd genes are similar, despite the bacteria being isolated from different geographical regions.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/metabolism
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/physiology
- Base Sequence
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Databases, Factual
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Operon/genetics
- Plasmids/genetics
- Plasmids/metabolism
- Pseudomonas putida/genetics
- Pseudomonas putida/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- E Vedler
- Institute of Molecular and Cell Biology, Tartu University, 23 Riia Street, 51010, Tartu, Estonia.
| | | | | |
Collapse
|
40
|
Jaspers MC, Suske WA, Schmid A, Goslings DA, Kohler HP, van der Meer JR. HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. J Bacteriol 2000; 182:405-17. [PMID: 10629187 PMCID: PMC94290 DOI: 10.1128/jb.182.2.405-417.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of 2-hydroxybiphenyl and 2,2'-dihydroxybiphenyl degradation in Pseudomonas azelaica is mediated by the regulatory gene, hbpR. The hbpR gene encodes a 63-kDa protein belonging to the NtrC family of prokaryotic transcriptional activators and having the highest homology to members of the XylR/DmpR subclass. Disruption of the hbpR gene in P. azelaica and complementation in trans showed that the HbpR protein was the key regulator for 2-hydroxybiphenyl metabolism. Induction experiments with P. azelaica and Escherichia coli containing luxAB-based transcriptional fusions revealed that HbpR activates transcription from a promoter (P(hbpC)) in front of the first gene for 2-hydroxybiphenyl degradation, hbpC, and that 2-hydroxybiphenyl itself is the direct effector for HbpR-mediated activation. Of several compounds tested, only the pathway substrates 2-hydroxybiphenyl and 2,2'-dihydroxybiphenyl and structural analogs like 2-aminobiphenyl and 2-hydroxybiphenylmethane were effectors for HbpR activation. HbpR is therefore, to our knowledge, the first regulator of the XylR/DmpR class that recognizes biaromatic but not monoaromatic structures. Analysis of a spontaneously occurring mutant, P. azelaica HBP1 Prp, which can grow with the non-wild-type effector 2-propylphenol, revealed a single mutation in the hbpR gene (T613C) leading to a Trp-->Arg substitution at amino acid residue 205. P. azelaica HBP1 derivative strains without a functional hbpR gene constitutively expressed the genes for 2-hydroxybiphenyl degradation when complemented in trans with the hbpR-T613C gene. This suggests the importance of this residue, which is conserved among all members of the XylR/DmpR subclass, for interdomain repression.
Collapse
Affiliation(s)
- M C Jaspers
- Swiss Federal Institute for Environmental Science and Technology, CH-8600 Dübendorf, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Ogawa N, McFall SM, Klem TJ, Miyashita K, Chakrabarty AM. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. J Bacteriol 1999; 181:6697-705. [PMID: 10542171 PMCID: PMC94134 DOI: 10.1128/jb.181.21.6697-6705.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia eutropha (formerly Alcaligenes eutrophus) NH9 degrades 3-chlorobenzoate via the modified ortho-cleavage pathway. A ca. 5.7-kb six-gene cluster is responsible for chlorocatechol degradation: the cbnABCD operon encoding the degradative enzymes (including orfX of unknown function) and the divergently transcribed cbnR gene encoding the LysR-type transcriptional regulator of the cbn operon. The cbnRAB orfXCD gene cluster is nearly identical to the chlorocatechol genes (tcbRCD orfXEF) of the 1,2, 4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51. Transcriptional fusion studies demonstrated that cbnR regulates the expression of cbnABCD positively in the presence of either 3-chlorobenzoate or benzoate, which are catabolized via 3-chlorocatechol and catechol, respectively. In vitro transcription assays confirmed that 2-chloro-cis,cis-muconate (2-CM) and cis, cis-muconate (CCM), intermediate products from 3-chlorocatechol and catechol, respectively, were inducers of this operon. This inducer-recognizing specificity is different from those of the homologous catechol (catBCA) and chlorocatechol (clcABD) operons of Pseudomonas putida, in which only the intermediates of the regulated pathway, CCM for catBCA and 2-CM for clcABD, act as significant inducers. Specific binding of CbnR protein to the cbnA promoter region was demonstrated by gel shift and DNase I footprinting analysis. In the absence of inducer, a region of ca. 60 bp from position -20 to position -80 upstream of the cbnA transcriptional start point was protected from DNase I cleavage by CbnR, with a region of hypersensitivity to DNase I cleavage clustered at position -50. Circular permutation gel shift assays demonstrated that CbnR bent the cbnA promoter region to an angle of 78 degrees and that this angle was relaxed to 54 degrees upon the addition of inducer. While a similar relaxation of bending angles upon the addition of inducer molecules observed with the catBCA and clcABD promoters may indicate a conserved transcriptional activation mechanism of ortho-cleavage pathway genes, CbnR is unique in having a different specificity of inducer recognition and the extended footprint as opposed to the restricted footprint of CatR without CCM.
Collapse
Affiliation(s)
- N Ogawa
- National Institute of Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | | | | | |
Collapse
|
42
|
Leveau JH, König F, Füchslin H, Werlen C, Van Der Meer JR. Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2, 4-dichlorophenoxyacetate. Mol Microbiol 1999; 33:396-406. [PMID: 10411755 DOI: 10.1046/j.1365-2958.1999.01483.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ralstonia eutropha JMP134 carries a 22 kb DNA region on plasmid pJP4 necessary for the degradation of 2,4-D (2,4-dichlorophenoxyacetate). In this study, expression of the 2,4-D pathway genes (designated tfd ) upon exposure to different concentrations of 2,4-D was measured at a detailed timescale in chemostat-grown R. eutropha cultures. A sharp increase in mRNA levels for tfdA, tfdCDEF-B, tfdDIICIIEIIFII-BII and tfdK was detected between 2 and 13 min after exposure to 2,4-D. This response time was not dependent on the 2,4-D concentration. The genes tfdA, tfdCD and tfdDIICII were expressed immediately upon induction, whereas tfdB, tfdBII and tfdK mRNAs could be detected only around 10 min later. The number of tfd mRNA transcripts per cell was estimated to be around 200-500 during maximal expression, after which they decreased to between 1 and 30 depending on the 2,4-D concentration used for induction. Unlike the mRNAs, the specific activity of the 2,4-D pathway enzyme chlorocatechol 1,2-dioxygenase did not increase sharply but accumulated to a steady-state plateau, which was dependent on the 2, 4-D concentration in the medium. At 1 mM 2,4-D, several oscillations in mRNA levels were observed before steady-state expression was reached, which was caused by transient accumulation of the first pathway intermediate, 2,4-dichlorophenol, to toxic concentrations. Expression of tfdR and tfdS, the (identical) regulatory genes for the tfd pathway remained low and essentially unchanged during the entire adaptation phase.
Collapse
Affiliation(s)
- J H Leveau
- Swiss Federal Institute for Environmental Science and Technology (EAWAG) and Swiss Federal Institute for Technology (ETH), Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Cavalca L, Hartmann A, Rouard N, Soulas G. Diversity of tfdC genes: distribution and polymorphism among 2,4-dichlorophenoxyacetic acid degrading soil bacteria. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00597.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Ogawa N, Miyashita K. The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl Environ Microbiol 1999; 65:724-31. [PMID: 9925607 PMCID: PMC91086 DOI: 10.1128/aem.65.2.724-731.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alcaligenes eutrophus (Ralstonia eutropha) NH9, isolated in Japan, utilizes 3-chlorobenzoate as its sole source of carbon and energy. Sequencing of the relevant region of plasmid pENH91 from strain NH9 revealed that the genes for the catabolic enzymes were homologous to the genes of the modified ortho-cleavage pathway. The genes from strain NH9 (cbnR-ABCD) showed the highest homology (89 to 100% identity at the nucleotide level) to the tcbR-CDEF genes on plasmid pP51 of the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, which was isolated in The Netherlands. The structure of the operon, including the lengths of open reading frames and intervening sequences, was completely conserved between the cbn and tcb genes. Most nucleotide substitutions were localized within and proximal to the cbnB (tcbD) gene. The difference in the chloroaromatics that the two strains could use as growth substrates seemed to be due to differences in enzymes that convert substrates to chlorocatechols. The restriction map of plasmid pENH91 was clearly different from that of pP51 except in the regions that contained the cbnR-ABCD and tcbR-CDEF genes, respectively, suggesting that the chlorocatechol gene clusters might have been transferred as units. Two homologous sequences, present as direct repeats in both flanking regions of the cbnR-ABCD genes on pENH91, were found to be identical insertion sequences (ISs), designated IS1600, which formed a composite transposon designated Tn5707. Although the tcbR-CDEF genes were not associated with similar ISs, a DNA fragment homologous to IS1600 was cloned from the chromosome of strain P51. The sequence of the fragment suggested that it might be a remnant of an IS. The two sequences, together with IS1326 and nmoT, formed a distinct cluster on a phylogenetic tree of the IS21 family. The diversity of the sources of these IS or IS-like elements suggests the prevalence of ISs of this type.
Collapse
Affiliation(s)
- N Ogawa
- National Institute of Agro-Environmental Sciences, 3-1-1 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | |
Collapse
|
45
|
McFall SM, Chugani SA, Chakrabarty AM. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 1998; 223:257-67. [PMID: 9858745 DOI: 10.1016/s0378-1119(98)00366-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ortho-cleavage pathways of catechol and 3-chlorocatechol are central catabolic pathways of Pseudomonas putida that convert aromatic and chloroaromatic compounds to tricarboxylic acid (TCA)-cycle intermediates. They are encoded by the evolutionarily related catBCA and clcABD operons, respectively. Expression of the cat and clc operons requires the LysR-type transcriptional activators CatR and ClcR, and the inducer molecules cis,cis-muconate and 2-chloro-cis,cis-muconate. In addition to sequence similarities, CatR and ClcR share functional similarities which allow catR to complement clcR mutants. DNase-I footprinting, DNA bending and in vitro transcription analyses with RNA polymerase mutants indicate that CatR and ClcR activate transcription via a similar mechanism which involves interaction with the C-terminal domain of the alpha-subunit (alpha-CTD) of RNA polymerase. In vitro transcription assays with different regions of the clc promoter indicate that the ClcR dimer bound to the promoter proximal site (the activation binding site) interacts with the alpha-CTD. Gel shift assays and DNase-I footprinting have demonstrated that CatR occupies two adjacent sites proximal to the catBCA promoter in the presence of inducer and an additional binding site within the catB structural gene called the internal binding site (IBS). CatR binds the IBS with low intrinsic affinity that is increased by cooperativity in presence of the two promoter binding sites. Site-directed mutations in the IBS indicate a probable cis-acting repressor function for the IBS. The location of the IBS within the catB structural gene, the cooperativity observed in footprinting studies and phasing studies suggest that the IBS participates in the interaction of CatR with the upstream binding sites by looping out the intervening DNA. Although the core transcriptional activation mechanisms of CatR and ClcR have been conserved, nature has provided some flexibility to respond to different environmental signals in addition to the presence of inducer. Transcriptional fusion studies demonstrate that the expression from the clc promoter is repressed when the cells are grown on succinate, citrate or fumarate and that this repression is ClcR-dependent and occurs at the transcriptional level. The presence of these organic acids did not affect the expression from the cat promoter. In vitro transcription assays demonstrate that the TCA-cycle intermediate, fumarate, directly and specifically inhibits the formation of the clcA transcript. No such inhibition was observed when CatR was used as activator on either the cat or clc template. Since both the catechol and the chlorocatechol pathways feed into the TCA cycle, but only the chlorocatechol pathway is inhibited by fumarate, there is a subtle difference in the regulation of these two pathways where intracellular sensing of a TCA-cycle intermediate leads to a reduction of chloroaromatic degradation.
Collapse
Affiliation(s)
- S M McFall
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2153 North Campus Drive, Evanston, IL 60208, USA
| | | | | |
Collapse
|
46
|
Kok RG, D'Argenio DA, Ornston LN. Mutation analysis of PobR and PcaU, closely related transcriptional activators in acinetobacter. J Bacteriol 1998; 180:5058-69. [PMID: 9748437 PMCID: PMC107540 DOI: 10.1128/jb.180.19.5058-5069.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter PobR and PcaU are transcriptional activators that closely resemble each other in primary structure, DNA-binding sites, metabolic modulators, and physiological function. PobR responds to the inducer-metabolite p-hydroxybenzoate and activates transcription of pobA, the structural gene for the enzyme that converts p-hydroxybenzoate to protocatechuate. This compound, differing from p-hydroxybenzoate only in that it contains an additional oxygen atom, binds to PcaU and thereby specifically activates transcription of the full set of genes for protocatechuate catabolism. Particular experimental attention has been paid to PobR and PcaU from Acinetobacter strain ADP1, which exhibits exceptional competence for natural transformation. This trait allowed selection of mutant strains in which pobR function had been impaired by nucleotide substitutions introduced by PCR replication errors. Contrary to expectation, the spectrum of amino acids whose substitution led to loss of function in PobR shows no marked similarity to the spectrum of amino acids conserved by the demand for continued function during evolutionary divergence of PobR, PcaU, and related proteins. Surface plasmon resonance was used to determine the ability of mutant PobR proteins to bind to DNA in the pobA-pobR intergenic region. Deleterious mutations that strongly affect DNA binding all cluster in and around the PobR region that contains a helix-turn-helix motif, whereas mutations causing defects in the central portion of the PobR primary sequence do not seem to have a significant effect on operator binding. PCR-generated mutations allowing PobR to mimic PcaU function invariably caused a T57A amino acid substitution, making the helix-turn-helix sequence of PobR more like that of PcaU. The mutant PobR depended on p-hydroxybenzoate for its activity, but this dependence could be relieved by any of six amino acid substitutions in the center of the PobR primary sequence. Independent mutations allowing PcaU to mimic PobR activity were shown to be G222V amino acid substitutions in the C terminus of the 274-residue protein. Together, the analyses suggest that PobR and PcaU possess a linear domain structure similar to that of LysR transcriptional activators which largely differ in primary structure.
Collapse
Affiliation(s)
- R G Kok
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
47
|
Ravatn R, Studer S, Springael D, Zehnder AJ, van der Meer JR. Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. Strain B13. J Bacteriol 1998; 180:4360-9. [PMID: 9721270 PMCID: PMC107442 DOI: 10.1128/jb.180.17.4360-4369.1998] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of chlorobenzene-degrading transconjugants of Pseudomonas putida F1 which had acquired the genes for chlorocatechol degradation (clc) from Pseudomonas sp. strain B13 revealed that the clc gene cluster was present on a 105-kb amplifiable genetic element (named the clc element). In one such transconjugant, P. putida RR22, a total of seven or eight chromosomal copies of the entire genetic element were present when the strain was cultivated on chlorobenzene. Chromosomal integrations of the 105-kb clc element occurred in two different loci, and the target sites were located within the 3' end of glycine tRNA structural genes. Tandem amplification of the clc element was preferentially detected in one locus on the F1 chromosome. After prolonged growth on nonselective medium, transconjugant strain RR22 gradually diverged into subpopulations with lower copy numbers of the clc element. Two nonadjacent copies of the clc element in different loci always remained after deamplification, but strains with only two copies could no longer use chlorobenzene as a sole substrate. This result suggests that the presence of multiple copies of the clc gene cluster was a prerequisite for the growth of P. putida RR22 on chlorobenzene and that amplification of the element was positively selected for in the presence of chlorobenzene.
Collapse
Affiliation(s)
- R Ravatn
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Ravatn R, Zehnder AJ, van der Meer JR. Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms. Appl Environ Microbiol 1998; 64:2126-32. [PMID: 9603824 PMCID: PMC106288 DOI: 10.1128/aem.64.6.2126-2132.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 04/08/1998] [Indexed: 02/07/2023] Open
Abstract
The possibilities for low-frequency horizontal transfer of the self-transmissible chlorocatechol degradative genes (clc) from Pseudomonas sp. strain B13 were investigated in activated-sludge microcosms. When the clc genes were transferred into an appropriate recipient bacterium such as Pseudomonas putida F1, a new metabolic pathway for chlorobenzene degradation was formed by complementation which could be selected for by the addition of mono- or 1, 4-dichlorobenzene (CB). Under optimized conditions with direct donor-recipient filter matings, very low transfer frequencies were observed (approximately 3.5 x 10(-8) per donor per 24 h). In contrast, in matings on agar plate surfaces, transconjugants started to appear after 8 to 10 days, and their numbers then increased during prolonged continuous incubation with CB. In activated-sludge microcosms, CB-degrading (CB+) transconjugants of strain F1 which had acquired the clc genes were detected but only when strain B13 cell densities of more than 10(5) CFU/ml could be maintained by the addition of its specific growth substrate, 3-chlorobenzoate (3CBA). The CB+ transconjugants reached final cell densities of between 10(2) and 10(3) CFU/ml. When strain B13 was inoculated separately (without the designated recipient strain F1) into an activated-sludge microcosm, CB+ transconjugants could not be detected. However, in this case a new 3CBA-degrading strain appeared which had acquired the clc genes from strain B13. The effects of selective substrates on the survival and growth of and gene transfer between bacteria degrading aromatic pollutants in a wastewater ecosystem are discussed.
Collapse
MESH Headings
- Base Sequence
- Biodegradation, Environmental
- Catechols/metabolism
- Chlorobenzenes/metabolism
- Conjugation, Genetic
- DNA Primers/genetics
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Ecosystem
- Gene Transfer, Horizontal
- Genes, Bacterial
- Pseudomonas/genetics
- Pseudomonas/metabolism
- Pseudomonas putida/genetics
- Pseudomonas putida/metabolism
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sewage
- Water Pollutants, Chemical/metabolism
Collapse
Affiliation(s)
- R Ravatn
- Swiss Federal Institute for Environmental Science and Technology (EAWAG) and Swiss Federal Institute for Technology (ETH), CH-8600 Dübendorf, Switzerland
| | | | | |
Collapse
|
49
|
Díaz E, Ferrández A, García JL. Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J Bacteriol 1998; 180:2915-23. [PMID: 9603882 PMCID: PMC107259 DOI: 10.1128/jb.180.11.2915-2923.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have identified, cloned, and sequenced the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid (PP) in Escherichia coli K-12. This cluster maps at min 57.5 of the chromosome and is composed of five catabolic genes arranged as a putative operon (hcaA1A2CBD) and two additional genes transcribed in the opposite direction that encode a potential permease (hcaT) and a regulator (hcaR). Sequence comparisons revealed that while hcaA1A2CD genes encode the four subunits of the 3-phenylpropionate dioxygenase, the hcaB gene codes for the corresponding cis-dihydrodiol dehydrogenase. This type of catabolic module is homologous to those encoding class IIB dioxygenases and becomes the first example of such a catabolic cluster in E. coli. The inducible expression of the hca genes requires the presence of the hcaR gene product, which acts as a transcriptional activator and shows significant sequence similarity to members of the LysR family of regulators. Interestingly, the HcaA1A2CD and HcaB enzymes are able to oxidize not only PP to 3-(2,3-dihydroxyphenyl)propionate (DHPP) but also cinnamic acid (CI) to its corresponding 2, 3-dihydroxy derivative. Further catabolism of DHPP requires the mhp-encoded meta fission pathway for the mineralization of 3-hydroxyphenylpropionate (3HPP) (A. Ferrández, J. L. García, and E. Díaz, J. Bacteriol. 179:2573-2581, 1997). Expression in Salmonella typhimurium of the mhp genes alone or in combination with the hca cluster allowed the growth of the recombinant bacteria in 3-hydroxycinnamic acid (3HCI) and CI, respectively. Thus, the convergent mhp- and hca-encoded pathways are also functional in S. typhimurium, and they are responsible for the catabolism of different phenylpropanoid compounds (3HPP, 3HCI, PP, and CI) widely available in nature.
Collapse
Affiliation(s)
- E Díaz
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
| | | | | |
Collapse
|
50
|
Leveau JH, Zehnder AJ, van der Meer JR. The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 1998; 180:2237-43. [PMID: 9555911 PMCID: PMC107155 DOI: 10.1128/jb.180.8.2237-2243.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Uptake of 2,4-dichlorophenoxyacetate (2,4-D) by Ralstonia eutropha JMP134(pJP4) was studied and shown to be an energy-dependent process. The uptake system was inducible with 2,4-D and followed saturation kinetics in a concentration range of up to 60 microM, implying the involvement of a protein in the transport process. We identified an open reading frame on plasmid pJP4, which was designated tfdK, whose translation product TfdK was highly hydrophobic and showed resemblance to transport proteins of the major facilitator superfamily. An interruption of the tfdK gene on plasmid pJP4 decimated 2,4-D uptake rates, which implies a role for TfdK in uptake. A tfdA mutant, which was blocked in the first step of 2,4-D metabolism, still took up 2,4-D. A mathematical model describing TfdK as an active transporter at low micromolar concentrations fitted the observed uptake data best.
Collapse
Affiliation(s)
- J H Leveau
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf
| | | | | |
Collapse
|