1
|
Liu X, den Blaauwen T. NlpI-Prc Proteolytic Complex Mediates Peptidoglycan Synthesis and Degradation via Regulation of Hydrolases and Synthases in Escherichia coli. Int J Mol Sci 2023; 24:16355. [PMID: 38003545 PMCID: PMC10671308 DOI: 10.3390/ijms242216355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Balancing peptidoglycan (PG) synthesis and degradation with precision is essential for bacterial growth, yet our comprehension of this intricate process remains limited. The NlpI-Prc proteolytic complex plays a crucial but poorly understood role in the regulation of multiple enzymes involved in PG metabolism. In this paper, through fluorescent D-amino acid 7-hydroxycoumarincarbonylamino-D-alanine (HADA) labeling and immunolabeling assays, we have demonstrated that the NlpI-Prc complex regulates the activity of PG transpeptidases and subcellular localization of PBP3 under certain growth conditions. PBP7 (a PG hydrolase) and MltD (a lytic transglycosylase) were confirmed to be negatively regulated by the NlpI-Prc complex by an in vivo degradation assay. The endopeptidases, MepS, MepM, and MepH, have consistently been demonstrated as redundantly essential "space makers" for nascent PG insertion. However, we observed that the absence of NlpI-Prc complex can alleviate the lethality of the mepS mepM mepH mutant. A function of PG lytic transglycosylases MltA and MltD as "space makers" was proposed through multiple gene deletions. These findings unveil novel roles for NlpI-Prc in the regulation of both PG synthesis and degradation, shedding light on the previously undiscovered function of lytic transglycosylases as "space makers" in PG expansion.
Collapse
Affiliation(s)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
2
|
Sarkar D, Majumder S, Giri K, Sabnam N. In silico characterization, molecular docking, and dynamic simulation of a novel fungal cell-death suppressing effector, MoRlpA as potential cathepsin B-like cysteine protease inhibitor during rice blast infection. J Biomol Struct Dyn 2023; 41:9039-9056. [PMID: 36345772 DOI: 10.1080/07391102.2022.2139763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
The blast fungus Magnaporthe oryzae is one of the most notorious pathogens affecting rice production worldwide. The cereal killer employs a special class of small secreted proteins called effectors to manipulate and perturb the host metabolism. In turn, the host plants trigger effector-triggered immunity (ETI) via localized cell death and hypersensitive response (HR). We have identified and characterized a novel secreted effector MoRlpA from M. oryzae by extensive in silico methods. The localization studies suggested that it is exclusively secreted in the host apoplasts. Interestingly, MoRlpA interacts with a protease, cathepsin B from rice with highest affinity. The 3D structural models of both the proteins were generated. Cathepsin B-like cysteine proteases are usually involved in programmed cell death (PCD) and autophagy in plants which lead to generation of HR upon infection. Our results suggest that MoRlpA interacts with rice cathepsin B-like cysteine protease and demolish the host counter-attack by suppressing cell death and HR during an active blast infection. This was further validated by molecular docking and molecular dynamic simulation analyses. The important residues involved in the rice-blast pathogen interactions were deciphered. Overall, this research highlights stable interactions between MoRlpA-OsCathB during rice blast pathogenesis and providing an insight into how this novel RlpA protease inhibitor-cum-effector modulates the host's apoplast to invade the host tissues and establish a successful infection. Thus, this research will help to develop potential fungicide to block the binding region of MoRlpA target so that the cryptic pathogen would be recognized by the host. HIGHLIGHTSFor the first time, a novel secreted effector protein, MoRlpA has been identified and characterised from M. oryzae in silicoMoRlpA contains a rare lipoprotein A-like DPBB domain which is often an enzymatic domain in other systemsMoRlpA as an apoplastic effector interacts with the rice protease OsCathB to suppress the cell death and hypersensitive response during rice blast infectionThe three-dimensional structures of both the MoRlpA and OsCathB proteins were predictedMoRlpA-OsCathB interactions were analysed by molecular docking and molecular dynamic simulation studiesCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debrup Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
3
|
Wang H, Yang Z, Swingle B, Kvitko BH. AlgU, a Conserved Sigma Factor Regulating Abiotic Stress Tolerance and Promoting Virulence in Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:326-336. [PMID: 33264045 DOI: 10.1094/mpmi-09-20-0254-cr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic stresses. Host niches pose specific sets of environmental challenges driven, in part, by immune defenses. Bacteria use a "just-in-time" strategy of gene regulation, meaning that they only produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma factors transduce a specific set of environmental signals and change gene expression patterns by altering RNA polymerase promoter specificity, to adjust bacterial physiology, structure, or behavior, singly or in combination, to improve chances of survival. The broadly conserved ECF sigma factor AlgU affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls expression of more than 800 genes, some of which contribute to suppression of plant immunity and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions controlled by AlgU, and how these functions contribute to P. syringae survival in plants.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Haibi Wang
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
| | - Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, U.S.A
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
- The Plant Center, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
4
|
Hsu PC, Chen CS, Wang S, Hashimoto M, Huang WC, Teng CH. Identification of MltG as a Prc Protease Substrate Whose Dysregulation Contributes to the Conditional Growth Defect of Prc-Deficient Escherichia coli. Front Microbiol 2020; 11:2000. [PMID: 32973722 PMCID: PMC7481392 DOI: 10.3389/fmicb.2020.02000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial proteases play pivotal roles in many aspects of bacterial physiological processes. Because a protease exerts its biological function by proteolytically regulating its substrates, the identification and characterization of the physiological substrates of a protease advance our understanding of the biological roles of the protease. Prc (also named Tsp) is an Escherichia coli periplasmic protease thought to be indispensable for E. coli to survive under low osmolality at 42°C. The accumulation of the Prc substrate MepS due to Prc deficiency contributes to the conditional growth defect. Because preventing MepS accumulation only partially restored the growth of Prc-deficient E. coli, we hypothesized that other unidentified Prc substrates intracellularly accumulate due to Prc deficiency and contribute to the conditional growth defect. To identify previously undiscovered substrates, 85 E. coli proteins able to physically interact with Prc were identified using E. coli proteome arrays. Ten proteins were shown to be cleavable by Prc in vitro. Among these candidates, MltG was able to interact with Prc in E. coli. Prc regulated the intracellular level of MltG, indicating that MltG is a physiological substrate of Prc. Prc deficiency induced the accumulation of MltG in the bacteria. Blocking MltG accumulation by deleting mltG partially restored the growth of Prc-deficient E. coli. In addition, Prc-deficient E. coli with blocked MltG and MepS expression exhibited higher growth levels than those with only the MltG or MepS expression blocked under low osmolality at 42°C, suggesting that these accumulated substrates additively contributed to the conditional growth defect. MltG is a lytic transglycosylase involved in the biogenesis of peptidoglycan (PG). In addition to MltG, the previously identified physiological Prc substrates MepS and PBP3 are involved in PG biogenesis, suggesting a potential role of Prc in regulating PG biogenesis.
Collapse
Affiliation(s)
- Po-Chuen Hsu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Multicopy Suppressor Analysis of Strains Lacking Cytoplasmic Peptidyl-Prolyl cis/trans Isomerases Identifies Three New PPIase Activities in Escherichia coli That Includes the DksA Transcription Factor. Int J Mol Sci 2020; 21:ijms21165843. [PMID: 32823955 PMCID: PMC7461557 DOI: 10.3390/ijms21165843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.
Collapse
|
6
|
Interactions between DksA and Stress-Responsive Alternative Sigma Factors Control Inorganic Polyphosphate Accumulation in Escherichia coli. J Bacteriol 2020; 202:JB.00133-20. [PMID: 32341074 DOI: 10.1128/jb.00133-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a variety of different stress conditions. polyP protects bacteria by acting as a protein-stabilizing chaperone, metal chelator, or regulator of protein function, among other mechanisms. However, little is known about how stress signals are transmitted in the cell to lead to increased polyP accumulation. Previous work in the model enterobacterium Escherichia coli has indicated that the RNA polymerase-binding regulatory protein DksA is required for polyP synthesis in response to nutrient limitation stress. In this work, I set out to characterize the role of DksA in polyP regulation in more detail. I found that overexpression of DksA increases cellular polyP content (explaining the long-mysterious phenotype of dksA overexpression rescuing growth of a dnaK mutant at high temperatures) and characterized the roles of known functional residues of DksA in this process, finding that binding to RNA polymerase is required but that none of the other functions of DksA appear to be necessary. Transcriptomics revealed genome-wide transcriptional changes upon nutrient limitation, many of which were affected by DksA, and follow-up experiments identified complex interactions between DksA and the stress-sensing alternative sigma factors FliA, RpoN, and RpoE that impact polyP production, indicating that regulation of polyP synthesis is deeply entwined in the multifactorial stress response network of E. coli IMPORTANCE Inorganic polyphosphate (polyP) is an evolutionarily ancient, widely conserved biopolymer required for stress resistance and pathogenesis in diverse bacteria, but we do not understand how its synthesis is regulated. In this work, I gained new insights into this process by characterizing the role of the transcriptional regulator DksA in polyP regulation in Escherichia coli and identifying previously unknown links between polyP synthesis and the stress-responsive alternative sigma factors FliA, RpoN, and RpoE.
Collapse
|
7
|
Quantitative Proteomics of Potato Leaves Infected with Phytophthora infestans Provides Insights into Coordinated and Altered Protein Expression during Early and Late Disease Stages. Int J Mol Sci 2019; 20:ijms20010136. [PMID: 30609684 PMCID: PMC6337297 DOI: 10.3390/ijms20010136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 01/20/2023] Open
Abstract
In order to get a better understanding of protein association during Solanum tuberosum (cv. Sarpo Mira)–Phytophthora infestans incompatible interaction, we investigated the proteome dynamics of cv. Sarpo Mira, after foliar application of zoospore suspension from P. infestans isolate, at three key time-points: zero hours post inoculation (hpi) (Control), 48 hpi (EI), and 120 hpi (LI); divided into early and late disease stages by the tandem mass tagging (TMT) method. A total of 1229 differentially-expressed proteins (DEPs) were identified in cv. Sarpo Mira in a pairwise comparison of the two disease stages, including commonly shared DEPs, specific DEPs in early and late disease stages, respectively. Over 80% of the changes in protein abundance were up-regulated in the early stages of infection, whereas more DEPs (61%) were down-regulated in the later disease stage. Expression patterns, functional category, and enrichment tests highlighted significant coordination and enrichment of cell wall-associated defense response proteins during the early stage of infection. The late stage was characterized by a cellular protein modification process, membrane protein complex formation, and cell death induction. These results, together with phenotypic observations, provide further insight into the molecular mechanism of P. infestans resistance in potatos.
Collapse
|
8
|
Wang J, Cao L, Yang X, Wu Q, Lu L, Wang Z. Transcriptional analysis reveals the critical role of RNA polymerase-binding transcription factor, DksA, in regulating multi-drug resistance of Escherichia coli. Int J Antimicrob Agents 2018; 52:63-69. [PMID: 29746997 DOI: 10.1016/j.ijantimicag.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/28/2018] [Accepted: 05/01/2018] [Indexed: 11/30/2022]
Abstract
The objective of this study was to comprehensively identify the target genes regulated by the RNA polymerase-binding transcription factor DksA in Escherichia coli, and to clarify the role of DksA in multi-drug resistance. A clinical E. coli strain, E8, was selected to construct the dksA gene deletion mutant by using the Red recombination system. The minimum inhibitory concentrations of 12 antibiotics in the E8ΔdksA (mutant) were markedly lower than those in the wild-type strain, E8. Genes expressed differentially in the wild-type and dksA mutant were detected using RNA-Seq, and were validated by performing quantitative real-time polymerase chain reaction. In total, 168 differentially expressed genes were identified in E8ΔdksA, including 81 upregulated and 87 downregulated genes. Many of the genes identified are involved in metabolism, two-component systems, transcriptional regulators and transport/membrane proteins. Interestingly, genes encoding the transcriptional regulator, MarR, which is known to repress the multiple drug resistance operon, marRAB; MdfA, a transport protein that exhibits multi-drug efflux activities; and oligopeptide transport system proteins OppA and OppD were among those differentially expressed, and could potentially contribute to the increased drug susceptibility of E8ΔdksA. In conclusion, DksA plays an important role in the multi-drug resistance of this E. coli strain, and directly or indirectly regulates the expression of several genes related to antibiotic resistance.
Collapse
Affiliation(s)
- Jiawei Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Li Cao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaowen Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingmin Wu
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lin Lu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zhen Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
9
|
Albrecht N, Tegtmeyer N, Sticht H, Skórko-Glonek J, Backert S. Amino-Terminal Processing of Helicobacter pylori Serine Protease HtrA: Role in Oligomerization and Activity Regulation. Front Microbiol 2018; 9:642. [PMID: 29713313 PMCID: PMC5911493 DOI: 10.3389/fmicb.2018.00642] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
The HtrA family of serine proteases is found in most bacteria, and plays an essential role in the virulence of the gastric pathogen Helicobacter pylori. Secreted H. pylori HtrA (HtrA Hp ) cleaves various junctional proteins such as E-cadherin disrupting the epithelial barrier, which is crucial for bacterial transmigration across the polarized epithelium. Recent studies indicated the presence of two characteristic HtrA Hp forms of 55 and 52 kDa (termed p55 and p52, respectively), in worldwide strains. In addition, p55 and p52 were produced by recombinant HtrA Hp , indicating auto-cleavage. However, the cleavage sites and their functional importance are yet unclear. Here, we determined the amino-terminal ends of p55 and p52 by Edman sequencing. Two proteolytic cleavage sites were identified (H46/D47 and K50/D51). Remarkably, the cleavage site sequences are conserved in HtrA Hp from worldwide isolates, but not in other Gram-negative pathogens, suggesting a highly specific assignment in H. pylori. We analyzed the role of the amino-terminal cleavage sites on activity, secretion and function of HtrA Hp . Three-dimensional modeling suggested a trimeric structure and a role of amino-terminal processing in oligomerization and regulation of proteolytic activity of HtrA Hp . Furthermore, point and deletion mutants of these processing sites were generated in the recently reported Campylobacter jejuni ΔhtrA/htrAHp genetic complementation system and the minimal sequence requirements for processing were determined. Polarized Caco-2 epithelial cells were infected with these strains and analyzed by immunofluorescence microscopy. The results indicated that HtrA Hp processing strongly affected the ability of the protease to disrupt the E-cadherin-based cell-to-cell junctions. Casein zymography confirmed that the amino-terminal region is required for maintaining the proteolytic activity of HtrA Hp . Furthermore, we demonstrated that this cleavage influences the secretion of HtrA Hp in the extracellular space as an important prerequisite for its virulence activity. Taken together, our data demonstrate that amino-terminal cleavage of HtrA Hp is conserved in this pathogen and affects oligomerization and thus, secretion and regulatory activities, suggesting an important role in the pathogenesis of H. pylori.
Collapse
Affiliation(s)
- Nicole Albrecht
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Joanna Skórko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Abstract
Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli, we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli, reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data.
Collapse
|
11
|
Veeravalli K, Schindler T, Dong E, Yamada M, Hamilton R, Laird MW. Strain engineering to reduce acetate accumulation during microaerobic growth conditions inEscherichia coli. Biotechnol Prog 2017; 34:303-314. [DOI: 10.1002/btpr.2592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Karthik Veeravalli
- Late Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Tony Schindler
- Late Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Emily Dong
- Early Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Masaki Yamada
- Late Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Ryan Hamilton
- Late Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| | - Michael W. Laird
- Early Stage Cell Culture, Genentech, Inc., 1 DNA Way; South San Francisco California 94080
| |
Collapse
|
12
|
Wessler S, Schneider G, Backert S. Bacterial serine protease HtrA as a promising new target for antimicrobial therapy? Cell Commun Signal 2017; 15:4. [PMID: 28069057 PMCID: PMC5223389 DOI: 10.1186/s12964-017-0162-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
Recent studies have demonstrated that the bacterial chaperone and serine protease high temperature requirement A (HtrA) is closely associated with the establishment and progression of several infectious diseases. HtrA activity enhances bacterial survival under stress conditions, but also has direct effects on functions of the cell adhesion protein E-cadherin and extracellular matrix proteins, including fibronectin and proteoglycans. Although HtrA cannot be considered as a pathogenic factor per se, it exhibits favorable characteristics making HtrA a potentially attractive drug target to combat various bacterial infections.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Steffen Backert
- Division of Microbiology, University of Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| |
Collapse
|
13
|
Abfalter CM, Schubert M, Götz C, Schmidt TP, Posselt G, Wessler S. HtrA-mediated E-cadherin cleavage is limited to DegP and DegQ homologs expressed by gram-negative pathogens. Cell Commun Signal 2016; 14:30. [PMID: 27931258 PMCID: PMC5146865 DOI: 10.1186/s12964-016-0153-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023] Open
Abstract
Background The serine proteases HtrA/DegP secreted by the human gastrointestinal pathogens Helicobacter pylori (H. pylori) and Campylobacter jejuni (C. jejuni) cleave the mammalian cell adhesion protein E-cadherin to open intercellular adhesions. A wide range of bacteria also expresses the HtrA/DegP homologs DegQ and/or DegS, which significantly differ in structure and function. Methods E-cadherin shedding was investigated in infection experiments with the Gram-negative pathogens H. pylori, enteropathogenic Escherichia coli (EPEC), Salmonella enterica subsp. Enterica (S. Typhimurium), Yersinia enterocolitica (Y. enterocolitica), and Proteus mirabilis (P. mirabilis), which express different combinations of HtrAs. Annotated wild-type htrA/degP, degQ and degS genes were cloned and proteolytically inactive mutants were generated by a serine—to—alanine exchange in the active center. All HtrA variants were overexpressed and purified to compare their proteolytic activities in casein zymography and in vitro E-cadherin cleavage experiments. Results Infection of epithelial cells resulted in a strong E-cadherin ectodomain shedding as reflected by the loss of full length E-cadherin in whole cell lysates and formation of the soluble 90 kDa extracellular domain of E-cadherin (NTF) in the supernatants of infected cells. Importantly, comparing the caseinolytic and E-cadherin cleavage activities of HtrA/DegP, DegQ and DegS proteins revealed that DegP and DegQ homologs from H. pylori, S. Typhimurium, Y. enterocolitica, EPEC and P. mirabilis, but not activated DegS, cleaved E-cadherin as a substrate in vitro. Conclusions These data indicate that E-cadherin cleavage is confined to HtrA/DegP and DegQ proteins representing an important prevalent step in bacterial pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0153-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carmen M Abfalter
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Maria Schubert
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Camilla Götz
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Thomas P Schmidt
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Gernot Posselt
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Silja Wessler
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria.
| |
Collapse
|
14
|
Ellis M, Patel P, Edon M, Ramage W, Dickinson R, Humphreys DP. Development of a high yieldingE. coliperiplasmic expression system for the production of humanized Fab' fragments. Biotechnol Prog 2016; 33:212-220. [DOI: 10.1002/btpr.2393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 10/19/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Mark Ellis
- Discovery Research, Protein Sciences; UCB Pharma, 208 Bath Road; Slough, Berkshire SL1 3WE U.K
| | | | - Marjory Edon
- Novasep, 5 chemin du Pilon, St Maurice de Beynost; Miribel 01708 France
| | - Walter Ramage
- NIBSC, Blanche Lane, South Mimms, Potters Bar; Hertfordshire EN6 3QG U.K
| | | | - David P. Humphreys
- Discovery Research, Protein Sciences; UCB Pharma, 208 Bath Road; Slough, Berkshire SL1 3WE U.K
| |
Collapse
|
15
|
Tegtmeyer N, Moodley Y, Yamaoka Y, Pernitzsch SR, Schmidt V, Traverso FR, Schmidt TP, Rad R, Yeoh KG, Bow H, Torres J, Gerhard M, Schneider G, Wessler S, Backert S. Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA. Mol Microbiol 2015; 99:925-44. [PMID: 26568477 PMCID: PMC4832355 DOI: 10.1111/mmi.13276] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 12/11/2022]
Abstract
HtrA proteases and chaperones exhibit important roles in periplasmic protein quality control and stress responses. The genetic inactivation of htrA has been described for many bacterial pathogens. However, in some cases such as the gastric pathogen Helicobacter pylori, HtrA is secreted where it cleaves the tumour‐suppressor E‐cadherin interfering with gastric disease development, but the generation of htrA mutants is still lacking. Here, we show that the htrA gene locus is highly conserved in worldwide strains. HtrA presence was confirmed in 992 H. pylori isolates in gastric biopsy material from infected patients. Differential RNA‐sequencing (dRNA‐seq) indicated that htrA is encoded in an operon with two subsequent genes, HP1020 and HP1021. Genetic mutagenesis and complementation studies revealed that HP1020 and HP1021, but not htrA, can be mutated. In addition, we demonstrate that suppression of HtrA proteolytic activity with a newly developed inhibitor is sufficient to effectively kill H. pylori, but not other bacteria. We show that Helicobacter
htrA is an essential bifunctional gene with crucial intracellular and extracellular functions. Thus, we describe here the first microbe in which htrA is an indispensable gene, a situation unique in the bacterial kingdom. HtrA can therefore be considered a promising new target for anti‐bacterial therapy.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany.,Institut für Medizinische Mikrobiologie, Otto-von-Guericke Universität Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Yoshan Moodley
- Department of Zoology, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.,Konrad-Lorenz-Institut für Vergleichende Verhaltensforschung, Department für Integrative Biologie und Evolution, Veterinärmedizinische Universität Wien, Savoyenstr. 1a, A-1160, Wien, Austria
| | - Yoshio Yamaoka
- Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Dept. Medicine-Gastroenterology, Houston, TX, USA.,Oita University Faculty of Medicine, Dept. Environmental and Preventive Medicine, Yufu, Japan
| | - Sandy Ramona Pernitzsch
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/Bau D15, D-97080, Würzburg, Germany
| | - Vanessa Schmidt
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Francisco Rivas Traverso
- Institut für Medizinische Mikrobiologie, Otto-von-Guericke Universität Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Thomas P Schmidt
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Roland Rad
- II Medical Department, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khay Guan Yeoh
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ho Bow
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico City, Mexico
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, 81675, Germany
| | - Gisbert Schneider
- ETH Zürich, Institut für Pharmazeutische Wissenschaften, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Steffen Backert
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany.,Institut für Medizinische Mikrobiologie, Otto-von-Guericke Universität Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| |
Collapse
|
16
|
Ramsey ME, Bender T, Klimowicz AK, Hackett KT, Yamamoto A, Jolicoeur A, Callaghan MM, Wassarman KM, van der Does C, Dillard JP. Targeted mutagenesis of intergenic regions in the Neisseria gonorrhoeae gonococcal genetic island reveals multiple regulatory mechanisms controlling type IV secretion. Mol Microbiol 2015; 97:1168-85. [PMID: 26076069 PMCID: PMC4652943 DOI: 10.1111/mmi.13094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2015] [Indexed: 12/30/2022]
Abstract
Gonococci secrete chromosomal DNA into the extracellular environment using a type IV secretion system (T4SS). The secreted DNA acts in natural transformation and initiates biofilm development. Although the DNA and its effects are detectable, structural components of the T4SS are present at very low levels, suggestive of uncharacterized regulatory control. We sought to better characterize the expression and regulation of T4SS genes and found that the four operons containing T4SS genes are transcribed at very different levels. Increasing transcription of two of the operons through targeted promoter mutagenesis did not increase DNA secretion. The stability and steady-state levels of two T4SS structural proteins were affected by a homolog of tail-specific protease. An RNA switch was also identified that regulates translation of a third T4SS operon. The switch mechanism relies on two putative stem-loop structures contained within the 5' untranslated region of the transcript, one of which occludes the ribosome binding site and start codon. Mutational analysis of these stem loops supports a model in which induction of an alternative structure relieves repression. Taken together, these results identify multiple layers of regulation, including transcriptional, translational and post-translational mechanisms controlling T4SS gene expression and DNA secretion.
Collapse
Affiliation(s)
- Meghan E. Ramsey
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tobias Bender
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Amy K. Klimowicz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ami Yamamoto
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Adrienne Jolicoeur
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Melanie M. Callaghan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chris van der Does
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Two stress sensor proteins for the expression of sigmaE regulon: DegS and RseB. J Microbiol 2015; 53:306-10. [PMID: 25935301 DOI: 10.1007/s12275-015-5112-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/17/2022]
Abstract
In E. coli, sigmaE-dependent transcription is controlled by regulated-proteolysis of RseA. RseA, which holds sigmaE as an anti-sigma factor, is sequentially digested by DegS, RseP and cytoplasmic proteases to liberate sigmaE in response to dysfunction in outer-membrane biogenesis. Additionally, the sequential proteolysis is regulated by RseB binding to RseA (Fig. 1A). Direct interaction between RseA and RseB inhibits RseA-cleavage by DegS. Both proteolytic activation of DegS and binding disruption of RseB are thus required to initiate sigmaE-stress response. For the induction of sigmaEstress response, DegS and RseB recognize the states of OMP and LPS for outer-membrane biogenesis. DegS is activated by binding of unfolded OMPs and RseB binding to RseA is antagonized by LPS accumulated in periplasm. In this regard, DegS and RseB are proposed to be stress sensor proteins for sigmaE signal transduction. Interestingly, biogenesis of OMP and LPS appears to cross-talk with each other, indicating that dysfunction of either OMP or LPS can initiate RseA proteolysis. This review aims to briefly introduce two stress sensor proteins, DegS and RseB, which regulate sigmaEdependent transcription.
Collapse
|
18
|
Veeravalli K, Laird MW, Fedesco M, Zhang Y, Yu XC. Strain engineering to prevent norleucine incorporation during recombinant protein production in Escherichia coli. Biotechnol Prog 2014; 31:204-11. [PMID: 25315437 DOI: 10.1002/btpr.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/08/2014] [Indexed: 11/07/2022]
Abstract
Incorporation of norleucine in place of methionine residues during recombinant protein production in Escherichia coli is well known. Continuous feeding of methionine is commonly used in E. coli recombinant protein production processes to prevent norleucine incorporation. Although this strategy is effective in preventing norleucine incorporation, there are several disadvantages associated with continuous feeding. Continuous feeding increases the operational complexity and the overall cost of the fermentation process. In addition, the continuous feed leads to undesirable dilution of the fermentation medium possibly resulting in lower cell densities and recombinant protein yields. In this work, the genomes of three E. coli hosts were engineered by introducing chromosomal mutations that result in methionine overproduction in the cell. The recombinant protein purified from the fermentations using the methionine overproducing hosts had no norleucine incorporation. Furthermore, these studies demonstrated that the fermentations using one of the methionine overproducing hosts exhibited comparable fermentation performance as the control host in three different recombinant protein production processes.
Collapse
Affiliation(s)
- Karthik Veeravalli
- Dept. of Late Stage Cell Culture, Genentech Inc., South San Francisco, CA, 94080
| | | | | | | | | |
Collapse
|
19
|
Deng CY, Deng AH, Sun ST, Wang L, Wu J, Wu Y, Chen XY, Fang RX, Wen TY, Qian W. The periplasmic PDZ domain-containing protein Prc modulates full virulence, envelops stress responses, and directly interacts with dipeptidyl peptidase of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:101-112. [PMID: 24200074 DOI: 10.1094/mpmi-08-13-0234-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PDZ domain-containing proteases, also known as HtrA family proteases, play important roles in bacterial cells by modulating disease pathogenesis and cell-envelope stress responses. These proteases have diverse functions through proteolysis- and nonproteolysis-dependent modes. Here, we report that the genome of the causative agent of rice bacterial blight, Xanthomonas oryzae pv. oryzae, encodes seven PDZ domain-containing proteins. Systematic inactivation of their encoding genes revealed that PXO_01122 and PXO_04290 (prc) are involved in virulence. prc encodes a putative HtrA family protease that localizes in the bacterial periplasm. Mutation of prc also resulted in susceptibility to multiple environmental stresses, including H2O2, sodium dodecylsulfate, and osmolarity stresses. Comparative subproteomic analyses showed that the amounts of 34 periplasmic proteins were lower in the prc mutant than in wild-type. These proteins were associated with proteolysis, biosynthesis of macromolecules, carbohydrate or energy metabolism, signal transduction, and protein translocation or folding. We provide in vivo and in vitro evidence demonstrating that Prc stabilizes and directly binds to one of these proteins, DppP, a dipeptidyl peptidase contributing to full virulence. Taken together, our results suggest that Prc contributes to bacterial virulence by acting as a periplasmic modulator of cell-envelope stress responses.
Collapse
|
20
|
Salinity-dependent impacts of ProQ, Prc, and Spr deficiencies on Escherichia coli cell structure. J Bacteriol 2014; 196:1286-96. [PMID: 24443528 DOI: 10.1128/jb.00827-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ProQ is a cytoplasmic protein with RNA chaperone activities that reside in FinO- and Hfq-like domains. Lesions at proQ decrease the level of the osmoregulatory glycine betaine transporter ProP. Lesions at proQ eliminated ProQ and Prc, the periplasmic protease encoded by the downstream gene prc. They dramatically slowed the growth of Escherichia coli populations and altered the morphologies of E. coli cells in high-salinity medium. ProQ and Prc deficiencies were associated with different phenotypes. ProQ-deficient bacteria were elongated unless glycine betaine was provided. High-salinity cultures of Prc-deficient bacteria included spherical cells with an enlarged periplasm and an eccentric nucleoid. The nucleoid-containing compartment was bounded by the cytoplasmic membrane and peptidoglycan. This phenotype was not evident in bacteria cultivated at low or moderate salinity, nor was it associated with murein lipoprotein (Lpp) deficiency, and it differed from those elicited by the MreB inhibitor A-22 or the FtsI inhibitor aztreonam at low or high salinity. It was suppressed by deletion of spr, which encodes one of three murein hydrolases that are redundantly essential for enlargement of the murein sacculus. Prc deficiency may alter bacterial morphology by impairing control of Spr activity at high salinity. ProQ and Prc deficiencies lowered the ProP activity of bacteria cultivated at moderate salinity by approximately 70% and 30%, respectively, but did not affect other osmoregulatory functions. The effects of ProQ and Prc deficiencies on ProP activity are indirect, reflecting their roles in the maintenance of cell structure.
Collapse
|
21
|
Mironova KE, Proshkina GM, Ryabova AV, Stremovskiy OA, Lukyanov SA, Petrov RV, Deyev SM. Genetically encoded immunophotosensitizer 4D5scFv-miniSOG is a highly selective agent for targeted photokilling of tumor cells in vitro. Am J Cancer Res 2013; 3:831-40. [PMID: 24312153 PMCID: PMC3841334 DOI: 10.7150/thno.6715] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/09/2013] [Indexed: 01/08/2023] Open
Abstract
Tumor-targeted delivery of cytotoxins presents considerable advantages over their passive transport. Chemical conjugation of cytotoxic module to antibody is limited due to insufficient reproducibility of synthesis, and recombinant immunotoxins are aimed to overcome this disadvantage. We obtained genetically encoded immunophotosensitizer 4D5scFv-miniSOG and evaluated its photocytotoxic effect in vitro. A single-chain variable fragment (scFv) of humanized 4D5 antibody was used as a targeting vehicle for selective recognition of the extracellular domain of human epidermal growth factor receptor 2 (HER2/neu) overexpressed in many human carcinomas. As a phototoxic module we used a recently described photoactivated fluorescent flavoprotein miniSOG. We found that recombinant protein 4D5scFv-miniSOG exerts a highly specific photo-induced cytotoxic effect on HER2/neu-positive human breast adenocarcinoma SK-BR-3 cells (IC50= 160 nM). We demonstrated that the 4D5scFv-miniSOG specifically binds to HER2-positive cells and internalizes via receptor-mediated endocytosis. Co-treatment of breast cancer cells with 4D5scFv-miniSOG and Taxol or junction opener protein JO-1 produced remarkable additive effects.
Collapse
|
22
|
Schaefer JV, Plückthun A. Transfer of engineered biophysical properties between different antibody formats and expression systems. Protein Eng Des Sel 2012; 25:485-506. [PMID: 22763265 DOI: 10.1093/protein/gzs039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant antibodies and their derivatives are receiving ever increasing attention for many applications. Nevertheless, they differ widely in biophysical properties, from stable monomers to metastable aggregation-prone mixtures of oligomers. Previous work from our laboratory presented the combination of structure-based analysis with family consensus alignments as being able to improve the properties of immunoglobulin variable domains. We had identified a series of mutations in the variable domains that greatly influenced both the stability and the expression level of single-chain Fv (scFv) fragments produced in the periplasm of Escherichia coli. We now investigated whether these effects are transferable to Fab fragments and immunoglobulin G (IgG) produced in bacteria, Pichia pastoris, and mammalian cells. Taken together, our data indicate that engineered mutations can increase functional expression levels only for periplasmic expression in prokaryotes. In contrast, stability against thermal and denaturant-induced unfolding is improved by the same mutations in all formats tested, including scFv, Fab and IgG, independent of the expression system. The mutations in V(H) also influenced the structural homogeneity of full-length IgG, and the reducibility of the distant C(H)1-C(L) inter-chain disulfide bond. These results confirm the potential of structure-based protein engineering in the context of full-length IgGs and the transferability of stability improvements discovered with smaller antibody fragments.
Collapse
Affiliation(s)
- Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
23
|
Patterns of evolutionary conservation of essential genes correlate with their compensability. PLoS Genet 2012; 8:e1002803. [PMID: 22761596 PMCID: PMC3386227 DOI: 10.1371/journal.pgen.1002803] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/12/2012] [Indexed: 11/19/2022] Open
Abstract
Essential genes code for fundamental cellular functions required for the viability of an organism. For this reason, essential genes are often highly conserved across organisms. However, this is not always the case: orthologues of genes that are essential in one organism are sometimes not essential in other organisms or are absent from their genomes. This suggests that, in the course of evolution, essential genes can be rendered nonessential. How can a gene become non-essential? Here we used genetic manipulation to deplete the products of 26 different essential genes in Escherichia coli. This depletion results in a lethal phenotype, which could often be rescued by the overexpression of a non-homologous, non-essential gene, most likely through replacement of the essential function. We also show that, in a smaller number of cases, the essential genes can be fully deleted from the genome, suggesting that complete functional replacement is possible. Finally, we show that essential genes whose function can be replaced in the laboratory are more likely to be non-essential or not present in other taxa. These results are consistent with the notion that patterns of evolutionary conservation of essential genes are influenced by their compensability-that is, by how easily they can be functionally replaced, for example through increased expression of other genes.
Collapse
|
24
|
Genetic analysis of 15 protein folding factors and proteases of the Escherichia coli cell envelope. J Bacteriol 2012; 194:3225-33. [PMID: 22505681 DOI: 10.1128/jb.00221-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Each cell hosts thousands of proteins that vary greatly in abundance, structure, and chemical properties. To ensure that all proteins are biologically active and properly localized, efficient quality control systems have evolved. While the structure, function, and regulation of some individual protein folding factors and proteases were resolved up to atomic resolution, others remain poorly characterized. In addition, little is known about which factors are required for viability under specific stress conditions. We therefore determined the physiological implications of 15 factors of the E. coli cell envelope by an integrated genetic approach comprising phenotypic analyses. Our data indicate that surA and tsp null mutations are a lethal combination in rich medium, that surA dsbA and surA dsbC double mutants are temperature sensitive, and that surA ptrA, surA yfgC, dsbA fkpA, degP tsp, degP ppiD, tsp ppiD, and degP dsbA double mutants are temperature sensitive in rich medium containing 0.5 M NaCl, while degP dsbA, degP yfgC, tsp ydgD, and degP tsp double mutants do not grow in the presence of SDS/EDTA. Furthermore, we show that in degP dsbA, degP tsp, and degP yfgC double mutants a subpopulation of LamB exists as unfolded monomers. In addition, dsbA null mutants expressed lower levels of the outer membrane proteins LptD, LamB, FhuA, and OmpW while FhuA levels were reduced in surA single and degP ppiD double mutants. Lower FhuA levels in degP ppiD strains depend on Tsp, since in a tsp degP ppiD triple mutant FhuA levels are restored.
Collapse
|
25
|
Weski J, Meltzer M, Spaan L, Mönig T, Oeljeklaus J, Hauske P, Vouilleme L, Volkmer R, Boisguerin P, Boyd D, Huber R, Kaiser M, Ehrmann M. Chemical Biology Approaches Reveal Conserved Features of a C-Terminal Processing PDZ Protease. Chembiochem 2012; 13:402-8. [DOI: 10.1002/cbic.201100643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Indexed: 12/21/2022]
|
26
|
Merdanovic M, Clausen T, Kaiser M, Huber R, Ehrmann M. Protein quality control in the bacterial periplasm. Annu Rev Microbiol 2012; 65:149-68. [PMID: 21639788 DOI: 10.1146/annurev-micro-090110-102925] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Melisa Merdanovic
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117 Essen, Germany.
| | | | | | | | | |
Collapse
|
27
|
Bai XC, Pan XJ, Wang XJ, Ye YY, Chang LF, Leng D, Lei J, Sui SF. Characterization of the structure and function of Escherichia coli DegQ as a representative of the DegQ-like proteases of bacterial HtrA family proteins. Structure 2011; 19:1328-37. [PMID: 21893291 DOI: 10.1016/j.str.2011.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/07/2011] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
Abstract
HtrA family proteins play a central role in protein quality control in the bacterial periplasmic space. DegQ-like proteases, a group of bacterial HtrA proteins, are characterized by a short LA loop as compared with DegP-like proteases, and are found in many bacterial species. As a representative of the DegQ-like proteases, we report that Escherichia coli DegQ exists in vivo primarily as a trimer (substrate-free) or dodecamer (substrate-containing). Biochemical analysis of DegQ dodecamers revealed that the major copurified protein substrate is OmpA. Importantly, wild-type DegQ exhibited a much lower proteolytic activity, and thus higher chaperone-like activity, than DegP. Furthermore, using cryo-electron microscopy we determined high-resolution structures of DegQ 12- and 24-mers in the presence of substrate, thus revealing the structural mechanism by which DegQ moderates its proteolytic activity.
Collapse
Affiliation(s)
- Xiao-chen Bai
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Singh N, Kuppili RR, Bose K. The structural basis of mode of activation and functional diversity: a case study with HtrA family of serine proteases. Arch Biochem Biophys 2011; 516:85-96. [PMID: 22027029 DOI: 10.1016/j.abb.2011.10.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/03/2011] [Indexed: 12/15/2022]
Abstract
HtrA (High temperature requirement protease A) proteins that are primarily involved in protein quality control belong to a family of serine proteases conserved from bacteria to humans. HtrAs are oligomeric proteins that share a common trimeric pyramidal architecture where each monomer comprises a serine protease domain and one or two PDZ domains. Although the overall structural integrity is well maintained and they exhibit similar mechanism of activation, subtle conformational changes and structural plasticity especially in the flexible loop regions and domain interfaces lead to differences in their active site conformation and hence in their specificity and functions.
Collapse
Affiliation(s)
- Nitu Singh
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | | | | |
Collapse
|
29
|
Sautter R, Ramos D, Schneper L, Ciofu O, Wassermann T, Koh CL, Heydorn A, Hentzer M, Høiby N, Kharazmi A, Molin S, Devries CA, Ohman DE, Mathee K. A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and algT/U activity results in the loss of alginate production. Gene 2011; 498:242-53. [PMID: 22088575 DOI: 10.1016/j.gene.2011.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 09/27/2011] [Accepted: 11/01/2011] [Indexed: 11/18/2022]
Abstract
Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF lung. Mucoid conversion is indicative of overproduction of a capsule-like polysaccharide called alginate. The alginate-overproducing (Alg(+)) mucoid phenotype seen in the CF isolates is extremely unstable. Low oxygen tension growth of mucoid variants readily selects for nonmucoid variants. The switching off mechanism has been mapped to the algT/U locus, and the molecular basis for this conversion was partially attributed to mutations in the algT/U gene itself. To further characterize molecular changes resulting in the unstable phenotype, an isogenic PAO1 derivative that is constitutively Alg(+) due to the replacement of the mucA with mucA22 (PDO300) was used. The mucA22 allele is common in mucoid CF isolates. Thirty-four spontaneous nonmucoid variants, or sap (suppressor of alginate production) mutants, of PDO300 were isolated under low oxygen tension. About 40% of the sap mutants were rescued by a plasmid carrying algT/U (Group A). The remaining sap mutants were not (Group B). The members of Group B fall into two subsets: one similar to PAO1, and another comparable to PDO300. Sequence analysis of the algT/U and mucA genes in Group A shows that mucA22 is intact, whereas algT/U contains mutations. Genetic complementation and sequencing of one Group B sap mutant, sap22, revealed that the nonmucoid phenotype was due to the presence of a mutation in PA3257. PA3257 encodes a putative periplasmic protease. Mutation of PA3257 resulted in decreased algT/U expression. Thus, inhibition of algT/U is a primary mechanism for alginate synthesis suppression.
Collapse
Affiliation(s)
- Robert Sautter
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Roberts DP, Lohrke SM, McKenna L, Lakshman DK, Kong H, Lydon J. Mutation of a degS homologue in Enterobacter cloacae decreases colonization and biological control of damping-off on cucumber. PHYTOPATHOLOGY 2011; 101:271-280. [PMID: 20942652 DOI: 10.1094/phyto-03-10-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have been using mutagenesis to determine how biocontrol bacteria such as Enterobacter cloacae 501R3 deal with complex nutritional environments found in association with plants. E. cloacae C10, a mutant of 501R3 with a transposon insertion in degS, was diminished in growth on synthetic cucumber root exudate (SRE), colonization of cucumber seed and roots, and control of damping-off of cucumber caused by Pythium ultimum. DegS, a periplasmic serine protease in the closely related bacterium Escherichia coli K12, is required for the RpoE-mediated stress response. C10 containing wild-type degS from 501R3 or from E. coli K12 on pBeloBAC11 was significantly increased in growth on SRE, colonization of cucumber roots, and control of P. ultimum relative to C10 containing pBeloBAC11 alone. C10 and 501R3 were similar in sensitivity to acidic conditions, plant-derived phenolic compounds, oxidative stress caused by hydrogen peroxide, dessication, and high osmoticum; stress conditions potentially associated with plants. This study demonstrates a role for degS in the spermosphere and rhizosphere during colonization and disease control by Enterobacter cloacae. This study implicates, for the first time, the involvement of DegS and, by extension, the RpoE-mediated stress response, in reducing stress on E. cloacae resulting from the complex nutritional environments in the spermosphere and rhizosphere.
Collapse
Affiliation(s)
- Daniel P Roberts
- United States Department of Agriculture - Agriculture Research Service, Beltsville, MD, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Insights into the extracytoplasmic stress response of Xanthomonas campestris pv. campestris: role and regulation of {sigma}E-dependent activity. J Bacteriol 2010; 193:246-64. [PMID: 20971899 DOI: 10.1128/jb.00884-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Xanthomonas campestris pv. campestris is an epiphytic bacterium that can become a vascular pathogen responsible for black rot disease of crucifers. To adapt gene expression in response to ever-changing habitats, phytopathogenic bacteria have evolved signal transduction regulatory pathways, such as extracytoplasmic function (ECF) σ factors. The alternative sigma factor σ(E), encoded by rpoE, is crucial for envelope stress response and plays a role in the pathogenicity of many bacterial species. Here, we combine different approaches to investigate the role and mechanism of σ(E)-dependent activation in X. campestris pv. campestris. We show that the rpoE gene is organized as a single transcription unit with the anti-σ gene rseA and the protease gene mucD and that rpoE transcription is autoregulated. rseA and mucD transcription is also controlled by a highly conserved σ(E)-dependent promoter within the σ(E) gene sequence. The σ(E)-mediated stress response is required for stationary-phase survival, resistance to cadmium, and adaptation to membrane-perturbing stresses (elevated temperature and ethanol). Using microarray technology, we started to define the σ(E) regulon of X. campestris pv. campestris. These genes encode proteins belonging to different classes, including periplasmic or membrane proteins, biosynthetic enzymes, classical heat shock proteins, and the heat stress σ factor σ(H). The consensus sequence for the predicted σ(E)-regulated promoter elements is GGAACTN(15-17)GTCNNA. Determination of the rpoH transcription start site revealed that rpoH was directly regulated by σ(E) under both normal and heat stress conditions. Finally, σ(E) activity is regulated by the putative regulated intramembrane proteolysis (RIP) proteases RseP and DegS, as previously described in many other bacteria. However, our data suggest that RseP and DegS are not only dedicated to RseA cleavage and that the proteolytic cascade of RseA could involve other proteases.
Collapse
|
32
|
Hasenbein S, Meltzer M, Hauske P, Kaiser M, Huber R, Clausen T, Ehrmann M. Conversion of a Regulatory into a Degradative Protease. J Mol Biol 2010; 397:957-66. [DOI: 10.1016/j.jmb.2010.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 01/31/2023]
|
33
|
Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA. J Bacteriol 2010; 192:242-55. [PMID: 19880599 DOI: 10.1128/jb.01244-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SPOR domains are approximately 70 amino acids long and occur in >1,500 proteins identified by sequencing of bacterial genomes. The SPOR domains in the FtsN cell division proteins from Escherichia coli and Caulobacter crescentus have been shown to bind peptidoglycan. Besides FtsN, E. coli has three additional SPOR domain proteins--DamX, DedD, and RlpA. We show here that all three of these proteins localize to the septal ring in E. coli. The loss of DamX or DedD either alone or in combination with mutations in genes encoding other division proteins resulted in a variety of division phenotypes, demonstrating that DamX and DedD participate in cytokinesis. In contrast, RlpA mutants divided normally. Follow-up studies revealed that the SPOR domains themselves localize to the septal ring in vivo and bind peptidoglycan in vitro. Even SPOR domains from heterologous organisms, including Aquifex aeolicus, localized to septal rings when produced in E. coli and bound to purified E. coli peptidoglycan sacculi. We speculate that SPOR domains localize to the division site by binding preferentially to septal peptidoglycan. We further suggest that SPOR domain proteins are a common feature of the division apparatus in bacteria. DamX was characterized further and found to interact with multiple division proteins in a bacterial two-hybrid assay. One interaction partner is FtsQ, and several synthetic phenotypes suggest that DamX is a negative regulator of FtsQ function.
Collapse
|
34
|
Meltzer M, Hasenbein S, Mamant N, Merdanovic M, Poepsel S, Hauske P, Kaiser M, Huber R, Krojer T, Clausen T, Ehrmann M. Structure, function and regulation of the conserved serine proteases DegP and DegS of Escherichia coli. Res Microbiol 2009; 160:660-6. [DOI: 10.1016/j.resmic.2009.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/31/2009] [Accepted: 07/31/2009] [Indexed: 01/24/2023]
|
35
|
Nikoh N, Nakabachi A. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol 2009; 7:12. [PMID: 19284544 PMCID: PMC2662799 DOI: 10.1186/1741-7007-7-12] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 03/10/2009] [Indexed: 11/10/2022] Open
Abstract
Background Aphids possess bacteriocytes, which are cells specifically differentiated to harbour the obligate mutualist Buchnera aphidicola (γ-Proteobacteria). Buchnera has lost many of the genes that appear to be essential for bacterial life. From the bacteriocyte of the pea aphid Acyrthosiphon pisum, we previously identified two clusters of expressed sequence tags that display similarity only to bacterial genes. Southern blot analysis demonstrated that they are encoded in the aphid genome. In this study, in order to assess the possibility of lateral gene transfer, we determined the full-length sequences of these transcripts, and performed detailed structural and phylogenetic analyses. We further examined their expression levels in the bacteriocyte using real-time quantitative RT-PCR. Results Sequence similarity searches demonstrated that these fully sequenced transcripts are significantly similar to the bacterial genes ldcA (product, LD-carboxypeptidase) and rlpA (product, rare lipoprotein A), respectively. Buchnera lacks these genes, whereas many other bacteria, including Escherichia coli, a close relative of Buchnera, possess both ldcA and rlpA. Molecular phylogenetic analysis clearly demonstrated that the aphid ldcA was derived from a rickettsial bacterium closely related to the extant Wolbachia spp. (α-Proteobacteria, Rickettsiales), which are intracellular symbionts of various lineages of arthropods. The evolutionary origin of rlpA was not fully resolved, but it was clearly demonstrated that its double-ψ β-barrel domain is of bacterial origin. Real-time quantitative RT-PCR demonstrated that ldcA and rlpA are expressed 11.6 and 154-fold higher in the bacteriocyte than in the whole body, respectively. LdcA is an enzyme required for recycling murein (peptidoglycan), which is a component of the bacterial cell wall. As Buchnera possesses a cell wall composed of murein but lacks ldcA, a high level of expression of the aphid ldcA in the bacteriocyte may be essential to maintain Buchnera. Although the function of RlpA is not well known, conspicuous up-regulation of the aphid rlpA in the bacteriocyte implies that this gene is also essential for Buchnera. Conclusion In this study, we obtained several lines of evidence indicating that aphids acquired genes from bacteria via lateral gene transfer and that these genes are used to maintain the obligately mutualistic bacterium, Buchnera.
Collapse
Affiliation(s)
- Naruo Nikoh
- Division of Natural Sciences, The Open University of Japan, Chiba, Japan.
| | | |
Collapse
|
36
|
Philippe N, Pelosi L, Lenski RE, Schneider D. Evolution of penicillin-binding protein 2 concentration and cell shape during a long-term experiment with Escherichia coli. J Bacteriol 2009; 191:909-21. [PMID: 19047356 PMCID: PMC2632098 DOI: 10.1128/jb.01419-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 11/17/2008] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan is the major component of the bacterial cell wall and is involved in osmotic protection and in determining cell shape. Cell shape potentially influences many processes, including nutrient uptake as well as cell survival and growth. Peptidoglycan is a dynamic structure that changes during the growth cycle. Penicillin-binding proteins (PBPs) catalyze the final stages of peptidoglycan synthesis. Although PBPs are biochemically and physiologically well characterized, their broader effects, especially their effects on organismal fitness, are not well understood. In a long-term experiment, 12 populations of Escherichia coli having a common ancestor were allowed to evolve for more than 40,000 generations in a defined environment. We previously identified mutations in the pbpA operon in one-half of these populations; this operon encodes PBP2 and RodA proteins that are involved in cell wall elongation. In this study, we characterized the effects of two of these mutations on competitive fitness and other phenotypes. By constructing and performing competition experiments with strains that are isogenic except for the pbpA alleles, we showed that both mutations that evolved were beneficial in the environment used for the long-term experiment and that these mutations caused parallel phenotypic changes. In particular, they reduced the cellular concentration of PBP2, thereby generating spherical cells with an increased volume. In contrast to their fitness-enhancing effect in the environment where they evolved, both mutations decreased cellular resistance to osmotic stress. Moreover, one mutation reduced fitness during prolonged stationary phase. Therefore, alteration of the PBP2 concentration contributed to physiological trade-offs and ecological specialization during experimental evolution.
Collapse
Affiliation(s)
- Nadège Philippe
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier Grenoble 1, BP 170, F-38042 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
37
|
Kawe M, Horn U, Plückthun A. Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors. Microb Cell Fact 2009; 8:8. [PMID: 19171063 PMCID: PMC2655282 DOI: 10.1186/1475-2859-8-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Accepted: 01/26/2009] [Indexed: 11/17/2022] Open
Abstract
Background Overexpression of proteins in Escherichia coli is considered routine today, at least when the protein is soluble and not otherwise toxic for the host. We report here that the massive overproduction of even such "benign" proteins can cause surprisingly efficient promoter deletions in the expression plasmid, leading to the growth of only non-producers, when expression is not well repressed in the newly transformed bacterial cell. Because deletion is so facile, it might impact on high-throughput protein production, e.g. for structural genomics, where not every expression parameter will be monitored. Results We studied the high-level expression of several robust non-toxic proteins using a T5 promoter under lac operator control. Full induction leads to no significant growth retardation. We compared expression from almost identical plasmids with or without the lacI gene together in strains expressing different levels of LacI. Any combination without net overexpression of LacI led to an efficient promoter deletion in the plasmid, although the number of growing colonies and even the plasmid size – all antibiotic-resistant non-producers – was almost normal, and thus the problem not immediately recognizable. However, by assuring sufficient repression during the initial establishment phase of the plasmid, deletion was completely prevented. Conclusion The deletions in the insufficiently repressed system are caused entirely by the burden of high-level translation. Since the E. coli Dps protein, known to protect DNA against stress in the stationary phase, is accumulated in the deletion mutants, the mutation may have taken place during a transient stationary phase. The cause of the deletion is thus distinct from the well known interference of high-level transcription with plasmid replication. The deletion can be entirely prevented by overexpressing LacI, a useful precaution even without any signs of stress caused by the protein.
Collapse
Affiliation(s)
- Martin Kawe
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
38
|
Honegger A, Malebranche AD, Röthlisberger D, Plückthun A. The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains. Protein Eng Des Sel 2009; 22:121-34. [DOI: 10.1093/protein/gzn077] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Inagaki R, Tagawa K, Qi ML, Enokido Y, Ito H, Tamura T, Shimizu S, Oyanagi K, Arai N, Kanazawa I, Wanker EE, Okazawa H. Omi / HtrA2 is relevant to the selective vulnerability of striatal neurons in Huntington's disease. Eur J Neurosci 2008; 28:30-40. [PMID: 18662332 DOI: 10.1111/j.1460-9568.2008.06323.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Selective vulnerability of neurons is a critical feature of neurodegenerative diseases, but the underlying molecular mechanisms remain largely unknown. We here report that Omi/HtrA2, a mitochondrial protein regulating survival and apoptosis of cells, decreases selectively in striatal neurons that are most vulnerable to the Huntington's disease (HD) pathology. In microarray analysis, Omi/HtrA2 was decreased under the expression of mutant huntingtin (htt) in striatal neurons but not in cortical or cerebellar neurons. Mutant ataxin-1 (Atx-1) did not affect Omi/HtrA2 in any type of neuron. Western blot analysis of primary neurons expressing mutant htt also confirmed the selective reduction of the Omi/HtrA2 protein. Immunohistochemistry with a mutant htt-transgenic mouse line and human HD brains confirmed reduction of Omi/HtrA2 in striatal neurons. Overexpression of Omi/HtrA2 by adenovirus vector reverted mutant htt-induced cell death in primary neurons. These results collectively suggest that the homeostatic but not proapoptotic function of Omi/HtrA2 is linked to selective vulnerability of striatal neurons in HD pathology.
Collapse
Affiliation(s)
- Reina Inagaki
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program (COE) for Brain Integration and Its Disorders, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Role of the DksA-like protein in the pathogenesis and diverse metabolic activity of Campylobacter jejuni. J Bacteriol 2008; 190:4512-20. [PMID: 18456813 DOI: 10.1128/jb.00105-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DksA is well known for its regulatory role in the transcription of rRNA and genes involved in amino acid synthesis in many bacteria. DksA has also been reported to control expression of virulence genes in pathogenic bacteria. Here, we elucidated the roles of a DksA-like protein (CJJ81176_0160, Cj0125c) in the pathogenesis of Campylobacter jejuni. As in other bacteria, transcription of stable RNA was repressed by the DksA-like protein under stress conditions in C. jejuni. Transcriptomic and proteomic analyses of C. jejuni 81-176 and an isogenic mutant lacking the DksA-like protein showed differential expression of many genes involved in amino acid metabolism, iron-related metabolism, and other metabolic reactions. Also, the C. jejuni DksA-like protein mutant exhibited a decreased ability to invade intestinal cells and induce release of interleukin-8 from intestinal cells. These results suggest that the DksA-like protein plays an important regulatory role in diverse metabolic events and the virulence of C. jejuni.
Collapse
|
41
|
Kim DY, Kwon E, Shin YK, Kweon DH, Kim KK. The mechanism of temperature-induced bacterial HtrA activation. J Mol Biol 2008; 377:410-20. [PMID: 18272173 DOI: 10.1016/j.jmb.2007.12.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/04/2007] [Accepted: 12/31/2007] [Indexed: 11/29/2022]
Abstract
High-temperature requirement A (HtrA) protein has been known as a moonlighting protein that plays dual roles as a molecular chaperone and as a protease. The proteolytic activity of HtrA is switched on at elevated temperatures, whereas the chaperone function predominates at normal temperatures. The temperature-regulated functional switch of HtrA appears to be critical for the control of the stability of cellular proteins, as well as for the elimination of denatured proteins in order to maintain viability. Although certain conformational changes are expected to be concurrent with the functional activation of HtrA proteolysis, the molecular mechanisms inherent to this process have yet to be elucidated. Spin labeling electron paramagnetic resonance and fluorescence spectroscopy experiments on the HtrA from Thermotoga maritima (Tm HtrA) have shown that a helical lid (H(L)) that covers the active site is lifted up to expose the catalytic and substrate-binding sites to the solvent at elevated temperatures, whereas the overall structure is maintained over a wide temperature range. Results indicate that the proteolytic activity of Tm HtrA is turned on by the geometric change occurring around the H(L), resulting in a substrate-accessible path. In conclusion, the functional switch of Tm HtrA is embedded in the sentinel of the H(L) in terms of substrate accessibility.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | |
Collapse
|
42
|
Campbell TL, Ederer CS, Allali-Hassani A, Brown ED. Isolation of the rstA gene as a multicopy suppressor of YjeE, an essential ATPase of unknown function in Escherichia coli. J Bacteriol 2007; 189:3318-21. [PMID: 17293428 PMCID: PMC1855840 DOI: 10.1128/jb.00131-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YjeE is an essential ATPase in Escherichia coli whose cellular function remains uncharacterized. Using a genomic library, we have identified rstA as a multicopy suppressor of a conditional yjeE deletion strain. High-copy rstA is the first recorded suppressor for a lesion in yjeE, and this newly charted genetic interaction has the potential to be informative about the function, with further study of the interacting partners.
Collapse
Affiliation(s)
- Tracey L Campbell
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main St. West, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Abstract
Hfq plays an important role in cellular physiology by regulating the expression of several genes. Hfq synthesis in Escherichia coli is subject to auto-repression at translational level. Studies with Shigella flexneri show that hfq transcription is regulated by a pleiotropic regulator, DksA. Comparison of gene expression profiles of wild type and dksA mutant S. flexneri determined that hfq expression was reduced in the dksA mutant. As DksA is required for stress resistance and plaque formation in cultured cell monolayers, a measure of virulence, we assessed the role of Hfq in the dksA virulence phenotype. Expression of hfq in the dksA mutant restored plaque formation, and an hfq mutant failed to form plaques. Thus, DksA plays a role in regulating hfq gene expression and this regulation is important for S. flexneri virulence. In an in vitro transcription assay, addition of DksA increased transcription of hfq and this effect was greatest with one of the known hfq promoters. Addition of ppGpp, a stringent response molecule, along with DksA in the in vitro transcription assay resulted in a further increase in transcription of hfq, indicating that DksA is required for maximal transcription of hfq during both exponential and stringent response growth conditions.
Collapse
Affiliation(s)
- Ashima K Sharma
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
44
|
Mo E, Peters SE, Willers C, Maskell DJ, Charles IG. Single, double and triple mutants of Salmonella enterica serovar Typhimurium degP (htrA), degQ (hhoA) and degS (hhoB) have diverse phenotypes on exposure to elevated temperature and their growth in vivo is attenuated to different extents. Microb Pathog 2006; 41:174-82. [PMID: 16949246 DOI: 10.1016/j.micpath.2006.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 07/11/2006] [Indexed: 11/23/2022]
Abstract
DegP (HtrA) is a well-studied protease involved in survival of bacteria under stress conditions in vitro and in vivo. There are two paralogues of DegP in the Salmonella enterica serovar Typhimurium genome, DegQ and DegS. In order to understand more about the biological significance of this gene family, a series of deg-deletion mutants was generated in S. Typhimurium strain SL3261 by allelic replacement. At elevated temperature in vitro, the viability of degP and degS mutants was reduced when compared with the parent strain whereas the viability of a degQ mutant was not significantly affected. The viability of a double degP-degS mutant at elevated temperature was severely decreased when compared with the respective single mutants or, interestingly, with a triple degP-degQ-degS mutant. All the deg deletions were transduced into the mouse-virulent strain SL1344 and the resultant mutants were injected intravenously into BALB/c mice to test virulence. degP and degS single mutants and all combinations of double and triple mutants were attenuated to different degrees, whereas the single degQ mutant was as virulent as the wild-type strain. Thus, within this gene family, degP and degS appear important for survival at elevated temperature and are necessary for full virulence, whereas a single degQ deletion appears to have no clear role in survival and growth at elevated temperature or in mice.
Collapse
Affiliation(s)
- Elaine Mo
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
45
|
Luginbühl B, Kanyo Z, Jones RM, Fletterick RJ, Prusiner SB, Cohen FE, Williamson RA, Burton DR, Plückthun A. Directed Evolution of an Anti-prion Protein scFv Fragment to an Affinity of 1 pM and its Structural Interpretation. J Mol Biol 2006; 363:75-97. [PMID: 16962610 DOI: 10.1016/j.jmb.2006.07.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 07/12/2006] [Accepted: 07/13/2006] [Indexed: 11/27/2022]
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative prion disease affecting cattle that is transmissible to humans, manifesting as a variant of Creutzfeldt-Jakob disease (vCJD) likely following the consumption of meat contaminated with BSE prions. High-affinity antibodies are a prerequisite for the development of simple, highly sensitive and non-invasive diagnostic tests that are able to detect even small amounts of the disease-associated PrP conformer (PrP(Sc)). We describe here the affinity maturation of a single-chain Fv antibody fragment with a binding affinity of 1 pM to a peptide derived from the unstructured region of bovine PrP (BoPrP (90-105)). This is the tightest peptide-binding antibody reported to date and may find useful application in diagnostics, especially when PrP(Sc) is pretreated by denaturation and/or proteolysis for peptide-like presentation. Several rounds of directed evolution and off-rate selection with ribosome display were performed using an antibody library generated from a single PrP binder with error-prone PCR and DNA-shuffling. As the correct determinations of affinities in this range are not straightforward, competition biosensor techniques and KinExA methods were both applied and compared. Structural interpretation of the affinity improvement was performed based on the crystal structure of the original prion binder in complex with the BoPrP (95-104) peptide by modeling the corresponding mutations.
Collapse
Affiliation(s)
- Béatrice Luginbühl
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wood LF, Leech AJ, Ohman DE. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon inPseudomonas aeruginosa: roles of σ22(AlgT) and the AlgW and Prc proteases. Mol Microbiol 2006; 62:412-26. [PMID: 17020580 DOI: 10.1111/j.1365-2958.2006.05390.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bioassay was developed to identify stimuli that promote the transcriptional induction of the algD operon for alginate biosynthesis in Pseudomonas aeruginosa. Strain PAO1 carried the algD promoter fused to a chloramphenicol acetyl-transferase cartridge (PalgD-cat), and > 50 compounds were tested for promoting chloramphenicol resistance. Most compounds showing PalgD-cat induction were cell wall-active antibiotics that blocked peptidoglycan synthesis. PalgD-cat induction was blocked by mutations in the genes for sigma22 (algT/algU) or regulators AlgB and AlgR. Anti-sigma factor MucA was the primary regulator of sigma22 activity. A transcriptome analysis using microarrays verified that the algD operon undergoes high induction by D-cycloserine. A similar sigma(E)-RseAB complex in Escherichia coli responds to envelope stress, which requires DegS protease in a regulated intramembrane proteolysis (RIP) cascade to derepress the sigma. Mutant phenotypic studies in P. aeruginosa showed that AlgW (PA4446) is likely to be the DegS functional homologue. A mutation in algW resulted in a complete lack of PalgD-cat induction by D-cycloserine. Overexpression of algW in PAO1 resulted in a mucoid phenotype and alginate production, even in the absence of cell wall stress, suggesting that AlgW protease plays a role in sigma22 activation. In addition, a mutation in gene PA3257 (prc), encoding a Prc-like protease, resulted in poor induction of PalgD-cat by D-cycloserine, suggesting that it also plays a role in the response to cell wall stress.
Collapse
Affiliation(s)
- Lynn F Wood
- Department of Microbiology and Immunology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | |
Collapse
|
47
|
Kubetzko S, Balic E, Waibel R, Zangemeister-Wittke U, Plückthun A. PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5: effects on tumor targeting. J Biol Chem 2006; 281:35186-201. [PMID: 16963450 DOI: 10.1074/jbc.m604127200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major goal in antibody design for cancer therapy is to tailor the pharmacokinetic properties of the molecule according to specific treatment requirements. Key parameters determining the pharmacokinetics of therapeutic antibodies are target specificity, affinity, stability, and size. Using the p185HER-2 (HER-2)-specific scFv 4D5 as model system, we analyzed how changes in molecular weight and valency independently affect antigen binding and tumor localization. By employing multimerization and PEGylation, four different antibody formats were generated and compared with the scFv 4D5. First, dimeric and tetrameric miniantibodies were constructed by fusion of self-associating, disulfide-linked peptides to the scFv 4D5. Second, we attached a 20-kDa PEG moiety to the monovalent scFv and to the divalent miniantibody at the respective C terminus. In all formats, serum stability and full binding reactivity of the scFv 4D5 were retained. Functional affinity, however, did change. An avidity increase was achieved by multimerization, whereas PEGylation resulted in a 5-fold decreased affinity. Nevertheless, the PEGylated monomer showed an 8.5-fold, and the PEGylated dimer even a 14.5-fold higher tumor accumulation than the corresponding scFv, 48 h post-injection, because of a significantly longer serum half-life. In comparison, the non-PEGylated bivalent and tetravalent miniantibodies showed only a moderate increase in tumor localization compared with the scFv, which correlated with the degree of multimerization. However, these non-PEGylated formats resulted in higher tumor-to-blood ratios. Both multimerization and PEGylation represent thus useful strategies to tailor the pharmacokinetic properties of therapeutic antibodies and their combined use can additively improve tumor targeting.
Collapse
Affiliation(s)
- Susanne Kubetzko
- Department of Biochemistry, University Hospital, University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Zahnd C, Pecorari F, Straumann N, Wyler E, Plückthun A. Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J Biol Chem 2006; 281:35167-75. [PMID: 16963452 DOI: 10.1074/jbc.m602547200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are a novel class of binding proteins that bind their target protein with high affinity and specificity and have very favorable expression and stability properties. We describe here the in vitro selection of DARPins against human epidermal growth factor receptor 2 (Her2), an important target for cancer therapy and diagnosis. Several DARPins bind to the same epitope as trastuzumab (Herceptin), but none were selected that bind to the epitope of pertuzumab (Omnitarg). Some of the selected DARPins bind with low nanomolar affinity (Kd=7.3 nm) to the target. Further analysis revealed that all DARPins are highly specific and do not cross-react with epidermal growth factor receptor I (EGFR1) or any other investigated protein. The selected DARPins specifically bind to strongly Her2-overexpressing cell lines such as SKBR-3 but also recognize small amounts of Her2 on weakly expressing cell lines such as MCF-7. Furthermore, the DARPins also lead to a highly specific and strong staining of plasma membranes of paraffinated sections of human mamma-carcinoma tissue. Thus, the selected DARPins might be used for the development of diagnostic tests for the status of Her2 overexpression in different adenocarcinomas, and they may be further evaluated for their potential in targeted therapy since their favorable expression properties make the construction of fusion proteins very convenient.
Collapse
Affiliation(s)
- Christian Zahnd
- Department of Biochemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Singh AK, Summerfield TC, Li H, Sherman LA. The heat shock response in the cyanobacterium Synechocystis sp. Strain PCC 6803 and regulation of gene expression by HrcA and SigB. Arch Microbiol 2006; 186:273-86. [PMID: 16868740 DOI: 10.1007/s00203-006-0138-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 06/14/2006] [Accepted: 06/19/2006] [Indexed: 11/25/2022]
Abstract
We report on the genome-wide response, based on DNA microarrays, of the cyanobacterium Synechocystis sp. PCC 6803 wild type and DeltasigB to a 15 min heat shock. Approximately 9% of the genes in wild type and DeltasigB were significantly regulated (P < 0.001) following this treatment, with chaperones induced the most. The absence of sigB had no dramatic effect on specific genes induced by heat shock, but did affect the level of transcription of the chaperones. In addition, sigE was induced in DeltasigB. Comparison of global gene expression of the wild type and the hrcA mutant at 30 degrees C enabled us to examine the HrcA regulon, which included groESL and groEL2. Several genes belonging to specific functional groups (e.g., pilus biogenesis/assembly and phototaxis, biosynthesis of aromatic amino acids, murien sacculus and peptidoglycan, surface polysaccharides, and the Sec pathway) were differentially regulated following heat shock. We used results from knock-out mutants in sigB, sigD and sigE to construct a model of the network of group 2 sigma factor regulation upon each other. In this network, SigB represented the major node and SigE a secondary node. Overall, we determined that transcription of the heat-shock genes are regulated to various degrees by SigB, SigE and HrcA.
Collapse
Affiliation(s)
- Abhay K Singh
- Department of Biological Sciences, Purdue University, 1392 Lilly Hall of Life Sciences, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
50
|
Yao Y, Xie Y, Kim KS. Genomic comparison of Escherichia coli K1 strains isolated from the cerebrospinal fluid of patients with meningitis. Infect Immun 2006; 74:2196-206. [PMID: 16552050 PMCID: PMC1418925 DOI: 10.1128/iai.74.4.2196-2206.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Escherichia coli is a major cause of enteric/diarrheal diseases, urinary tract infections, and sepsis. E. coli K1 is the leading gram-negative organism causing neonatal meningitis, but the microbial basis of E. coli K1 meningitis is incompletely understood. Here we employed comparative genomic hybridization to investigate 11 strains of E. coli K1 isolated from the cerebrospinal fluid (CSF) of patients with meningitis. These 11 strains cover the majority of common O serotypes in E. coli K1 isolates from CSF. Our data demonstrated that these 11 strains of E. coli K1 can be categorized into two groups based on their profile for putative virulence factors, lipoproteins, proteases, and outer membrane proteins. Of interest, we showed that some open reading frames (ORFs) encoding the type III secretion system apparatus were found in group 2 strains but not in group 1 strains, while ORFs encoding the general secretory pathway are predominant in group 1 strains. These findings suggest that E. coli K1 strains isolated from CSF can be divided into two groups and these two groups of E. coli K1 may utilize different mechanisms to induce meningitis.
Collapse
Affiliation(s)
- Yufeng Yao
- Division of Pediatric Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | |
Collapse
|