1
|
Oles RE, Carrillo Terrazas M, Loomis LR, Hsu CY, Tribelhorn C, Belda-Ferre P, Ea AC, Bryant M, Young JA, Carrow HC, Sandborn WJ, Dulai PS, Sivagnanam M, Pride D, Knight R, Chu H. Pangenome comparison of Bacteroides fragilis genomospecies unveils genetic diversity and ecological insights. mSystems 2024; 9:e0051624. [PMID: 38934546 PMCID: PMC11265264 DOI: 10.1128/msystems.00516-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon, which differentiates into two genomospecies termed divisions I and II. Through a comprehensive collection of 694 B. fragilis whole genome sequences, we identify novel features distinguishing these divisions. Our study reveals a distinct geographic distribution with division I strains predominantly found in North America and division II strains in Asia. Additionally, division II strains are more frequently associated with bloodstream infections, suggesting a distinct pathogenic potential. We report differences between the two divisions in gene abundance related to metabolism, virulence, stress response, and colonization strategies. Notably, division II strains harbor more antimicrobial resistance (AMR) genes than division I strains. These findings offer new insights into the functional roles of division I and II strains, indicating specialized niches within the intestine and potential pathogenic roles in extraintestinal sites. IMPORTANCE Understanding the distinct functions of microbial species in the gut microbiome is crucial for deciphering their impact on human health. Classifying division II strains as Bacteroides fragilis can lead to erroneous associations, as researchers may mistakenly attribute characteristics observed in division II strains to the more extensively studied division I B. fragilis. Our findings underscore the necessity of recognizing these divisions as separate species with distinct functions. We unveil new findings of differential gene prevalence between division I and II strains in genes associated with intestinal colonization and survival strategies, potentially influencing their role as gut commensals and their pathogenicity in extraintestinal sites. Despite the significant niche overlap and colonization patterns between these groups, our study highlights the complex dynamics that govern strain distribution and behavior, emphasizing the need for a nuanced understanding of these microorganisms.
Collapse
Affiliation(s)
- Renee E. Oles
- Department of Pathology, University of California, San Diego, California, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| | | | - Luke R. Loomis
- Department of Pathology, University of California, San Diego, California, USA
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, California, USA
| | - Caitlin Tribelhorn
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| | - Allison C. Ea
- Department of Pathology, University of California, San Diego, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| | - Jocelyn A. Young
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Hannah C. Carrow
- Department of Pathology, University of California, San Diego, California, USA
| | - William J. Sandborn
- Division of Gastroenterology, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
| | - Parambir S. Dulai
- Division of Gastroenterology, University of California, San Diego, California, USA
- Division of Gastroenterology, Northwestern University, Chicago, Illinois, USA
| | - Mamata Sivagnanam
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - David Pride
- Department of Pathology, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Center for Innovative Phage Applications and Therapeutics (IPATH), University of California, San Diego, California, USA
- Center of Advanced Laboratory Medicine (CALM), University of California, San Diego, California, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, California, USA
- Department of Computer Science & Engineering, University of California, San Diego, California, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, California, USA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, California, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, California, USA
| |
Collapse
|
2
|
Oles RE, Terrazas MC, Loomis LR, Hsu CY, Tribelhorn C, Ferre PB, Ea A, Bryant M, Young J, Carrow HC, Sandborn WJ, Dulai P, Sivagnanam M, Pride D, Knight R, Chu H. Pangenome comparison of Bacteroides fragilis genomospecies unveil genetic diversity and ecological insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572674. [PMID: 38187556 PMCID: PMC10769428 DOI: 10.1101/2023.12.20.572674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon that differentiates into two genomospecies termed division I and II. We leverage a comprehensive collection of 694 B. fragilis whole genome sequences and report differential gene abundance to further support the recent proposal that divisions I and II represent separate species. In division I strains, we identify an increased abundance of genes related to complex carbohydrate degradation, colonization, and host niche occupancy, confirming the role of division I strains as gut commensals. In contrast, division II strains display an increased prevalence of plant cell wall degradation genes and exhibit a distinct geographic distribution, primarily originating from Asian countries, suggesting dietary influences. Notably, division II strains have an increased abundance of genes linked to virulence, survival in toxic conditions, and antimicrobial resistance, consistent with a higher incidence of these strains in bloodstream infections. This study provides new evidence supporting a recent proposal for classifying divisions I and II B. fragilis strains as distinct species, and our comparative genomic analysis reveals their niche-specific roles.
Collapse
Affiliation(s)
- Renee E Oles
- Department of Pathology, University of California, San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
| | | | - Luke R Loomis
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Caitlin Tribelhorn
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
| | - Pedro Belda Ferre
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
| | - Allison Ea
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
| | - Jocelyn Young
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
- Rady Children's Hospital, San Diego, CA, United States
| | - Hannah C Carrow
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - William J Sandborn
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| | - Parambir Dulai
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA
- Division of Gastroenterology, Northwestern University, Chicago, Illinois
| | - Mamata Sivagnanam
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
- Rady Children's Hospital, San Diego, CA, United States
| | - David Pride
- Department of Pathology, University of California, San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
- Center for Innovative Phage Applications and Therapeutics (IPATH), University of California, San Diego, La Jolla, CA
- Center of Advanced Laboratory Medicine (CALM), University of California, San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, La Jolla, CA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, La Jolla, CA
| |
Collapse
|
3
|
Sóki J, Keszőcze A, Nagy I, Burián K, Nagy E. An update on ampicillin resistance and β-lactamase genes of Bacteroides spp. J Med Microbiol 2021; 70. [PMID: 34463608 DOI: 10.1099/jmm.0.001393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction. There are several β-lactamase genes described for Bacteroides strains, of which cepA and cfiA are specific for Bacteroides fragilis and define two genetic divisions. The expression and phenotypic effects of these genes are usually regulated by insertional activation.Hypotheses/Gap Statement. Information is lacking about how cepA is regulated for most of the B. fragilis strains and whether there could be a genetic element for it.Aim. We aimed to investigate the molecular background of ampicillin (and other β-lactam) resistance among Bacteroides strains as mediated mainly by cepA and also to find a genetic element for it as known for cfiA.Methodology. Various PCR methods were used for β-lactamase-resistance gene and insertion sequence (IS) element detection in 42 Bacteroides strains. β-Lactamase activity measurements and antimicrobial-susceptibility testing using agar dilution were also applied. Further molecular experiments involved sequencing, gene targeting, Southern blotting and bioinformatic analyses.Results. We found that high antibiotic resistance and β-lactamase levels are brought about by insertional activation of the cepA gene or by similar or dissimilar activation of cfxA or cfiA, or by the newly described pbbA genes. Non-activated cepA genes produced low levels of specific β-lactamase activities that did not correlate with ampicillin resistance. We found a genetic element for cepA and another region close to it that are characteristic for division I B. fragilis strains, which are replaced by other sequences in division II B. fragilis strains.Conclusion. cepA usually is not activated by IS elements and usually produces low β-lactamase activities that do not correlate with the ampicillin MICs; therefore, it probably involves some non-β-lactamase-mediated resistance mechanism(s). pbpA is a newly described, effective β-lactamase gene that is located on a plasmid, and cepA resides on a well-defined chromosomal segment that is mutually replaced in division II B. fragilis strains. This latter finding demonstrates the genetic dichotomy of cepA-cfiA in B. fragilis and requires further investigation.
Collapse
Affiliation(s)
- József Sóki
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anikó Keszőcze
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Present address: National Institute of Oncology, Budapest, Hungary
| | - István Nagy
- SEQOMICS Ltd., Mórahalom, Hungary.,Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Katalin Burián
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Baaity Z, Jamal W, Rotimi VO, Burián K, Leitsch D, Somogyvári F, Nagy E, Sóki J. Molecular characterization of metronidazole resistant Bacteroides strains from Kuwait. Anaerobe 2021; 69:102357. [PMID: 33713801 DOI: 10.1016/j.anaerobe.2021.102357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Eleven metronidazole resistant Bacteroides and one newly classified Phocaeicola dorei strain from Kuwait were investigated for their resistance mechanisms and the emergence of their resistant plasmids. All but one strain harbored nimE genes on differently sized plasmids. Of the 11 nimE genes, 9 were preceded by full copies of the prototype ISBf6 insertion sequence element, one carried a truncated ISBf6 and one was activated by an additional copy of IS612B. Nucleotide sequencing results showed that the nimE ISBf6 distances were constant and all five different plasmids shared a common region, suggesting that (i) the nimE-ISBf6 configuration was inserted into an undisclosed common genetic element, (ii) over time, this common element was mutated by insertions and deletions, spreading the resultant plasmids. Of the 10 B. fragilis strains in this collection, 6 were also cfiA-positive, one with full imipenem resistance, indicating a tendency for multidrug resistance (MDR) among such isolates. The significant number of metronidazole resistant Bacteroides spp. and P. dorei strains with the MDR phenotype warns of difficulties in treatment and suggests promoting adherence to antibiotic stewardship recommendations in Kuwait.
Collapse
Affiliation(s)
- Zain Baaity
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Wafaa Jamal
- Department of Microbiology, Faculty of Medicine, University of Kuwait, Safat, Kuwait
| | - Vincent O Rotimi
- Department of Microbiology, Faculty of Medicine, University of Kuwait, Safat, Kuwait
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ferenc Somogyvári
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
5
|
Jeverica S, Sóki J, Premru MM, Nagy E, Papst L. High prevalence of division II (cfiA positive) isolates among blood stream Bacteroides fragilis in Slovenia as determined by MALDI-TOF MS. Anaerobe 2019; 58:30-34. [PMID: 30716401 DOI: 10.1016/j.anaerobe.2019.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
Bacteroides fragilis can be classified into division I (cfiA negative) and division II (cfiA positive) isolates. Division II isolates have a silent chromosomal carbapenemase gene (cfiA) that can become overexpressed by an insertion of a mobile genetic element and thus develop a phenotypic resistance to carbapenems. Aims of our study were (i) to determine the prevalence of B. fragilis division II (cfiA positive) isolates among blood stream and non-blood stream isolates from two major Slovenian tertiary-care hospitals and (ii) to assess its influence on phenotypic resistance to imipenem. Consecutive non-duplicate B. fragilis isolates from blood stream and non-blood stream specimens were included in the analysis from 2015 to 2017 period. Data from laboratory information system were matched with mass spectra obtained with Microflex LT instrument and MALDI Biotyper 3.1 software (Bruker Daltonik, Bremen, Germany). All mass spectra were reanalyzed using Bruker taxonomy library. Spectra with a log(score) > 2.0 were further analyzed with cfiA library that separates B. fragilis division I and II isolates based on a log(score) value difference of >0.3. Minimal inhibitory concentrations (MICs) for imipenem were determined with Etest (bioMérieux, Marcy l'Étoile, France), using supplemented Brucella agar and EUCAST breakpoints (S ≤ 2 mg/L, R > 8 mg/L). Altogether 623 consecutive B. fragilis isolates were included in the analysis; 47 (7.5%) were isolated from blood stream and 576 (92.5%) from non-blood stream specimens. Among all study isolates, 51 (8.2%) proved to belong to division II (cfiA positive). The proportions of division II isolates among blood stream and non-blood stream isolates were 14.9% and 7.6%, respectively (p = 0.081, ns). In total, 1.3% (n = 8) were non-susceptible to imipenem (MIC >2 mg/L); 4.3% (n = 2) among blood stream and 1% (n = 6) among non-blood stream isolates. All imipenem resistant isolates belonged to division II. Modal MICs (MIC range) were 0.064 mg/L (0.016 mg/L-2 mg/L) and 0.125 mg/L (0.064 mg/L-≥32 mg/L) for division I and II isolates, respectively.
Collapse
Affiliation(s)
- Samo Jeverica
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - József Sóki
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Manica Mueller Premru
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Elizabeth Nagy
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Lea Papst
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Cordovana M, Kostrzewa M, Sóki J, Witt E, Ambretti S, Pranada A. Bacteroides fragilis: A whole MALDI-based workflow from identification to confirmation of carbapenemase production for routine laboratories. Anaerobe 2018; 54:246-253. [DOI: 10.1016/j.anaerobe.2018.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
|
7
|
Sóki J, Hedberg M, Patrick S, Bálint B, Herczeg R, Nagy I, Hecht DW, Nagy E, Urbán E. Emergence and evolution of an international cluster of MDRBacteroides fragilisisolates. J Antimicrob Chemother 2016; 71:2441-8. [DOI: 10.1093/jac/dkw175] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/17/2016] [Indexed: 12/29/2022] Open
|
8
|
Nshimyimana JP, Ekklesia E, Shanahan P, Chua LHC, Thompson JR. Distribution and abundance of human-specific Bacteroides and relation to traditional indicators in an urban tropical catchment. J Appl Microbiol 2014; 116:1369-83. [PMID: 24460587 PMCID: PMC4271309 DOI: 10.1111/jam.12455] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/29/2022]
Abstract
AIMS The study goals were to determine the relationship between faecal indicator bacteria (FIB), the HF183 marker and land use, and the phylogenetic diversity of HF183 marker sequences in a tropical urban watershed. METHODS AND RESULTS Total coliforms, Escherichia coli, and HF183 were quantified in 81 samples categorized as undeveloped, residential and horticultural from the Kranji Reservoir and Catchment in Singapore. Quantitative-PCR for HF183 followed by analysis of variance indicated that horticultural areas had significantly higher geometric means for marker levels (4·3 × 10(4) HF183-GE 100 ml(-1)) than nonhorticultural areas (3·07 × 10(3) HF183-GE 100 ml(-1)). E. coli and HF183 were moderately correlated in horticultural areas (R = 0·59, P = 0·0077), but not elsewhere in the catchment. Initial upstream surveys of candidate sources revealed elevated HF183 in a wastewater treatment effluent but not in aquaculture ponds. The HF183 marker was cloned, sequenced and determined by phylogenetic analysis to match the original marker description. CONCLUSION We show that quantification of the HF183 marker is a useful tool for mapping the spatial distribution and potential sources of human sewage contamination in tropical environments such as Singapore. SIGNIFICANCE AND IMPACT A major challenge for assessment of water quality in tropical environments is the natural occurrence and nonconservative behaviour of FIB. The HF183 marker has been employed in temperate environments as an alternative indicator for human sewage contamination. Our study supports the use of the HF183 marker as an indicator for human sewage in Singapore and motivates further work to determine HF183 marker levels that correspond to public health risk in tropical environments.
Collapse
Affiliation(s)
- J P Nshimyimana
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
9
|
Sóki J, Eitel Z, Terhes G, Nagy E, Urbán E. Occurrence and analysis of rare cfiA–bft doubly positive Bacteroides fragilis strains. Anaerobe 2013; 23:70-3. [DOI: 10.1016/j.anaerobe.2013.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
|
10
|
Sóki J, Eitel Z, Urbán E, Nagy E. Molecular analysis of the carbapenem and metronidazole resistance mechanisms of Bacteroides strains reported in a Europe-wide antibiotic resistance survey. Int J Antimicrob Agents 2013; 41:122-5. [DOI: 10.1016/j.ijantimicag.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
|
11
|
Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 2011; 60:1584-1590. [PMID: 21680764 DOI: 10.1099/jmm.0.031336-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used in clinical microbiological laboratories to identify bacteria and fungi at a species level and to subtype them. The cfiA gene encoding the unique carbapenemases found in Bacteroides is restricted to division II Bacteroides fragilis strains. The aim of this study was to evaluate whether MALDI-TOF MS is suitable for differentiating B. fragilis strains which harbour the cfiA gene from those that do not. A well-defined collection of 40 B. fragilis isolates with known imipenem MICs (0.062->32 mg l(-1)) were selected for this study. Twelve B. fragilis strains with known cfiA status, including NCTC 9343 (division I) and TAL3636 (division II), were measured by means of microflex LT MALDI-TOF MS and well-defined differences in mass spectra between the cfiA-positive and cfiA-negative strains were found in the interval 4000-5500 Da. A further 28 strains were selected for the blind measurements: 9 cfiA-positive clinical isolates with different imipenem MICs ranging between 0.06 and >32 mg l(-1) (different expressions of the metallo-β-lactamase gene) were clearly separated from the 19 cfiA-negative isolates. The presence or absence of the selected peaks in all tested strains clearly differentiated the strains belonging to B. fragilis division I (cfiA-negative) or division II (cfiA-positive). These results suggest a realistic method for differentiating division II B. fragilis strains (harbouring the cfiA gene) and to determine them at a species level at the same time. Although not all cfiA-positive B. fragilis strains are resistant to carbapenems, they all have the possibility of becoming resistant to this group of antibiotics by acquisition of an appropriate IS element for full expression of the cfiA gene, leading to possible treatment failure.
Collapse
Affiliation(s)
- Elisabeth Nagy
- Hungarian Anaerobe Reference Laboratory, Institute of Clinical Microbiology, University of Szeged, Hungary
| | | | - József Sóki
- Hungarian Anaerobe Reference Laboratory, Institute of Clinical Microbiology, University of Szeged, Hungary
| | - Edit Urbán
- Hungarian Anaerobe Reference Laboratory, Institute of Clinical Microbiology, University of Szeged, Hungary
| | | |
Collapse
|
12
|
Ko KS, Kuwahara T, Lee K, Kook YH. Population structure and distribution of virulence-related genes of Bacteroides fragilis isolates from Korea and Japan. Diagn Microbiol Infect Dis 2009; 64:340-3. [DOI: 10.1016/j.diagmicrobio.2009.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
|
13
|
Gene Context and DNA rearrangements in the carbapenemase locus of division II strains of Bacteroides fragilis. Antimicrob Agents Chemother 2009; 53:2677-8. [PMID: 19364865 DOI: 10.1128/aac.01514-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cfiA gene is clustered in a bicistronic operon encoding an N-acetyltransferase and an O-acetyltransferase related to resistance markers. This genetic context, exclusively found in strains of Bacteroides fragilis division II, has been highly rearranged by the successive integration of two new mobile sequences, a miniature element and ISBf9. Besides that, among the DNA polymorphisms detected in the cfiA locus, only the integration of IS942 at its promoter was a determinant for expression of carbapenemase activity.
Collapse
|
14
|
Terhes G, Brazier JS, Sóki J, Urbán E, Nagy E. Coincidence of bft and cfiA genes in a multi-resistant clinical isolate of Bacteroides fragilis. J Med Microbiol 2007; 56:1416-1418. [PMID: 17893185 DOI: 10.1099/jmm.0.47242-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Gabriella Terhes
- Department of Clinical Microbiology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Jon S Brazier
- Anaerobe Reference Laboratory, NPHS Microbiology Cardiff, University Hospital of Wales, Cardiff, UK
| | - József Sóki
- Department of Clinical Microbiology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Edit Urbán
- Department of Clinical Microbiology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Elisabeth Nagy
- Department of Clinical Microbiology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
15
|
Ko KS, Kuwahara T, Haehwa L, Yoon YJ, Kim BJ, Lee KH, Ohnishi Y, Kook YH. RNA polymerase beta-subunit gene (rpoB) sequence analysis for the identification of Bacteroides spp. Clin Microbiol Infect 2007; 13:48-54. [PMID: 17184287 DOI: 10.1111/j.1469-0691.2006.01553.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Partial rpoB sequences (317 bp) of 11 species of Bacteroides, two Porphyromonas spp. and two Prevotella spp. were compared to delineate the genetic relationships among Bacteroides and closely related anaerobic species. The high level of inter-species sequence dissimilarities (7.6-20.8%) allowed the various Bacteroides spp. to be distinguished. The position of the Bacteroides distasonis and Bacteriodes merdae cluster in the rpoB tree was different from the position in the 16S rRNA gene tree. Based on rpoB sequence similarity and clustering in the rpoB tree, it was possible to correctly re-identify 80 clinical isolates of Bacteroides. In addition to two subgroups, cfiA-negative (division I) and cfiA-positive (division II), of Bacteroides fragilis isolates, two distinct subgroups were also found among Bacteroides ovatus and Bacteroides thetaiotaomicron isolates. Bacteroides genus-specific rpoB PCR and B. fragilis species-specific rpoB PCR allowed Bacteroides spp. to be differentiated from Porphyromonas and Prevotella spp., and also allowed B. fragilis to be differentiated from other non-fragilisBacteroides spp. included in the present study.
Collapse
Affiliation(s)
- K S Ko
- Asian-Pacific Research Foundation for Infectious Diseases (ARFID) and Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nakano V, Gomes TAT, Vieira MAM, Ferreira RDC, Avila-Campos MJ. bft gene subtyping in enterotoxigenic Bacteroides fragilis isolated from children with acute diarrhea. Anaerobe 2006; 13:1-5. [PMID: 17166747 DOI: 10.1016/j.anaerobe.2006.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/18/2006] [Accepted: 10/06/2006] [Indexed: 11/30/2022]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) strains are associated with diarrhea disease in farm animals and young children. In this study, the bft gene subtyping from ETBF strains recovered from one immunodeficient and two immunocompetent children with diarrhea were determined. Thirteen ETBF strains were isolated and by using a multiplex-PCR their bft subtypes were determined. All 13 ETBF strains harbored the bft-1 subtype and by AP-PCR they were clustered in the same group I. This study shows that ETBF strains can be present in acute diarrhea and that bft-1 subtype is often present in these organisms. However, further studies are needed to evaluate the role of this bft-1 subtype in the pathogenesis of diarrhea.
Collapse
Affiliation(s)
- Viviane Nakano
- Laboratório de Anaeróbios, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
17
|
Buckwold SL, Shoemaker NB, Sears CL, Franco AA. Identification and characterization of conjugative transposons CTn86 and CTn9343 in Bacteroides fragilis strains. Appl Environ Microbiol 2006; 73:53-63. [PMID: 17071793 PMCID: PMC1797145 DOI: 10.1128/aem.01669-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The related genetic elements flanking the Bacteroides fragilis pathogenicity island (PAI) in enterotoxigenic B. fragilis (ETBF) 86-5443-2-2 and also present in pattern III nontoxigenic B. fragilis (NTBF) NCTC 9343 were defined as putative conjugative transposons (CTns), designated CTn86 and CTn9343, respectively (A. A. Franco, J. Bacteriol. 181:6623-6633, 2004). CTn86 and CTn9343 have the same basic structures except that their encoded transposases have low similarity and CTn9343 lacks the B. fragilis PAI and contains an extra 7-kb region not present in CTn86. In this study, using DNA hybridization and PCR analysis, we characterized the genetic element flanking the PAI in a collection of ETBF strains and the related genetic elements in a collection of NTBF pattern III strains. We found that in all 123 ETBF strains, the PAI is contained in a genetic element similar to CTn86. Of 73 pattern III strains, 26 (36%) present a genetic element similar to CTn9343, 38 (52%) present a genetic element similar to CTn9343 but lack the 7-kb region that is also absent in CTn86 (CTn9343-like element), and 9 (12%) present a genetic element similar to CTn86 but lacking the PAI (CTn86-like element). In addition to containing CTn86, ETBF strains can also contain CTn9343, CTn9343-like, or CTn86-like elements. CTn86, CTn9343, CTn86-like, and CTn9343-like elements were found exclusively in B. fragilis strains and predominantly in division I, cepA-positive strains.
Collapse
Affiliation(s)
- Simy L Buckwold
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Cancer Research Building II, 1550 Orleans Street, Loading Dock, Room 1M04, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
18
|
Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 2006; 72:4214-24. [PMID: 16751534 PMCID: PMC1489674 DOI: 10.1128/aem.01036-05] [Citation(s) in RCA: 366] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteroides species are promising indicators for differentiating livestock and human fecal contamination in water because of their high concentration in feces and potential host specificity. In this study, a real-time PCR assay was designed to target Bacteroides species (AllBac) present in human, cattle, and equine feces. Direct PCR amplification (without DNA extraction) using the AllBac assay was tested on feces diluted in water. Fecal concentrations and threshold cycle were linearly correlated, indicating that the AllBac assay can be used to estimate the total amount of fecal contamination in water. Real-time PCR assays were also designed for bovine-associated (BoBac) and human-associated (HuBac) Bacteroides 16S rRNA genes. Assay specificities were tested using human, bovine, swine, canine, and equine fecal samples. The BoBac assay was specific for bovine fecal samples (100% true-positive identification; 0% false-positive identification). The HuBac assay had a 100% true-positive identification, but it also had a 32% false-positive rate with potential for cross-amplification with swine feces. The assays were tested using creek water samples from three different watersheds. Creek water did not inhibit PCR, and results from the AllBac assay were correlated with those from Escherichia coli concentrations (r2= 0.85). The percentage of feces attributable to bovine and human sources was determined for each sample by comparing the values obtained from the BoBac and HuBac assays with that from the AllBac assay. These results suggest that real-time PCR assays without DNA extraction can be used to quantify fecal concentrations and provide preliminary fecal source identification in watersheds.
Collapse
Affiliation(s)
- Alice Layton
- The University of Tennessee, Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996-1605, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Sóki J, Gal M, Brazier JS, Rotimi VO, Urbán E, Nagy E, Duerden BI. Molecular investigation of genetic elements contributing to metronidazole resistance in Bacteroides strains. J Antimicrob Chemother 2005; 57:212-20. [PMID: 16338949 DOI: 10.1093/jac/dki443] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the constitution of nim gene types, their activating insertion sequence (IS) element, their localization (plasmid or chromosome) and cfiA gene status in metronidazole-resistant Bacteroides strains (n=26) in order to examine their interchangeability. METHODS Southern hybridization and conjugative plasmid transfer were used to localize the nimA-E genes and plasmid functions. PCR was used to detect the IS elements and the cfiA genes. PCR-mapping was applied to detect the nim gene-associated IS elements. PCR-mapping products and a nimE gene-containing plasmid fragment were sequenced. RESULTS Nine of the nimA genes (12) were activated by IS1168 and nine were carried on plasmids, four of which were pIP417-like. The five nimB genes were chromosomal, and two of them were associated with IS1168 and one with IS612. Of the three nimC genes, two were activated by IS1170, and one was carried on a pIP419-like plasmid. The only nimD gene was chromosomal. The five nimE strains harboured the resistance genes on plasmids: one plasmid, pBF388c, 8.3 kb, was characterized, and a novel IS-like element was demonstrated upstream of all the nimE genes. The insertion events of some of these IS elements were restricted to certain nim gene-specific positions. The 11 chromosomal nim genes displayed a positive association with the cfiA gene-specific background. CONCLUSIONS Fourteen strains harboured the well-known genetic elements: pIP417- and pIP419-like plasmids, chromosomal nimB genes and a common nimE plasmid. However, a rate of interchangeability was also demonstrated, mostly due to combinations of nim genes and their associated IS elements harboured on different replicons.
Collapse
Affiliation(s)
- József Sóki
- Instutute of Clinical Microbiology, University of Szeged, H-6725 Szeged, Somogyi Béla tér 1, Hungary.
| | | | | | | | | | | | | |
Collapse
|
20
|
Payan A, Ebdon J, Taylor H, Gantzer C, Ottoson J, Papageorgiou GT, Blanch AR, Lucena F, Jofre J, Muniesa M. Method for isolation of Bacteroides bacteriophage host strains suitable for tracking sources of fecal pollution in water. Appl Environ Microbiol 2005; 71:5659-62. [PMID: 16151173 PMCID: PMC1214671 DOI: 10.1128/aem.71.9.5659-5662.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages infecting Bacteroides are potentially a good tool for fecal source tracking, but different Bacteroides host strains are needed for different geographic areas. A feasible method for isolating Bacteroides host strains for phages present in human fecal material is described. Useful strains were identified for application in Spain and the United Kingdom. One strain, GA-17, identified as Bacteroides thetaiotaomicron, was tested in several locations in Europe with excellent performance in Southern Europe.
Collapse
Affiliation(s)
- Andrey Payan
- Department of Microbiology, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Payan A, Ebdon J, Taylor H, Gantzer C, Ottoson J, Papageorgiou GT, Blanch AR, Lucena F, Jofre J, Muniesa M. Method for isolation of Bacteroides bacteriophage host strains suitable for tracking sources of fecal pollution in water. Appl Environ Microbiol 2005. [PMID: 16151173 DOI: 10.1128/aem.71.9.5659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Bacteriophages infecting Bacteroides are potentially a good tool for fecal source tracking, but different Bacteroides host strains are needed for different geographic areas. A feasible method for isolating Bacteroides host strains for phages present in human fecal material is described. Useful strains were identified for application in Spain and the United Kingdom. One strain, GA-17, identified as Bacteroides thetaiotaomicron, was tested in several locations in Europe with excellent performance in Southern Europe.
Collapse
Affiliation(s)
- Andrey Payan
- Department of Microbiology, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sóki J, Fodor E, Hecht DW, Edwards R, Rotimi VO, Kerekes I, Urbán E, Nagy E. Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwait. J Med Microbiol 2004; 53:413-419. [PMID: 15096551 DOI: 10.1099/jmm.0.05452-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fifteen Bacteroides fragilis isolates from the USA, Hungary and Kuwait were examined for carbapenem resistance, for carbapenemase activity and, with the use of various PCR-based methods and nucleotide sequencing, for cfiA genes and activating insertion sequence (IS) elements. All the B. fragilis isolates were cfiA-positive, 10 of the cfiA genes being upregulated by IS elements that are already known. Of these 10, one was of a novel type (designated IS943) and two further ones (IS614B and IS614C) were suspected hybrids of IS612, IS614 and IS942. There were five cfiA-positive imipenem-resistant B. fragilis isolates with elevated imipenem MICs (minimal inhibitory concentration) that harboured no IS insertion upstream of the cfiA gene, but produced carbapenemase; these isolates might possess a novel activation mechanism. On the basis of the available phenotypic and genotypic evidence, the present data suggest that there are at least two cfiA activation mechanisms among B. fragilis isolates.
Collapse
Affiliation(s)
- József Sóki
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Eleonóra Fodor
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - David W Hecht
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Richard Edwards
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Vincent O Rotimi
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Irén Kerekes
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
23
|
Evaluation of Genetic Relatedness of Bacteroides fragilis Strains Isolated from Different Sources by AP-PCR and Pulsed-Field Gel Electrophoresis Assays. Anaerobe 2002. [DOI: 10.1006/anae.2002.0430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Coyne MJ, Tzianabos AO, Mallory BC, Carey VJ, Kasper DL, Comstock LE. Polysaccharide biosynthesis locus required for virulence of Bacteroides fragilis. Infect Immun 2001; 69:4342-50. [PMID: 11401972 PMCID: PMC98505 DOI: 10.1128/iai.69.7.4342-4350.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteroides fragilis, though only a minor component of the human intestinal commensal flora, is the anaerobe most frequently isolated from intra-abdominal abscesses. B. fragilis 9343 expresses at least three capsular polysaccharides-polysaccharide A (PS A), PS B, and PS C. Purified PS A and PS B have been tested in animal models and are both able to induce the formation of intra-abdominal abscesses. Mutants unable to synthesize PS B or PS C still facilitate abscess formation at levels comparable to those of wild-type 9343. To determine the contribution of PS A to abscess formation in the context of the intact organism, the PS A biosynthesis region was cloned, sequenced, and deleted from 9343 to produce a PS A-negative mutant. Animal experiments demonstrate that the abscess-inducing capability of 9343 is severely attenuated when the organism cannot synthesize PS A, despite continued synthesis of the other capsular polysaccharides. The PS A of 9343 contains an unusual free amino sugar that is essential for abscess formation by this polymer. PCR analysis of the PS A biosynthesis loci of 50 B. fragilis isolates indicates that regions flanking each side of this locus are conserved in all strains. The downstream conserved region includes two terminal PS A biosynthesis genes that homology-based analyses predict are involved in the synthesis and transfer of the free amino sugar of PS A. Conservation of these genes suggests that this sugar is present in the PS A of all serotypes and may explain the abscessogenic nature of B. fragilis.
Collapse
Affiliation(s)
- M J Coyne
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
25
|
Podglajen I, Breuil J, Rohaut A, Monsempes C, Collatz E. Multiple mobile promoter regions for the rare carbapenem resistance gene of Bacteroides fragilis. J Bacteriol 2001; 183:3531-5. [PMID: 11344163 PMCID: PMC99653 DOI: 10.1128/jb.183.11.3531-3535.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two novel insertion sequences (IS), IS1187 and IS1188, are described upstream from the carbapenem resistance gene cfiA in strains of Bacteroides fragilis. Mapping, with the RACE procedure, of transcription start sites of cfiA in these and two other previously reported IS showed that transcription of this rarely encountered gene is initiated close to a variety of B. fragilis consensus promoter sequences, as recently defined (D. P. Bayley, E. R. Rocha, and C. J. Smith, FEMS Microbiol. Lett. 193:149-154, 2000). In the cases of IS1186 and IS1188, these sequences overlap with putative Esigma(70) promoter sequences, while in IS942 and IS1187 such sequences can be observed either upstream or downstream of the B. fragilis promoters.
Collapse
Affiliation(s)
- I Podglajen
- INSERM E0004-Laboratoire de Recherche Moléculaire sur les Antibiotiques, UFR Broussais-Hôtel Dieu and Pitié Salpétrière, Université Paris VI, Paris, France
| | | | | | | | | |
Collapse
|
26
|
Comstock LE, Pantosti A, Kasper DL. Genetic diversity of the capsular polysaccharide C biosynthesis region of Bacteroides fragilis. Infect Immun 2000; 68:6182-8. [PMID: 11035723 PMCID: PMC97697 DOI: 10.1128/iai.68.11.6182-6188.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic approach was used to assess the heterogeneity of the capsular polysaccharide C (PS C) biosynthesis locus of Bacteroides fragilis and to determine whether distinct loci contain genes whose products are likely to be involved in conferring charged groups that enable the B. fragilis capsular polysaccharides to induce abscesses. A collection of 50 B. fragilis strains was examined. PCR analysis demonstrated that the genes flanking the PS C biosynthesis region are conserved, whereas the genes within the loci are heterogeneous. Only cfiA(+) B. fragilis strains, which represent 3% of the clinical isolates of B. fragilis, displayed heterogeneity in the regions flanking the polysaccharide biosynthesis genes. Primers were designed in the conserved regions upstream and downstream of the PS C locus and were used to amplify the region from 45 of the 50 B. fragilis strains studied. Fourteen PS C genetic loci could be differentiated by a combination of PCR and extended PCR. These loci ranged in size from 14 to 26 kb. Hybridization analysis with genes from the PS C loci of strains 9343 and 638R revealed that the majority of strains contain homologs of wcgC (N-acetylmannosamine dehydrogenase), wcfF (putative dehydrogenase), and wcgP (putative aminotransferase). The data suggest that the synthesis of polysaccharides that have zwitterionic characteristics rendering them able to induce abscesses is common in B. fragilis.
Collapse
Affiliation(s)
- L E Comstock
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
27
|
Gutacker M, Valsangiacomo C, Piffaretti JC. Identification of two genetic groups in Bacteroides fragilis by multilocus enzyme electrophoresis: distribution of antibiotic resistance (cfiA, cepA) and enterotoxin (bft) encoding genes. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1241-1254. [PMID: 10832652 DOI: 10.1099/00221287-146-5-1241] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ninety-three Bacteroides fragilis strains of different origin were analysed by multilocus enzyme electrophoresis (MLEE). Fourteen of the 15 genetic loci analysed were polymorphic, whilst nucleoside phosphorylase was monomorphic. There was a mean of six alleles per locus and a mean genetic diversity of 0.393. Cluster analysis identified 90 electrophoretic types (ETs) separated into two major phylogenetic divisions at a genetic distance of 0.70. Division I consisted of 81 ETs carrying the endogenous class A beta-lactamase gene cepA, whereas division II comprised 9 ETs carrying the class B beta-lactamase gene cfiA, but not cepA. The presence of these two genes was assessed by PCR and the expression of the cfiA gene was investigated by determining the level of resistance to the antibiotic imipenem. MLEE showed a smaller genetic distance among the genotypes of the imipenem-resistant than among the imipenem-susceptible strains. No other particular cluster was observed. The enterotoxin gene (bft) was detected by PCR: DNA sequencing of the products obtained showed that the different bft alleles (bft-1, bft-2 and bft-3) were scattered randomly troughout the phylogenetic tree. No association between distinct clones and clinical manifestations (sepsis, abscesses, diarrhoea), geographical origin or host origin (human or animal) could be found.
Collapse
Affiliation(s)
- Michaela Gutacker
- Istituto Cantonale Batteriosierologico, Via Ospedale 6, 6904 Lugano, Switzerland1
| | | | | |
Collapse
|
28
|
Affiliation(s)
- C J Smith
- Department of Microbiology and Immunology, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina, 27858, USA.
| | | | | |
Collapse
|
29
|
Rossolini GM, Franceschini N, Riccio ML, Mercuri PS, Perilli M, Galleni M, Frere JM, Amicosante G. Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. Biochem J 1998; 332 ( Pt 1):145-52. [PMID: 9576862 PMCID: PMC1219462 DOI: 10.1042/bj3320145] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The metallo-beta-lactamase produced by Chryseobacterium (formerly Flavobacterium) meningosepticum, which is the flavobacterial species of greatest clinical relevance, was purified and characterized. The enzyme, named BlaB, contains a polypeptide with an apparent Mr of 26000, and has a pI of 8.5. It hydrolyses penicillins, cephalosporins (including cefoxitin), carbapenems and 6-beta-iodopenicillanate, a mechanism-based inactivator of active-site serine beta-lactamases. The enzyme was inhibited by EDTA, 1-10 phenanthroline and pyridine-2,6-dicarboxylic acid, with different inactivation parameters for each chelating agent. The C. meningosepticum blaB gene was cloned and sequenced. According to the G+C content and codon usage, the blaB gene appeared to be endogenous to the species. The BlaB enzyme showed significant sequence similarity to other class B beta-lactamases, being overall more similar to members of subclass B1, which includes the metallo-enzymes of Bacillus cereus (Bc-II) and Bacteroides fragilis (CcrA) and the IMP-1 enzyme found in various microbial species, and more distantly related to the metallo-beta-lactamases of Aeromonas spp. (CphA, CphA2 and ImiS) and of Stenotrophomonas maltophilia (L1).
Collapse
Affiliation(s)
- G M Rossolini
- Dipartimento di Biologia Molecolare, Sezione di Microbiologia, Università di Siena, 53100-Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|