1
|
Gil-Marqués ML, Pachón J, Smani Y. iTRAQ-Based Quantitative Proteomic Analysis of Acinetobacter baumannii under Hypoxia and Normoxia Reveals the Role of OmpW as a Virulence Factor. Microbiol Spectr 2022; 10:e0232821. [PMID: 35234505 PMCID: PMC8941935 DOI: 10.1128/spectrum.02328-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii needs to adapt to hypoxia during infection. Understanding its proteome regulation during infection would allow us to determine new targets to develop novel treatments. iTRAQ proteomic analysis of A549 cell infection by the ATCC 17978 strain was performed. A total of 175 proteins were differentially expressed under hypoxia versus normoxia. We selected the hypoxia-downregulated protein OmpW to analyze its role as a virulence factor. The loss of OmpW decreased the adherence and invasion of A. baumannii in these host cells, without affecting its bacterial growth. Moreover, A549 cell viability with ΔOmpW infection was higher than that with the wild-type strain. ΔOmpW presented less biofilm formation. Finally, the minimum lethal dose required by the ΔOmpW mutant was higher than that of the wild-type strain in a murine peritoneal sepsis model, with lower bacterial loads in tissues and fluids. Therefore, OmpW seems to be a virulence factor necessary for A. baumannii pathogenesis. IMPORTANCE Acinetobacter baumannii causes infections that are very difficult to treat due to the high rate of resistance to most and sometimes all of the antimicrobials used in the clinical setting. There is an important need to develop new strategies to combat A. baumannii infections. One alternative could be blocking specific bacterial virulence factors that this pathogen needs to infect cells. Pathogens modulate their protein expression as a function of the environment, and several studies have reported that hypoxia occurs in a wide range of infections. Therefore, it would be interesting to determine the proteome of A. baumannii under hypoxia in order to find new virulence factors, such as the outer membrane protein OmpW, as potential targets for the design of novel therapies.
Collapse
Affiliation(s)
- María Luisa Gil-Marqués
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Medicine, University of Seville, Sevilla, Spain
| | - Younes Smani
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| |
Collapse
|
2
|
Zhang Z, Ryoo D, Balusek C, Acharya A, Rydmark MO, Linke D, Gumbart JC. Inward-facing glycine residues create sharp turns in β-barrel membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183662. [PMID: 34097860 DOI: 10.1016/j.bbamem.2021.183662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
The transmembrane region of outer-membrane proteins (OMPs) of Gram-negative bacteria are almost exclusively β-barrels composed of between 8 and 26 β-strands. To explore the relationship between β-barrel size and shape, we modeled and simulated engineered variants of the Escherichia coli protein OmpX with 8, 10, 12, 14, and 16 β-strands. We found that while smaller barrels maintained a roughly circular shape, the 16-stranded variant developed a flattened cross section. This flat cross section impeded its ability to conduct ions, in agreement with previous experimental observations. Flattening was determined to arise from the presence of inward-facing glycines at sharp turns in the β-barrel. An analysis of all simulations revealed that glycines, on average, make significantly smaller angles with residues on neighboring strands than all other amino acids, including alanine, and create sharp turns in β-barrel cross sections. This observation was generalized to 119 unique structurally resolved OMPs. We also found that the fraction of glycines in β-barrels decreases as the strand number increases, suggesting an evolutionary role for the addition or removal of glycine in OMP sequences.
Collapse
Affiliation(s)
- Zijian Zhang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America
| | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Curtis Balusek
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America
| | | | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30313, United States of America.
| |
Collapse
|
3
|
Raheem SG, Salh KK, Ibrahim KS, Gorji AE. In-Silico Designing a Multi-Peptide Vaccine: Against Vibrio Cholera. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Ferro P, Vaz-Moreira I, Manaia CM. Betaproteobacteria are predominant in drinking water: are there reasons for concern? Crit Rev Microbiol 2019; 45:649-667. [PMID: 31686572 DOI: 10.1080/1040841x.2019.1680602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Betaproteobacteria include some of the most abundant and ubiquitous bacterial genera that can be found in drinking water, including mineral water. The combination of physiology and ecology traits place some Betaproteobacteria in the list of potential, yet sometimes neglected, opportunistic pathogens that can be transmitted by water or aqueous solutions. Indeed, some drinking water Betaproteobacteria with intrinsic and sometimes acquired antibiotic resistance, harbouring virulence factors and often found in biofilm structures, can persist after water disinfection and reach the consumer. This literature review summarises and discusses the current knowledge about the occurrence and implications of Betaproteobacteria in drinking water. Although the sparse knowledge on the ecology and physiology of Betaproteobacteria thriving in tap or bottled natural mineral/spring drinking water (DW) is an evidence of this review, it is demonstrated that DW holds a high diversity of Betaproteobacteria, whose presence may not be innocuous. Frequently belonging to genera also found in humans, DW Betaproteobacteria are ubiquitous in different habitats, have the potential to resist antibiotics either due to intrinsic or acquired mechanisms, and hold different virulence factors. The combination of these factors places DW Betaproteobacteria in the list of candidates of emerging opportunistic pathogens. Improved bacterial identification of clinical isolates associated with opportunistic infections and additional genomic and physiological studies may contribute to elucidate the potential impact of these bacteria.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
5
|
Identification and Characterization of the Major Porin of Desulfovibrio vulgaris Hildenborough. J Bacteriol 2017; 199:JB.00286-17. [PMID: 28874410 PMCID: PMC5686591 DOI: 10.1128/jb.00286-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Due in large part to their ability to facilitate the diffusion of a diverse range of solutes across the outer membrane (OM) of Gram-negative bacteria, the porins represent one of the most prominent and important bacterial membrane protein superfamilies. Notably, for the Gram-negative bacterium Desulfovibrio vulgaris Hildenborough, a model organism for studies of sulfate-reducing bacteria, no genes for porins have been identified or proposed in its annotated genome. Results from initial biochemical studies suggested that the product of the DVU0799 gene, which is one of the most abundant proteins of the D. vulgaris Hildenborough OM and purified as a homotrimeric complex, was a strong porin candidate. To investigate this possibility, this protein was further characterized biochemically and biophysically. Structural analyses via electron microscopy of negatively stained protein identified trimeric particles with stain-filled depressions and structural modeling suggested a β-barrel structure for the monomer, motifs common among the known porins. Functional studies were performed in which crude OM preparations or purified DVU0799 was reconstituted into proteoliposomes and the proteoliposomes were examined for permeability against a series of test solutes. The results obtained establish DVU0799 to be a pore-forming protein with permeability properties similar to those observed for classical bacterial porins, such as those of Escherichia coli. Taken together, these findings identify this highly abundant OM protein to be the major porin of D. vulgaris Hildenborough. Classification of DVU0799 in this model organism expands the database of functionally characterized porins and may also extend the range over which sequence analysis strategies can be used to identify porins in other bacterial genomes. IMPORTANCE Porins are membrane proteins that form transmembrane pores for the passive transport of small molecules across the outer membranes of Gram-negative bacteria. The present study identified and characterized the major porin of the model sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, observing its preference for anionic sugars over neutral ones. Its predicted architecture appears to be novel for a classical porin, as its core β-barrel structure is of a type typically found in solute-specific channels. Broader use of the methods employed here, such as assays for channel permeability and electron microscopy of purified samples, is expected to help expand the database of confirmed porin sequences and improve the range over which sequence analysis-based strategies can be used to identify porins in other Gram-negative bacteria. Functional characterization of these critical gatekeeping proteins from divergent Desulfovibrio species should offer an improved understanding of the physiological features that determine their habitat range and supporting activities.
Collapse
|
6
|
Michalik M, Orwick-Rydmark M, Habeck M, Alva V, Arnold T, Linke D. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins. PLoS One 2017; 12:e0182016. [PMID: 28771529 PMCID: PMC5542473 DOI: 10.1371/journal.pone.0182016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 12/02/2022] Open
Abstract
An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved ‘folding core’ that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Biosciences, University of Oslo, Oslo, Norway
- Previous affiliation: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Michael Habeck
- Statistical inverse problems in Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Thomas Arnold
- Previous affiliation: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Boehringer Ingelheim Veterinary Research Center, Hannover, Germany
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Previous affiliation: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
7
|
Shlar I, Droby S, Choudhary R, Rodov V. The mode of antimicrobial action of curcumin depends on the delivery system: monolithic nanoparticles vs. supramolecular inclusion complex. RSC Adv 2017. [DOI: 10.1039/c7ra07303h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formulation determines curcumin antimicrobial effect: curcumin–cyclodextrin complexes are bactericidal, induce ROS, and target electron transport; monolithic nanoparticles are bacteriostatic, and target membranes and ATP.
Collapse
Affiliation(s)
- Ilya Shlar
- Institute of Postharvest and Food Sciences
- Agricultural Research Organization
- The Volcani Center
- Rishon LeZion 7528809
- Israel
| | - Samir Droby
- Institute of Postharvest and Food Sciences
- Agricultural Research Organization
- The Volcani Center
- Rishon LeZion 7528809
- Israel
| | - Ruplal Choudhary
- Department of Plant
- Soil and Agricultural Systems
- Southern Illinois University
- Carbondale
- USA
| | - Victor Rodov
- Institute of Postharvest and Food Sciences
- Agricultural Research Organization
- The Volcani Center
- Rishon LeZion 7528809
- Israel
| |
Collapse
|
8
|
Alfonso-Garrido J, Garcia-Calvo E, Luque-Garcia JL. Sample preparation strategies for improving the identification of membrane proteins by mass spectrometry. Anal Bioanal Chem 2015; 407:4893-905. [PMID: 25967148 DOI: 10.1007/s00216-015-8732-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Despite enormous advances in the mass spectrometry and proteomics fields during the last two decades, the analysis of membrane proteins still remains a challenge for the proteomic community. Membrane proteins play a wide number of key roles in several cellular events, making them relevant target molecules to study in a significant variety of investigations (e.g., cellular signaling, immune surveillance, drug targets, vaccine candidates, etc.). Here, we critically review the several attempts that have been carried out on the different steps of the sample preparation procedure to improve and modify existing conventional proteomic strategies in order to make them suitable for the study of membrane proteins. We also revise novel techniques that have been designed to tackle the difficult but relevant task of identifying and characterizing membrane proteins.
Collapse
Affiliation(s)
- Javier Alfonso-Garrido
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28004, Madrid, Spain
| | | | | |
Collapse
|
9
|
Insight into the role of chlorhexidine in Delftia acidovorans biofilm formation. Antimicrob Agents Chemother 2014; 59:749. [PMID: 25538288 DOI: 10.1128/aac.04008-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Camargo CH, Ferreira AM, Javaroni E, Reis BAR, Bueno MFC, Francisco GR, Gallo JF, de Oliveira Garcia D. Microbiological characterization of Delftia acidovorans clinical isolates from patients in an intensive care unit in Brazil. Diagn Microbiol Infect Dis 2014; 80:330-3. [DOI: 10.1016/j.diagmicrobio.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/01/2014] [Indexed: 11/25/2022]
|
11
|
van Teeseling MCF, de Almeida NM, Klingl A, Speth DR, Op den Camp HJM, Rachel R, Jetten MSM, van Niftrik L. A new addition to the cell plan of anammox bacteria: "Candidatus Kuenenia stuttgartiensis" has a protein surface layer as the outermost layer of the cell. J Bacteriol 2014; 196:80-9. [PMID: 24142254 PMCID: PMC3911120 DOI: 10.1128/jb.00988-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/11/2013] [Indexed: 01/24/2023] Open
Abstract
Anammox bacteria perform anaerobic ammonium oxidation (anammox) and have a unique compartmentalized cell consisting of three membrane-bound compartments (from inside outwards): the anammoxosome, riboplasm, and paryphoplasm. The cell envelope of anammox bacteria has been proposed to deviate from typical bacterial cell envelopes by lacking both peptidoglycan and a typical outer membrane. However, the composition of the anammox cell envelope is presently unknown. Here, we investigated the outermost layer of the anammox cell and identified a proteinaceous surface layer (S-layer) (a crystalline array of protein subunits) as the outermost component of the cell envelope of the anammox bacterium "Candidatus Kuenenia stuttgartiensis." This is the first description of an S-layer in the phylum of the Planctomycetes and a new addition to the cell plan of anammox bacteria. This S-layer showed hexagonal symmetry with a unit cell consisting of six protein subunits. The enrichment of the S-layer from the cell led to a 160-kDa candidate protein, Kustd1514, which has no homology to any known protein. This protein is present in a glycosylated form. Antibodies were generated against the glycoprotein and used for immunogold localization. The antiserum localized Kustd1514 to the S-layer and thus verified that this protein forms the "Ca. Kuenenia stuttgartiensis" S-layer.
Collapse
Affiliation(s)
- Muriel C. F. van Teeseling
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Naomi M. de Almeida
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Andreas Klingl
- Centre for Electron Microscopy, Institute for Anatomy, University of Regensburg, Regensburg, Germany
| | - Daan R. Speth
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Reinhard Rachel
- Centre for Electron Microscopy, Institute for Anatomy, University of Regensburg, Regensburg, Germany
| | - Mike S. M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Rösner HI, Kragelund BB. Structure and dynamic properties of membrane proteins using NMR. Compr Physiol 2013; 2:1491-539. [PMID: 23798308 DOI: 10.1002/cphy.c110036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integral membrane proteins are one of the most challenging groups of macromolecules despite their apparent conformational simplicity. They manage and drive transport, circulate information, and participate in cellular movements via interactions with other proteins and through intricate conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches, a large variety of developments of well-established techniques are available providing insight into membrane protein flexibility, dynamics, and interactions. Inspired by the speed of development in the application of new strategies, by invention of methods to measure solvent accessibility and describe low-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability.
Collapse
Affiliation(s)
- Heike I Rösner
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
13
|
Walian PJ, Allen S, Shatsky M, Zeng L, Szakal ED, Liu H, Hall SC, Fisher SJ, Lam BR, Singer ME, Geller JT, Brenner SE, Chandonia JM, Hazen TC, Witkowska HE, Biggin MD, Jap BK. High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris. J Proteome Res 2012; 11:5720-35. [PMID: 23098413 PMCID: PMC3516867 DOI: 10.1021/pr300548d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cell membranes represent the “front line”
of cellular defense and the interface between a cell and its environment.
To determine the range of proteins and protein complexes that are
present in the cell membranes of a target organism, we have utilized
a “tagless” process for the system-wide isolation and
identification of native membrane protein complexes. As an initial
subject for study, we have chosen the Gram-negative sulfate-reducing
bacterium Desulfovibrio vulgaris. With this tagless
methodology, we have identified about two-thirds of the outer membrane-
associated proteins anticipated. Approximately three-fourths of these
appear to form homomeric complexes. Statistical and machine-learning
methods used to analyze data compiled over multiple experiments revealed
networks of additional protein–protein interactions providing
insight into heteromeric contacts made between proteins across this
region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be
essential for the detection and characterization of environment-driven
changes in the outer membrane proteome and in the modeling of stress
response pathways. The workflow utilized here should be effective
for the global characterization of membrane protein complexes in a
wide range of organisms.
Collapse
Affiliation(s)
- Peter J Walian
- Lawrence Berkeley National Laboratory, Berkeley, California, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Proteomic analysis of Neorickettsia sennetsu surface-exposed proteins and porin activity of the major surface protein P51. J Bacteriol 2010; 192:5898-905. [PMID: 20833807 DOI: 10.1128/jb.00632-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neorickettsia sennetsu is an obligate intracellular bacterium of monocytes and macrophages and is the etiologic agent of human Sennetsu neorickettsiosis. Neorickettsia proteins expressed in mammalian host cells, including the surface proteins of Neorickettsia spp., have not been defined. In this paper, we isolated surface-exposed proteins from N. sennetsu by biotin surface labeling followed by streptavidin-affinity chromatography. Forty-two of the total of 936 (4.5%) N. sennetsu open reading frames (ORFs) were detected by liquid chromatography-tandem mass spectrometry (LC/MS/MS), including six hypothetical proteins. Among the major proteins identified were the two major β-barrel proteins: the 51-kDa antigen (P51) and Neorickettsia surface protein 3 (Nsp3). Immunofluorescence labeling not only confirmed surface exposure of these proteins but also showed rosary-like circumferential labeling with anti-P51 for the majority of bacteria and polar to diffuse punctate labeling with anti-Nsp3 for a minority of bacteria. We found that the isolated outer membrane of N. sennetsu had porin activity, as measured by a proteoliposome swelling assay. This activity allowed the diffusion of L-glutamine, the monosaccharides arabinose and glucose, and the tetrasaccharide stachyose, which could be inhibited with anti-P51 antibody. We purified native P51 and Nsp3 under nondenaturing conditions. When reconstituted into proteoliposomes, purified P51, but not Nsp3, exhibited prominent porin activity. This the first proteomic study of a Neorickettsia sp. showing new sets of proteins evolved as major surface proteins for Neorickettsia and the first identification of a porin for the genus Neorickettsia.
Collapse
|
15
|
Foreman DL, Vanderlinde EM, Bay DC, Yost CK. Characterization of a gene family of outer membrane proteins (ropB) in Rhizobium leguminosarum bv. viciae VF39SM and the role of the sensor kinase ChvG in their regulation. J Bacteriol 2010; 192:975-83. [PMID: 20023026 PMCID: PMC2812955 DOI: 10.1128/jb.01140-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/01/2009] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Gram-negative bacteria represents the interface between the bacterium and its external environment. It has a critical role as a protective barrier against harmful substances and is also important in host-bacteria interactions representing the initial physical point of contact between the host cell and bacterial cell. RopB is a previously identified outer membrane protein from Rhizobium leguminosarum bv. viciae that is present in free-living cells but absent in bacteroids (H. P. Roest, I. H. Mulders, C. A. Wijffelman, and B. J. Lugtenberg, Mol. Plant Microbe Interact. 8:576-583, 1995). The functions of RopB and the molecular mechanisms of ropB gene regulation have remained unknown. We identified and cloned ropB and two homologs (ropB2 and ropB3) from the R. leguminosarum VF39SM genome. Reporter gene fusions indicated that the expression of ropB was 8-fold higher when cells were grown in complex media than when they were grown in minimal media, while ropB3 expression was constitutively expressed at low levels in both complex and minimal media. Expression of ropB2 was negligible under all conditions tested. The use of minimal media supplemented with various sources of peptides resulted in a 5-fold increase in ropB expression. An increase in ropB expression in the presence of peptides was not observed in a chvG mutant background, indicating a role for the sensor kinase in regulating ropB expression. Each member of the ropB gene family was mutated using insertional mutagenesis, and the mutants were assayed for susceptibility to antimicrobial agents and symbiotic phenotypes. All mutants formed effective nodules on pea plants, and gene expression for each rop gene in bacteroids was negligible. The functions of ropB2 and ropB3 remain cryptic, while the ropB mutant had an increased sensitivity to detergents, hydrophobic antibiotics, and weak organic acids, suggesting a role for RopB in outer membrane stability.
Collapse
Affiliation(s)
- Dallas L. Foreman
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada, S4S 0A2, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Elizabeth M. Vanderlinde
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada, S4S 0A2, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Denise C. Bay
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada, S4S 0A2, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Christopher K. Yost
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada, S4S 0A2, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
16
|
Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot JL. Solution NMR mapping of water-accessible residues in the transmembrane beta-barrel of OmpX. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:623-30. [PMID: 19639312 DOI: 10.1007/s00249-009-0513-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 12/11/2022]
Abstract
The atomic structure of OmpX, the smallest member of the bacterial outer membrane protein family, has been previously established by X-ray crystallography and NMR spectroscopy. In apparent conflict with electrophysiological studies, the lumen of its transmembrane beta-barrel appears too tightly packed with amino acid side chains to let any solute flow through. In the present study, high-resolution solution NMR spectra were obtained of OmpX kept water-soluble by either amphipol A8-35 or the detergent dihexanoylphosphatidylcholine. Hydrogen/deuterium exchange measurements performed after prolonged equilibration show that, whatever the surfactant used, some of the amide protons of the membrane-spanning region exchange much more readily than others, which likely reflects the dynamics of the barrel.
Collapse
Affiliation(s)
- Laurent J Catoire
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, CNRS/Université Paris-7, Institut de Biologie Physico-Chimique (FRC 550), 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
17
|
Engelhardt H. Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 2007; 160:115-24. [PMID: 17889557 DOI: 10.1016/j.jsb.2007.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/29/2007] [Accepted: 08/02/2007] [Indexed: 11/28/2022]
Abstract
Surface protein or glycoprotein layers (S-layers) are common structures of the prokaryotic cell envelope. They are either associated with the peptidoglycan or outer membrane of bacteria, and constitute the only cell wall component of many archaea. Despite their occurrence in most of the phylogenetic branches of microorganisms, the functional significance of S-layers is assumed to be specific for genera or groups of organisms in the same environment rather than common to all prokaryotes. Functional aspects have usually been investigated with isolated S-layer sheets or proteins, which disregards the interactions between S-layers and the underlying cell envelope components. This study discusses the synergistic effects in cell envelope assemblies, the hypothetical role of S-layers for cell shape formation, and the existence of a common function in view of new insights.
Collapse
Affiliation(s)
- Harald Engelhardt
- Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
18
|
Qian R, Chu W, Mao Z, Zhang C, Wei Y, Yu L. Expression, characterization and immunogenicity of a major outer membrane protein from Vibrio alginolyticus. Acta Biochim Biophys Sin (Shanghai) 2007; 39:194-200. [PMID: 17342258 DOI: 10.1111/j.1745-7270.2007.00268.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Vibrio alginolyticus is one of the Vibrio pathogens common to humans and marine animals. During infection and induction of the host immune response, outer membrane proteins of bacteria play an important role. In this study, an outer membrane protein gene (ompW) was cloned from V. alginolyticus and expressed in Escherichia coli. The 645 bp open reading frame (ORF) encodes a protein of 214 amino acid residues with a predicted molecular weight of 23.3 kDa. The amino acid sequence showed a high identity with that of Photobacterium damselae (96.2%) and Vibrio parahaemolyticus (94.4%). The alignment analysis indicated that OmpW was highly conserved. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the gene was over-expressed in E. coli BL21(DE3). Western blot analysis revealed that the expressed protein had immunoreactivity. The recombinant protein was purified by affinity chromatography on Ni-NTA Superflow resin. Large yellow croaker vaccinated with the purified OmpW showed significantly increased antibody to OmpW, which could resist the infection by V. alginolyticus. A specific antibody was detected by enzyme-linked immunosorbent assay. This study suggested that the conserved OmpW could be an effective vaccine candidate against infection by V. alginolyticus.
Collapse
Affiliation(s)
- Ronghua Qian
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
19
|
Arnold T, Poynor M, Nussberger S, Lupas AN, Linke D. Gene duplication of the eight-stranded beta-barrel OmpX produces a functional pore: a scenario for the evolution of transmembrane beta-barrels. J Mol Biol 2006; 366:1174-84. [PMID: 17217961 DOI: 10.1016/j.jmb.2006.12.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 11/23/2022]
Abstract
The repeating unit of outer membrane beta-barrels from Gram-negative bacteria is the beta-hairpin, and representatives of this protein family always have an even strand number between eight and 22. Two dominant structural forms have eight and 16 strands, respectively, suggesting gene duplication as a possible mechanism for their evolution. We duplicated the sequence of OmpX, an eight-stranded beta-barrel protein of known structure, and obtained a beta-barrel, designated Omp2X, which can fold in vitro and in vivo. Using single-channel conductance measurements and PEG exclusion assays, we found that Omp2X has a pore size similar to that of OmpC, a natural 16-stranded barrel. Fusions of the homologous proteins OmpX, OmpA and OmpW were able to fold in vitro in all combinations tested, revealing that the general propensity to form a beta-barrel is sufficient to evolve larger barrels by simple genetic events.
Collapse
Affiliation(s)
- Thomas Arnold
- Max Planck Institute for Developmental Biology, Department Protein Evolution, Spemannstr. 35, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
20
|
Albrecht R, Zeth K, Söding J, Lupas A, Linke D. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:415-8. [PMID: 16582500 PMCID: PMC2222561 DOI: 10.1107/s1744309106010190] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 03/20/2006] [Indexed: 11/10/2022]
Abstract
OmpW is an eight-stranded 21 kDa molecular-weight beta-barrel protein from the outer membrane of Gram-negative bacteria. It is a major antigen in bacterial infections and has implications in antibiotic resistance and in the oxidative degradation of organic compounds. OmpW from Escherichia coli was cloned and the protein was expressed in inclusion bodies. A method for refolding and purification was developed which yields properly folded protein according to circular-dichroism measurements. The protein has been crystallized and crystals were obtained that diffracted to a resolution limit of 3.5 angstroms. The crystals belong to space group P422, with unit-cell parameters a = 122.5, c = 105.7 angstroms. A homology model of OmpW is presented based on known structures of eight-stranded beta-barrels, intended for use in molecular-replacement trials.
Collapse
Affiliation(s)
- Reinhard Albrecht
- Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Kornelius Zeth
- Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
- Correspondence e-mail:
| | - Johannes Söding
- Max Planck Institute of Developmental Biology, Department of Protein Evolution, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Andrei Lupas
- Max Planck Institute of Developmental Biology, Department of Protein Evolution, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Dirk Linke
- Max Planck Institute of Developmental Biology, Department of Protein Evolution, Spemannstrasse 35, D-72076 Tübingen, Germany
| |
Collapse
|
21
|
Zachariae U, Klühspies T, De S, Engelhardt H, Zeth K. High resolution crystal structures and molecular dynamics studies reveal substrate binding in the porin Omp32. J Biol Chem 2006; 281:7413-20. [PMID: 16434398 DOI: 10.1074/jbc.m510939200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The porin Omp32 is the major outer membrane protein of the bacterium Delftia acidovorans. The crystal structures of the strongly anion-selective porin alone and in complex with the substrate malate were solved at 1.5 and 1.45 A resolution, respectively, and revealed a malate-binding motif adjacent to the channel constriction zone. Binding is mediated by interaction with a cluster of two arginine residues and two threonines. This binding site is specific for Omp32 and reflects the physiological adaptation of the organism to organic acids. Structural studies are combined with a 7-ns unbiased molecular dynamics simulation of the trimeric channel in a model membrane. Molecular dynamics trajectories show how malate ions are efficiently captured from the surrounding bulk solution by the electrostatic potential of the channel, translocated to the binding site region, and immobilized in the constriction zone. In accordance with these results, conductance measurements with Omp32 inserted in planar lipid membranes revealed binding of malate. The anion-selective channel Omp32 is the first reported example of a porin with a 16-stranded beta-barrel and proven substrate specificity. This finding suggests a new view on the correlation of porin structure with substrate binding in specific channels.
Collapse
Affiliation(s)
- Ulrich Zachariae
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
22
|
Hays JP, van Selm S, Hoogenboezem T, Estevão S, Eadie K, van Veelen P, Tommassen J, van Belkum A, Hermans PWM. Identification and characterization of a novel outer membrane protein (OMP J) of Moraxella catarrhalis that exists in two major forms. J Bacteriol 2005; 187:7977-84. [PMID: 16291671 PMCID: PMC1291255 DOI: 10.1128/jb.187.23.7977-7984.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a common commensal of the human respiratory tract that has been associated with a number of disease states, including acute otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults. During studies to investigate the outer membrane proteins of this bacterium, two novel major proteins, of approximately 19 kDa and 16 kDa (named OMP J1 and OMP J2, respectively), were identified. Further analysis indicated that these two proteins possessed almost identical gene sequences, apart from two insertion/deletion events in predicted external loops present within the putative barrel-like structure of the proteins. The development of a PCR screening strategy found a 100% (96/96) incidence for the genes encoding the OMP J1 and OMP J2 proteins within a set of geographically diverse M. catarrhalis isolates, as well as a significant association of OMP J1/OMP J2 with both the genetic lineage and the complement resistance phenotype (Fisher's exact test; P < 0.01). Experiments using two DeltaompJ2 mutants (one complement resistant and the other complement sensitive) indicated that both were less easily cleared from the lungs of mice than were their isogenic wild-type counterparts, with a significant difference in bacterial clearance being observed for the complement-resistant isolate but not for its isogenic DeltaompJ2 mutant (unpaired Student's t test; P < 0.001 and P = 0.32). In this publication, we characterize a novel outer membrane protein of Moraxella catarrhalis which exists in two variant forms associated with particular genetic lineages, and both forms are suggested to contribute to bacterial clearance from the lungs.
Collapse
Affiliation(s)
- John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nandi B, Nandy RK, Sarkar A, Ghose AC. Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology (Reading) 2005; 151:2975-2986. [PMID: 16151208 DOI: 10.1099/mic.0.27995-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The outer-membrane protein OmpW ofVibrio choleraewas studied with respect to its structure, functional properties and regulation of expression. On SDS-PAGE, the membrane-associated form of OmpW protein (solubilized by either 0·1 % or 2 % SDS at 25 °C) migrated as a monomer of 19 kDa that changed to 21 kDa on boiling. The protein was hyperexpressed inEscherichia coliin the histidine-tagged form and the purified His6-OmpW (heated or unheated) migrated as a 23 kDa protein on SDS-PAGE. Circular dichroism and Fourier-transform infrared spectroscopic analyses of the recombinant protein showed the presence ofβ-structures (∼40 %) with minor amounts (8–15 %) ofα-helix. These results were consistent with those obtained by computational analysis of the sequence data of the protein using the secondary structure prediction program Jnet. The recombinant protein did not exhibit any porin-like property in a liposome-swelling assay. An antiserum to the purified protein induced a moderate level (66·6 % and 33·3 % at 1 : 50 and 1 : 100 dilutions, respectively) of passive protection against live vibrio challenge in a suckling mouse model. OmpW-deficient mutants ofV. choleraestrains were generated by insertion mutagenesis. In a competitive assay in mice, the intestinal colonization activities of these mutants were found to be either only marginally diminished (for O1 strains) or 10-fold less (for an O139 strain) as compared to those of the corresponding wild-type strains. The OmpW protein was expressedin vivoas well asin vitroin liquid culture medium devoid of glucose. Interestingly, the glucose-dependent regulation of OmpW expression was less prominent in a ToxR−mutant ofV. cholerae. Further, the expression of OmpW protein was found to be dependent onin vitrocultural conditions such as temperature, salinity, and availability of nutrients or oxygen. These results suggest that the modulation of OmpW expression by environmental factors may be linked to the adaptive response of the organism under stress conditions.
Collapse
Affiliation(s)
- Bisweswar Nandi
- Department of Microbiology, Bose Institute, Kolkata-700 054, India
| | - Ranjan K Nandy
- National Institute of Cholera and Enteric Diseases, P33 CIT Road, Scheme XM, Kolkata-700 010, India
| | - Amit Sarkar
- Department of Microbiology, Bose Institute, Kolkata-700 054, India
| | - Asoke C Ghose
- National Institute of Cholera and Enteric Diseases, P33 CIT Road, Scheme XM, Kolkata-700 010, India
- Department of Microbiology, Bose Institute, Kolkata-700 054, India
| |
Collapse
|
24
|
Xu C, Ren H, Wang S, Peng X. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res Microbiol 2005; 155:835-42. [PMID: 15567278 DOI: 10.1016/j.resmic.2004.07.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Vibrio parahaemolyticus, a universal marine pathogen with available genome sequences, could be used as a bacterial model to clarify the various physiological phenomena of its native and host environments. In the present study, proteomic methodologies were applied to investigate the expression pattern of outer membrane proteins (OMPs) of V. parahaemolyticus at different NaCl concentrations. OmpW, OmpV, elongation factor TU and polar flagellin were determined to be osmoregulation-sensitive OMPs, among which OmpW and OmpV were reported to vary with changed NaCl concentrations in the pattern of osmolarity regulation. Therefore, our results not only expand our knowledge on osmoregulation-related proteins, but also provide a valuable strategy for the screening of salt-sensitive proteins.
Collapse
Affiliation(s)
- Changxin Xu
- Center for Proteomics, Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | | | | | | |
Collapse
|
25
|
10 Free-flow isoelectric focusing. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0149-6395(05)80013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Aivaliotis M, Neofotistou E, Rémigy HW, Tsimpinos G, Lustig A, Lottspeich F, Tsiotis G. Isolation and Characterization of an Outer Membrane Protein of Chlorobium tepidum. PHOTOSYNTHESIS RESEARCH 2004; 79:161-6. [PMID: 16228390 DOI: 10.1023/b:pres.0000015383.58680.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A protein was isolated from membranes of the green sulfur bacterium Chlorobium tepidum. This protein was characterized by gel electrophoresis, gel filtration, analytical ultracentrifugation and amino acid sequencing. The molecular weight of the purified protein was shown to be 26 kDa by SDS-PAGE. HPLC gelfiltration, SDS-PAGE and analytical ultracentrifugation are consistent with the presence of a homogenous protein in the preparations. Amino acid analysis was obtained from the isolated protein after fragmentation with Lys-C, trypsin and cyanogen bromide. The cleavage pattern resulting from these treatments combined with Edman sequencing yield a sequence allowing the identification of an integral membrane agglutinin in Chl. tepidum.
Collapse
Affiliation(s)
- Michalis Aivaliotis
- Department of Chemistry, Division of Biochemistry, University of Crete, Leoforos Knossou, 71409, Heraklion, Greece
| | - Elefteria Neofotistou
- Department of Chemistry, Division of Biochemistry, University of Crete, Leoforos Knossou, 71409, Heraklion, Greece
| | - Hervé-W Rémigy
- Department of Chemistry, Division of Biochemistry, University of Crete, Leoforos Knossou, 71409, Heraklion, Greece
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056, Basel, Switzerland
| | - Georgios Tsimpinos
- Department of Chemistry, Division of Biochemistry, University of Crete, Leoforos Knossou, 71409, Heraklion, Greece
| | - Ariel Lustig
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056, Basel, Switzerland
| | - Friedrich Lottspeich
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Georgios Tsiotis
- Department of Chemistry, Division of Biochemistry, University of Crete, Leoforos Knossou, 71409, Heraklion, Greece
| |
Collapse
|
27
|
Weber PJA, Weber G, Eckerskorn C. Isolation of Organelles and Prefractionation of Protein Extracts Using Free‐Flow Electrophoresis. ACTA ACUST UNITED AC 2003; Chapter 22:22.5.1-22.5.21. [DOI: 10.1002/0471140864.ps2205s32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Caldelari Baumberger I, Fraefel N, Göttfert M, Hennecke H. New NodW- or NifA-regulated Bradyrhizobium japonicum genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:342-351. [PMID: 12744463 DOI: 10.1094/mpmi.2003.16.4.342] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cluster of genes coding for putative plant cell-wall degrading enzymes (i.e., genes for two endoglucanases [gunA and gunA2], one pectinmethylesterase [pme], and one polygalacturonase [pgl]) was identified by sequence similarities in the symbiotic region of the Bradyrhizobium japonicum chromosome. In addition, a systematic screen of the region revealed several genes potentially transcribed by the sigma(54)-RNA polymerase and activated by the transcriptional regulator NifA (i.e., genes for proteins with similarity to outer membrane proteins [id117 and id525] and a citrate carrier [id331 or citA] and one open reading frame without similarity to known proteins [id747]). Expression studies using transcriptional lacZ fusions showed that gunA2 and pgl were strongly induced by the isoflavone genistein in a NodW-dependent manner, suggesting a role of the gene products in early events of the nodulation process; by contrast, gunA and pme expression was very weak in the conditions tested. The gunA2 gene product was purified and was shown to have cellulase activity. beta-Galactosidase activity expressed from transcriptional lacZ fusions to id117, id525, and id747 in the wild type and in nifA and rpoN mutant backgrounds confirmed that their transcription was dependent on NifA and sigma(54). Despite the presence of a -24/-12-type promoter and a NifA binding site upstream of citA, no regulation could be demonstrated in this case. Null mutations introduced in gunA, gunA2, pgl, pme, citA, id117, id525, and id747 did not impair the symbiosis with the host plants.
Collapse
|
29
|
Heinz C, Engelhardt H, Niederweis M. The core of the tetrameric mycobacterial porin MspA is an extremely stable beta-sheet domain. J Biol Chem 2003; 278:8678-85. [PMID: 12501242 DOI: 10.1074/jbc.m212280200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MspA is the major porin of Mycobacterium smegmatis mediating the exchange of hydrophilic solutes across the cell wall and is the prototype of a new family of tetrameric porins with a single central pore of 10 nm in length. Infrared and circular dichroism spectroscopy revealed that MspA consists mainly of antiparallel beta-strands organized in a coherent domain. Heating to 92 and 112 degrees C was required to dissociate the MspA tetramer and to unfold the beta-sheet domain in the monomer, respectively. The stability of the MspA tetramer exceeded the remarkable stability of the porins of Gram-negative bacteria for every condition tested and was not reduced in the presence of 2% SDS and at any pH from 2 to 14. These results indicated that the interactions between the MspA subunits are different from those in the porins of Gram-negative bacteria and are discussed in the light of a channel-forming beta-barrel as a core structure of MspA. Surprisingly, the channel activity of MspA in 2% SDS and 7.6 m urea at 50 degrees C was reduced 13- and 30-fold, respectively, although the MspA tetramer and the beta-sheet domain were stable under those conditions. Channel closure by conformational changes of extracellular loops under those conditions is discussed to explain these observations. This study presents the first experimental evidence that outer membrane proteins not only from Gram-negative bacteria but also from mycobacteria are beta-sheet proteins and demonstrates that MspA constitutes the most stable transmembrane channel protein known so far. Thus, MspA may be of special interest for biotechnological applications.
Collapse
Affiliation(s)
- Christian Heinz
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Germany
| | | | | |
Collapse
|
30
|
Athanassiou G, Michaleas S, Lada-Chitiroglou E, Tsitsa T, Antoniadou-Vyza E. Antimicrobial activity of beta-lactam antibiotics against clinical pathogens after molecular inclusion in several cyclodextrins. A novel approach to bacterial resistance. J Pharm Pharmacol 2003; 55:291-300. [PMID: 12724033 DOI: 10.1211/002235702649] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Recognition and uptake by specific cellular receptors and transport systems for cyclodextrins have been demonstrated. Based on this concept, natural and synthetically modified cyclodextrins were used as drug carriers. Several beta-lactam antibiotics were selected and their inclusion complexes with different cyclodextrins were prepared (molar ratio ranging from 1:1 to 1:3). The complex formation, in aqueous solution, was monitored and optimum complexation conditions were selected. The inclusion of the active molecules in the cyclodextrin cavity was confirmed by (1)H NMR spectroscopy. Specific HPLC methods for the quantitation of antibiotics in the presence of cyclodextrins were developed and their chemical stability under complexation conditions was confirmed. Antimicrobial activity of drug-cyclodextrin complexes, in terms of minimum inhibitory concentration (MIC), were compared with the corresponding values of uncomplexed free molecules. A wide range of clinical pathogens and known beta-lactamase-producing strains were tested. The activity of the cyclodextrin-included antibiotics was increased, particularly against Gram-negative clinical strains. The nature and degree of substitution on cyclodextrin macromolecules may be the predominant factor in the observed improvement in antimicrobial activity. We believe that the proposed methodology is a novel approach to the microbial resistance problem and will trigger research towards the development of new cyclodextrin derivatives bearing the ability to increase the uptake of included antimicrobial molecules through intensification of the corresponding molecular recognition phenomena.
Collapse
Affiliation(s)
- G Athanassiou
- Department of Microbiology, School of Medicine, University of Athens, Goudi, Athens 11527, Greece
| | | | | | | | | |
Collapse
|
31
|
Zhai Y, Saier MH. The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes. Protein Sci 2002; 11:2196-207. [PMID: 12192075 PMCID: PMC2373602 DOI: 10.1110/ps.0209002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many outer membrane proteins (OMPs) in Gram-negative bacteria possess known beta-barrel three-dimensional (3D) structures. These proteins, including channel-forming transmembrane porins, are diverse in sequence but exhibit common structural features. We here report computational analyses of six outer membrane proteins of known 3D structures with respect to (1) secondary structure, (2) hydropathy, and (3) amphipathicity. Using these characteristics, as well as the presence of an N-terminal targeting sequence, a program was developed allowing prediction of integral membrane beta-barrel proteins encoded within any completely sequenced prokaryotic genome. This program, termed the beta-barrel finder (BBF) program, was used to analyze the proteins encoded within the Escherichia coli genome. Out of 4290 sequences examined, 118 (2.8%) were retrieved. Of these, almost all known outer membrane proteins with established beta-barrel structures as well as many probable outer membrane proteins were identified. This program should be useful for predicting the occurrence of outer membrane proteins in bacteria with completely sequenced genomes.
Collapse
Affiliation(s)
- Yufeng Zhai
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | |
Collapse
|
32
|
Zachariae U, Koumanov A, Engelhardt H, Karshikoff A. Electrostatic properties of the anion selective porin Omp32 from Delftia acidovorans and of the arginine cluster of bacterial porins. Protein Sci 2002; 11:1309-19. [PMID: 12021430 PMCID: PMC2373638 DOI: 10.1110/ps.4910102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The functional properties of the anion-selective porin Omp32 from the bacterium Delftia acidovorans, formerly Comamonas acidovorans, are determined by the particularly narrow channel constriction and the electrostatic field inside and outside the pore. A cluster of arginines (Arg 38, Arg 75, and Arg 133) determines the electrostatic field close to the constriction zone. Stacked amino acids carrying charges are prone to drastic pK(a) shifts. However, optimized calculations of the titration behavior of charged groups, based on the finite-difference Poisson-Boltzmann technique, suggest that all the arginines are charged at physiological pH. Protonation of the clustered arginines is stabilized by one buried glutamate residue (Glu 58), which is strongly interacting with Arg 75 and Arg 38. This functional arrangement of three charged amino acid residues is of general significance because it is found in the constriction zones of all known 16-stranded porins from the alpha-, beta-, and gamma-proteobacteria.
Collapse
Affiliation(s)
- Ulrich Zachariae
- Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
33
|
Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 2002; 184:3086-95. [PMID: 12003951 PMCID: PMC135072 DOI: 10.1128/jb.184.11.3086-3095.2002] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mesorhizobium loti strain R7A symbiosis island is a 502-kb chromosomally integrated element which transfers to nonsymbiotic mesorhizobia in the environment, converting them to Lotus symbionts. It integrates into a phenylalanine tRNA gene in a process mediated by a P4-type integrase encoded at the left end of the element. We have determined the nucleotide sequence of the island and compared its deduced genetic complement with that reported for the 611-kb putative symbiosis island of M. loti strain MAFF303099. The two islands share 248 kb of DNA, with multiple deletions and insertions of up to 168 kb interrupting highly conserved colinear DNA regions in the two strains. The shared DNA regions contain all the genes likely to be required for Nod factor synthesis, nitrogen fixation, and island transfer. Transfer genes include a trb operon and a cluster of potential tra genes which are also present on the strain MAFF303099 plasmid pMLb. The island lacks plasmid replication genes, suggesting that it is a site-specific conjugative transposon. The R7A island encodes a type IV secretion system with strong similarity to the vir pilus from Agrobacterium tumefaciens that is deleted from MAFF303099, which in turn encodes a type III secretion system not found on the R7A island. The 414 genes on the R7A island also include putative regulatory genes, transport genes, and an array of metabolic genes. Most of the unique hypothetical genes on the R7A island are strain-specific and clustered, suggesting that they may represent other acquired genetic elements rather than symbiotically relevant DNA.
Collapse
Affiliation(s)
- John T Sullivan
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fleckenstein JM, Holland JT, Hasty DL. Interaction of an uuter membrane protein of enterotoxigenic Escherichia coli with cell surface heparan sulfate proteoglycans. Infect Immun 2002; 70:1530-7. [PMID: 11854241 PMCID: PMC127767 DOI: 10.1128/iai.70.3.1530-1537.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that enterotoxigenic invasion protein A (Tia), a 25-kDa outer membrane protein encoded on an apparent pathogenicity island of enterotoxigenic Escherichia coli (ETEC) strain H10407, mediates attachment to and invasion into cultured human gastrointestinal epithelial cells. The epithelial cell receptor(s) for Tia has not been identified. Here we show that Tia interacts with cell surface heparan sulfate proteoglycans. Recombinant E. coli expressing Tia mediated invasion into wild-type epithelial cell lines but not invasion into proteoglycan-deficient cells. Furthermore, wild-type eukaryotic cells, but not proteoglycan-deficient eukaryotic cells, attached to immobilized polyhistidine-tagged recombinant Tia (rTia). Binding of epithelial cells to immobilized rTia was inhibited by exogenous heparan sulfate glycosaminoglycans but not by hyaluronic acid, dermatan sulfate, or chondroitin sulfate. Similarly, pretreatment of eukaryotic cells with heparinase I, but not pretreatment of eukaryotic cells with chrondroitinase ABC, inhibited attachment to rTia. In addition, we also observed heparin binding to both immobilized rTia and recombinant E. coli expressing Tia. Heparin binding was inhibited by a synthetic peptide representing a surface loop of Tia, as well as by antibodies directed against this peptide. Additional studies indicated that Tia, as a prokaryotic heparin binding protein, may also interact via sulfated proteoglycan molecular bridges with a number of mammalian heparan sulfate binding proteins. These findings suggest that the binding of Tia to host epithelial cells is mediated at least in part through heparan sulfate proteoglycans and that ETEC belongs on the growing list of pathogens that utilize these ubiquitous cell surface molecules as receptors.
Collapse
Affiliation(s)
- James M Fleckenstein
- Medicine Services, Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA.
| | | | | |
Collapse
|
35
|
Jordi BJ, Boutaga K, van Heeswijk CM, van Knapen F, Lipman LJ. Sensitivity of Shiga toxin-producing Escherichia coli (STEC) strains for colicins under different experimental conditions. FEMS Microbiol Lett 2001; 204:329-34. [PMID: 11731144 DOI: 10.1111/j.1574-6968.2001.tb10906.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Twenty Escherichia coli strains producing well-characterised colicins were tested for their inhibitory activity against five Shiga toxin-producing E. coli (STEC) strains using different media under aerobic and anaerobic conditions. The five STEC strains used were of serotype O26, O111, O128, O145 and O157:H7 which are frequently isolated serotypes associated with disease in humans. The main route of infection for humans is through the eating of badly cooked or handled beef. The major reservoir for STEC strains in cattle is the rumen. To mimic the situation in the rumen of cattle, overlay assays were also performed under anaerobic conditions in the presence of 30% rumen fluid. Colicins E1, E4, E8-J, K and S4 are most active against STEC strains under anaerobic conditions in the absence or presence of rumen fluid. These colicins will be used in future experiments with the aim to eradicate the presence of STEC in cattle.
Collapse
Affiliation(s)
- B J Jordi
- Bacteriology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
El Hamel C, Chevalier S, Dé E, Orange N, Molle G. Isolation and characterisation of the major outer membrane protein of Erwinia carotovora. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1515:12-22. [PMID: 11597348 DOI: 10.1016/s0005-2736(01)00387-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purified major outer membrane protein (37275 Da) from the psychrotrophic phytopathogen Erwinia carotovora MFCL0 was structurally characterised by MALDI-TOF mass spectrometry, N-terminal microsequencing and DNA sequence determinations, and secondary structure prediction analyses. The deduced amino acid sequence showed 76% and 72% of similarities with the Serratia marcescens and Escherichia coli OmpA proteins respectively. Dendrogram analysis allowed to point out that E. carotovora is close to the genus Serratia. After reconstitution into planar lipid bilayers, this major protein induced ion channels with a major conductance level of 630 pS in 1 M NaCl and a weak cationic selectivity. These functional and structural features allowed to identify this major outer membrane component of E. carotovora as an OmpA-like protein, i.e., a channel-forming protein which could be involved in the infection process of this phytopathogen agent.
Collapse
Affiliation(s)
- C El Hamel
- UMR 6522, CNRS, IFRMP 23, Faculté des Sciences, Mont-Saint-Aignan, France
| | | | | | | | | |
Collapse
|
37
|
Bölter B, Soll J. Ion channels in the outer membranes of chloroplasts and mitochondria: open doors or regulated gates? EMBO J 2001; 20:935-40. [PMID: 11230117 PMCID: PMC145478 DOI: 10.1093/emboj/20.5.935] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Accepted: 01/09/2001] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Jürgen Soll
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
Corresponding author e-mail:
| |
Collapse
|
38
|
Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 2001; 183:1405-12. [PMID: 11157954 PMCID: PMC95015 DOI: 10.1128/jb.183.4.1405-1412.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physical and genetic map of the Bradyrhizobium japonicum chromosome revealed that nitrogen fixation and nodulation genes are clustered. Because of the complex interactions between the bacterium and the plant, we expected this chromosomal sector to contain additional genes that are involved in the maintenance of an efficient symbiosis. Therefore, we determined the nucleotide sequence of a 410-kb region. The overall G+C nucleotide content was 59.1%. Using a minimum gene length of 150 nucleotides, 388 open reading frames (ORFs) were selected as coding regions. Thirty-five percent of the predicted proteins showed similarity to proteins of rhizobia. Sixteen percent were similar only to proteins of other bacteria. No database match was found for 29%. Repetitive DNA sequence-derived ORFs accounted for the rest. The sequenced region contained all nitrogen fixation genes and, apart from nodM, all nodulation genes that were known to exist in B. japonicum. We found several genes that seem to encode transport systems for ferric citrate, molybdate, or carbon sources. Some of them are preceded by -24/-12 promoter elements. A number of putative outer membrane proteins and cell wall-modifying enzymes as well as a type III secretion system might be involved in the interaction with the host.
Collapse
Affiliation(s)
- M Göttfert
- Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Mammarappallil JG, Elsinghorst EA. Epithelial cell adherence mediated by the enterotoxigenic Escherichia coli tia protein. Infect Immun 2000; 68:6595-601. [PMID: 11083770 PMCID: PMC97755 DOI: 10.1128/iai.68.12.6595-6601.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Accepted: 09/05/2000] [Indexed: 11/20/2022] Open
Abstract
In vitro studies have shown that enterotoxigenic Escherichia coli (ETEC) strains are capable of invading cultured epithelial cells derived from the human ileum and colon. Two separate invasion loci (tia and tib) have previously been isolated from the classical ETEC strain H10407. The tia locus has been shown to direct the synthesis of Tia, a 25-kDa outer membrane protein. Tia is sufficient to confer the adherence and invasion phenotypes on laboratory stains of E. coli, suggesting that this protein is an adhesin and invasin. Here we report the purification of Tia and characterize its biological activity. Tia was purified by electroelution of outer membrane proteins that had been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified Tia was labeled with biotin and then shown to bind to HCT8 human ileocecal epithelial cells in a specific and saturable manner. Polyclonal anti-Tia antiserum blocked this binding. These results show that Tia acts as an adhesin. Polyclonal anti-Tia antiserum also inhibited invasion of recombinant E. coli bearing tia clones, indirectly suggesting that Tia may also act as an invasin. We predict Tia to contain eight transmembrane amphipathic beta-sheets with four loops that are exposed on the surface of the bacterial cell. A peptide corresponding to 19 residues in one of the four predicted surface-exposed loops inhibits Tia-mediated epithelial cell invasion. Seeding HCT8 cells on wells coated with purified Tia reduced Tia-mediated epithelial cell invasion. Together, these results indicate that Tia is an invasin and adhesin that binds a specific receptor on HCT8 cells.
Collapse
Affiliation(s)
- J G Mammarappallil
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045-2106, USA
| | | |
Collapse
|
40
|
Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J. Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 2000; 19:5989-99. [PMID: 11080146 PMCID: PMC305836 DOI: 10.1093/emboj/19.22.5989] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The non-fimbrial adhesins, YadA of enteropathogenic Yersinia species, and UspA1 and UspA2 of Moraxella catarrhalis, are established pathogenicity factors. In electron micrographs, both surface proteins appear as distinct 'lollipop'-shaped structures forming a novel type of surface projection on the outer membranes. These structures, amino acid sequence analysis of these molecules and yadA gene manipulation suggest a tripartite organization: an N-terminal oval head domain is followed by a putative coiled-coil rod and terminated by a C-terminal membrane anchor domain. In YadA, the head domain is involved in autoagglutination and binding to host cells and collagen. Analysis of the coiled-coil segment of YadA revealed unusual pentadecad repeats with a periodicity of 3.75, which differs significantly from the 3.5 periodicity found in the Moraxella UspAs and other canonical coiled coils. These findings predict that the surface projections are formed by oligomers containing right- (Yersinia) or left-handed (Moraxella) coiled coils. Strikingly, sequence comparison revealed that related proteins are found in many proteobacteria, both human pathogenic and environmental species, suggesting a common role in adaptation to specific ecological niches.
Collapse
Affiliation(s)
- E Hoiczyk
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University Munich, Pettenkoferstrabetae 9a, D-80336 München, Germany
| | | | | | | | | |
Collapse
|
41
|
Zeth K, Diederichs K, Welte W, Engelhardt H. Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 A resolution. Structure 2000; 8:981-92. [PMID: 10986465 DOI: 10.1016/s0969-2126(00)00189-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Porins provide diffusion channels for salts and small organic molecules in the outer membrane of bacteria. In OmpF from Escherichia coli and related porins, an electrostatic field across the channel and a potential, originating from a surplus of negative charges, create moderate cation selectivity. Here, we investigate the strongly anion-selective porin Omp32 from Comamonas acidovorans, which is closely homologous to the porins of pathogenic Bordetella and Neisseria species. RESULTS The crystal structure of Omp32 was determined to a resolution of 2.1 A using single isomorphous replacement with anomalous scattering (SIRAS). The porin consists of a 16-stranded beta barrel with eight external loops and seven periplasmic turns. Loops 3 and 8, together with a protrusion located within beta-strand 2, narrow the cross-section of the pore considerably. Arginine residues create a charge filter in the constriction zone and a positive surface potential at the external and periplasmic faces. One sulfate ion was bound to Arg38 in the channel constriction zone. A peptide of 5.8 kDa appeared bound to Omp32 in a 1:1 stoichiometry on the periplasmic side close to the symmetry axis of the trimer. Eight amino acids of this peptide could be identified, revealing specific interactions with beta-strand 1 of the porin. CONCLUSIONS The Omp32 structure explains the strong anion selectivity of this porin. Selectivity is conferred by a positive potential, which is not attenuated by negative charges inside the channel, and by an extremely narrow constriction zone. Moreover, Omp32 represents the anchor molecule for a peptide which is homologous to proteins that link the outer membrane to the cell wall peptidoglycan.
Collapse
Affiliation(s)
- K Zeth
- Max-Planck-Institut für Biochemie, Abteilung Molekulare Strukturbiologie, Am Klopferspitz 18a, D-82152, Martinsried, Germany
| | | | | | | |
Collapse
|
42
|
Baldermann C, Engelhardt H. Expression, two-dimensional crystallization, and three-dimensional reconstruction of the beta8 outer membrane protein Omp21 from Comamonas acidovorans. J Struct Biol 2000; 131:96-107. [PMID: 11042080 DOI: 10.1006/jsbi.2000.4261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Omp21 protein from the proteobacterium Comamonas (Delftia) acidovorans belongs to the recently described beta8 family of outer membrane proteins, characterized by eight antiparallel beta-strands which form a beta-barrel. This family includes virulence proteins, OmpA and OmpX from Escherichia coli, and other related molecules. After we established an expression system, recombinant Omp21 was purified by Ni(2+) chelation affinity chromatography and refolded in situ while bound to resin. The native state of refolded protein was proven by FTIR spectroscopy and monitored with denaturing PAGE (heat modification). Both native and recombinant Omp21 were reconstituted in lipid membranes and crystallized two-dimensionally by controlled dialysis. Recombinant Omp21 crystallized as dimer and formed a p22(1)2(1) lattice with constants of a = 11.1 nm, b = 12.2 nm, gamma = 89.5 degrees. The 3-D structure of negatively stained, recombinant Omp21 was determined at a resolution of 1.8 nm by means of electron crystallography. Comparison with 3-D maps of OmpX and the transmembrane domain of OmpA revealed a high similarity between the mass distribution of exoplasmic loops of Omp21 and OmpA.
Collapse
Affiliation(s)
- C Baldermann
- Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, Martinsried, D-82152, Germany
| | | |
Collapse
|
43
|
Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ. Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun 2000; 68:4155-68. [PMID: 10858232 PMCID: PMC101716 DOI: 10.1128/iai.68.7.4155-4168.2000] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The two complete genomic sequences of Helicobacter pylori J99 and 26695 were used to compare the paralogous families (related genes within one genome, likely to have related function) of genes predicted to encode outer membrane proteins which were present in each strain. We identified five paralogous gene families ranging in size from 3 to 33 members; two of these families contained members specific for either H. pylori J99 or H. pylori 26695. Most orthologous protein pairs (equivalent genes between two genomes, same function) shared considerable identity between the two strains. The unusual set of outer membrane proteins and the specialized outer membrane may be a reflection of the adaptation of H. pylori to the unique gastric environment where it is found. One subfamily of proteins, which contains both channel-forming and adhesin molecules, is extremely highly related at the sequence level and has likely arisen due to ancestral gene duplication. In addition, the largest paralogous family contained two essentially identical pairs of genes in both strains. The presence and genomic organization of these two pairs of duplicated genes were analyzed in a panel of independent H. pylori isolates. While one pair was present in every strain examined, one allele of the other pair appeared partially deleted in several isolates.
Collapse
Affiliation(s)
- R A Alm
- Infection Discovery AstraZeneca R & D Boston, Waltham, Massachusetts 02451, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Saier MH. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 2000; 64:354-411. [PMID: 10839820 PMCID: PMC98997 DOI: 10.1128/mmbr.64.2.354-411.2000] [Citation(s) in RCA: 575] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional assignments of newly sequenced transport proteins that will result from future genome sequencing projects.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA.
| |
Collapse
|
45
|
Horstman AL, Kuehn MJ. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 2000; 275:12489-96. [PMID: 10777535 PMCID: PMC4347834 DOI: 10.1074/jbc.275.17.12489] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli and other Gram-negative bacteria produce outer membrane vesicles during normal growth. Vesicles may contribute to bacterial pathogenicity by serving as vehicles for toxins to encounter host cells. Enterotoxigenic E. coli (ETEC) vesicles were isolated from culture supernatants and purified on velocity gradients, thereby removing any soluble proteins and contaminants from the crude preparation. Vesicle protein profiles were similar but not identical to outer membranes and differed between strains. Most vesicle proteins were resistant to dissociation, suggesting they were integral or internal. Thin layer chromatography revealed that major outer membrane lipid components are present in vesicles. Cytoplasmic membranes and cytosol were absent in vesicles; however, alkaline phosphatase and AcrA, periplasmic residents, were localized to vesicles. In addition, physiologically active heat-labile enterotoxin (LT) was associated with ETEC vesicles. LT activity correlated directly with the gradient peak of vesicles, suggesting specific association, but could be removed from vesicles under dissociating conditions. Further analysis revealed that LT is enriched in vesicles and is located both inside and on the exterior of vesicles. The distinct protein composition of ETEC vesicles and their ability to carry toxin may contribute to the pathogenicity of ETEC strains.
Collapse
Affiliation(s)
| | - Meta J. Kuehn
- To whom correspondence should be addressed: Duke University Medical Center, Dept. of Biochemistry, Box 3711, Durham, NC 27710. Tel.: 919-684-2545; Fax: 919-684-8885;
| |
Collapse
|
46
|
Steinkamp T, Hill K, Hinnah SC, Wagner R, Röhl T, Pohlmeyer K, Soll J. Identification of the pore-forming region of the outer chloroplast envelope protein OEP16. J Biol Chem 2000; 275:11758-64. [PMID: 10766798 DOI: 10.1074/jbc.275.16.11758] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chloroplast outer envelope protein OEP16 forms a cation-selective high conductance channel with permeability to amines and amino acids. The region of OEP16 directly involved in channel formation has been identified by electrophysiological analysis of a selection of reconstituted OEP16 mutants. Because analysis of these mutants depended on the use of recombinant protein, we evaluated the electrophysiological properties of OEP16 isolated directly from pea chloroplasts and of the recombinant protein produced in Escherichia coli. The results show that the basic properties like conductance, selectivity, and open probability of the channel formed by native pea OEP16 are comparable with the channel activity formed by the recombinant source of the protein. Following electrophysiological analysis of OEP16 mutants we found that point mutations and insertion of additional amino acid residues in the region of the putative helix 1 (Glu(73) to Val(91)) did not change the properties of the OEP16 channel. The only exception was a Cys(71)-->Ser mutation, which led to a loss of the CuCl(2) sensitivity of the channel. Analysis of N- and C-terminal deletion mutants of OEP16 and mutants containing defined shuffled domains indicated that the minimal continuous region of OEP16, which is able to form a channel in liposomes, lies in the first half of the protein between amino acid residues 21 and 93.
Collapse
Affiliation(s)
- T Steinkamp
- Fachbereich Biologie/Chemie, Universität Osnabrück, D-49034 Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Paquet JY, Vinals C, Wouters J, Letesson JJ, Depiereux E. Topology prediction of Brucella abortus Omp2b and Omp2a porins after critical assessment of transmembrane beta strands prediction by several secondary structure prediction methods. J Biomol Struct Dyn 2000; 17:747-57. [PMID: 10698111 DOI: 10.1080/07391102.2000.10506564] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In order to propose a reliable model for Brucella porin topology, several structure prediction methods were evaluated in their ability to predict porin topology. Four porins of known structure were selected as test-cases and their secondary structure delineated. The specificity and sensitivity of 11 methods were separately evaluated. Our critical assessment shows that some secondary structure prediction methods (PHD, Dsc, Sopma) originally designed to predict globular protein structure are useful on porin topology prediction. The overall best prediction is obtained by combining these three "generalist" methods with a transmembrane beta strand prediction technique. This "consensus" method was applied to Brucella porins Omp2b and Omp2a, sharing no sequence homology with any other porin. The predicted topology is a 16-stranded antiparallel beta barrel with Omp2a showing a higher number of negatively charged residue in the exposed loops than Omp2b. Experiments are in progress to validate the proposed topology and the functional hypotheses. The ability of the proposed consensus method to predict topology of complex outer membrane protein is briefly discussed.
Collapse
Affiliation(s)
- J Y Paquet
- Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame-de-la-Paix, Namur, Belgium.
| | | | | | | | | |
Collapse
|
48
|
Vogt J, Schulz GE. The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 1999; 7:1301-9. [PMID: 10545325 DOI: 10.1016/s0969-2126(00)80063-5] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The integral outer membrane protein X (OmpX) from Escherichia coli belongs to a family of highly conserved bacterial proteins that promote bacterial adhesion to and entry into mammalian cells. Moreover, these proteins have a role in the resistance against attack by the human complement system. Here we present the first crystal structure of a member of this family. RESULTS The crystal structure of OmpX from E. coli was determined at 1.9 A resolution using multiple isomorphous replacement. OmpX consists of an eight-stranded antiparallel all-next-neighbor beta barrel. The structure shows two girdles of aromatic amino acid residues and a ribbon of nonpolar residues that attach to the membrane interior. The core of the barrel consists of an extended hydrogen-bonding network of highly conserved residues. OmpX thus resembles an inverse micelle. The structure explains the dramatically improved crystal quality of OmpX containing the mutation His100-->Asn, which made the X-ray analysis possible. The coordination spheres of two bound platinum ions are described. CONCLUSIONS The OmpX structure shows that within a family of virulence-related membrane proteins, the membrane-spanning part of the protein is much better conserved than the extracellular loops. Moreover, these loops form a protruding beta sheet, the edge of which presumably binds to external proteins. It is suggested that this type of binding promotes cell adhesion and invasion and helps defend against the complement system. Although OmpX has the same beta-sheet topology as the structurally related outer membrane protein A (OmpA), their barrels differ with respect to the shear numbers and internal hydrogen-bonding networks.
Collapse
Affiliation(s)
- J Vogt
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, D-79104, Freiburg im Breisgau, Germany
| | | |
Collapse
|
49
|
Pajatsch M, Andersen C, Mathes A, Böck A, Benz R, Engelhardt H. Properties of a cyclodextrin-specific, unusual porin from Klebsiella oxytoca. J Biol Chem 1999; 274:25159-66. [PMID: 10455198 DOI: 10.1074/jbc.274.35.25159] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of CymA, 1 of the 10 gene products involved in cyclodextrin uptake and metabolism by Klebsiella oxytoca, was characterized. CymA is essential for growth on cyclodextrins, but it can also complement the deficiency of a lamB (maltoporin) mutant of Escherichia coli for growth on linear maltodextrins, indicating that both cyclic and linear oligosaccharides are accepted as substrates. CymA was overproduced in E. coli and purified to apparent homogeneity. CymA is a component of the outer membrane, is processed from a signal peptide-containing precursor, and possesses a high content of antiparallel beta-sheet. Incorporation of CymA into lipid bilayers and conductance measurements revealed that it forms ion-permeable channels, which exhibit a substantial current noise. CymA-induced membrane conductance decreased considerably upon addition of alpha-cyclodextrin. Titration experiments allowed the calculation of a half-saturation constant, K(S), of 28 microM for its binding to CymA. CymA assembled in vitro to two-dimensionally crystalline tubular membranes, which, on electron microscopy, are characterized by a p1-related two-sided plane group. The crystallographic unit cell contains four monomeric CymA molecules showing a central pore. The lattice parameters are a = 16.1 nm, b = 3.8 nm, gamma = 93 degrees. CymA does not form trimeric complexes in lipid membranes and shows no tendency to trimerize in solution. CymA thus is an atypical porin with novel properties specialized to transfer cyclodextrins across the outer membrane.
Collapse
Affiliation(s)
- M Pajatsch
- Institute of Genetics and Microbiology, University of Munich, Maria-Ward-Strasse 1a, D-80638 Munich, Germany
| | | | | | | | | | | |
Collapse
|
50
|
de Kort G, Salimans MM, van der Bent-Klootwijk P, van Heest C, van Bussel MJ, van de Klundert JA. Glycosylation of the Enterobacter cloacae outer membrane protein OmpX in eukaryotic cells. FEMS Microbiol Lett 1999; 177:305-11. [PMID: 10474197 DOI: 10.1111/j.1574-6968.1999.tb13747.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The topological model of the Enterobacter cloacae outer membrane protein OmpX showed three putative glycosylation sites. When OmpX was expressed in bacteria that were cultured under aerated conditions, no glycosylation was observed. The coupling of carbohydrate chains to the ompX gene product was also investigated in the eukaryotic baculovirus expression system. For this purpose, a recombinant ompX gene-containing baculovirus was made. Infection of insect cells with this recombinant virus resulted in the production of sufficient amounts of OmpX to study glycosylation. In this system, all potential N-glycosylation sites of OmpX were utilized. Furthermore, it became clear that glycosylated OmpX was retained in the insect cells and was not secreted in the medium. Given the fact that OmpX plays a role in the invasion of E. cloacae in rabbit enterocytes, glycosylation of this protein occurring only under specific conditions may be involved in this process.
Collapse
Affiliation(s)
- G de Kort
- Department of Medical Microbiology, Leiden University Medical Centre, The Netherlands
| | | | | | | | | | | |
Collapse
|