1
|
Lin R, Wu H, Kong X, Ren H, Lu Z. Ribosomal RNA gene operon copy number, a functional trait indicating the hydrocarbon degradation level of bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132100. [PMID: 37523962 DOI: 10.1016/j.jhazmat.2023.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Matamouros S, Gensch T, Cerff M, Sachs CC, Abdollahzadeh I, Hendriks J, Horst L, Tenhaef N, Tenhaef J, Noack S, Graf M, Takors R, Nöh K, Bott M. Growth-rate dependency of ribosome abundance and translation elongation rate in Corynebacterium glutamicum differs from that in Escherichia coli. Nat Commun 2023; 14:5611. [PMID: 37699882 PMCID: PMC10497606 DOI: 10.1038/s41467-023-41176-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Bacterial growth rate (µ) depends on the protein synthesis capacity of the cell and thus on the number of active ribosomes and their translation elongation rate. The relationship between these fundamental growth parameters have only been described for few bacterial species, in particular Escherichia coli. Here, we analyse the growth-rate dependency of ribosome abundance and translation elongation rate for Corynebacterium glutamicum, a gram-positive model species differing from E. coli by a lower growth temperature optimum and a lower maximal growth rate. We show that, unlike in E. coli, there is little change in ribosome abundance for µ <0.4 h-1 in C. glutamicum and the fraction of active ribosomes is kept above 70% while the translation elongation rate declines 5-fold. Mathematical modelling indicates that the decrease in the translation elongation rate can be explained by a depletion of translation precursors.
Collapse
Affiliation(s)
- Susana Matamouros
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| | - Thomas Gensch
- Institute of Biological Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Martin Cerff
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Christian C Sachs
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Iman Abdollahzadeh
- Institute of Biological Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Johnny Hendriks
- Institute of Biological Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Lucas Horst
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Julia Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Michaela Graf
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
3
|
Considerations on the Identity and Diversity of Organisms Affiliated with Sphingobacterium multivorum-Proposal for a New Species, Sphingobacterium paramultivorum. Microorganisms 2021; 9:microorganisms9102057. [PMID: 34683378 PMCID: PMC8540502 DOI: 10.3390/microorganisms9102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Plant biomass offers great potential as a sustainable resource, and microbial consortia are primordial in its bioconversion. The wheat-straw-biodegradative bacterial strain w15 has drawn much attention as a result of its biodegradative potential and superior degradation performance in bacterial-fungal consortia. Strain w15 was originally assigned to the species Sphingobacterium multivorum based on its 16S ribosomal RNA (rRNA) gene sequence. A closer examination of this taxonomic placement revealed that the sequence used has 98.9% identity with the ‘divergent’ 16S rRNA gene sequence of S. multivorum NCTC 11343T, yet lower relatedness with the canonical 16S rRNA sequence. A specific region of the gene, located between positions 186 and 210, was found to be highly variable and determinative for the divergence. To solve the identity of strain w15, genome metrics and analyses of ecophysiological niches were undertaken on a selection of strains assigned to S. multivorum and related species. These analyses separated all strains into three clusters, with strain w15, together with strain BIGb0170, constituting a separate radiation, next to S. multivorum and S. siyangense. Moreover, the strains denoted FDAARGOS 1141 and 1142 were placed inside S. siyangense. We propose the renaming of strains w15 and BIGb0170 as members of the novel species, coined Sphingobacterium paramultivorum.
Collapse
|
4
|
Genomic Analysis of Bacillus megaterium NCT-2 Reveals Its Genetic Basis for the Bioremediation of Secondary Salinization Soil. Int J Genomics 2020; 2020:4109186. [PMID: 32190639 PMCID: PMC7066406 DOI: 10.1155/2020/4109186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 12/17/2022] Open
Abstract
Bacillus megaterium NCT-2 is a nitrate-uptake bacterial, which shows high bioremediation capacity in secondary salinization soil, including nitrate-reducing capacity, phosphate solubilization, and salinity adaptation. To gain insights into the bioremediation capacity at the genetic level, the complete genome sequence was obtained by using a multiplatform strategy involving HiSeq and PacBio sequencing. The NCT-2 genome consists of a circular chromosome of 5.19 Mbp and ten indigenous plasmids, totaling 5.88 Mbp with an average GC content of 37.87%. The chromosome encodes 5,606 genes, 142 tRNAs, and 53 rRNAs. Genes involved in the features of the bioremediation in secondary salinization soil and plant growth promotion were identified in the genome, such as nitrogen metabolism, phosphate uptake, the synthesis of organic acids and phosphatase for phosphate-solubilizing ability, and Trp-dependent IAA synthetic system. Furthermore, strain NCT-2 has great ability of adaption to environments due to the genes involved in cation transporters, osmotic stress, and oxidative stress. This study sheds light on understanding the molecular basis of using B. megaterium NCT-2 in bioremediation of the secondary salinization soils.
Collapse
|
5
|
Morkus P, Zolfaghari M, Parrello D, Csordas M, Malikov M, Rose J, Choi KB, Filipe CDM, Latulippe DR. Optimization of microorganism preservation conditions for the development of an acute toxicity bioassay for biocides. CHEMOSPHERE 2019; 221:45-54. [PMID: 30634148 DOI: 10.1016/j.chemosphere.2018.12.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Biocides, also referred to as 'microbicides' or 'inhibitors', are widely used in industrial processes (e.g. utility water in cooling towers) to control and/or eliminate the growth of microorganisms. Because of their inherent toxicity, their presence in various sources (e.g. river sediments, potable water) can negatively affect ecosystems. Currently available biocide detection techniques are not suitable for 'point-of-use' applications since they are tedious, complicated, and often require experienced personnel to operate. To address this concern, we sought to develop a simple-to-use toxicity bioassay based on a model microorganism (E. coli) after short (<30 min) exposure to known biocides that can be stored at room temperature (preferably) or in the fridge. Based on recent work and our expertise in polymer-based preservation of biomolecules, we leveraged this knowledge to improve E. coli preservation for biocide detection purposes. A design-of-experiments strategy was used to evaluate 16 different preservation conditions from 5 process parameters (i.e. 25-1 fractional factorial). It was found that pullulan, a sugar-based polymer, improved E. coli culturability by an order of magnitude after three months of storage. Also, it was found that storing E. coli in the fridge in Milli-Q water was favorable for maintaining a high level of culturability. Finally, the toxicity of three common biocides (Cetyltrimethylammonium bromide (CTAB), ProClin™ 300, and Grotan® BK) was evaluated using a fluorescence-based assay across all 16 preservation conditions. The response of the preserved E. coli was biocide specific and at certain conditions did not vary during the entire three-month storage period.
Collapse
Affiliation(s)
- Patrick Morkus
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Mehdi Zolfaghari
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Damien Parrello
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Matthew Csordas
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Mikayil Malikov
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - James Rose
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Kenneth Byungjun Choi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - David R Latulippe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
6
|
Reding-Roman C, Hewlett M, Duxbury S, Gori F, Gudelj I, Beardmore R. The unconstrained evolution of fast and efficient antibiotic-resistant bacterial genomes. Nat Ecol Evol 2017; 1:50. [DOI: 10.1038/s41559-016-0050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/09/2016] [Indexed: 11/09/2022]
|
7
|
A Mutation in the 16S rRNA Decoding Region Attenuates the Virulence of Mycobacterium tuberculosis. Infect Immun 2016; 84:2264-2273. [PMID: 27245411 DOI: 10.1128/iai.00417-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium tuberculosis contains a single rRNA operon that encodes targets for antituberculosis agents, including kanamycin. To date, only four mutations in the kanamycin binding sites of 16S rRNA have been reported in kanamycin-resistant clinical isolates. We hypothesized that another mutation(s) in the region may dramatically decrease M. tuberculosis viability and virulence. Here, we describe an rRNA mutation, U1406A, which was generated in vitro and confers resistance to kanamycin while highly attenuating M. tuberculosis virulence. The mutant showed decreased expression of 20% (n = 361) of mycobacterial proteins, including central metabolic enzymes, mycolic acid biosynthesis enzymes, and virulence factors such as antigen 85 complexes and ESAT-6. The mutation also induced three proteins, including KsgA (Rv1010; 16S rRNA adenine dimethyltransferase), which closely bind to the U1406A mutation site on the ribosome; these proteins were associated with ribosome maturation and translation initiation processes. The mutant showed an increase in 17S rRNA (precursor 16S rRNA) and a decrease in the ratio of 30S subunits to the 70S ribosomes, suggesting that the U1406A mutation in 16S rRNA attenuated M. tuberculosis virulence by affecting these processes.
Collapse
|
8
|
Rosenberg A, Sinai L, Smith Y, Ben-Yehuda S. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level. PLoS One 2012; 7:e41921. [PMID: 22848659 PMCID: PMC3405057 DOI: 10.1371/journal.pone.0041921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022] Open
Abstract
The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis) as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.
Collapse
Affiliation(s)
- Alex Rosenberg
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University, Hadassah-Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Sinai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University, Hadassah-Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University- Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University, Hadassah-Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Jangid K, Parameswaran PS, Shouche YS. A variant quorum sensing system in Aeromonas veronii MTCC 3249. SENSORS 2012; 12:3814-30. [PMID: 22666003 PMCID: PMC3355384 DOI: 10.3390/s120403814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/17/2012] [Accepted: 03/20/2012] [Indexed: 11/16/2022]
Abstract
We have investigated the quorum sensing control in Aeromonas veronii MTCC 3249, originally isolated as A. culicicola from the midgut of Culex quinquefasciatus. Based on biosensor assays, the bacterium showed constant production of multiple acyl-homoserine lactones (AHLs) with increasing cell-density. The luxRI gene homologs, acuR (A. culicicola transcriptional Regulator) and acuI (A. culicicola autoInducer) were successfully amplified by inverse-PCR. Sequence analysis indicated acuRI were divergent from all known quorum sensing gene homologs in Aeromonas. Two localized regions in the C-terminal autoinducer binding domain of acuR showed indels suggesting variations in autoinducer specificity. Further, only a single copy of the quorum sensing genes was detected, suggesting a tight regulation of mechanisms under its control. Chromatography and further chemical analysis identified two AHLs in the culture supernatant: 6-carboxy-HHL (homoadipyl homoserine lactone), a novel AHL, and N-tetradecanoylhomoserine lactone. The existence of a potentially variant quorum sensing system might therefore, reflect in some way the ecological strategies adopted by this bacterium in the mosquito midgut.
Collapse
Affiliation(s)
- Kamlesh Jangid
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharashtra 411007, India; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +91-20-2570-8237; Fax: +91-20-2569-2259
| | | | - Yogesh S. Shouche
- Microbial Culture Collection, National Centre for Cell Science, Pune, Maharashtra 411007, India; E-Mail:
| |
Collapse
|
10
|
Minnick MF, Raghavan R. Developmental biology of Coxiella burnetii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:231-48. [PMID: 22711635 DOI: 10.1007/978-94-007-4315-1_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The biphasic developmental cycle of Coxiella burnetii is central to the pathogen's natural history and survival. A small, dormant cell morphotype (the small-cell variant or SCV) allows this obligate intracellular bacterium to persist for extended periods outside of host cells, resist environmental conditions that would be lethal to most prokaryotes, and is the major infectious stage encountered by eukaryotic hosts. In contrast, a large, metabolically-active morphotype (the large-cell variant or LCV) provides for replication of the agent within acidified parasitophorous vacuoles (PVs) of a host cell. The marked physiological changes, differential gene expression, and the regulatory and structural components involved in Coxiella's morphogenesis from LCV to SCV and back to the LCV are fascinating attributes of the pathogen and are reviewed in this chapter.
Collapse
Affiliation(s)
- Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|
11
|
Abstract
Coxiella burnetii is an extremely infectious, zoonotic agent that causes Q fever in humans. With the exception of New Zealand, the bacterium is distributed worldwide. Coxiella is classified as a select agent based on its past and potential use as a bioweapon and its threat to public health. Despite decades of research, we know relatively little regarding Coxiella?s molecular pathogenesis, and a vaccine is not widely available. This article briefly reviews the unusual genetics of C. burnetii; a pathogen that retains telltale genetic mementos collected over the course of its evolutionary path from a free-living bacterium to an obligate intracellular parasite of eukaryotic host cell phagosomes. Understanding why these genetic elements are maintained may help us better understand the biology of this fascinating pathogen.
Collapse
Affiliation(s)
- Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|
12
|
The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet 2010; 6:e1000808. [PMID: 20090831 PMCID: PMC2797632 DOI: 10.1371/journal.pgen.1000808] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/10/2009] [Indexed: 11/20/2022] Open
Abstract
Microbial minimal generation times range from a few minutes to several weeks. They are evolutionarily determined by variables such as environment stability, nutrient availability, and community diversity. Selection for fast growth adaptively imprints genomes, resulting in gene amplification, adapted chromosomal organization, and biased codon usage. We found that these growth-related traits in 214 species of bacteria and archaea are highly correlated, suggesting they all result from growth optimization. While modeling their association with maximal growth rates in view of synthetic biology applications, we observed that codon usage biases are better correlates of growth rates than any other trait, including rRNA copy number. Systematic deviations to our model reveal two distinct evolutionary processes. First, genome organization shows more evolutionary inertia than growth rates. This results in over-representation of growth-related traits in fast degrading genomes. Second, selection for these traits depends on optimal growth temperature: for similar generation times purifying selection is stronger in psychrophiles, intermediate in mesophiles, and lower in thermophiles. Using this information, we created a predictor of maximal growth rate adapted to small genome fragments. We applied it to three metagenomic environmental samples to show that a transiently rich environment, as the human gut, selects for fast-growers, that a toxic environment, as the acid mine biofilm, selects for low growth rates, whereas a diverse environment, like the soil, shows all ranges of growth rates. We also demonstrate that microbial colonizers of babies gut grow faster than stabilized human adults gut communities. In conclusion, we show that one can predict maximal growth rates from sequence data alone, and we propose that such information can be used to facilitate the manipulation of generation times. Our predictor allows inferring growth rates in the vast majority of uncultivable prokaryotes and paves the way to the understanding of community dynamics from metagenomic data. Microbial minimal generation times vary from a few minutes to several weeks. The reasons for this disparity have been thought to lie on different life-history strategies: fast-growing microbes grow extremely fast in rich media, but are less capable of dealing with stress and/or poor nutrient conditions. Prokaryotes have evolved a set of genomic traits to grow fast, including biased codon usage and transient or permanent gene multiplication for dosage effects. Here, we studied the relative role of these traits and show they can be used to predict minimal generation times from the genomic data of the vast majority of microbes that cannot be cultivated. We show that this inference can also be made with incomplete genomes and thus be applied to metagenomic data to test hypotheses about the biomass productivity of biotopes and the evolution of microbiota in the human gut after birth. Our results also allow a better understanding of the co-evolution between growth rates and genomic traits and how they can be manipulated in synthetic biology. Growth rates have been a key variable in microbial physiology studies in the last century, and we show how intimately they are linked with genome organization and prokaryotic ecology.
Collapse
|
13
|
Lee ZMP, Bussema C, Schmidt TM. rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 2008; 37:D489-93. [PMID: 18948294 PMCID: PMC2686494 DOI: 10.1093/nar/gkn689] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A dramatic exception to the general pattern of single-copy genes in bacterial and archaeal genomes is the presence of 1–15 copies of each ribosomal RNA encoding gene. The original version of the Ribosomal RNA Database (rrnDB) cataloged estimates of the number of 16S rRNA-encoding genes; the database now includes the number of genes encoding each of the rRNAs (5S, 16S and 23S), an internally transcribed spacer region, and the number of tRNA genes. The rrnDB has been used largely by microbiologists to predict the relative rate at which microbial populations respond to favorable growth conditions, and to interpret 16S rRNA-based surveys of microbial communities. To expand the functionality of the rrnDB (http://ribosome.mmg.msu.edu/rrndb/index.php), the search engine has been redesigned to allow database searches based on 16S rRNA gene copy number, specific organisms or taxonomic subsets of organisms. The revamped database also computes average gene copy numbers for any collection of entries selected. Curation tools now permit rapid updates, resulting in an expansion of the database to include data for 785 bacterial and 69 archaeal strains. The rrnDB continues to serve as the authoritative, curated source that documents the phylogenetic distribution of rRNA and tRNA genes in microbial genomes.
Collapse
Affiliation(s)
- Zarraz May-Ping Lee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
14
|
Arp DJ, Chain PSG, Klotz MG. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 2007; 61:503-28. [PMID: 17506671 DOI: 10.1146/annurev.micro.61.080706.093449] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The availability of whole-genome sequences for ammonia-oxidizing bacteria (AOB) has led to dramatic increases in our understanding of these environmentally important microorganisms. Their genomes are smaller than many other members of the proteobacteria and may indicate genome reductions consistent with their limited lifestyle. The genomes have a surprising level of gene repetition including genes for ammonia catabolism, iron acquisition, and insertion sequences. The gene profiles reveal limited genes for catabolism and transport of complex organic compounds, but complete pathways for some other compounds. This led to the observation of chemolithoheterotrophic growth of Nitrosomonas europaea. Genes for sucrose synthesis/degradation were identified. The core metabolic module of aerobic ammonia oxidation, the extraction of electrons from hydroxylamine to generate proton-motive force and reductant, has evolutionary roots in the denitrification inventory of anaerobic sulfur-dependent bacteria. The extension by ammonia monooxygenase provides a mechanism to feed this module using ammonia and O(2).
Collapse
Affiliation(s)
- Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | |
Collapse
|
15
|
Dethlefsen L, Schmidt TM. Performance of the translational apparatus varies with the ecological strategies of bacteria. J Bacteriol 2007; 189:3237-45. [PMID: 17277058 PMCID: PMC1855866 DOI: 10.1128/jb.01686-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein synthesis is the predominant activity of growing bacteria; the protein synthesis system accounts for more than one-half the cell's dry mass and consumes most of the cell's energy during rapid growth. Translation has been studied extensively using model organisms, and the translational apparatus is qualitatively similar in terms of structure and function across all known forms of life. However, little is known about variation between organisms in translational performance. Using measurements of macromolecular content in a phylogenetically diverse collection of bacteria with contrasting ecological strategies, we found that the translational power (the rate of protein synthesis normalized to the mass of the protein synthesis system) is three- to fourfold higher among bacteria that respond rapidly to nutrient availability than among bacteria that respond slowly. An analysis of codon use in completely sequenced bacterial genomes confirmed that the selective forces acting on translation vary with the ecological strategy. We propose that differences in translational power result from ecologically based variation among microbes in the relative importance of two competing benefits: reducing the biomass invested in the protein synthesis system and reducing the energetic expense of protein synthesis.
Collapse
Affiliation(s)
- Les Dethlefsen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | | |
Collapse
|
16
|
ELSER JJ, WATTS T, BITLER B, MARKOW TA. Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Funct Ecol 2006. [DOI: 10.1111/j.1365-2435.2006.01165.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Cabrera JE, Jin DJ. Active transcription of rRNA operons is a driving force for the distribution of RNA polymerase in bacteria: effect of extrachromosomal copies of rrnB on the in vivo localization of RNA polymerase. J Bacteriol 2006; 188:4007-14. [PMID: 16707692 PMCID: PMC1482923 DOI: 10.1128/jb.01893-05] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to eukaryotes, bacteria such as Escherichia coli contain only one form of RNA polymerase (RNAP), which is responsible for all cellular transcription. Using an RNAP-green fluorescent protein fusion protein, we showed previously that E. coli RNAP is partitioned exclusively in the nucleoid and that stable RNA synthesis, particularly rRNA transcription, is critical for concentrating a significant fraction of RNAP in transcription foci during exponential growth. The extent of focus formation varies under different physiological conditions, supporting the proposition that RNAP redistribution is an important element for global gene regulation. Here we show that extra, plasmid-borne copies of an rRNA operon recruit RNAP from the nucleoid into the cytoplasmic space and that this is accompanied by a reduction in the growth rate. Transcription of an intact rRNA operon is not necessary, although a minimal transcript length is required for this phenotype. Replacement of the ribosomal promoters with another strong promoter, Ptac, abolished the effect. These results demonstrate that active synthesis from rRNA promoters is a major driving force for the distribution of RNAP in bacteria. The implications of our results for the regulation of rRNA synthesis and cell growth are discussed.
Collapse
Affiliation(s)
- Julio E Cabrera
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, 1050 Boyles Street, Bldg. 469, Rm. 127, Frederick, MD 21702, USA
| | | |
Collapse
|
18
|
Weider LJ, Elser JJ, Crease TJ, Mateos M, Cotner JB, Markow TA. The Functional Significance of Ribosomal (r)DNA Variation: Impacts on the Evolutionary Ecology of Organisms. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.36.102003.152620] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lawrence J. Weider
- Department of Zoology and Biological Station, University of Oklahoma, Norman, Oklahoma 73019;
| | - James J. Elser
- Department of Life Sciences, Division of Ecology and Organismal Biology, Arizona State University, Tempe, Arizona 85069-7100;
| | - Teresa J. Crease
- Department of Integrative Biology, University of Guelph, Canada N1G 2W1;
| | - Mariana Mateos
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721;
| | - James B. Cotner
- Department of Ecology, Evolution and Behavior, University of Minnesota St. Paul, Minnesota 55108;
| | - Therese A. Markow
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
19
|
Karlyshev AV, Wren BW. Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Appl Environ Microbiol 2005; 71:4004-13. [PMID: 16000815 PMCID: PMC1169003 DOI: 10.1128/aem.71.7.4004-4013.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic investigation of Campylobacter jejuni, an important gastrointestinal pathogen, has been hampered by the lack of an efficient system for introduction of exogenous genetic information, as commonly used vectors designed for Escherichia coli and other bacteria cannot be maintained in Campylobacter cells. Additionally, gene expression in Campylobacter requires the presence of species-specific promoters. In this study we exploited the availability of several conserved copies of rRNA gene clusters for insertion of various genes into the chromosome by homologous recombination. The high conservation of the rRNA sequences means that the procedure can be applied to other Campylobacter strains. The presence of a Campylobacter-derived promoter in this vector ensures expression of exogenous genes in target cells. The efficiency of the procedure was demonstrated by complementation of mutations in two strains of Campylobacter. In addition, we applied the system for introduction and expression of a green fluorescent protein (GFP). GFP-expressing Campylobacter allowed visualization of sessile bacteria attached to a glass surface in stationary liquid culture. The study demonstrated that the attached bacteria contained an assemblage of coccoid and spiral forms with liquid channels preserving viable highly motile cells. We demonstrate a novel universal procedure for gene delivery and expression that can be used as an efficient tool to study this poorly understood pathogen. The principles developed in this study could be more widely applied for the manipulation of other bacteria that are refractory to genetic analysis.
Collapse
Affiliation(s)
- A V Karlyshev
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, Keppel St., London WC1E 7HT, United Kingdom.
| | | |
Collapse
|
20
|
Stevenson BS, Schmidt TM. Life history implications of rRNA gene copy number in Escherichia coli. Appl Environ Microbiol 2005; 70:6670-7. [PMID: 15528533 PMCID: PMC525164 DOI: 10.1128/aem.70.11.6670-6677.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the rRNA gene copy number as a central component of bacterial life histories was studied by using strains of Escherichia coli in which one or two of the seven rRNA operons (rrnA and/or rrnB) were deleted. The relative fitness of these strains was determined in competition experiments in both batch and chemostat cultures. In batch cultures, the decrease in relative fitness corresponded to the number of rRNA operons deleted, which could be accounted for completely by increased lag times and decreased growth rates. The magnitude of the deleterious effect varied with the environment in which fitness was measured: the negative consequences of rRNA operon deletions increased under culture conditions permitting more-rapid growth. The rRNA operon deletion strains were not more effective competitors under the regimen of constant, limited resources provided in chemostat cultures. Enhanced fitness in chemostat cultures would have suggested a simple tradeoff in which deletion strains grew faster (due to more efficient resource utilization) under resource limitation. The contributions of growth rate, lag time, Ks, and death rate to the fitness of each strain were verified through mathematical simulation of competition experiments. These data support the hypothesis that multiple rRNA operons are a component of bacterial life history and that they confer a selective advantage permitting microbes to respond quickly and grow rapidly in environments characterized by fluctuations in resource availability.
Collapse
Affiliation(s)
- Bradley S Stevenson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48823-4320, USA
| | | |
Collapse
|
21
|
Dethlefsen L, Schmidt TM. Differences in codon bias cannot explain differences in translational power among microbes. BMC Bioinformatics 2005; 6:3. [PMID: 15636642 PMCID: PMC546186 DOI: 10.1186/1471-2105-6-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 01/06/2005] [Indexed: 11/15/2022] Open
Abstract
Background Translational power is the cellular rate of protein synthesis normalized to the biomass invested in translational machinery. Published data suggest a previously unrecognized pattern: translational power is higher among rapidly growing microbes, and lower among slowly growing microbes. One factor known to affect translational power is biased use of synonymous codons. The correlation within an organism between expression level and degree of codon bias among genes of Escherichia coli and other bacteria capable of rapid growth is commonly attributed to selection for high translational power. Conversely, the absence of such a correlation in some slowly growing microbes has been interpreted as the absence of selection for translational power. Because codon bias caused by translational selection varies between rapidly growing and slowly growing microbes, we investigated whether observed differences in translational power among microbes could be explained entirely by differences in the degree of codon bias. Although the data are not available to estimate the effect of codon bias in other species, we developed an empirically-based mathematical model to compare the translation rate of E. coli to the translation rate of a hypothetical strain which differs from E. coli only by lacking codon bias. Results Our reanalysis of data from the scientific literature suggests that translational power can differ by a factor of 5 or more between E. coli and slowly growing microbial species. Using empirical codon-specific in vivo translation rates for 29 codons, and several scenarios for extrapolating from these data to estimates over all codons, we find that codon bias cannot account for more than a doubling of the translation rate in E. coli, even with unrealistic simplifying assumptions that exaggerate the effect of codon bias. With more realistic assumptions, our best estimate is that codon bias accelerates translation in E. coli by no more than 60% in comparison to microbes with very little codon bias. Conclusions While codon bias confers a substantial benefit of faster translation and hence greater translational power, the magnitude of this effect is insufficient to explain observed differences in translational power among bacterial and archaeal species, particularly the differences between slowly growing and rapidly growing species. Hence, large differences in translational power suggest that the translational apparatus itself differs among microbes in ways that influence translational performance.
Collapse
Affiliation(s)
- Les Dethlefsen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Microbiology and Immunology, Stanford University, Palo Alto, California 94304, USA
| | - Thomas M Schmidt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
22
|
Murray HD, Schneider DA, Gourse RL. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol Cell 2003; 12:125-34. [PMID: 12887898 DOI: 10.1016/s1097-2765(03)00266-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The control of ribosomal RNA transcription is one of the most enduring issues in molecular microbiology, having been subjected to intense scrutiny for over 50 years. Rapid changes in rRNA expression occur during transitions in the bacterial growth cycle and following nutritional shifts during exponential growth. Genetic approaches and measurements of initiating nucleoside triphosphate (iNTP) and guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) concentrations and of rRNA promoter activities showed that rapid changes in the concentrations of iNTPs and ppGpp account for the rapid changes in rRNA expression. The two regulatory signals are nonredundant: changes in iNTP concentration dominate regulation during outgrowth from stationary phase, whereas changes in ppGpp concentration are responsible for regulation following upshifts and downshifts during exponential phase. The results suggest a molecular logic for the use of two homeostatic regulatory mechanisms to monitor different aspects of ribosome activity and provide general insights into the nature of overlapping regulatory circuits.
Collapse
Affiliation(s)
- Heath D Murray
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706, USA
| | | | | |
Collapse
|
23
|
Abstract
The bacterium Vibrio natriegens can double with a generation time of less than 10 min (R. G. Eagon, J. Bacteriol. 83:736-737, 1962), a growth rate that requires an extremely high rate of protein synthesis. We show here that V. natriegens' high potential for protein synthesis results from an increase in ribosome numbers with increasing growth rate, as has been found for other bacteria. We show that V. natriegens contains a large number of rRNA operons, and its rRNA promoters are extremely strong. The V. natriegens rRNA core promoters are at least as active in vitro as Escherichia coli rRNA core promoters with either E. coli RNA polymerase (RNAP) or V. natriegens RNAP, and they are activated by UP elements, as in E. coli. In addition, the E. coli transcription factor Fis activated V. natriegens rrn P1 promoters in vitro. We conclude that the high capacity for ribosome synthesis in V. natriegens results from a high capacity for rRNA transcription, and the high capacity for rRNA transcription results, at least in part, from the same factors that contribute most to high rates of rRNA transcription in E. coli, i.e., high gene dose and strong activation by UP elements and Fis.
Collapse
Affiliation(s)
- Sarah E Aiyar
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
24
|
Richins R, Chen W. Effects of FIS overexpression on cell growth, rRNA synthesis, and ribosome content in Escherichia coli. Biotechnol Prog 2001; 17:252-7. [PMID: 11312701 DOI: 10.1021/bp000170f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Escherichia coli DNA binding protein FIS is a transcriptional modulator involved in the regulation of many cellular processes, including the activation of rRNA synthesis. High-level overproduction of FIS in early, mid, or late log cultures resulted in growth-phase- and media-specific variations in cell growth, rRNA synthesis, and ribosome content. FIS overproduction caused a pronounced increase in rRNA synthesis for late-exponential cultures but a substantial reduction in cell growth and ribosome content. The addition of simple sugars such as glucose or fructose reversed these phenomena, consistent with the functional role of FIS in carbon metabolism.
Collapse
Affiliation(s)
- R Richins
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
25
|
Kunnimalaiyaan M, Stevenson DM, Zhou Y, Vary PS. Analysis of the replicon region and identification of an rRNA operon on pBM400 of Bacillus megaterium QM B1551. Mol Microbiol 2001; 39:1010-21. [PMID: 11251820 DOI: 10.1046/j.1365-2958.2001.02292.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An 18 633 bp region containing the replicon from the approximately 53 kb pBM400 plasmid of Bacillus megaterium QM B1551 has been sequenced and characterized. This region contained a complete rRNA operon plus 10 other potential open reading frames (ORFs). The replicon consisted of an upstream promoter and three contiguous genes (repM400, orfB and orfC) that could encode putative proteins of 428, 251 and 289 amino acids respectively. A 1.6 kb minimal replicon was defined and contained most of repM400. OrfB was shown to be required for stability. Three 12 bp identical tandem repeats were located within the coding region of repM400, and their presence on another plasmid caused incompatibility with their own cognate replicon. Nonsense, frameshift and deletion mutations in repM400 prevented replication, but each mutation could be complemented in trans. RepM400 had no significant similarity to sequences in the GenBank database, whereas five other ORFs had some similarity to gene products from other plasmids and the Bacillus genome. An rRNA operon was located upstream of the replication region and is the first rRNA operon to be sequenced from B. megaterium. Its unusual location on non-essential plasmid DNA has implications for systematics and evolutionary biology.
Collapse
Affiliation(s)
- M Kunnimalaiyaan
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | |
Collapse
|
26
|
Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 2000; 66:1328-33. [PMID: 10742207 PMCID: PMC91988 DOI: 10.1128/aem.66.4.1328-1333.2000] [Citation(s) in RCA: 687] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although natural selection appears to favor the elimination of gene redundancy in prokaryotes, multiple copies of each rRNA-encoding gene are common on bacterial chromosomes. Despite this conspicuous deviation from single-copy genes, no phenotype has been consistently associated with rRNA gene copy number. We found that the number of rRNA genes correlates with the rate at which phylogenetically diverse bacteria respond to resource availability. Soil bacteria that formed colonies rapidly upon exposure to a nutritionally complex medium contained an average of 5.5 copies of the small subunit rRNA gene, whereas bacteria that responded slowly contained an average of 1.4 copies. In soil microcosms pulsed with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), indigenous populations of 2,4-D-degrading bacteria with multiple rRNA genes ( = 5.4) became dominant, whereas populations with fewer rRNA genes ( = 2.7) were favored in unamended controls. These findings demonstrate phenotypic effects associated with rRNA gene copy number that are indicative of ecological strategies influencing the structure of natural microbial communities.
Collapse
Affiliation(s)
- J A Klappenbach
- Department of Microbiology and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | | | |
Collapse
|
27
|
Fegatella F, Lim J, Kjelleberg S, Cavicchioli R. Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 1998; 64:4433-8. [PMID: 9797303 PMCID: PMC106665 DOI: 10.1128/aem.64.11.4433-4438.1998] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1998] [Accepted: 08/31/1998] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas sp. strain RB2256 is a representative of the dominant class of ultramicrobacteria that are present in marine oligotrophic waters. In this study we examined the rRNA copy number and ribosome content of RB2256 to identify factors that may be associated with the relatively low rate of growth exhibited by the organism. It was found that RB2256 contains a single copy of the rRNA operon, in contrast to Vibrio spp., which contain more than eight copies. The maximum number of ribosomes per cell was observed during mid-log phase; however, this maximum content was low compared to those of faster-growing, heterotrophic bacteria (approximately 8% of the maximum ribosome content of Escherichia coli with a growth rate of 1. 5 h-1). The low number of ribosomes per cell appears to correlate with the low rate of growth (0.16 to 0.18 h-1) and the presence of a single copy of the rRNA operon. However, on the basis of cell volume, RB2256 appears to have a higher concentration of ribosomes than E. coli (approximately double that of E. coli with a growth rate of 1.5 h-1). Ribosome numbers reached maximum levels during mid-log-phase growth but decreased rapidly to 10% of maximum during late log phase through 7 days of starvation. The cells in late log phase and at the onset of starvation displayed an immediate response to a sudden addition of excess glucose (3 mM). This result demonstrates that a ribosome content 10% of maximum is sufficient to allow cells to immediately respond to nutrient upshift and achieve maximum rates of growth. These data indicate that the bulk of the ribosome pool is not required for protein synthesis and that ribosomes are not the limiting factor contributing to a low rate of growth. Our findings show that the regulation of ribosome content, the number of ribosomes per cell, and growth rate responses in RB2256 are fundamentally different from those characteristics in fast-growing heterotrophs like E. coli and that they may be characteristics typical of oligotrophic ultramicrobacteria.
Collapse
Affiliation(s)
- F Fegatella
- School of Microbiology and Immunology, The University of New South Wales, Sydney, 2052 New South Wales, Australia
| | | | | | | |
Collapse
|